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ABSTRACT  

 

Higher concentrations of greenhouse gases resulting from anthropogenic actions 

associated with energy production are one of the causes of climate change. In this 

context, several efforts have been undertaken in the search for more sustainable 

alternatives, with photovoltaic (PV) technology standing out among the different 

possibilities. However, PV production is dependent on future climate variability, 

which is a source of uncertainty that can hinder energy planning and impair the 

effectiveness of systems. This study investigates how the authors approached the 

theme the climate change impacts on photovoltaic production ( ) from the 

perspective of simulations using climate models. To this end, a search was carried 

out using keywords related to the theme at the Web of Science database and, after 

filtering, it generated a sample of 58 articles on the theme of climate change 

impact on PV production, which were subjected to a systematic review. With the 

analysis and classification of the papers, 14 articles were quantified as indirect 

approach using simulations from climate models. The main GCMs (global climate 

models) and RCMs (regional climate models) used in each study, as well as the 

equations for estimating  and the meteorological forecast databases, were 

identified. The studies found in the literature have mainly focused on Africa, 

Europe and China. 

 

 

NOMENCLATURE 

 

AOGCM  Atmosphere-ocean GCM 

CIT   Cloud image techniques 

CSP   Concentrated solar power 

CVC  Climate variability and change 

GCM   Global climate model 

GHG   Greenhouse gases 

GMT  Global mean temperature 

GWL  Global warming level 

HSI   High-speed improvement 

IV   Internal variability 

LSI   Low-speed improvement 

MLT  Machine learning techniques 

OTH  Others 

PGW  Pseudo-global warming technique 

PI   Pre-industrial level 

PT   Physical technique 

PV   Photovoltaic 

   Photovoltaic production 

RCM   Regional climate model 

RE   Review articles 

SA   Statistical Approaches 

SCA  Stepwise cluster analysis 

ST   Standard reference 

TI   Title 

TS   Topic 

WOS  Web of Science 

WRF  Weather Research and Forecasting 

 

1. INTRODUCTION 

 

Climate change is a natural occurrence that 

has been observed throughout Earth's history [1]. 

However, the Intergovernmental Panel on Climate 

Change [2] states that the current increase in average 

global temperatures is primarily attributed to elevated 

levels of greenhouse gases (GHGs) in the 

atmosphere. These higher concentrations of GHGs 

are a result of human activities, including the burning 

of fossil fuels and the rapid expansion of urban areas 

[3]. Associated with energy production services, 
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anthropogenic emissions of GHG and aerosols are 

one of the historical [4] and future [5] causes of 

climate change. Recently, discussions on the causes 

and effects of this phenomenon, associated with the 

theme of problems in energy demand and 

consumption, have increased and gained attention in 

various debates around the world. There are different 

options to reduce GHG emissions and simultaneously 

meet the human demand for energy services that is 

expected to increase due to climate change [6, 7]. 

Given this scenario, renewable energy fills 

the gap between climate and energy sciences, playing 

a very important role in strategies for decarbonization 

and mitigation of the adverse effects of climate 

change [8] and its possible consequences on societies 

and on the environment [2]. The report of the 

Intergovernmental Panel on Climate Change [4] 

suggested that notable alterations in future climate 

projections will lead to substantial governmental 

investments in energy and drive innovation in the 

energy sector [9]. In efforts to accomplish the 

objective of carbon emissions reduction, there has 

been a significant global increase in the deployment 

of renewable energy sources [10]. 

Photovoltaic (PV) energy generation, which 

involves the direct conversion of sunlight into 

electricity, has shown significant growth potential 

and has the ability to eventually rival conventional 

energy sources [11]. The decline in the cost of PV 

systems and advancements in energy production 

efficiency [12] have played a key role in the 

increased installation of PV panels. There are other 

factors that contribute to the popularity of PV 

technology: easy implementation, modularity, low 

maintenance and, mainly, a fast-learning curve [13]. 

Thus, PV solar projects have the capacity to make a 

significant contribution to mitigating climate change 

[14]. Nevertheless, the sensitivity of these systems to 

atmospheric conditions and future climate variations 

introduces uncertainty, which can pose challenges to 

energy planning and potentially impact the 

effectiveness of PV systems. This uncertainty may 

hinder investments in the PV energy sector [15, 16]. 

When contemplating the implementation of 

a photovoltaic plant, it becomes crucial to assess the 

future renewable resources rather than solely relying 

on present conditions, particularly when long-term 

investments are involved [6]. This forward-looking 

approach allows for a more comprehensive 

evaluation of the renewable energy potential and 

ensures that the investment aligns with long-term 

sustainability goals. In general, climate change 

projections are necessary to establish possible future 

scenarios in order to create subsidies for the 

development of GHG reduction strategies [17]. 

In view of the growing concern about the 

future climate, climate models have been developed. 

The first general circulation model was developed at 

Fluid Dynamics Laboratory of the National Oceanic 

and Atmospheric Administration (NOAA) at the end 

of the 1960s in Princeton, USA. This model took into 

account the interactions between oceanic and 

atmospheric processes and how climatic factors 

influenced climate change [18]. Currently, global 

(GCMs) and regional (RCMs) climate models are the 

main tools used to generate future climate data from a 

number of parameters, such as air temperature, solar 

radiation, among others [19, 20]. 

Within this theme, although there are several 

studies [15, 21-31] assessing the impacts of climate 

change on meteorological variables that influence PV 

energy production, they did not thoroughly examine 

the impact of these changes on photovoltaic 

production ( ). 

Several studies have attempted to examine 

the literature concerning the assessment of climate 

change's impact on PV energy production. 

Antonanzas et al. (2016) [32] focused on recent 

research related to solar energy forecasting, but they 

did not extensively explore PV energy forecasting 

models. On the other hand, Gandomanin et al. (2016) 

[33] conducted a review of short-term forecasting of 

PV solar energy production with an emphasis on 

cloud cover influence. Wan et al. (2015) [34] and 

Raza et al. (2016) [35] investigated various PV and 

solar forecasting techniques but did not specifically 

address studies utilizing climate models. 

Numerical methods have been recently 

reviewed by Das et al. (2018) [36], by Sobri et al. 

(2018) [37] and by Akhter et al. (2019) [38], who 

also did not thoroughly examine climate methods. 

Numerical methods are based on historical data and 

on the capacity to extract information from data to 

predict time series. They include methods based on 

Statistical Approaches (SA), machine learning 

techniques (MLT) and hybrids that combine the two 

previous methods. 

Thus, the present study seeks to identify the main 

results related to the impacts of climate change (ICC) 

on the  from the perspective of climate models. A 

comprehensive and rigorous approach will be 

employed to conduct a literature review, aiming to 

establish correlations between future PV production 

and its susceptibility to climate change on both 

regional and global scales. The findings of this 

research will provide valuable insights for PV energy 

companies and policymakers to facilitate the planning 

of the future energy system. The subsequent sections 

of this paper are structured as follows: Section 2 

outlines the methodologies utilized in conducting the 

scoping systematic review; Section 3 presents an 

analysis of the literature review, focusing on the 

effects of climate variability and change (CVC); 

Section 4 offers a comprehensive discussion, 

summarizing the findings, identifying research gaps, 

and assessing the strengths and limitations of the 

scoping systematic review; and finally, Section 5 

provides the conclusion of the study. 

 

2. MATHODOLOGY 
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Cluster and content analyses were used, 

which described and interpreted the knowledge and 

data presented in the papers, and reviewed the 

content of the selected papers, meeting specific 

criteria of reliability and validation [39]. The stages 

of methodological development are described in 

Figure 1. 

 

Figure 2: Descriptive summary of the methodological 

procedure employed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SStep 1 - Inputs  

At first, it was necessary to define the 

question that will guide this review: What are the 

characteristics, amplitude and results of existing 

research conducted on the impacts of climate change 

on photovoltaic production from the perspective of 

simulations using climate models? 

At this point, we sought to estimate the 

relevance of the problem to be analyzed, in addition 

to defining the object of study. Subsequently, an 

exploratory analysis was carried out on how the 

examination and analysis of climate change effects 

on photovoltaic production are addressed in the 

literature. The main words adopted in the articles to 

define search terms were also identified, based on 

Emodi et al. (2019) [40]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1: Description and refining of the search for bibliographic references used in the 

study. 
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Step 2 - Processing 

 

This stage of the study refers to the 

definition of the portfolio, described in detail to 

enable replication of the method. Its construction was 

based on the preparation of search networks 

delimited by the theme of the study [40]. 

Thus, searches were carried out on the Web of 

Science (WOS) platform, one of the world’s most 

prestigious databases [41], through terms considered 

relevant by the authors regarding the analysis of the 

impacts of climate change on PV energy production, 

as shown in Figure 2. Papers published until 

12/31/2023 were included. 

The first phase of the research described the 

process of investigating journals related to the 

keywords. The terms used were divided into TI 

(“title”) and TS (“topic”). This chosen structure 

intended to bring the “titles” as the central figure of 

the search and correlate them with the “topics”. The 

incomplete terms used in the search, such as 

“Climat”, plus “*”, represent a form of search where 

the database returns the results of the variations of the 

term: “Climate”, “Clime” and “Climatic”. The terms 

with “question mark” (?) used in the search, as in 

“?ffect*”, represent a form of search where the 

database returns results with variation of a single 

letter: “affect”, “affected” and “effect”. 

The second phase comprised the inclusion 

and exclusion criteria operated for the selection of 

studies, as observed in Figure 2. First, at the WOS 

database, only scientific and review articles were 

chosen. Then, still on the WOS platform, all articles 

that were repeated and written in a language other 

than English were excluded. After this previous 

selection, which generated a considerable number of 

papers, the screening process was carried out, where 

the titles and abstracts of all articles were read, and 

those outside the scope of the study were excluded 

and all the articles referenced by those already 

selected that had an explicit relation to the theme 

were included, a process called branching. 

The third phase, characterized by the 

clustering process, classifies them according to the 

thematic axis, by content analysis, referring to the 

pillar (s) of the methodology of analysis and 

forecasting of PV energy production (PT, CIT, MLT, 

RE and OTH, Figure 2). Related terms were used to 

assist in the affinity of inclusion in each category 

[40]. Considering the objective of this study, the 

articles that used climate models to qualitatively and 

quantitatively evaluate the impacts of climate change 

on PV production were considered eligible. 

Data processing was performed in Excel 

2013 software [42], by feeding it with information to 

construct graphs and tables that assisted in the 

quantitative and qualitative analysis of the articles. 

The necessary elements were provided by the WOS 

database itself, such as: title, authors, keywords, 

number of citations, abstract, year, country and 

journal of publication. 

 

Step 3 - Outputs 

Quantitative and qualitative balances supported a 

better understanding of the analyzed articles. A 

scoping review was employed to systematically 

analyze the existing literature, identifying crucial 

concepts in the research, evidence types, and sources. 

This comprehensive approach aids in formulating 

policies and guiding further research endeavors [40]. 

 

3. CHARACTERISTICS OF THE 

SYSTEMATIC REVIEW ARTICLES 

 

3.1 Main articles 

Following the methodology described in 

Section 2 (Figure 2): in the first phase, a total of 

1,079 articles were included; in the second phase, 

after eliminating repeated papers, those written in a 

language other than English, and with title and/or 

abstract with a subject different from the focus of the 

present study, and evaluating the references, only 58 

articles remained; finally, in the third phase, after 

detailed analysis of the content, a total of 14 articles 

were extracted. All fourteen articles [5, 6, 16, 43-53] 

used climate models to quantitatively assess the 

impacts of climate change on PV energy production 

over a very long-term horizon. 

 

3.2 Climate models used 

According to Diagne et al. (2013) [54], 

climate models can be categorized into three types: 

global (covering the whole Earth), mesoscale 

(covering a part of Earth), and regional (focused on 

specific local regions). Global Climate Models 

(GCMs) are the main instruments employed for 

large-scale climate modeling, capable of generating 

reasonable outcomes on extensive spatial and 

temporal scales [55]. However, due to their low 

resolution (both spatial and temporal), GCMs have 

limitations when it comes to precise evaluations on a 

regional scale [52]. 

Regional Climate Models (RCMs) are the 

answer to overcome these limitations [47]. RCMs 

offer an enhanced resolution in both temporal and 

spatial aspects, enabling a more accurate 

representation of mesoscale atmospheric processes 

under present and future climate conditions [56, 57, 

58]. RCMs face a significant drawback due to the 

presence of substantial uncertainties in their 

projections. Climate change research primarily 

attributes these uncertainties to various factors, 

including the techniques employed to impose 

boundary conditions on RCMs, the downscaling 

methods adopted, and the greenhouse gas emission 

scenarios utilized [59]. 

The global and regional climate models used in 

the forecast of PV production are presented in Tables 

1, 2 and 3. Division into three tables was performed 
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to better arrange the data. From the tables it is 

possible to notice that Crook et al. (2011) [43] were 

the forerunners in this line of research. The authors 

conducted an investigation into the potential impacts 

of solar temperature and irradiation changes on the 

generation of PV energy and concentrated solar 

power (CSP) throughout the 21st century. To 

accomplish this, they obtained projected climatic data 

from two GCMs. In their study, Crook et al. (2011) 

[43] emphasized the importance of conducting 

similar analyses using a broader range of climate 

models to enhance comprehension of the variability 

in energy production due to uncertainties in solar 

irradiation projections. The initial findings presented 

by the authors can be regarded as a preliminary 

estimation of magnitude. 

 

3.2.1 Entire globe 

 

A total of six works used climate models to 

analyze the ICC-  at the level of China or the 

entire globe (Table 1). Due to the fact of analyzing 

the future from models, which have numerous 

uncertainties, it is verified in Table 1, as expected, 

that the works use more than one GCM model to 

carry out the analyzes of the magnitude and 

consistency of the ICC-  a world level. The works 

by Wild et al. (2015) [46] and Zou et al. (2019) [51] 

used, respectively, 39 and 37 global models from 

CMIP5 (2013) [60], while Feron et al. (2021) [16] 

used 7 models; Crook et al. (2011) [43], 2 models; 

Zhao et al. (2020) [5], 3 models; and Smith et al. 

(2017) only one GCM. 

In a comparative study of 14 models from 

the Coupled Model Intercomparison Project Phase 3 

(CMIP3), the HadCM3 model was recognized as one 

of the top-performing models for global average 

annual insolation under clear skies. However, it is 

important to note that this study did not include 

HadGEM1 [61]. When taking HadGEM1 into 

account, it becomes evident that it slightly 

outperforms HadCM3 and holds greater potential for 

accurately reproducing future changes. This is due to 

HadGEM1's inclusion of a more advanced and 

physically-based aerosol modeling approach [43]. It 

can be seen in Tables 1, 2 and 3 that Crook et al. 

(2011) [43] were the first and last to use the 

HadGEM1 family of climate models, and the later 

works [6,46,47,52,53] used the next version 

developed by the UK Metrology Office (Metrology 

Office UK) (HadGEM2). 

In the simulations performed by Smith et al. 

(2017) [50] with the HadGEM2-CCS model under 

RCP4.5 and employing the geoengineering method, 

Stratospheric sulfate injection (SSI), in the period of 

2040-2059, the authors analyzed the ICC- . 

Zhao et al. (2020) [5], different from 

previous studies, projected the future climate over 

China using stepwise cluster analysis (SCA). SCA 

was shosen as a downscaling technique to downsize 

GCM forecasts based on Huang (1992) [62] and 

Wilks (1932) [63]. Zhao et al. (2020) [5] were the 

first ones to consider improvement rates for the 

absolute efficiency of PV technology (range of 0.04–

0.09% per year). 

Until then, studies had focused on the ICC-

 analysis based on average projection results, 

however, Feron et al. (2021) [16] concentrated on 

examining the impacts of atypical weather conditions 

and extreme weather events on PV outputs. An 

important conclusion was that changes in the 

frequency of these unusual weather conditions can 

increase or reduce the intermittency of , with 

consequences for network planning and operations.  

 

3.2.2 European continent 

 

When analyzing Table 2, it is observed that 

there is no unanimity about which are the best sets of 

models (GCMs and RCMs) to analyze the European 

continent, in fact, there is a great variability among 

the five works identified. Three of the five papers, 

however, use at least five different RCM/GCM sets 

to carry out analyzes of the magnitude and 

consistency of ICC-  in Europe. The GCMs that 

were used in at least two works were ECHAM5, EC-

EARTH, HadGEM2-ES and IPSL-CM5A-MR. The 

only RCMs that were used in more than one work are 

HIRHAM5 (v2) and WRF. 

A distinctive feature was identified in the 

study conducted by Jerez et al. (2015b) [47], where 

they examined, considering a future scenario 

characterized by a significant penetration of PV 

installations, the ICC-  at the level of European 

regional electric grids. The optimal distribution of 

installed PV power across the region was obtained 

using the CLIMIX model. [64]. In addition, Gaetani 

et al. (2014) [45], besides investigating the ICC-  

in Europe, the Eastern Mediterranean and Africa, 

observed the influence of factors such as aerosols, 

cloud cover, temperature. Additionally, within the 

framework of the enviroGRIDS project of the 7th 

Framework Programme of the European Union, 

Lehmann et al. (2015) [65] and Gunderson et al. 

(2015) [48] carried out research with a particular 

focus on the Black Sea region. 

Pérez et al. (2019), that used Weather 

Research and Forecasting (WRF) model [66] as 

RCM, argued that the use of reanalysis data is one of 

the main usefulness of the PGW (see subsection 

4.3.5), since the tendencies in the border conditions, 

with regard to genuine meteorology, are much 

smaller [67]. 
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Table 1 – Climate models used by articles that analyzed China or the entire globe. 

 

 

Table 2 – Climate models used by articles that analyzed a country, a region or the entire Europe. 
 

 

 

Table 3 – Climate models used by articles that analyzed a region or the entire Africa. 
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3.2.3. African continent 

 
The most common justification for 

analyzing this part of the world lies in the region's 

solar potential [49]. 

When the studies are at the level of the 

African continent (Table 3), it is observed that two of 

the four works used quite a lot of GCM/RCM sets in 

common, while the other two analyze the impact 

from sets that are very different from each other. The 

works of Bichet et al. (2019) [52] and Sawadogo et 

al. (2020) [53] complement each other. Both used the 

results of CORDEX-AFRICA, which was the most 

up-to-date for Africa [52].  

Bichet et al. (2019) [52], in addition to 

Bazyomo et al. (2016) [49] also evaluated the  

and its response to meteorological variance 

throughout the Africa. Besides, they estimated the 

overall uncertainty related to these forecasts and to 

the distinct uncertainty origins: inherent variability 

and the uncertainty due to the use of climate models. 

Bazyomo et al. (2016) [49], unlike previous 

studies [43,46], calculated solar irradiation on a tilted 

plane from daily data of total sky radiation with the 

free R package, the solaR [68]. 

 

3.3 Emission scenarios used 

 

Climate researchers employ socioeconomic 

and emission scenarios to present realistic depictions 

of future developments concerning various factors, 

such as socioeconomic changes, technological 

advancements, energy and land use, greenhouse gas 

emissions, and air pollutants. These scenarios serve 

as inputs for climate models, facilitating assessments 

of potential climate impacts, mitigation strategies, 

and their associated costs. For improved 

comparability between studies and enhanced 

communication of model outcomes, it is essential for 

the entire scientific community to adopt a 

standardized set of scenarios [69]. 

From Table 4, it can be observed that the set 

of SRES scenarios was used until 2015; from that 

year onwards the more current models, the RCPs, 

became the only ones used during the PV production 

forecasting process. RCP4.5 [70] and RCP8.5 [71] 

are the emission scenarios most frequently utilized in 

climate forecasts [5]. The most frequently utilized 

scenario in the research was RCP8.5, which is 

commonly employed in the literature to depict high 

concentrations of greenhouse gases. This scenario 

ensures a higher signal-to-noise ratio, making it 

easier to identify distinct patterns of change in 

climate [46]. 

In addition to emission scenarios, there are 

still some methods that are coupled, such as pseudo-

global warming (PGW) [67,72,73]. The application 

of PGW seeks to reduce the computational charge 

related to High resolution in space and extended data 

collection periods by using shorter simulation periods 

[74,75], instead of periods of three decades or more 

[76]. 

 

Table 4 - Emission scenarios used in ICC-  studies. 

 

Paper 

Emission scenarios 

SRES 

A1B 

SRES 

A2 

SRES 

B2 
RCP4.5 RCP8.5 

[5]    X X 

[6]    
X + 

PGW 

X + 

PGW 

[16]    X X 

[43] X     

[44] X     

[45]   X   

[46]     X 

[47]    X X 

[48]  X X   

[49]     X 

[50]    X  

[51]     X 

[52]     X 

[53]     
X + 

PGW 

X + PGW: used the indicated emission scenario, 

associated with the pseudo-global warming 

(PGW) technique. 

 

Furthermore, Sawadogo et al. (2020) [5] 

adopted a different approach, selecting global 

warming levels (GWL) above the pre-industrial level 

(PI) (1881-1910). To determine the 30-year GWL for 

each Global Climate Model (GCM) simulation, they 

considered a 30-year period centered on the year 

when the GCM reaches 1.5, 2.0, 2.5, and 3.0 °C in 

Global Mean Temperature (GMT) compared to PI 

levels under RCP 8.5 [77]. The analysis involved 

using the same GWL period of the GCM to extract 

the 30 years of GCM data, which were then reduced 

by the Regional Climate Model (RCM) using 1971-

2000 as a control period. 
 

3.4 Databases used 

Table 5 shows the databases used by the 

articles that assess ICC- . With the exception of 

Gunderson et al. (2015) [48], all the others used data 

from either CMIP or CORDEX. 

The CMIP3 and CMIP5 initiatives offer a 

standardized platform for studying and comparing 

global coupled atmosphere-ocean models (AOGCMs) 

through structured experiments [78]. These 

experiments formed the foundation for evaluating the 

4th and 5th Reports of the Intergovernmental Panel 

on Climate Change [79]. In CMIP5 an in CMIP3, 

predefined scenarios of radiative forcing were used 

for climate change projections [80]. The newly 

developed CMIP6 [81] has not yet been used in ICC-

 studies. 
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One of the largest and most recent databases 

in constant updating is that of the Coordinated 

Regional Climate Downscaling Experiment 

(CORDEX) [82], which seeks to promote and 

synchronize scientific research and the utilization of 

regional climate downscaling through international 

collaborations [83]. It provides a framework for 

investigating the scenarios of impact of climate 

change on a regional scale [84]. There is a total of 

fourteen official CORDEX domains. The CORDEX-

EUROPE covers Europe with a spatial resolution of 

0.11° in latitude and longitude, and provides records 

of output variables every 3 hours. CORDEX-

AFRICA simulations cover all Africa with a spatial 

resolution of CORDEX data sets of approximately 50 

km (0.44° x 0.44°). For each simulation and each grid 

cell, many meteorological variables are available. 

From the CORDEX data sets, it is possible to obtain 

average daily surface downwelling shortwave 

radiation ( ; also called solar irradiance), air 

temperature ( ), wind speed ( ; at 10 m above 

ground level) and relative humidity ( ). 

Sawadogo et al. (2020) [53] used the ERA-

Interim reanalysis data set of the European Centre for 

Medium-Range Weather Forecast (ECMWF). On the 

website of ECMWF, they retrieved the surface wind 

speed (10 m above ground level) and the relative 

humidity that was calculated from the dew point and 

the specific humidity. 

Some authors used data analysis with the R 

programming language to analyze the solar radiation 

values extracted from RCM [48]. Gunderson et al. 

(2015) [48] also applied common kriging 

interpolation to create a solar radiation surface and 

considered the topographic effects of aspect and 

inclination on solar radiation by incorporating a solar 

indexation layer that considered the relative 

difference in incident solar irradiation based on its 

alignment or positioning and angle of arrival. 

Pérez et al. (2019) [6] utilized information from 

on-site measuring devices and two data repositories, 

satellite-based information, to evaluate simulated 

outcomes for the past time frame. This type of 

decision is very recurrent and it is commonly 

motivated by the significant spatial diversity of 

irradiance in the investigation region. 

 

3.5 Data extraction methods 

3.5.1 Irradiance - Interpolation 

Precise understanding of solar irradiation in 

a particular region is essential, especially for 

applications in solar energy resources [85]. Various 

factors can lead to significant local gradients of solar 

irradiance over small distances, such as changes in 

height, positioning, incline, shadows, and surface 

reflectivity [86,87]. Studies concur that topography 

plays a significant role on a local scale and should be 

taken into account when considering solar systems' 

proper location [88,89]. 

Table 5 - Database used in papers in ICC-  studies. 

 

Paper Air temperature Solar irradiation Wind Speed 

Rela

tive 

hum

idity 

[5] 

CMIP5; ERA-Interim; 

National 

Meteorological 

Information Center of 

China 

CMIP5; ERA-Interim; 

National 

Meteorological 

Information Center of 

China 

- - 

[6] 

project ADRASE 

AEMET 

CMIP5 

SoDa service 

AEMET 

CMIP5 

AEMET CMIP5 - 

[16] CMIP5 CMIP5 CMIP5 - 

[43] CMIP3 CMIP3 - - 

[44] 
E-OBS 

CORDEX-EUROPE 

SoDa service 

CORDEX-EUROPE 
- - 

[45] 
FP6-EUCAARI 

project 

FP6-EUCAARI 

project 
- - 

[46] CMIP5 CMIP5 - - 

[47] CORDEX-EUROPE CORDEX-EUROPE 
CORDEX-

EUROPE 
- 

[48] - 
PRUDENCE 

NCEP/NCAR 
- - 

[49] CORDEX-AFRICA CORDEX-AFRICA - - 

[50] CMIP5 CMIP5 - - 

[51] CMIP5 CMIP5 - - 

[52] CORDEX-AFRICA CORDEX-AFRICA 
CORDEX-

AFRICA 
- 

[53] 
CORDEX-AFRICA 

CRU 

CORDEX-AFRICA 

SARAH-2 

CORDEX-

AFRICA 

ECMWF 

website 

COR

DEX

-

AFR

ICA 

EC

MW

F 

webs

ite 

 

Solar irradiance plays a crucial role in 

various terrestrial processes, and in situations where 

direct measurements are unavailable, alternative 

techniques are necessary to evaluate the solar 

potential [90]. Interpolation is one such effective 

method for estimating local and temporal components 

of solar irradiance when whether data is lacking, 

allowing for the creation of spatially continuous 

databases across large regions [87,88]. However, the 

reliability of interpolation decreases in areas with 

complex topography, and its accuracy significantly 

relies on the database size and the spacing between 

stations [87-90]. In order to enhance the precision 

and dependability of spatial interpolation for solar 

irradiation on a local scale, topographic variables are 

often integrated, utilizing digital elevation models 

(DEM) [86-90]. 

 

3.5.2 Daily temperature and irradiance – 

sinusoidal form 

 

Crook et al. (2011) [43] assume that climate 

data are average during the day and night, that is, 

they vary approximately sinusoidally, but only 

temperatures and solar irradiance during the day are 

required to estimate PV energy production. In order 

to account for the average monthly diurnal 

temperature ( ), Crook et al. (2011) [43] 

proposed an adjustment method based on the 

assumption of a sinusoidal temperature variation 

throughout the day. They considered a range equal to 

half of the diurnal temperature range (DTR), which 

signifies the disparity between the highest and lowest 

temperatures within a day, as well as an average 
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value denoted as T . By applying this approach, they 

approximated 
dayT   as follows: 

 

              
day

DTR
T T

4
= +                         (1) 

The notation of a bar indicates monthly 

averages in the following passage. The selected 

models did not provide maximum and minimum 

temperatures. Hence, historical climatological diurnal 

temperature range (DTR) data for each month from 

some data set can be utilized. It was assumed that the 

DTR would remain constant in future scenarios, 

although there is a lack of consensus regarding 

potential changes in DTR in the future. [91]. The 

average solar irradiance during the hours when 

sunlight is available for operation should be 

estimated based on the duration of the day: 

 

24h
day

duration of the day

t
G G

t
= +             (2) 

Here, G  represents the monthly average of 
totG  

when specifically considering photovoltaic energy. 

The duration of daylight is once again employed in 

the calculation of energy production for every month. 

 

3.5.3 Solar irradiance from the duration of 

insolation 

 

In some situations, daily solar irradiance 

(DSI) is not available throughout the desired period, 

but the daily duration of insolation (DDI) is available. 

For this reason, Pérez et al. (2019) [6] used a method 

to transform the DDI into DSI, using the association 

identified in earlier researches [22, 92]. This 

association can be stated as: 

 

 

                               

2

total
clear

clear

G
f

G

 
=  
 

              (3) 

in the given equation, 
clearf   denotes the fraction of 

clear sky time, 
totalG   represents the monthly average 

of daily horizontal surface irradiation and 
clearG  

stands for the average daily irradiation value with 

clear sky. This fraction, specific to a particular month 

and location, corresponds to the proportion of 

sunlight (S): 

 

                                 
clear

DSL
f S

DD
 =        (4) 

 

associated with the following equations: 

 

                      12
DD cos (tan tan )

15

−=             (5) 

 

 

                     
284 n

23.45sin 360
365

+ 
 =  

 
  (6) 

where DSL is the average monthly duration of 

sunlight, DD is the average monthly duration of the 

day,   is the latitude of the place in degrees,     is 

the declination of the sun, also in degrees, n is the 

day of the year, starting on January 1. 

Thus, for a given location and month,  can 

be calculated as: 

 

                            

1/2

total clear

DSL
G G

DD

 
=  

 
   (7) 

 

In cases where 
clearG   is not directly obtainable 

from observational data, an alternative approach 

involves deriving it for each location and specific 

month of the year by utilizing available data on daily 

horizontal surface radiation and sunlight duration 

from recent years. Once the values for 
clearG   are 

determined, solar irradiance can be calculated for any 

desired month. 

According to Pérez et al. (2019) [6], employing 

this methodology leads to a root mean square error of 

3.3% when comparing the calculated 
totalG  with the 

observed values. 

 

3.6 Methodologies used for bias correction 

 

The methodology for the correction 

approach is dependent on several factors, such as the 

nature of the data, the time frame, the spatial and 

temporal resolution, and the time frame considered 

[44]. To handle inconclusiveness arising from various 

potential outcomes of the meteorological system, sets 

of climate model outputs can be employed. Multiple 

global climate models (GCMs) can be employed to 

assess uncertainty associated with different large-

scale physical parameterizations of terrestrial and 

atmospheric processes. Additionally, the utilization 

of different regional climate models (RCMs) can help 

address uncertainties associated with the depiction of 

smaller-scale phenomena, such as microphysical 

clouds or convective rainfall. 

A number of GCMs exhibit notable biases 

when it comes to accurately representing the absolute 

levels of 
totalG   [93] and 

aT   [94] in comparison to 

surface observations. These discrepancies are often 

attributed to challenges related to parameterizing 

cloud effects [95], as well as shortcomings in clear 

sky radiation modeling (WILD et al., 2006) [61]. 

RCMs often exhibit variations in the 

statistical characteristics of simulated meteorological 
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data when compared to observed values. A prominent 

component of this temporal error is the presence of 

bias [96]. To align the outputs of climate models with 

the prevailing climate conditions, it becomes 

necessary to employ bias correction techniques. 

Various studies, including Haerter et al. (2011) [96], 

Christensen et al. (2008) [97], Terink et al. (2009) 

[98], and Boberg and Christensen (2012) [99], 

emphasize the importance of bias correction to ensure 

that impact models, particularly in hydrology, water 

resource management, and other climatic 

applications, generate meaningful and reliable results. 

In their study, Panagea et al. (2014) [44] 

implemented a correction process for temperature and 

irradiance projections to account for biases in the 

mean and standard deviation on a monthly basis. This 

methodology was derived from the approach 

presented by Haerter et al. (2011) [96] and was 

applied prior to the conversion of projections into PV 

energy production. The mean bias was addressed by 

calculating differences from observed and modeled 

values. Subsequently, the model data is consistently 

normalized according to the variability observed in 

historical data. When the data exhibits a normal 

distribution, the transfer function adheres to a linear 

relationship as expressed in the following equation: 

 

( )
con

cor sc con conobs
sc mod mod obscon

mod

X X X X
 

= − + 
 

       (8) 

 
cor

scX  represents the final adjusted time series, sc

modX  

denotes the "raw" model forecasts for the scenario 

period, con

obsX  and con

modX  represent the averages of 

observed and modeled data for the control period, 

respectively, con

obs  and con

mod   refer to the standard 

deviations of observed and modeled data for the 

control period, respectively. 

 

The assessment of the impact of systematic 

biases on irradiance and temperature levels in the 

projected changes of 
pP 

  is very important, and it 

has already been conducted [46]. To assess the 

sensitivity, it can be performed by altering the input 

levels of 
totG  and 

aT   within a range of ± 10 W/m2 

and ± 10 °C. The existing findings revealed that these 

changes did not exert a significant influence on the 

projected absolute values of 
pP 

 [46]. This suggests a 

low sensitivity of the utilized methodology to the 

absolute levels of these meteorological variables 

across all focal regions examined, namely Algeria, 

Australia, California, Northwest China, Germany, 

India, South Africa, and Spain. Consequently, unlike 

Panagea et al. (2014) [44], Wild et al. (2015) [46] did 

not utilize bias corrections on the simulated 

temperature and irradiance fields before computing 

pP 
. 

It is important to mention that all the 

alterations described in Wild et al. (2015) [46] are 

related to representative changes for horizontal 

planes, as inferred from the output of the climate 

model. Nonetheless, variations in solar radiation on 

tilted or tracked planes (planes positioned 

perpendicular to the sunbeam) generally exhibit 

greater magnitudes. For instance, in Germany, Müller 

et al. (2014) [100] found that changes on tracked 

planes can be more than double the corresponding 

variations on horizontal planes. 

In their study, Zhao et al. (2020) [5] 

employed a filtering process on the ERA-Interim 

reanalysis variables [101]. These variables served as 

potential predictors to establish the connection 

between the circulation of the atmosphere on a large 

scale and the local weather parameters. The purpose 

of the filtering was to remove uncorrelated variables, 

thereby reducing the computational load associated 

with the analysis. 

The assessment of time variability across 

different scales, including daily, monthly, and annual 

time scales, can be conducted [47]. This allowed the 

highlighting of an important consideration to prevent 

the masking effect of the annual PV production cycle. 

To address this, the removal of the multiannual 

monthly and daily averages from the corresponding 

monthly and daily series can be performed. This step 

will aim to ensure a more accurate representation of 

the underlying variability and avoid potential 

distortions caused by the annual production cycle. 

Bazyomo et al. (2016) [49] presented their 

findings based on annual averages of temperature and 

irradiation. To calculate these averages, they utilized 

the Climate Data Operators [102], with daily data as 

input. Subsequently, they employed the free software 

R [103] to compute all the averages. Subsequently, 

the values were resampled to ensure uniform 

resolution. The determination of patterns and their 

statistical significance were computed using the Stats 

package within R. Following the approach employed 

by Jerez et al. (2015b) [47], only cells corresponding 

to p ≤ 0.05 values were retained by utilizing the 

Student's t-test. 

A moving block bootstrap algorithm as a 

method to account for the effects of data 

autocorrelation was employed by Pérez et al. (2019) 

[6]. This approach incorporated an autoregressive 

moving average process, building upon previous 

evaluations of this method as demonstrated by 

Expósito et al. (2015) [104] and González et al. 

(2017) [105]. Additionally, the block length for the 

bootstrap test and the adjustment of data variance for 

the test statistic were computed following the 

methodology outlined by Wilks (1997) [106]. 

Rmean is created by combining multiple 

models with equal weights and has been observed to 

exhibit better performance compared to any 

individual model [107, 108]. It is generally regarded 

as having superior overall performance compared to 
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an individual model [109]. Furthermore, Rmean yields 

improved outcomes when it comes to long-term 

climate change projections compared to using only an 

individual model [110]. 

 

3.7 Methodologies used to quantify uncertainties 

 

Bichet et al. (2019) [52] sought to quantify the 

uncertainties of: 

i. The climate models: due to its 

imperfections; and 

ii. The inherent climatic variability, 

arising from the unsteady and 

nonlinear behavior of the 

meteorological system. 

The partitioning and quantification of 

various sources of uncertainty can be accomplished 

using QUALYPSO [111], which is an advanced 

ANOVA Bayesian method [112]. 

 

3.8 Simulation periods used 

 

Table 6 shows the reference periods and those 

projected by the papers. It is observed that, for the 

most part, they analyzed until the end of the XXI 

century, and only about 20% [16, 46, 49] analyzed 

until the mid-21st century. 

In their study, Sawadogo et al. (2020) [53] 

emphasized the challenge policymakers may face 

when attempting to apply projection results to the 

specific warming levels (1.5 °C and 2.0 °C) required 

by the Paris Agreement. To address this issue, they 

advocated for the adoption of global warming levels 

(GWL) in comparison to the period before 

industrialization (1881-1910). Specifically, they 

considered positive anomalies of 1.5 °C, 2.0 °C, 2.5 

°C, and 3.0 °C as their chosen GWL values. This 

approach enables policymakers to have more relevant 

information for decision-making within the context of 

the Paris Agreement. 

It is common practice to designate the initial year 

as a spin-up period, which is not included in any 

subsequent analysis, as it was done by Pérez et al. 

(2019) [6]. 

 

3.9 Methodologies used in ICC-  analysis 

PV energy yields depend on shortwave 

irradiance, which in turn is modulated by aerosols 

[113-115] and by clouds [116]. PV outputs are also 

affected by air temperature (Ta), with an inversely 

proportional ratio [117]. Surface wind velocity ( ) 

also influences PV production, as airflow usually 

cools the PV module [118]. 

The efficiency of a PV cell as a function of 

cell temperature and radiation can be expressed by an 

established linear ratio with a negative gradient. 

 

cell
cell ref 10 tot

ref

1 (T T ) log G


= − − + 


  (8) 

in the given equation, ref  represents the reference 

efficiency, while   and    denote the coefficients of 

temperature and irradiance, respectively. These 

coefficients are specific to the cell material and 

structure being used. Additionally, Tcell
 represents the 

cell temperature, and Tref corresponds to the reference 

temperature [119-120]. 

The decrease in efficiency of PV silicon at 

low-light levels is taken into consideration through    

[121]. According to Crook et al. (2011) [43], for 

monocrystalline silicon cells,  o0.0045 / C = and 

0.1 = , and o

refT 25 C=    should be used. 

 

Table 6 - Reference periods and projected periods 

analyzed in the papers. 

 

 

The value of ref  holds no significance if 

only considered the fractional change in photovoltaic 

production, p pP P   is considered in the analysis. 

It is worth noting that minor errors may arise due to 

the nonlinearity of G and T in Equation (8) caused by 

the daily averaging of G and T. A computer-based 

modeling and simulation conducted under cloudless 

conditions suggests that these errors vary between 

Paper Reference 

periods 

Projected periods 

[5] 1981-2005 
2020-2039, 2040-2069 

and 2070-2099 

[6] 1995-2004 
2045-2054 and 2090-

2099 

[16] 1961-1990 2036-2065 

[43] 1980-1999 2010 to 2080 

[44] 

Temperature: 

1950-2000 

Irradiation: 1985-

2005 

2011-2050 and 2061-

2100 

[45] 2000 2030 

[46] 2006-2015 2006-2049 

[47] 1970-1999 2070-2099 

[48] 1961-1990 2071-2100 

[49] 2006-2015 2006-2045 

[50] 1860-2005 2006-2099 

[51] 1850-2005 2006-2100 

[52] 1995-2005 2070-2099 

[53] 1971-2000 GWL 1.5, 2.0, 2.5, 3.0 
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1% to 2%, and their magnitude depends on the 

latitude [43]. Nevertheless, it is essential to 

acknowledge that these errors exhibit a systematic 

pattern and have a negligible influence on the year-

to-year percentage variation in 
pP 

  [43]. 

In the sequence of studies of several authors 

[122-124], a generic empirical formula was 

established to represent the cell temperature as 

follows: 

 

cell 1 2 a 3 totT c c T c G= + +         (9) 

 

Where Ta  is the ambient temperature in °C.  The 

constants are dependent on module and assembly 

specifics, which influence cell heat transfer. The 

coefficients normally used in this equation were 

extracted from the study of Lasnier and Ang (1990) 

[122] for a monocrystalline silicon cell, which are: 
o

1c 3.75 C= − ,
2c 1.14= and 

o 2

3c 0.0175 Cm / W= . 

The equation used to calculate PV energy production 

is: 

 

                            p tot cellP G =            (10) 

 

Omar et al. (2014) [125] consider, in addition to the 

terms of Eq. (10), some efficiency reduction factors 

related to dust, module incompatibility, cabling and 

inverter. All these factors are intrinsic to the PV 

system, but not to the PV technology. 

The annual energy production is given by: 

 

month duration  of the dayE 30Pt=    (11) 

assuming 30 days for each month. 

 

Panagea et al. (2014) [44] and Zhao et al. 

(2020) [5] used the same equations as Crook et al. 

(2011) [43and also used monthly averages. On the 

contrary, Wild et al. (2015) [46] conducted their 

analyses, including assessments of changes in pP  , 

using average annual data. As a result, the estimates 

provided by Wild et al. (2015) [46] do not account 

for potential nonlinear effects attributed to seasonal 

variations in radiation and temperature changes. 

Bazyomo et al. (2016) [49] used the same 

equations (Eq. 8 and Eq. 9) as Crook et al. (2011) 

[43], but, as done by Wild et al. (2015) [46], used 

annual averages from daily data, and considered solar 

irradiation on the inclined plane calculated with the 

solaR suite of R [68] utilizing the daily data of total 

solar radiation as inputs. 

Unlike Crook et al. (2011) [43] and their 

successors, Jerez et al. (2015a) [47] did not use Eq. 

(8), but proposed the use of a new equation in 

accordance with Tonui and Tripanagnostopoulos 

(2008) [126]: 

cell
cell ref

ref

1 (T T )


= − −


  (12) 

where now   assumes the value of 0.005/°C for 

monocrystalline silicon cells [126]. 

Again, diverging from the methodology of 

Crook et al. (2011) [43] and their successors, Jerez et 

al. (2015b) [47] did not use Eq. (9), but proposed the 

use of a new equation, now considering the influence 

of wind speed, according to Chenni et al. (2007) 

[118]: 

 

          
cell 1 2 a 3 tot 4 10T c c T c G c W= + + +  (13) 

 

where 10W  is the wind speed on the Earth’s surface 

in m/s. 

According to Chenni et al. (2007) [118], the 

coefficients for a monocrystalline silicon cell are 
o

1c 4.73 C= ,
2c 0.943= and o 2

3c 0.028 Cm / W=  

and o

4c 1.528 Cs / m= − .  

Bichet et al. (2019) [52], Pérez et al. (2019) [6] 

and Feron et al. (2021) [16] used the same equations 

as Jerez et al. (2015a) [47] for daily data. However, 

Pérez et al. (2019) [6] changed the values of the 

coefficients to o

1c 4.22 C= ,
2c 1.08= and 

o 2

3c 0.0226 Cm / W=  and o

4c 1.83 Cs / m= − [127]. 

However, it was shown that this equation is not 

suitable for W10 greater than 10 m/s, as it produces an 

incompatible temperature for the PV module [6]. 

Sawadogo et al. (2020) [53] used the same Eq. 

(12) as Jerez et al. (2015a) [47], but replaced Eq. (13) 

with: 

 

cell 1 2 a 3 tot 4 10

5 5 h

T c c T c G c W

c W c R

= + + + +

+ +
     (14) 

Where Rh  is relative humidity in %. 

According to Tamizhmani et al. (2003) [128], 

the system-specific regression coefficients are 
o

1c 1.57 C= ,
2c 0.961= and o 2

3c 0.0289 Cm / W=  

and o

4c 1.457 Cs / m= −  and o

5c 0.109 C / %= . In a 

study by Mekhilef et al. (2012) [129], two scenarios 

were presented to demonstrate the influence of 

humidity on PV cell performance. The first scenario 

involves the impact of water vapor particles on solar 

irradiance, while the second scenario considers the 

entry of humidity into the solar cell enclosure. The 

research revealed that increasing relative air humidity 

can lead to a reduction in 
pP 

 performance, as water 

droplets within the cell can reflect solar irradiance. 

Conversely, an increase in wind speed has a cooling 

effect on the cells, thus enhancing PV cell efficiency. 

Therefore, selecting an appropriate model aid in 

achieving a more stable cell temperature and 

facilitates the comparison of additional variables' 

contributions to cell temperature. Moreover, the last 
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model (Equation 14) was formulated and validated 

using on-site measurements of meteorological 

variables collected from a weather station. 

TamizhMani et al. (2003) [128] demonstrated a 

correlation greater than 0.9 between the model's 

results and the observed data. 

Unlike all previous studies, Gunderson et al. 

(2015) [48] opted for a simplistic model that adopts: 

 

p tot cell totP G G 0.15 =  =         (15) 

 

that is, it does not consider the influence of any 

environmental factor other than solar irradiation. 

Some other relationships to describe the 

dependence of solar cell temperature on the 

meteorological variables have been used. Zou et al. 

(2019) [51] used Eq. (16): 

 

( ) tot
cell a NOCT

G
T T T 20

800

 
= + −  

 
    (16) 

Where TNOCT represents the nominal operating cell 

temperature, which is characterized as the 

temperature achieved when cells are installed in a 

specific location with standard conditions, including 

a solar radiation level of 800 W/m², wind speed of 1 

m/s, and ambient temperature of 20 °C. 

Smith et al. (2017) [50] used Eq. (17) to 

define cell temperature: 

 

cell a 3 totT T c G= +            (17) 

 

This assumption is based on the installation 

of the PV module in an open field environment where 

the impact of free-flowing wind speed on convection 

heat transfer away from the module is negligible. 

According to Skoplaki et al. (2008) [130], the 

corresponding coefficient is denoted as c3 with a 

value of 0.02933 K/Wm². 

Gaetani et al. (2014) [45] chose not to utilize 

the aforementioned equations and instead employed 

the methodology developed by Huld et al. (2010) 

[131]. This approach involves utilizing a 

mathematical model that relates the energy 

performance of PV modules to the irradiance on the 

plane and module temperature. It combines this 

model with satellite-derived estimates of solar  

irradiation and ground-based measurements 

of ambient temperature values from weather stations. 

It must be clear that the real values of Tcell  

and cell   are slightly different from those calculated 

due to empirical nature of equations. However, since 

this proportion will affect pP  in a similar way during 

the reference and the future period, it has an even 

smaller effect on the expected relative change in pP   

[16]. 

A synthesis of the equations used is presented in 

Table 7. 

 

Table 7 - Equations used to estimate the PV 

production. 

 
Paper Equations Primary 

reference* 

[53] 
 

 
 

:  

 

[148] 

 

: 

[128] 

[5] 

[49] 

[44] 

[46] 

[43] 

 

 

: 

[149] and 

[150] 

 

: 

[122] 

[16] 

[6] 

[52] 

[47] 

 

 

: 

[148] 

 

: 

[128] 

[51] 
 

 

: 

[149] and 

[150] 

 

: 

[151] 

[50] 
 

 
 

: 

[149] and 

[150] 

 

: 

[130] 

[48] 
 

: 

[152] 

 

: - 

[45] Detailed in Huld et al. (2010) [131] 

*Primary reference is the study that developed and/or first used the equation. 

It is not necessarily the study that was cited by the authors of the studies, in 

column 2, to justify the use to estimate . Example: ‘A’ cites ‘B’, which 

cites ‘C’, which cites ‘D’; the primary reference for the study of ‘A’ is ‘D’, 

not ‘B’. 

** There may be more than one primary reference when the precursor 

study is not evident. 

 
 
 

3.10 Patterns in the impacts of climate change on PV 

production 

 

Both the qualitative and the quantitative impacts did 

not show a single trend of results in all the papers analyzed 

here. A summary of the estimated impacts on PV 

production due to climate change is presented in Table 8. 

 

3.10.1 Entire globe 

 

The ICC-
pP 

 based on GCMs [43,46] indicated small 

but generally positive impacts on 
pP 

 over the European 

continent, either in scenario A1B SRES [79] or under 

RCP8.5 [80]. The decrease in aerosol emissions anticipated 

in the coming years leads to an escalation in global 

warming, resulting in notable changes in surface solar 

radiation and the subsequent productivity of PV energy 

[45]. Eastern Europe and North Africa exhibit a statistically 

significant reduction in PV production, with a decline of up 

to 7%. Conversely, Western Europe and the Eastern 
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Mediterranean experience a significant increase of up to 

10% in PV production. 

The utilization of the HadGEM2-CCS model in 

simulations under the RCP4.5 scenario, specifically 

employing the Stratospheric Sulfate Injection (SSI) 

geoengineering method, revealed a decrease in solar energy 

yield compared to historical levels during the 2040-2059 

period. Consequently, a reduction in 
pP 

 was observed in 

Europe, the eastern United States, and eastern Asia, with 

the exception of Germany [50]. It is worth noting that 

Germany, being a region with relatively lower insolation, 

exhibited different outcomes compared to the other regions 

analyzed. 

The contribution to 
pP 

 exhibits significant variation 

depending on the location, with temperature playing a non-

negligible role [43]. Following this line, Bazyomo et al. 

(2016) [49] explained that, unlike the research conducted 

by Wild et al. (2015) [46], the variation in PV production 

with significant trends does not resemble radiation patterns 

across the sky. This observation is anticipated, as the air 

temperature, being the second meteorological variable 

influencing changes in PV production, exhibits higher 

values in Western Africa [49]. A similarity shared by both 

Bazyomo et al. (2016) [49] and Wild et al. (2015) [46] 

studies is the negative correlation between 
pP 

 and 

increasing temperature. Consequently, both models project 

a negative 
pP 

 trend for Western Africa. Considering the 

importance of the trend, the models of Bazyomo et al. 

(2016) [49] that showed positive trend have maximum 

areas of non-statistical significance. Bazyomo et al. (2016) 

[49] acknowledged that the magnitudes of the trends 

(whether indicating an increase or reduction in 
pP 

) were 

relatively small. However, they argued that these trends 

could potentially increase when considering other factors 

that were not accounted for in their study, but still influence 

pP 
. 

A notable rise in 
pP 

 has been observed in 

Eastern Asia, Europe, Central Africa, and Central 

America [51]. The decrease in aerosol levels appears 

to be the primary factor contributing to the increased 

pP 
 in Eastern Asia, while significant reductions in 

aerosols may explain the rise in 
pP 

 observed in 

Europe, Central Africa, and Central America. 

Conversely, a significant decrease in 
pP 

 has been 

noted in Northern Africa, the Middle East, Central 

Asia, and Australia, which can be attributed to an 

increase in aerosols and cloud cover [51]. 

According to Zhao et al. (2020) [5], the most 

substantial increase in 
pP 

 is projected to occur at 

Guiyang station in China under the RCP8.5 scenario, 

reaching a value of 31.05% by the end of the 21st 

century. Specifically, the southern regions of China 

exhibit a stronger increasing trend in PV energy 

potential compared to the northern regions. For 

instance, under RCP8.5, at Guangzhou station, the 

pP 
 demonstrates a significant annual increase trend 

of 0.228% for MPI-ESM-LR compared to trend of 

0.105% per year at Hetian station. Furthermore, the 

results indicate that the increasing trends in 
pP 

 under 

the RCP8.5 scenario are higher than those observed 

under RCP4.5. 

There are discrepancies in the predictions for 

pP 
 in China between Crook et al. (2011) [43] and 

Zhao et al. (2020) [5]. These differences can be 

attributed to several factors. Firstly, Zhao et al. 

(2020) [5] utilized high-resolution spatial climate 

data obtained through statistical downscaling, which 

may have contributed to more accurate predictions. 

Additionally, the divergence in predictions can be 

attributed to Zhao et al. (2020) [5] considering the 

potential increase in 
pP 

 due to advancements in PV 

technology. This consideration was not explicitly 

accounted for in the earlier work by Crook et al. 

(2011) [43]. 

The changes in 
pP 

 for both winter and summer 

seasons are anticipated to follow a similar pattern, but 

the magnitude of these changes varies across 

different regions [16]. However, in high latitude 

regions of the Northern Hemisphere, it is expected 

that the decrease in 
pP 

 will be more pronounced 

during winter compared to summer. This is attributed 

to the projected substantial increase in cloudiness 

during the winter season [16,47]. This cloud fraction 

over the regions of high latitude land is predicted by 

CMIP5 models project, especially in the regions of 

and during greatest loss of Arctic Sea Ice [132]. 
 

3.10.2 European continent 

 

Based on projections for the end of the 21st 

century, the variation in PV supply compared to 

current weather conditions is expected to range from 

-14% to +2% for Europe. The most significant 

reductions are anticipated in northern European 

countries, including a substantial decrease of 10-12% 

in Scandinavian regions [47]. 

A reduction in the 
pP 

 in Eastern Europe and 

Northern Africa, equal to 7% was found from 

simulations carried out by the aerosol-climate model 

ECHAM5-HAM for 2000-2030 [45]. On the other 

hand, in Western Europe and in the Eastern 

Mediterranean significant increases of 10% were 

projected for the 
pP 

 [45]. Building upon the findings 

of Gaetani et al. (2014) [45], Wild et al. (2015) [46] 

provided additional insight by suggesting that 
pP 

 is 

projected to decrease across various regions, 

including Africa, by the middle of the 21st century. 

The Canary Islands in Spain experience relatively 

smaller and more localized changes in total solar 

irradiation (
totG ) during summer compared to winter. 

Consequently, there is limited potential for mitigating 

the decline in 
pP 

 resulting from air temperature 

changes. By the end of the 21st century, under a 

higher concentration of greenhouse gases (RCP8.5), a 
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loss of over 5% in 
pP 

 is projected across most areas 

of the Canary Islands [6, 47]. It was reported that the 

change in 
pP 

 has no significance over the next 

century over the BSc [48]. In Greece, it was projected 

an increasing 
pP 

, except for the region of Attica, 

with changes varying from 1 to 2% in most of the 

study region [44]. 

The future climate scenarios suggest that the 

temporal stability of energy production is not 

significantly compromised, with a minor positive 

trend observed in southern European countries [47]. 

Consequently, while certain regions in Europe may 

experience slight reductions in production, the overall 

impact of climate change on the European PV sector 

is not expected to pose a significant threat. 

 

 

3.10.3 African continent 

 

In the XXI century, it is projected that the 

pP 
 will diminish in Africa [46,49], except for Sahel 

and throughout southwestern Africa, where it is 

expected to increase [52]. For the West Africa, it was 

predicted a decrease of 
pP 

, which magnitude grows 

with warming levels until 3.8% [53]. In general, the 

projected decrease in 
pP 

 is primarily attributed to a 

combination of reduced solar irradiation and 

increased temperatures [49, 52]. 

For the majority of Africa, moderate 

changes in 
pP 

 of less than ±3% are anticipated, with 

slightly greater reductions projected during the 

summer season [16, 29, 30, 52]. However, it is 

important to note that the expected 
pP 

 changes in the 

Sahel region are deemed insignificant due to the 

uncertainties associated with cloud effects [133]. 

Regarding Europe, minimal changes are 

projected in the temporal stability of 
pP 

 across all 

seasons, including daily, annual, and decadal time 

scales [47, 52]. 
 

3.11 Limitations 

The key determinant of PV energy among 

various local weather conditions and environmental 

factors, including extreme Ta, Rh, precipitation, and 

W, is the intensity of 
totG  [134]. However, it is worth 

noting that losses resulting from other components 

like rain, wind, and humidity are often disregarded in 

many studies. 

Crook et al. (2011) [43] highlighted the 

significance of various climatic variables that have a 

notable impact on 
pP 

, some of which are often 

overlooked. They identified and discussed the 

following factors: 1) Wind: Wind plays a role in 

influencing 
pP 

 by promoting forced convection, 

which aids in dissipating heat from the PV cell and 

subsequently reduces cell temperature; 2) Dust: The 

accumulation of dust on PV panels can lead to a 

reduction in absorbed radiation, particularly in arid 

regions. This poses a significant challenge that affects 

 performance; 3) Rain: Rainfall has the beneficial 

effect of cleaning PV panels by removing 

accumulated dust and debris, thereby improving the 

overall efficiency of energy generation. Considering 

these variables alongside solar irradiation is crucial 

for a comprehensive understanding of the factors 

influencing .  

 

Table 8 - Impacts due to climate change on PV 

production. 

 

Paper Period Increase Neutral Decrease 

[5] 
2006-

2100 

Southeastern 

China 
 

To the south of Guangxi, 

east of Xinjiang and Tibet, 

west of Qinghai, Henan, 

Hebei, Shanxi, Shaanxi, 

Ningxia, parts of Inner 

Mongolia and Northeastern 

Central China 

[6] 

2090-

2099 

 

  
Canary Islands 

(Spain) 

[16] 
2036-

2065 

Central Europe, 

Atacama Desert, 

Eastern China, 

Southeastern Asia, 

Northeastern USA 

 

Arabian Peninsula, 

Southeastern 

Australia and 

Africa, 

Southwestern USA 

and Central Asia 

[43] 
2010-

2080 

Spain 

Germany 

China 

 

Algeria 

and 

Australia 

Western United 

States, 

Saudi Arabia 

[44] 

2011-

2050 

Western and 

southwestern 

Greece 

 
Attica (Greece), 

Thessaly (Greece) 

2061-

2100 

Epirus 

Peloponnese 

Thrace 

Macedonia, Crete 

and Aegean Islands 

Attica (Greece), 

Thessaly (Greece) 

[45] 2030 

Western Europe 

and Eastern 

Mediterranean 

 
Eastern Europe and 

Northern Africa 

[46] 
2006-

2049 

Germany 

Spain 

Southeastern 

China 

 

Northwestern 

China and Northern 

India 

[47] 
2070-2099 

 

Portugal 

and Spain, 

Italy, 

Malta, 

Bulgaria, 

Cyprus, 

Greece, 

Hungary 

and 

Romania 

 

Northern Europe, 

Western Europe, 

Central Europe, 

and Northern 

Europe 

[48] 
2071-

2100 
No significance 

No 

significance 
No significance 

[49] 

2006-

2100 

 

Liberia and Sierra 

Leone 
 

Benin, Burkina 

Faso, Cape Verde, 

Côte d’Ivoire, 

Gambia, Ghana, 

Guinea-Bissau, 

Guinea-Conakry, 

Mali, Niger, 

Nigeria, Senegal 

and Togo 

[50] 
2006-

2099 

Europe, Eastern 

United States and 

Eastern Asia 

  

[51] 2006-2100 

Eastern Asia, 

Europe, 

Central Africa, 

Central 

America 

 

Northern Africa, 

Middle East, 

Central Asia and 

Australia 

[52] 

2070-

2099 

 

Sub-southern 

Africa 
 

Northern Africa, 

Sahara, Western 

Sahel, Eastern 

Sahel, Guinea 

Coast, Eastern 

Africa, Horn of 

Africa, Southern 

Africa 

[53] 

1.5 2.0 

3.0 °C* 

 

- - Western Africa 
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The authors also add some other phenomena, 

such as large hailstones, which, although rare, have 

the potential to break PV panels (in some locations 

they occur more frequently). 

Wild et al. (2015) [46], in addition to the factors 

mentioned by Crook et al. (2011) [43], also mention 

the presence of snow, which is not yet considered in 

existing models. Bazyomo et al. (2016) [49] added 

another component: humidity, which is often 

neglected. Jerez et al. (2015b) [47] commented on the 

lack of consideration of the inclination of PV 

modules, although they also do not consider it in their 

study. It was not observed the fact of taking into 

account the distribution of the solar spectrum and the 

effect of air mass [135]. 

An issue that has been observed is that climate 

models tend to underestimate the variations in total 

solar irradiation ( ) when compared to 

observations [135]. Similar underestimation issues 

have been observed in other aspects, such as the 

irradiation balance at the top of the tropical 

atmosphere [136], precipitation over land surfaces 

[137], tropical precipitation specifically [138], soil 

moisture [139], and diurnal temperature variation 

[140]. It is evident that these discrepancies highlight 

the need for improvements in the accuracy of climate 

models to better capture these important climate 

variables. 

Excessive radiation has long been recognized as 

a persistent issue in climate modeling [141]. 

However, there are specific areas, particularly 

mountainous regions like the Alps, where positive 

biases in radiation increase by more than 40% [142]. 

When it comes to irradiation variability, climate 

models generally exhibit average errors on annual 

and monthly scales that are predominantly negative, 

typically below 2%, with occasional instances 

reaching up to 6% [47]. Efforts to address and reduce 

these biases in radiation representation remain 

ongoing in climate modeling research. 

The deficiency of RCMs in robustly projecting 

cloud cover and convection - and, as a consequence, 

the parameters related to solar irradiation - is 

criticized [143-144]. This deficiency causes a 

variability among the different RCMs with order of 

magnitude higher than the rate of increase in the 

production derived from monocrystalline PV systems 

in Greece. For Trenberth and Fasullo (2009) [145], 

the most important sources of uncertainty are also 

linked to cloud cover. 

It is worth noting that Bartók et al. (2017) [57] 

demonstrated discrepancies between the average 

solar radiation projections obtained from multi-model 

ensembles of global climate models (GCMs) and 

regional climate models (RCMs). These differences 

can be attributed to the distinct representation of 

cloud cover in large-scale and smaller-scale models, 

highlighting the significant influence of cloud cover 

modeling on the outcomes. Cloud cover plays a 

crucial role in shaping solar radiation patterns, and 

the accurate modeling of this parameter is essential 

for reliable solar energy projections. 

The representation of uncertainties related to the 

indirect effects of natural and anthropogenic aerosols, 

as well as changes in land use, is limited or often 

overlooked in regional climate models [45]. These 

factors, such as natural aerosols like dust from the 

Sahara and anthropogenic aerosols like air pollution, 

can have a significant influence on the potential for 

solar energy production [45]. Their direct and indirect 

impact on incident solar radiation and on cloud cover, 

respectively, can lead to substantial modulation of 

solar irradiation. Additionally, the deposition of 

aerosols on PV arrays can reduce the efficiency of 

PV cells. Therefore, considering these factors is 

crucial for a comprehensive assessment of solar 

energy potential. 

While Gunderson et al. (2015) [48] indicate 

minimal or negligible effects of climate change on 

solar resources, there are still inaccuracies that need 

further investigation. Nevertheless, it is evident that 

land-use alterations will play a substantial role in 

determining appropriate locations for PV production. 

Furthermore, allocating a small portion of 

agricultural land for solar energy generation could 

greatly enhance the potential for solar power. The 

study underscores that while solar resources are 

abundant, it is crucial to consider socio-economic 

factors as important constraints when evaluating the 

viability and potential of solar energy. 

As already discussed, the increase in 

temperature induced a reduction in  in several 

regions [47, 49, 52], which confirms the importance 

of reducing the dependence of PV technology on 

ambient temperature [146]. Improvement that should 

happen over time, but it is still not considered in 

current analysis [147]. Only, in an isolated study [5], 

the improvement rates for the absolute efficiency of 

PV technology over time were considered. 

 

4. CONCLUSIONS 

In recent years, there has been a growing 

focus on understanding the effects of climate change 

on photovoltaic production ( ). Numerous 

publications have emerged since 2013, and this 

ongoing study aims to provide a comprehensive 

overview of the available evidence, highlighting 

consistent methodologies for projecting impacts. 

The methodologies to evaluate the impacts 

of climate change on  focused mainly on the use 

of empirical equations that establish relationships 

between meteorological variables, cell temperature 

and cell efficiency. Different equations were used to 

estimate ; some considered only the influence of 

incident solar radiation, while others also considered 

ambient temperature, and/or wind speed and/or 

relative humidity. It was observed that dust was not 

considered in any of the studies reported because it is 

a good practice to assume that its influence can be 

overcome by maintenance, so this cost should only be 
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considered into the financial projections of PV solar 

installations. 

The vast majority of the studies adopted a 

forecast period of until the end of the 21st century, 

except for three studies that were limited to shorter 

periods under the justification of equivalence to the 

lifespan of PV installations. 

Analysis of the articles showed that the data 

obtained for the projections in the studies came from 

projects such as CMIP3, CMIP5 and CORDEX. In 

addition, in the context of GHG emission scenarios, 

RCP8.5 was the most used, followed by RCP4.5. 

The findings of this comprehensive review 

highlight the significant implications of 

meteorological changes on PV energy systems and 

the subsequent impact on energy supply. In the 

Canary Islands, a loss of over 5% in PV production is 

projected by the end of the 21st century [6] as well as 

for Mainland Spain [47]. For Europe, minimal 

changes in the temporal stability of solar potential are 

projected across all seasons [47, 52]. In Africa, with 

the exception of certain regions such as the north 

coast and 10°S, a decline in average annual solar 

potential is expected throughout the 21st century, 

particularly in the Horn of Africa [46, 49, 52]. In 

contrast, several regions in China are expected to 

witness a rise in PV energy potential by the end of 

the XXI century [5]. However, the specific 

percentage value varies depending on the adopted 

methodology. Crook et al. (2011) [43] suggested only 

a slight increase in China's PV potential, while Zhao 

et al. (2020) [5] argued for a more substantial 

increase. Zhao et al. (2020) [5] attributed this 

difference to the utilization of high-resolution spatial 

climate data obtained through statistical downscaling 

and the consideration of PV technology 

advancements. 

Regarding the number of studies, it was 

observed that the majority of studies focused mainly 

on Europe and Asia; little was studied about the ICC-

 in South America and Central America. 

While this review has identified certain 

patterns regarding the impacts of climate change on 

, remains areas that require further investigation. 

Future literature reviews should adopt a systematic 

approach to examine the results within the broader 

context of technological, economic, and 

environmental considerations. 

The economic evaluation should take into 

account dynamic aspects, including social costs, 

revenue changes, capacity expansion investment 

costs, and cost-benefit analysis. From a technological 

perspective, it is crucial to evaluate the impact of 

meteorological variations on PV systems, including 

thermal and electrical fatigue, as well as the potential 

effects of technological advancements in improving 

efficiency and reducing dependence on 

meteorological parameters. 

To enhance the understanding of climate 

change impacts on , future research should also 

explore the interplay between technological, 

economic, and environmental factors. By 

incorporating a systematic review methodology, 

researchers can provide a more comprehensive 

analysis of the subject matter. This will enable a 

deeper understanding of the implications and 

potential solutions for addressing the challenges 

posed by climate change in the context of 

photovoltaic power generation. 

This review summarizes useful information 

to policymakers and entrepreneurs in the field of PV 

technology against climate change, besides providing 

basis to clarify to researchers in the field about the 

current state of the art and thus guide future efforts. 
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