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ABSTRACT

Higher concentrations of greenhouse gases resulting from anthropogenic actions
associated with energy production are one of the causes of climate change. In this
context, several efforts have been undertaken in the search for more sustainable
alternatives, with photovoltaic (PV) technology standing out among the different
possibilities. However, PV production is dependent on future climate variability,
which is a source of uncertainty that can hinder energy planning and impair the
effectiveness of systems. This study investigates how the authors approached the
theme the climate change impacts on photovoltaic production (B,,) from the
perspective of simulations using climate models. To this end, a search was carried
out using keywords related to the theme at the Web of Science database and, after
filtering, it generated a sample of 58 articles on the theme of climate change
impact on PV production, which were subjected to a systematic review. With the
analysis and classification of the papers, 14 articles were quantified as indirect
approach using simulations from climate models. The main GCMs (global climate
models) and RCMs (regional climate models) used in each study, as well as the
equations for estimating B,, and the meteorological forecast databases, were
identified. The studies found in the literature have mainly focused on Africa,
Europe and China.

NOMENCLATURE RE Review articles

SA Statistical Approaches
AOGCM Atmosphere-ocean GCM SCA Stepwise cluster analysis
CIT Cloud image techniques ST Standard reference
CSp Concentrated solar power TI Title
CvC Climate variability and change TS Topic
GCM Global climate model WOS Web of Science
GHG Greenhouse gases WRF Weather Research and Forecasting
GMT Global mean temperature
GWL Global warming level 1. INTRODUCTION
HSI High-speed improvement
v Internal variability Climate change is a natural occurrence that
LSI Low-speed improvement has been observed throughout Earth's history [1].
MLT Machine learning techniques However, the Intergovernmental Panel on Climate
OTH Others Change [2] states that the current increase in average
PGW Pseudo-global warming technique global temperatures is primarily attributed to elevated
PI Pre-industrial level levels of greenhouse gases (GHGs) in the
PT Physical technique atmosphere. These higher concentrations of GHGs
PV Photovoltaic are a result of human activities, including the burning
Ppp Photovoltaic production of fossil fuels and the rapid expansion of urban areas
RCM Regional climate model [3]. Associated with energy production services,
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anthropogenic emissions of GHG and aerosols are
one of the historical [4] and future [5] causes of
climate change. Recently, discussions on the causes
and effects of this phenomenon, associated with the
theme of problems in energy demand and
consumption, have increased and gained attention in
various debates around the world. There are different
options to reduce GHG emissions and simultaneously
meet the human demand for energy services that is
expected to increase due to climate change [6, 7].

Given this scenario, renewable energy fills
the gap between climate and energy sciences, playing
a very important role in strategies for decarbonization
and mitigation of the adverse effects of climate
change [8] and its possible consequences on societies
and on the environment [2]. The report of the
Intergovernmental Panel on Climate Change [4]
suggested that notable alterations in future climate
projections will lead to substantial governmental
investments in energy and drive innovation in the
energy sector [9]. In efforts to accomplish the
objective of carbon emissions reduction, there has
been a significant global increase in the deployment
of renewable energy sources [10].

Photovoltaic (PV) energy generation, which
involves the direct conversion of sunlight into
electricity, has shown significant growth potential
and has the ability to eventually rival conventional
energy sources [11]. The decline in the cost of PV
systems and advancements in energy production
efficiency [12] have played a key role in the
increased installation of PV panels. There are other
factors that contribute to the popularity of PV
technology: easy implementation, modularity, low
maintenance and, mainly, a fast-learning curve [13].
Thus, PV solar projects have the capacity to make a
significant contribution to mitigating climate change
[14]. Nevertheless, the sensitivity of these systems to
atmospheric conditions and future climate variations
introduces uncertainty, which can pose challenges to
energy planning and potentially impact the
effectiveness of PV systems. This uncertainty may
hinder investments in the PV energy sector [15, 16].

When contemplating the implementation of
a photovoltaic plant, it becomes crucial to assess the
future renewable resources rather than solely relying
on present conditions, particularly when long-term
investments are involved [6]. This forward-looking
approach allows for a more comprehensive
evaluation of the renewable energy potential and
ensures that the investment aligns with long-term
sustainability goals. In general, climate change
projections are necessary to establish possible future
scenarios in order to create subsidies for the
development of GHG reduction strategies [17].

In view of the growing concern about the
future climate, climate models have been developed.
The first general circulation model was developed at
Fluid Dynamics Laboratory of the National Oceanic
and Atmospheric Administration (NOAA) at the end
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of the 1960s in Princeton, USA. This model took into
account the interactions between oceanic and
atmospheric processes and how climatic factors
influenced climate change [18]. Currently, global
(GCMs) and regional (RCMs) climate models are the
main tools used to generate future climate data from a
number of parameters, such as air temperature, solar
radiation, among others [19, 20].

Within this theme, although there are several
studies [15, 21-31] assessing the impacts of climate
change on meteorological variables that influence PV
energy production, they did not thoroughly examine
the impact of these changes on photovoltaic
production (F,y,).

Several studies have attempted to examine
the literature concerning the assessment of climate
change's impact on PV energy production.
Antonanzas et al. (2016) [32] focused on recent
research related to solar energy forecasting, but they
did not extensively explore PV energy forecasting
models. On the other hand, Gandomanin et al. (2016)
[33] conducted a review of short-term forecasting of
PV solar energy production with an emphasis on
cloud cover influence. Wan et al. (2015) [34] and
Raza et al. (2016) [35] investigated various PV and
solar forecasting techniques but did not specifically
address studies utilizing climate models.

Numerical methods have been recently
reviewed by Das et al. (2018) [36], by Sobri et al.
(2018) [37] and by Akhter et al. (2019) [38], who
also did not thoroughly examine climate methods.
Numerical methods are based on historical data and
on the capacity to extract information from data to
predict time series. They include methods based on
Statistical Approaches (SA), machine learning
techniques (MLT) and hybrids that combine the two
previous methods.

Thus, the present study seeks to identify the main
results related to the impacts of climate change (ICC)
on the P, from the perspective of climate models. A
comprehensive and rigorous approach will be
employed to conduct a literature review, aiming to
establish correlations between future PV production
and its susceptibility to climate change on both
regional and global scales. The findings of this
research will provide valuable insights for PV energy
companies and policymakers to facilitate the planning
of the future energy system. The subsequent sections
of this paper are structured as follows: Section 2
outlines the methodologies utilized in conducting the
scoping systematic review; Section 3 presents an
analysis of the literature review, focusing on the
effects of climate variability and change (CVC);
Section 4 offers a comprehensive discussion,
summarizing the findings, identifying research gaps,
and assessing the strengths and limitations of the
scoping systematic review; and finally, Section 5
provides the conclusion of the study.

2. MATHODOLOGY
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Cluster and content analyses were used,
which described and interpreted the knowledge and
data presented in the papers, and reviewed the
content of the selected papers, meeting specific
criteria of reliability and validation [39]. The stages
of methodological development are described in
Figure 1.

* Problem definition
+ Objective

* Search terms

+ Access to database

* Validation criteria
+ Tabulation and
analysis of results

* Descriptive review
* Result
visualization tools

Figure 2: Descriptive summary of the methodological
procedure employed.
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SStep 1 - Inputs

At first, it was necessary to define the
question that will guide this review: What are the
characteristics, amplitude and results of existing
research conducted on the impacts of climate change
on photovoltaic production from the perspective of
simulations using climate models?

At this point, we sought to estimate the
relevance of the problem to be analyzed, in addition
to defining the object of study. Subsequently, an
exploratory analysis was carried out on how the
examination and analysis of climate change effects
on photovoltaic production are addressed in the
literature. The main words adopted in the articles to
define search terms were also identified, based on
Emodi et al. (2019) [40].

Figure 1: Description and refining of the search for bibliographic references used in the
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Step 2 - Processing

This stage of the study refers to the
definition of the portfolio, described in detail to
enable replication of the method. Its construction was
based on the preparation of search networks
delimited by the theme of the study [40].

Thus, searches were carried out on the Web of
Science (WOS) platform, one of the world’s most
prestigious databases [41], through terms considered
relevant by the authors regarding the analysis of the
impacts of climate change on PV energy production,
as shown in Figure 2. Papers published until
12/31/2023 were included.

The first phase of the research described the
process of investigating journals related to the
keywords. The terms used were divided into TI
(“title”) and TS (“topic”). This chosen structure
intended to bring the “titles” as the central figure of
the search and correlate them with the “topics”. The
incomplete terms used in the search, such as
“Climat”, plus “*”, represent a form of search where
the database returns the results of the variations of the
term: “Climate”, “Clime” and “Climatic”. The terms
with “question mark” (?) used in the search, as in
“Pffect*”, represent a form of search where the
database returns results with variation of a single
letter: “affect”, “affected” and “effect”.

The second phase comprised the inclusion
and exclusion criteria operated for the selection of
studies, as observed in Figure 2. First, at the WOS
database, only scientific and review articles were
chosen. Then, still on the WOS platform, all articles
that were repeated and written in a language other
than English were excluded. After this previous
selection, which generated a considerable number of
papers, the screening process was carried out, where
the titles and abstracts of all articles were read, and
those outside the scope of the study were excluded
and all the articles referenced by those already
selected that had an explicit relation to the theme
were included, a process called branching.

The third phase, characterized by the
clustering process, classifies them according to the
thematic axis, by content analysis, referring to the
pillar (s) of the methodology of analysis and
forecasting of PV energy production (PT, CIT, MLT,
RE and OTH, Figure 2). Related terms were used to
assist in the affinity of inclusion in each category
[40]. Considering the objective of this study, the
articles that used climate models to qualitatively and
quantitatively evaluate the impacts of climate change
on PV production were considered eligible.

Data processing was performed in Excel
2013 software [42], by feeding it with information to
construct graphs and tables that assisted in the
quantitative and qualitative analysis of the articles.
The necessary elements were provided by the WOS
database itself, such as: title, authors, keywords,
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number of citations, abstract, year, country and
journal of publication.

Step 3 - Outputs

Quantitative and qualitative balances supported a
better understanding of the analyzed articles. A
scoping review was employed to systematically
analyze the existing literature, identifying crucial
concepts in the research, evidence types, and sources.
This comprehensive approach aids in formulating
policies and guiding further research endeavors [40].

3. CHARACTERISTICS OF THE
SYSTEMATIC REVIEW ARTICLES

3.1 Main articles

Following the methodology described in
Section 2 (Figure 2): in the first phase, a total of
1,079 articles were included; in the second phase,
after eliminating repeated papers, those written in a
language other than English, and with title and/or
abstract with a subject different from the focus of the
present study, and evaluating the references, only 58
articles remained; finally, in the third phase, after
detailed analysis of the content, a total of 14 articles
were extracted. All fourteen articles [5, 6, 16, 43-53]
used climate models to quantitatively assess the
impacts of climate change on PV energy production
over a very long-term horizon.

3.2 Climate models used

According to Diagne et al (2013) [54],
climate models can be categorized into three types:
global (covering the whole Earth), mesoscale
(covering a part of Earth), and regional (focused on
specific local regions). Global Climate Models
(GCMs) are the main instruments employed for
large-scale climate modeling, capable of generating
reasonable outcomes on extensive spatial and
temporal scales [55]. However, due to their low
resolution (both spatial and temporal), GCMs have
limitations when it comes to precise evaluations on a
regional scale [52].

Regional Climate Models (RCMs) are the
answer to overcome these limitations [47]. RCMs
offer an enhanced resolution in both temporal and
spatial aspects, enabling a more accurate
representation of mesoscale atmospheric processes
under present and future climate conditions [56, 57,
58]. RCMs face a significant drawback due to the
presence of substantial uncertainties in their
projections. Climate change research primarily
attributes these uncertainties to various factors,
including the techniques employed to impose
boundary conditions on RCMs, the downscaling
methods adopted, and the greenhouse gas emission
scenarios utilized [59].

The global and regional climate models used in
the forecast of PV production are presented in Tables
1, 2 and 3. Division into three tables was performed
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to better arrange the data. From the tables it is
possible to notice that Crook et al. (2011) [43] were
the forerunners in this line of research. The authors
conducted an investigation into the potential impacts
of solar temperature and irradiation changes on the
generation of PV energy and concentrated solar
power (CSP) throughout the 21st century. To
accomplish this, they obtained projected climatic data
from two GCMs. In their study, Crook et al. (2011)
[43] emphasized the importance of conducting
similar analyses using a broader range of climate
models to enhance comprehension of the variability
in energy production due to uncertainties in solar
irradiation projections. The initial findings presented
by the authors can be regarded as a preliminary
estimation of magnitude.

3.2.1Entire globe

A total of six works used climate models to
analyze the ICC-F,,, at the level of China or the

entire globe (Table 1). Due to the fact of analyzing
the future from models, which have numerous
uncertainties, it is verified in Table 1, as expected,
that the works use more than one GCM model to
carry out the analyzes of the magnitude and

consistency of the ICC-F,,, a world level. The works

by Wild et al. (2015) [46] and Zou et al. (2019) [51]
used, respectively, 39 and 37 global models from
CMIP5 (2013) [60], while Feron et al. (2021) [16]
used 7 models; Crook et al. (2011) [43], 2 models;
Zhao et al. (2020) [5], 3 models; and Smith et al.
(2017) only one GCM.

In a comparative study of 14 models from
the Coupled Model Intercomparison Project Phase 3
(CMIP3), the HadCM3 model was recognized as one
of the top-performing models for global average
annual insolation under clear skies. However, it is
important to note that this study did not include
HadGEM1 [61]. When taking HadGEMI into
account, it becomes evident that it slightly
outperforms HadCM3 and holds greater potential for
accurately reproducing future changes. This is due to
HadGEM1's inclusion of a more advanced and
physically-based aerosol modeling approach [43]. It
can be seen in Tables 1, 2 and 3 that Crook et al.
(2011) [43] were the first and last to use the
HadGEMI1 family of climate models, and the later
works [6,46,47,52,53] used the next version
developed by the UK Metrology Office (Metrology
Office UK) (HadGEM?2).

In the simulations performed by Smith et al.
(2017) [50] with the HadGEM2-CCS model under
RCP4.5 and employing the geoengineering method,
Stratospheric sulfate injection (SSI), in the period of
2040-2059, the authors analyzed the ICC-F,,;.

Zhao et al. (2020) [5], different from
previous studies, projected the future climate over
China using stepwise cluster analysis (SCA). SCA
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was shosen as a downscaling technique to downsize
GCM forecasts based on Huang (1992) [62] and
Wilks (1932) [63]. Zhao et al. (2020) [5] were the
first ones to consider improvement rates for the
absolute efficiency of PV technology (range of 0.04—
0.09% per year).

Until then, studies had focused on the ICC-
va analysis based on average projection results,

however, Feron et al. (2021) [16] concentrated on
examining the impacts of atypical weather conditions
and extreme weather events on PV outputs. An
important conclusion was that changes in the
frequency of these unusual weather conditions can

increase or reduce the intermittency of By, with
consequences for network planning and operations.

3.2.2 European continent

When analyzing Table 2, it is observed that
there is no unanimity about which are the best sets of
models (GCMs and RCMs) to analyze the European
continent, in fact, there is a great variability among
the five works identified. Three of the five papers,
however, use at least five different RCM/GCM sets
to carry out analyzes of the magnitude and
consistency of ICC-F,,, in Europe. The GCMs that
were used in at least two works were ECHAMS, EC-
EARTH, HadGEM2-ES and IPSL-CM5A-MR. The
only RCMs that were used in more than one work are
HIRHAMS (v2) and WRF.

A distinctive feature was identified in the
study conducted by Jerez et al. (2015b) [47], where
they examined, considering a future scenario
characterized by a significant penetration of PV
installations, the ICC-F,, at the level of European

regional electric grids. The optimal distribution of
installed PV power across the region was obtained
using the CLIMIX model. [64]. In addition, Gaetani

et al. (2014) [45], besides investigating the ICC-va

in Europe, the Eastern Mediterranean and Africa,
observed the influence of factors such as aerosols,
cloud cover, temperature. Additionally, within the
framework of the enviroGRIDS project of the 7th
Framework Programme of the European Union,
Lehmann et al. (2015) [65] and Gunderson et al.
(2015) [48] carried out research with a particular
focus on the Black Sea region.

Pérez et al. (2019), that used Weather
Research and Forecasting (WRF) model [66] as
RCM, argued that the use of reanalysis data is one of
the main usefulness of the PGW (see subsection
4.3.5), since the tendencies in the border conditions,
with regard to genuine meteorology, are much
smaller [67].
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Table 1 — Climate models used by articles that analyzed China or the entire globe.

GCM Articles
ACCESS1.0 [46]. [51]
ACCESS13 [16]. [46]. [51]
BNU-ESM [46]
BCC-CSML1.1 [46]
BCC-CSM1.1(m) [46]
CanESM2 [16]. [46], [51]
CanCM4 [51]
CCsM4 [46], [51]
CESM1-BGC [46]
CESM1-CAMS5 [46]. [51]
CESM1-WACCM [46]
CMCC-CESM [46]. [51]
CMCC-CMS [46]. [51]
CMCC-CM [46]. [51]
CNRM-CM5 [3]. [46]. [51]
CNRM-CM5-2 [51]
CSIRO-Mk3.6.0 [46]. [51]
CSIRO-Mk3L.1.2 [51]
EC-EARTH [46]
FGOALS-g2 [46]
FGOALS-s2 [46]. [51]
FIO-ESM [46]
GFDL-CM3 [46]
GFDL-ESM2G [46]
GFDL-ESM2M [16]. [46]
GISS-E2-H [46]. [51]
GISS-E2-H-CC [51]
GISS-E2-R [46]. [51]
GISS-E2-R-CC [51]
HadCM3 [43]. [51]
HadGEM1 [43]

HadGEM2-AO
HadGEM2-CC
HadGEM2-CCS
HadGEM2-ES
INM-CM4
IPSL-CM3A-LR
IPSL-CMSA-MR
IPSL-CM3B-LRE
MIROCS
MIROC4h
MIROC-ESM-CHEM
MIROC-ESM
MPI-ESM-LE.
MPI-ESM-ME.
MPI-ESM-P
MRI-CGCM3
MRI-ESM1
NorESM1-ME
NorESM1-M

[51. [16]. [46]. [51]
[461. [511
[46]. [51]
[461. [511
[46]. [51]

[31]
[16]. [46]. [51]
[31]

[3]. [16]. [46]. [31]
[461. [511
[31]

[16]. [46]. [51]
[31]

[46]. [51]
[461. [51]

Table 2 — Climate models used by articles that analyzed a country, a region or the entire Europe.

GCM'RCM

2)

HIRHAMS RACMO22 RCA4
T (D)

REMO2009 CCLM4-

1) (1) 817 (v1)

ALADIN C4IRCA3 ETHZ- MPI-M-

CLM  REMO

SMHIRCA CNRM- WRF
RM5.1

APREGE RM5.1

BCM

CSIRO-Mk3.6.0

CCsM4

CNRM-CM>3

ECHAMS
EC-EARTH

[45]
[48]

GFDL-ESM2G

HadCM3Q0

HadCM3Q16
HadGEM2-ES

HadAM3H
INM-CM4

[48]

IPSL-CMSA-MR.

MIROC3

MPI-ESM-LR

[48]

[48]

[48]

[48] [48]

[48]

[48] [48]

[44]

[44]
[44]

[44]
[44]
[6]
[6]

[6]
[6]

[6]

[6]
[6]
[48]
[6]

Table 3 — Climate models used by articles that analyzed a region or the entire Africa.

GCMRCM None HIRHAMS RACMO2Z RCA4 REMO2009 CCLM4- ALADIN NOAA NCC MPI MIROC IPSL ICHEC CNRM CCCMA
2) Tl o) 1) 817 (v1)
521, ,
CanESM2 fsal [49]
CNRM-CM5 [[:;23]] 52L[531  [531 [49]
CSIRO- [52].
MK3.6.0 [53]
EC-EARTH [52] 210531 [52] 1521 [531 [49]
ECHAMS  [43]
GFDL- i
ESM2M B2 (491
HadAM3H
HadGEM2- [52].
ES B2 [53] B3
IPSL- [52]. g
CMSA-MR [53] (9l
. [52].
MIROCS o [49]
MPL-ESM- [52]. s
IR [53] [52] [52]. [53] [49]
NorESMI1-M [[3)23]] [49]

25
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3.2.3. African continent

The most common justification for
analyzing this part of the world lies in the region's
solar potential [49].

When the studies are at the level of the
African continent (Table 3), it is observed that two of
the four works used quite a lot of GCM/RCM sets in
common, while the other two analyze the impact
from sets that are very different from each other. The
works of Bichet et al. (2019) [52] and Sawadogo et
al. (2020) [53] complement each other. Both used the
results of CORDEX-AFRICA, which was the most
up-to-date for Africa [52].

Bichet et al. (2019) [52], in addition to
Bazyomo et al. (2016) [49] also evaluated the va

and its response to meteorological variance
throughout the Africa. Besides, they estimated the
overall uncertainty related to these forecasts and to
the distinct uncertainty origins: inherent variability
and the uncertainty due to the use of climate models.

Bazyomo et al. (2016) [49], unlike previous
studies [43,46], calculated solar irradiation on a tilted
plane from daily data of total sky radiation with the
free R package, the solaR [68].

3.3 Emission scenarios used

Climate researchers employ socioeconomic
and emission scenarios to present realistic depictions
of future developments concerning various factors,
such as socioeconomic changes, technological
advancements, energy and land use, greenhouse gas
emissions, and air pollutants. These scenarios serve
as inputs for climate models, facilitating assessments
of potential climate impacts, mitigation strategies,
and their associated costs. For improved
comparability between studies and enhanced
communication of model outcomes, it is essential for
the entire scientific community to adopt a
standardized set of scenarios [69].

From Table 4, it can be observed that the set
of SRES scenarios was used until 2015; from that
year onwards the more current models, the RCPs,
became the only ones used during the PV production
forecasting process. RCP4.5 [70] and RCPS8.5 [71]
are the emission scenarios most frequently utilized in
climate forecasts [5]. The most frequently utilized
scenario in the research was RCPS8.5, which is
commonly employed in the literature to depict high
concentrations of greenhouse gases. This scenario
ensures a higher signal-to-noise ratio, making it
easier to identify distinct patterns of change in
climate [46].

In addition to emission scenarios, there are
still some methods that are coupled, such as pseudo-
global warming (PGW) [67,72,73]. The application
of PGW seeks to reduce the computational charge
related to High resolution in space and extended data
collection periods by using shorter simulation periods

RETERM — Thermal Engineering Vol. 24 (2025) No. 1

[74,75], instead of periods of three decades or more
[76].

Table 4 - Emission scenarios used in ICC-B,, studies.

Emission scenarios

Paper SRES SRES SRES
ALB A2 B2 RCP4.5 RCP8.5

[5] X X

6 X+ X+
[6] PGW PGW
[16] X X
[43] X
[44] X
[45] X
[46] X
[47] X X
[48] X X
[49] X
[50] X
[51] X
[52] X

X+

[33] PGW

26

X + PGW: used the indicated emission scenario,
associated with the pseudo-global warming
(PGW) technique.

Furthermore, Sawadogo et al. (2020) [5]
adopted a different approach, selecting global
warming levels (GWL) above the pre-industrial level
(PI) (1881-1910). To determine the 30-year GWL for
each Global Climate Model (GCM) simulation, they
considered a 30-year period centered on the year
when the GCM reaches 1.5, 2.0, 2.5, and 3.0 °C in
Global Mean Temperature (GMT) compared to PI
levels under RCP 8.5 [77]. The analysis involved
using the same GWL period of the GCM to extract
the 30 years of GCM data, which were then reduced
by the Regional Climate Model (RCM) using 1971-
2000 as a control period.

3.4 Databases used
Table 5 shows the databases used by the

articles that assess ICC-F,,,. With the exception of

Gunderson ef al. (2015) [48], all the others used data
from either CMIP or CORDEX.

The CMIP3 and CMIPS initiatives offer a
standardized platform for studying and comparing
global coupled atmosphere-ocean models (AOGCMs)
through  structured experiments [78]. These
experiments formed the foundation for evaluating the
4th and 5th Reports of the Intergovernmental Panel
on Climate Change [79]. In CMIP5 an in CMIP3,
predefined scenarios of radiative forcing were used
for climate change projections [80]. The newly
developed CMIP6 [81] has not yet been used in ICC-

B,y studies.
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One of the largest and most recent databases
in constant updating is that of the Coordinated
Regional  Climate  Downscaling  Experiment
(CORDEX) [82], which seeks to promote and
synchronize scientific research and the utilization of
regional climate downscaling through international
collaborations [83]. It provides a framework for
investigating the scenarios of impact of climate
change on a regional scale [84]. There is a total of
fourteen official CORDEX domains. The CORDEX-
EUROPE covers Europe with a spatial resolution of
0.11° in latitude and longitude, and provides records
of output variables every 3 hours. CORDEX-
AFRICA simulations cover all Africa with a spatial
resolution of CORDEX data sets of approximately 50
km (0.44° x 0.44°). For each simulation and each grid
cell, many meteorological variables are available.
From the CORDEX data sets, it is possible to obtain
average daily surface downwelling shortwave

radiation (Ggpe; also called solar irradiance), air
temperature (T,), wind speed (W; at 10 m above

ground level) and relative humidity (Rp,).

Sawadogo et al. (2020) [53] used the ERA-
Interim reanalysis data set of the European Centre for
Medium-Range Weather Forecast (ECMWF). On the
website of ECMWFE, they retrieved the surface wind
speed (10 m above ground level) and the relative
humidity that was calculated from the dew point and
the specific humidity.

Some authors used data analysis with the R
programming language to analyze the solar radiation
values extracted from RCM [48]. Gunderson et al.
(2015) [48] also applied common kriging
interpolation to create a solar radiation surface and
considered the topographic effects of aspect and
inclination on solar radiation by incorporating a solar
indexation layer that considered the relative
difference in incident solar irradiation based on its
alignment or positioning and angle of arrival.

Pérez et al. (2019) [6] utilized information from
on-site measuring devices and two data repositories,
satellite-based information, to evaluate simulated
outcomes for the past time frame. This type of
decision is very recurrent and it is commonly
motivated by the significant spatial diversity of
irradiance in the investigation region.

3.5 Data extraction methods

3.5.11Irradiance - Interpolation

Precise understanding of solar irradiation in
a particular region is essential, especially for
applications in solar energy resources [85]. Various
factors can lead to significant local gradients of solar
irradiance over small distances, such as changes in
height, positioning, incline, shadows, and surface
reflectivity [86,87]. Studies concur that topography
plays a significant role on a local scale and should be
taken into account when considering solar systems'
proper location [88,89].
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Table 5 - Database used in papers in ICC-B,,, studies.
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Rela
Paper Air temperature Solar irradiation ‘Wind Speed I::lv;
idity
CMIP5; ERA-Interim; CMIP5; ERA-Interim;
National National
[5] Meteorological Meteorological
Information Center of Information Center of
China China
project ADRASE SoDa service
[6] AEMET AEMET AEMET CMIPS
CMIP5 CMIP5
[16] CMIP5 CMIP5 CMIP5
[43] CMIP3 CMIP3 -
[44] E-OBS SoDa service
CORDEX-EUROPE CORDEX-EUROPE
[45] FP6-EUCAARI FP6-EU.CAARI
project project
[46] CMIPS CMIP5 -
CORDEX-
[47] CORDEX-EUROPE CORDEX-EUROPE EUROPE
48] PRUDENCE
NCEP/NCAR
[49] CORDEX-AFRICA CORDEX-AFRICA
[50] CMIP5 CMIP5
[51] CMIP5 CMIP5 -
CORDEX-
[52] CORDEX-AFRICA CORDEX-AFRICA AFRICA
COR
DEX
CORDEX- AFR
[53] CORDEX-AFRICA CORDEX-AFRICA AFRICA ICA
CRU SARAH-2 ECMWF EC
website MW

webs

ite

Solar irradiance plays a crucial role in
various terrestrial processes, and in situations where
direct measurements are unavailable, alternative
techniques are necessary to evaluate the solar
potential [90]. Interpolation is one such effective
method for estimating local and temporal components
of solar irradiance when whether data is lacking,
allowing for the creation of spatially continuous
databases across large regions [87,88]. However, the
reliability of interpolation decreases in areas with
complex topography, and its accuracy significantly
relies on the database size and the spacing between
stations [87-90]. In order to enhance the precision
and dependability of spatial interpolation for solar
irradiation on a local scale, topographic variables are
often integrated, utilizing digital elevation models
(DEM) [86-90].

3.5.2 Daily temperature and irradiance —
sinusoidal form

Crook et al. (2011) [43] assume that climate
data are average during the day and night, that is,
they vary approximately sinusoidally, but only
temperatures and solar irradiance during the day are
required to estimate PV energy production. In order
to account for the average monthly diurnal

temperature (Tj34y), Crook et al (2011) [43]

proposed an adjustment method based on the
assumption of a sinusoidal temperature variation
throughout the day. They considered a range equal to
half of the diurnal temperature range (DTR), which
signifies the disparity between the highest and lowest
temperatures within a day, as well as an average
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value denoted as T. By applying this approach, they
approximated T, as follows:

(1)

The notation of a bar indicates monthly
averages in the following passage. The selected
models did not provide maximum and minimum
temperatures. Hence, historical climatological diurnal
temperature range (DTR) data for each month from
some data set can be utilized. It was assumed that the
DTR would remain constant in future scenarios,
although there is a lack of consensus regarding
potential changes in DTR in the future. [91]. The
average solar irradiance during the hours when
sunlight is available for operation should be
estimated based on the duration of the day:

=G+ . oan )

G

day
duration of the day

Here, G represents the monthly average of G,

when specifically considering photovoltaic energy.
The duration of daylight is once again employed in
the calculation of energy production for every month.

3.5.3Solar irradiance from the duration of
insolation

In some situations, daily solar irradiance
(DSI) is not available throughout the desired period,
but the daily duration of insolation (DDI) is available.
For this reason, Pérez et al. (2019) [6] used a method
to transform the DDI into DSI, using the association

identified in earlier researches [22, 92]. This
association can be stated as:
G 2
fclear = _mtal (3)
Gclear

in the given equation, f, denotes the fraction of

lear

clear sky time, G represents the monthly average

total

of daily horizontal surface irradiation and G

clear
stands for the average daily irradiation value with
clear sky. This fraction, specific to a particular month
and location, corresponds to the proportion of
sunlight (S):

_ DSL

=
DD

“4)

clear

associated with the following equations:
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DD = % cos”'(tan p tan &) (%)

§=23.45sin[ 36025040 | (6)
365

where DSL is the average monthly duration of
sunlight, DD is the average monthly duration of the
day, ¢ is the latitude of the place in degrees, & is

the declination of the sun, also in degrees, n is the
day of the year, starting on January 1.

Thus, for a given location and month, Gtot can
be calculated as:

_ _ DSL 1/2
Gtotal = Gclear ( j (7)
DD

In cases where G is not directly obtainable

clear
from observational data, an alternative approach
involves deriving it for each location and specific
month of the year by utilizing available data on daily
horizontal surface radiation and sunlight duration

from recent years. Once the values for G are

clear
determined, solar irradiance can be calculated for any
desired month.

According to Pérez et al. (2019) [6], employing
this methodology leads to a root mean square error of

3.3% when comparing the calculated G, with the

total
observed values.
3.6 Methodologies used for bias correction

The methodology for the correction
approach is dependent on several factors, such as the
nature of the data, the time frame, the spatial and
temporal resolution, and the time frame considered
[44]. To handle inconclusiveness arising from various
potential outcomes of the meteorological system, sets
of climate model outputs can be employed. Multiple
global climate models (GCMs) can be employed to
assess uncertainty associated with different large-
scale physical parameterizations of terrestrial and
atmospheric processes. Additionally, the utilization
of different regional climate models (RCMs) can help
address uncertainties associated with the depiction of
smaller-scale phenomena, such as microphysical
clouds or convective rainfall.

A number of GCMs exhibit notable biases

when it comes to accurately representing the absolute
levels of G [93] and T, [94] in comparison to

surface observations. These discrepancies are often
attributed to challenges related to parameterizing
cloud effects [95], as well as shortcomings in clear
sky radiation modeling (WILD et al., 2006) [61].
RCMs often exhibit variations in the
statistical characteristics of simulated meteorological

total
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data when compared to observed values. A prominent
component of this temporal error is the presence of
bias [96]. To align the outputs of climate models with
the prevailing climate conditions, it becomes
necessary to employ bias correction techniques.
Various studies, including Haerter et al. (2011) [96],
Christensen et al. (2008) [97], Terink et al. (2009)
[98], and Boberg and Christensen (2012) [99],
emphasize the importance of bias correction to ensure
that impact models, particularly in hydrology, water
resource  management, and other climatic
applications, generate meaningful and reliable results.
In their study, Panagea er al. (2014) [44]
implemented a correction process for temperature and
irradiance projections to account for biases in the
mean and standard deviation on a monthly basis. This
methodology was derived from the approach
presented by Haerter et al. (2011) [96] and was
applied prior to the conversion of projections into PV
energy production. The mean bias was addressed by
calculating differences from observed and modeled
values. Subsequently, the model data is consistently
normalized according to the variability observed in
historical data. When the data exhibits a normal
distribution, the transfer function adheres to a linear
relationship as expressed in the following equation:

con
j— (e j—
cor __ sc con obs con
Xsc - (Xmod _Xmod )( con J+ Xobs (8)
Gmod
X" represents the final adjusted time series, X*

denotes the "raw" model forecasts for the scenario

b con con
period, X{" and X
observed and modeled data for the control period,

and G refer to the standard

represent the averages of

con

Gobs

con

mod
deviations of observed and modeled data for the
control period, respectively.

respectively,

The assessment of the impact of systematic
biases on irradiance and temperature levels in the

projected changes of va is very important, and it

has already been conducted [46]. To assess the
sensitivity, it can be performed by altering the input
levels of G, and T, within a range of = 10 W/m2

and + 10 °C. The existing findings revealed that these
changes did not exert a significant influence on the

projected absolute values of va [46]. This suggests a

low sensitivity of the utilized methodology to the
absolute levels of these meteorological variables
across all focal regions examined, namely Algeria,
Australia, California, Northwest China, Germany,
India, South Africa, and Spain. Consequently, unlike
Panagea et al. (2014) [44], Wild et al. (2015) [46] did
not utilize bias corrections on the simulated
temperature and irradiance fields before computing

P

pv’
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It is important to mention that all the
alterations described in Wild et al. (2015) [46] are
related to representative changes for horizontal
planes, as inferred from the output of the climate
model. Nonetheless, variations in solar radiation on
tilted or tracked planes (planes positioned
perpendicular to the sunbeam) generally exhibit
greater magnitudes. For instance, in Germany, Miiller
et al. (2014) [100] found that changes on tracked
planes can be more than double the corresponding
variations on horizontal planes.

In their study, Zhao et al (2020) [5]
employed a filtering process on the ERA-Interim
reanalysis variables [101]. These variables served as
potential predictors to establish the connection
between the circulation of the atmosphere on a large
scale and the local weather parameters. The purpose
of the filtering was to remove uncorrelated variables,
thereby reducing the computational load associated
with the analysis.

The assessment of time variability across
different scales, including daily, monthly, and annual
time scales, can be conducted [47]. This allowed the
highlighting of an important consideration to prevent
the masking effect of the annual PV production cycle.
To address this, the removal of the multiannual
monthly and daily averages from the corresponding
monthly and daily series can be performed. This step
will aim to ensure a more accurate representation of
the underlying variability and avoid potential
distortions caused by the annual production cycle.

Bazyomo et al. (2016) [49] presented their
findings based on annual averages of temperature and
irradiation. To calculate these averages, they utilized
the Climate Data Operators [102], with daily data as
input. Subsequently, they employed the free software
R [103] to compute all the averages. Subsequently,
the values were resampled to ensure uniform
resolution. The determination of patterns and their
statistical significance were computed using the Stats
package within R. Following the approach employed
by Jerez et al. (2015b) [47], only cells corresponding
to p < 0.05 values were retained by utilizing the
Student's t-test.

A moving block bootstrap algorithm as a
method to account for the effects of data
autocorrelation was employed by Pérez et al. (2019)
[6]. This approach incorporated an autoregressive
moving average process, building upon previous
evaluations of this method as demonstrated by
Exposito et al. (2015) [104] and Gonzéalez et al.
(2017) [105]. Additionally, the block length for the
bootstrap test and the adjustment of data variance for
the test statistic were computed following the
methodology outlined by Wilks (1997) [106].

Rmean 18 created by combining multiple
models with equal weights and has been observed to
exhibit better performance compared to any
individual model [107, 108]. It is generally regarded
as having superior overall performance compared to



Araujo, et al.

an individual model [109]. Furthermore, Rmean yields
improved outcomes when it comes to long-term
climate change projections compared to using only an
individual model [110].

3.7 Methodologies used to quantify uncertainties

Bichet et al. (2019) [52] sought to quantify the
uncertainties of:
i. The climate models:
imperfections; and
ii. The inherent climatic variability,
arising from the unsteady and
nonlinear  behavior  of  the
meteorological system.

The partitioning and quantification of
various sources of uncertainty can be accomplished
using QUALYPSO [111], which is an advanced
ANOVA Bayesian method [112].

due to its

3.8 Simulation periods used

Table 6 shows the reference periods and those
projected by the papers. It is observed that, for the
most part, they analyzed until the end of the XXI
century, and only about 20% [16, 46, 49] analyzed
until the mid-21% century.

In their study, Sawadogo et al. (2020) [53]
emphasized the challenge policymakers may face
when attempting to apply projection results to the
specific warming levels (1.5 °C and 2.0 °C) required
by the Paris Agreement. To address this issue, they
advocated for the adoption of global warming levels
(GWL) in comparison to the period before
industrialization (1881-1910). Specifically, they
considered positive anomalies of 1.5 °C, 2.0 °C, 2.5
°C, and 3.0 °C as their chosen GWL values. This
approach enables policymakers to have more relevant
information for decision-making within the context of
the Paris Agreement.

It is common practice to designate the initial year
as a spin-up period, which is not included in any
subsequent analysis, as it was done by Pérez et al.
(2019) [6].

3.9 Methodologies used in ICC-P,,,, analysis

PV energy yields depend on shortwave
irradiance, which in turn is modulated by aerosols
[113-115] and by clouds [116]. PV outputs are also
affected by air temperature (T,), with an inversely
proportional ratio [117]. Surface wind velocity (V)
also influences PV production, as airflow usually
cools the PV module [118].

The efficiency of a PV cell as a function of
cell temperature and radiation can be expressed by an
established linear ratio with a negative gradient.

M =1 _B(Tcell _Tref) + YIOglo G

ref

®)

tot
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in the given equation, 1M, represents the reference

efficiency, while B and ¥ denote the coefficients of

temperature and irradiance, respectively. These
coefficients are specific to the cell material and
structure being used. Additionally, T_, represents the
cell temperature, and Trer corresponds to the reference
temperature [119-120].

The decrease in efficiency of PV silicon at
low-light levels is taken into consideration through y
[121]. According to Crook et al. (2011) [43], for
monocrystalline silicon cells, [3=0.0045/°Cand

y=0.1,and T  =25°C should be used.

Table 6 - Reference periods and projected periods
analyzed in the papers.

Paper Reference Projected periods
periods
(5] 1081-2005 2020-2039, 2040-2069
and 2070-2099
(6] RS 2045-2054 and 2090-
2099
[16] 1961-1990 2036-2065
[43] 1980-1999 2010 to 2080
Temperature:

1950-2000 2011-2050 and 2061-

4] Irradiation: 1985- 2100
2005

[45] 2000 2030
[46] 2006-2015 2006-2049
[47] 1970-1999 2070-2099
[48] 1961-1990 2071-2100
[49] 2006-2015 2006-2045
[50] 1860-2005 2006-2099
[51] 1850-2005 2006-2100
[52] 1995-2005 2070-2099
[53] 1971-2000 GWL 1.5,2.0,2.5,3.0

The value of M, holds no significance if
only considered the fractional change in photovoltaic
production, AP / P, is considered in the analysis.

It is worth noting that minor errors may arise due to
the nonlinearity of G and T in Equation (8) caused by
the daily averaging of G and T. A computer-based
modeling and simulation conducted under cloudless
conditions suggests that these errors vary between
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1% to 2%, and their magnitude depends on the
latitude [43]. Nevertheless, it is essential to
acknowledge that these errors exhibit a systematic
pattern and have a negligible influence on the year-

to-year percentage variation in va [43].

In the sequence of studies of several authors
[122-124], a generic empirical formula was
established to represent the cell temperature as
follows:

T

cell

=c, +¢,T, +¢,G )

tot

Where T, is the ambient temperature in °C. The
constants are dependent on module and assembly
specifics, which influence cell heat transfer. The
coefficients normally used in this equation were
extracted from the study of Lasnier and Ang (1990)
[122] for a monocrystalline silicon cell, which are:

¢, =-3.75°C,c, =1.14and ¢, =0.0175°Cm* / W .

The equation used to calculate PV energy production
is:

P = G tot T] cell

v (10)
Omar et al. (2014) [125] consider, in addition to the
terms of Eq. (10), some efficiency reduction factors
related to dust, module incompatibility, cabling and
inverter. All these factors are intrinsic to the PV
system, but not to the PV technology.

The annual energy production is given by:

E = Zmonth 30Pt

assuming 30 days for each month.

an

duration of the day

Panagea et al. (2014) [44] and Zhao et al
(2020) [5] used the same equations as Crook et al.
(2011) [43and also used monthly averages. On the
contrary, Wild et al. (2015) [46] conducted their
in va ,
using average annual data. As a result, the estimates
provided by Wild et al. (2015) [46] do not account
for potential nonlinear effects attributed to seasonal
variations in radiation and temperature changes.

Bazyomo et al. (2016) [49] used the same
equations (Eq. 8 and Eq. 9) as Crook ef al. (2011)
[43], but, as done by Wild et al. (2015) [46], used
annual averages from daily data, and considered solar
irradiation on the inclined plane calculated with the
solaR suite of R [68] utilizing the daily data of total
solar radiation as inputs.

Unlike Crook et al. (2011) [43] and their
successors, Jerez et al. (2015a) [47] did not use Eq.
(8), but proposed the use of a new equation in
accordance with Tonui and Tripanagnostopoulos
(2008) [126]:

analyses, including assessments of changes
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M = 1 - B(Tcell - Tref)

ref

(12)

where now [3 assumes the value of 0.005/°C for

monocrystalline silicon cells [126].

Again, diverging from the methodology of
Crook et al. (2011) [43] and their successors, Jerez et
al. (2015b) [47] did not use Eq. (9), but proposed the
use of a new equation, now considering the influence
of wind speed, according to Chenni et al (2007)
[118]:

T

e =€ T T +¢,G +e, W, (13)

tot

where W, is the wind speed on the Earth’s surface

in m/s.

According to Chenni et al. (2007) [118], the
coefficients for a monocrystalline silicon cell are
¢, =4.73°C,c,=0.943and ¢, =0.028°Cm*/ W

and ¢, =—1.528°Cs/m.

Bichet et al. (2019) [52], Pérez et al. (2019) [6]
and Feron ef al. (2021) [16] used the same equations
as Jerez et al. (2015a) [47] for daily data. However,
Pérez et al. (2019) [6] changed the values of the
coefficients to ¢, =4.22°C,c, =1.08 and

¢, =0.0226°Cm* /W and ¢, =-1.83°Cs/m[127].

However, it was shown that this equation is not
suitable for Wy greater than 10 m/s, as it produces an
incompatible temperature for the PV module [6].

Sawadogo et al. (2020) [53] used the same Eq.
(12) as Jerez ef al. (2015a) [47], but replaced Eq. (13)
with:

T

o =6 +¢, T +¢,G,, +c, W, +

tot (14)
+c,W+ce.R,
Where Ry, is relative humidity in %.
According to Tamizhmani et al. (2003) [128],
the system-specific regression coefficients are

¢, =1.57°C,c, =0.961and ¢, =0.0289°Cm*/ W
and ¢, =-1.457°Cs/m and ¢, =0.109°C/%. In a

study by Mekhilef et al. (2012) [129], two scenarios
were presented to demonstrate the influence of
humidity on PV cell performance. The first scenario
involves the impact of water vapor particles on solar
irradiance, while the second scenario considers the
entry of humidity into the solar cell enclosure. The
research revealed that increasing relative air humidity
can lead to a reduction in P, performance, as water

droplets within the cell can reflect solar irradiance.
Conversely, an increase in wind speed has a cooling
effect on the cells, thus enhancing PV cell efficiency.
Therefore, selecting an appropriate model aid in
achieving a more stable cell temperature and
facilitates the comparison of additional variables'
contributions to cell temperature. Moreover, the last
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model (Equation 14) was formulated and validated
using on-site measurements of meteorological
variables collected from a weather station.
TamizhMani et al. (2003) [128] demonstrated a

RETERM — Thermal Engineering Vol. 24 (2025) No. 1

Table 7.

Table 7 - Equations used to estimate the PV

A synthesis of the equations used is presented in

correlation greater than 0.9 between the model's production.
results and the observed data.
Unlike all previous studies, Gunderson et al. ~ P2per Equations rimary
(2015) [48] opted for a simplistic model that adopts: N
P =G,n. =G, 0.15 o g et el e
v = o Neen = Uy -V (15) cett = €1+ €oTg + C3Gpor + C,W + 5By
T
that is, it does not consider the influence of any N
environmental factor other than solar irradiation. e — [149] and
. . . [23] ncgn_nrgf[l _ﬁ(Tch_ Tre_f) +YIG.9_LU Grat] [150]
Some other relationships to describe the [+ _
[46] Teen = €1 + 03T + C3Gpo;
dependence of solar cell temperature on the  [43] Teonr:
meteorological variables have been used. Zou et al. 122
(2019) [51] used Eq. (16): 6l N .
[[562]] nf:e{{:nrgfll _Jg(TmH_TrEf)] (148]
G [47] TCQH =c+ CZTa + C3Gtar_C4W T .
— tot cell’
Tcell - Ta + (TNOCT - 20)( 300 (16) [128]
Mo
Where Tnoct represents the nominal operating cell Neen=Nre f[]- —B(Toor — Trgf) + ¥ 10g10Gror] [1?;;5(;]“
temperature, which is characterized as the P! Toou =T, + (Tyoer — 20) (sz)
temperature achieved when cells are installed in a “ o 800 Toen:
specific location with standard conditions, including tsh
a solar radiation level of 800 W/m?, wind speed of 1 = naor1— B(T, Tos)+ 7 10G10 G Ega”;
m/s, and ambient temperature of 20 °C. (501 Neeu=MrerlL = B(Teaus = Trar) +7 10910 Gror e
Smith et al. (2017) [50] used Eq. (17) to Teeu = Ta + C3Geor
define cell temperature: T;fgoflf :
nr‘q!.l':
T =T, +¢,G 17 [48) Neen= constant (152]
Tch: -
This assumption is based on the installation__[45] Detailed in Huld ef al. (2010) [131]

of the PV module in an open field environment where
the impact of free-flowing wind speed on convection
heat transfer away from the module is negligible.
According to Skoplaki et al. (2008) [130], the
corresponding coefficient is denoted as c3 with a
value of 0.02933 K/Wm?.

Gaetani et al. (2014) [45] chose not to utilize
the aforementioned equations and instead employed
the methodology developed by Huld et al. (2010)
[131]. This approach involves utilizing a
mathematical model that relates the energy
performance of PV modules to the irradiance on the
plane and module temperature. It combines this
model with satellite-derived estimates of solar

irradiation and ground-based measurements
of ambient temperature values from weather stations.

It must be clear that the real values of Teen

and M, are slightly different from those calculated
due to empirical nature of equations. However, since
this proportion will affect va in a similar way during
the reference and the future period, it has an even
smaller effect on the expected relative change in va

[16].
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*Primary reference is the study that developed and/or first used the equation.
It is not necessarily the study that was cited by the authors of the studies, in
column 2, to justify the use to estimate Pp,_;. Example: ‘A’ cites ‘B’, which
cites ‘C’, which cites ‘D’; the primary reference for the study of ‘A’ is ‘D’,
not ‘B’.

** There may be more than one primary reference when the precursor
study is not evident.

3.10 Patterns in the impacts of climate change on PV
production

Both the qualitative and the quantitative impacts did
not show a single trend of results in all the papers analyzed
here. A summary of the estimated impacts on PV
production due to climate change is presented in Table 8.

3.10.1 Entire globe

The ICC- va based on GCMs [43,46] indicated small
but generally positive impacts on va over the European

continent, either in scenario A1B SRES [79] or under
RCP8.5 [80]. The decrease in aerosol emissions anticipated
in the coming years leads to an escalation in global
warming, resulting in notable changes in surface solar
radiation and the subsequent productivity of PV energy
[45]. Eastern Europe and North Africa exhibit a statistically
significant reduction in PV production, with a decline of up
to 7%. Conversely, Western Europe and the Eastern
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Mediterranean experience a significant increase of up to
10% in PV production.

The utilization of the HadGEM2-CCS model in
simulations under the RCP4.5 scenario, specifically
employing the Stratospheric Sulfate Injection (SSI)
geoengineering method, revealed a decrease in solar energy
yield compared to historical levels during the 2040-2059
period. Consequently, a reduction in va was observed in

Europe, the eastern United States, and eastern Asia, with
the exception of Germany [50]. It is worth noting that
Germany, being a region with relatively lower insolation,
exhibited different outcomes compared to the other regions
analyzed.

The contribution to va exhibits significant variation

depending on the location, with temperature playing a non-
negligible role [43]. Following this line, Bazyomo et al.
(2016) [49] explained that, unlike the research conducted
by Wild et al. (2015) [46], the variation in PV production
with significant trends does not resemble radiation patterns
across the sky. This observation is anticipated, as the air
temperature, being the second meteorological variable
influencing changes in PV production, exhibits higher
values in Western Africa [49]. A similarity shared by both
Bazyomo et al. (2016) [49] and Wild et al. (2015) [46]

studies is the negative correlation between va and

increasing temperature. Consequently, both models project
a negative va trend for Western Africa. Considering the

importance of the trend, the models of Bazyomo et al.
(2016) [49] that showed positive trend have maximum
areas of non-statistical significance. Bazyomo et al. (2016)
[49] acknowledged that the magnitudes of the trends
(whether indicating an increase or reduction in va) were

relatively small. However, they argued that these trends
could potentially increase when considering other factors
that were not accounted for in their study, but still influence

P

v’
A notable rise in va has been observed in

Eastern Asia, Europe, Central Africa, and Central
America [51]. The decrease in aerosol levels appears
to be the primary factor contributing to the increased
P, in Eastern Asia, while significant reductions in

aerosols may explain the rise in P, observed in

Europe, Central Africa, and Central America.
Conversely, a significant decrease in P, has been

noted in Northern Africa, the Middle East, Central
Asia, and Australia, which can be attributed to an
increase in aerosols and cloud cover [51].

According to Zhao et al. (2020) [5], the most
substantial increase in P, is projected to occur at

Guiyang station in China under the RCP8.5 scenario,
reaching a value of 31.05% by the end of the 21st
century. Specifically, the southern regions of China
exhibit a stronger increasing trend in PV energy
potential compared to the northern regions. For
instance, under RCP8.5, at Guangzhou station, the
P, demonstrates a significant annual increase trend

of 0.228% for MPI-ESM-LR compared to trend of
0.105% per year at Hetian station. Furthermore, the
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results indicate that the increasing trends in P, under

the RCP8.5 scenario are higher than those observed
under RCP4.5.

There are discrepancies in the predictions for
P, in China between Crook et al. (2011) [43] and

Zhao et al. (2020) [5]. These differences can be
attributed to several factors. Firstly, Zhao et al
(2020) [5] utilized high-resolution spatial climate
data obtained through statistical downscaling, which
may have contributed to more accurate predictions.
Additionally, the divergence in predictions can be
attributed to Zhao et al. (2020) [5] considering the
potential increase in P, due to advancements in PV

technology. This consideration was not explicitly
accounted for in the earlier work by Crook et al
(2011) [43].

The changes in P, for both winter and summer

seasons are anticipated to follow a similar pattern, but
the magnitude of these changes varies across
different regions [16]. However, in high latitude
regions of the Northern Hemisphere, it is expected
that the decrease in P, will be more pronounced

during winter compared to summer. This is attributed
to the projected substantial increase in cloudiness
during the winter season [16,47]. This cloud fraction
over the regions of high latitude land is predicted by
CMIP5 models project, especially in the regions of
and during greatest loss of Arctic Sea Ice [132].
3.10.2  European continent

Based on projections for the end of the 21st
century, the variation in PV supply compared to
current weather conditions is expected to range from
-14% to +2% for Europe. The most significant
reductions are anticipated in northern European
countries, including a substantial decrease of 10-12%
in Scandinavian regions [47].

A reduction in the P, in Eastern Europe and

Northern Africa, equal to 7% was found from
simulations carried out by the aerosol-climate model
ECHAMS-HAM for 2000-2030 [45]. On the other
hand, in Western Europe and in the Eastern
Mediterranean significant increases of 10% were
projected for the P, [45]. Building upon the findings

of Gaetani et al. (2014) [45], Wild et al. (2015) [46]
provided additional insight by suggesting that P, is

projected to decrease across various regions,

including Africa, by the middle of the 21st century.
The Canary Islands in Spain experience relatively

smaller and more localized changes in total solar

irradiation (G, ) during summer compared to winter.

Consequently, there is limited potential for mitigating
the decline in P, resulting from air temperature

changes. By the end of the 21st century, under a
higher concentration of greenhouse gases (RCP8.5), a
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. . .
loss of over 5% in va is projected across most areas

of the Canary Islands [6, 47]. It was reported that the
change in P, has no significance over the next

century over the BSc [48]. In Greece, it was projected
an increasing P, except for the region of Attica,

with changes varying from 1 to 2% in most of the
study region [44].

The future climate scenarios suggest that the
temporal stability of energy production is not
significantly compromised, with a minor positive
trend observed in southern European countries [47].
Consequently, while certain regions in Europe may
experience slight reductions in production, the overall
impact of climate change on the European PV sector
is not expected to pose a significant threat.

3.10.3 African continent
In the XXI century, it is projected that the
P, will diminish in Africa [46,49], except for Sahel

and throughout southwestern Africa, where it is
expected to increase [52]. For the West Africa, it was
predicted a decrease of P, which magnitude grows

with warming levels until 3.8% [53]. In general, the
projected decrease in P, is primarily attributed to a

combination of reduced solar irradiation and
increased temperatures [49, 52].
For the majority of Africa, moderate

changes in P, of less than +3% are anticipated, with

slightly greater reductions projected during the
summer season [16, 29, 30, 52]. However, it is
important to note that the expected P, changes in the

Sahel region are deemed insignificant due to the

uncertainties associated with cloud effects [133].
Regarding Europe, minimal changes are

projected in the temporal stability of P, across all

seasons, including daily, annual, and decadal time
scales [47, 52].

3.11 Limitations

The key determinant of PV energy among
various local weather conditions and environmental
factors, including extreme T,, Ry, precipitation, and
W, is the intensity of G, [134]. However, it is worth

noting that losses resulting from other components
like rain, wind, and humidity are often disregarded in
many studies.

Crook et al. (2011) [43] highlighted the
significance of various climatic variables that have a
notable impact on P, some of which are often

overlooked. They identified and discussed the
following factors: 1) Wind: Wind plays a role in
influencing P, by promoting forced convection,

which aids in dissipating heat from the PV cell and
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subsequently reduces cell temperature; 2) Dust: The
accumulation of dust on PV panels can lead to a
reduction in absorbed radiation, particularly in arid
regions. This poses a significant challenge that affects
va performance; 3) Rain: Rainfall has the beneficial

effect of cleaning PV panels by removing
accumulated dust and debris, thereby improving the
overall efficiency of energy generation. Considering
these variables alongside solar irradiation is crucial
for a comprehensive understanding of the factors

influencing B, .

Table 8 - Impacts due to climate change on PV
production.

Paper Period Increase Neutral Decrease
To the south of Guangxi,
east of Xinjiang and Tibet,
2006~ Southeastern west (.)f ngh.al’ Henaq,
[51 3 Hebei, Shanxi, Shaanxi,
2100 China S
Ningxia, parts of Inner
Mongolia and Northeastern
Central China
6] 22%9909_ Canary Islands
(Spain)
Central Europe, Arabian Peninsula,
Southeastern
Atacama Desert, .
2036- 5 Australia and
[16] Eastern China, ..
2065 " Africa,
Southeastern Asia,
Northeastern USA Southwestern USA
and Central Asia
Spain . .
2010- Germany Algeria Western United
[43] 2080 China and States,
Australia Saudi Arabia
2011- S\Z:[S}::gsi‘:ri Attica (Greece),
2050 Thessaly (Greece)
Greece
[44] Epirus
2061- Pc]oponncsc Macedonia, Crete Attica (Greece),
2100 P and Aegean Islands Thessaly (Greece)
Thrace
Western Europe
[45] 2030 and Fastern s
5 Northern Africa
Mediterranean
2006- Ggrpn;{ar?y Northwestern
461 2049 Southeastern China and Nonhem
3 India
China
Portugal
and Spain,
Italy, Northern Europe,
D, Western Europe.
2070-2099 Bulgaria, Pe,
[47] Cyprus Central Europe,
yprus, and Northern
Greece, Europe
Hungary P
and
Romania
2071- - No Lo
[48] 2100 No significance significance No significance
Benin, Burkina
Faso, Cape Verde,
Cote d’Ivoire,
2006- Liberia and Sierra Gambia, Ghana,
[49] 2100 Guinea-Bissau,
Leone .
Guinea-Conakry,
Mali, Niger,
Nigeria, Senegal
and Togo
Europe, Eastern
[50] 22%%69_ United States and
Eastern Asia
EasEtz:l;}stla, Northern Africa,
(511 20062100  Central Africa, piddle et
Central Asia and
Central A
: Australia
America
Northern Africa,
Sahara, Western
Sahel, Eastern
52 22%7909_ Sub-southern Sahel, Guinea
152 Africa Coast, Eastern
Africa, Horn of
Africa, Southern
Africa
1.52.0
[53] 3.0°C” - - Western Africa
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The authors also add some other phenomena,
such as large hailstones, which, although rare, have
the potential to break PV panels (in some locations
they occur more frequently).

Wild et al. (2015) [46], in addition to the factors
mentioned by Crook ef al. (2011) [43], also mention
the presence of snow, which is not yet considered in
existing models. Bazyomo et al. (2016) [49] added
another component: humidity, which is often
neglected. Jerez et al. (2015b) [47] commented on the
lack of consideration of the inclination of PV
modules, although they also do not consider it in their
study. It was not observed the fact of taking into
account the distribution of the solar spectrum and the
effect of air mass [135].

An issue that has been observed is that climate
models tend to underestimate the variations in total
solar irradiation (&,,;) when compared to
observations [135]. Similar underestimation issues
have been observed in other aspects, such as the
irradiation balance at the top of the tropical
atmosphere [136], precipitation over land surfaces
[137], tropical precipitation specifically [138], soil
moisture [139], and diurnal temperature variation
[140]. It is evident that these discrepancies highlight
the need for improvements in the accuracy of climate
models to better capture these important climate
variables.

Excessive radiation has long been recognized as
a persistent issue in climate modeling [141].
However, there are specific areas, particularly
mountainous regions like the Alps, where positive
biases in radiation increase by more than 40% [142].
When it comes to irradiation variability, climate
models generally exhibit average errors on annual
and monthly scales that are predominantly negative,
typically below 2%, with occasional instances
reaching up to 6% [47]. Efforts to address and reduce
these biases in radiation representation remain
ongoing in climate modeling research.

The deficiency of RCMs in robustly projecting
cloud cover and convection - and, as a consequence,
the parameters related to solar irradiation - is
criticized [143-144]. This deficiency causes a
variability among the different RCMs with order of
magnitude higher than the rate of increase in the
production derived from monocrystalline PV systems
in Greece. For Trenberth and Fasullo (2009) [145],
the most important sources of uncertainty are also
linked to cloud cover.

It is worth noting that Bartok et al. (2017) [57]
demonstrated discrepancies between the average
solar radiation projections obtained from multi-model
ensembles of global climate models (GCMs) and
regional climate models (RCMs). These differences
can be attributed to the distinct representation of
cloud cover in large-scale and smaller-scale models,
highlighting the significant influence of cloud cover
modeling on the outcomes. Cloud cover plays a
crucial role in shaping solar radiation patterns, and
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the accurate modeling of this parameter is essential
for reliable solar energy projections.

The representation of uncertainties related to the
indirect effects of natural and anthropogenic aerosols,
as well as changes in land use, is limited or often
overlooked in regional climate models [45]. These
factors, such as natural aerosols like dust from the
Sahara and anthropogenic aerosols like air pollution,
can have a significant influence on the potential for
solar energy production [45]. Their direct and indirect
impact on incident solar radiation and on cloud cover,
respectively, can lead to substantial modulation of
solar irradiation. Additionally, the deposition of
aerosols on PV arrays can reduce the efficiency of
PV cells. Therefore, considering these factors is
crucial for a comprehensive assessment of solar
energy potential.

While Gunderson et al. (2015) [48] indicate
minimal or negligible effects of climate change on
solar resources, there are still inaccuracies that need
further investigation. Nevertheless, it is evident that
land-use alterations will play a substantial role in
determining appropriate locations for PV production.
Furthermore, allocating a small portion of
agricultural land for solar energy generation could
greatly enhance the potential for solar power. The
study underscores that while solar resources are
abundant, it is crucial to consider socio-economic
factors as important constraints when evaluating the
viability and potential of solar energy.

As already discussed, the increase in
temperature induced a reduction in P, in several
regions [47, 49, 52], which confirms the importance
of reducing the dependence of PV technology on
ambient temperature [146]. Improvement that should
happen over time, but it is still not considered in
current analysis [147]. Only, in an isolated study [5],
the improvement rates for the absolute efficiency of
PV technology over time were considered.

4. CONCLUSIONS

In recent years, there has been a growing
focus on understanding the effects of climate change
on photovoltaic production (P,,). Numerous
publications have emerged since 2013, and this
ongoing study aims to provide a comprehensive
overview of the available evidence, highlighting
consistent methodologies for projecting impacts.

The methodologies to evaluate the impacts
of climate change on P, focused mainly on the use
of empirical equations that establish relationships
between meteorological variables, cell temperature
and cell efficiency. Different equations were used to
estimate F,,; some considered only the influence of
incident solar radiation, while others also considered
ambient temperature, and/or wind speed and/or
relative humidity. It was observed that dust was not
considered in any of the studies reported because it is
a good practice to assume that its influence can be
overcome by maintenance, so this cost should only be
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considered into the financial projections of PV solar
installations.

The vast majority of the studies adopted a
forecast period of until the end of the 21% century,
except for three studies that were limited to shorter
periods under the justification of equivalence to the
lifespan of PV installations.

Analysis of the articles showed that the data
obtained for the projections in the studies came from
projects such as CMIP3, CMIP5 and CORDEX. In
addition, in the context of GHG emission scenarios,
RCP8.5 was the most used, followed by RCP4.5.

The findings of this comprehensive review
highlight  the  significant  implications  of
meteorological changes on PV energy systems and
the subsequent impact on energy supply. In the
Canary Islands, a loss of over 5% in PV production is
projected by the end of the 21st century [6] as well as
for Mainland Spain [47]. For Europe, minimal
changes in the temporal stability of solar potential are
projected across all seasons [47, 52]. In Africa, with
the exception of certain regions such as the north
coast and 10°S, a decline in average annual solar
potential is expected throughout the 21st century,
particularly in the Horn of Africa [46, 49, 52]. In
contrast, several regions in China are expected to
witness a rise in PV energy potential by the end of
the XXI century [5]. However, the specific
percentage value varies depending on the adopted
methodology. Crook ef al. (2011) [43] suggested only
a slight increase in China's PV potential, while Zhao
et al. (2020) [5] argued for a more substantial
increase. Zhao et al. (2020) [5] attributed this
difference to the utilization of high-resolution spatial
climate data obtained through statistical downscaling
and the consideration of PV technology
advancements.

Regarding the number of studies, it was
observed that the majority of studies focused mainly
on Europe and Asia; little was studied about the ICC-
P, in South America and Central America.

While this review has identified certain
patterns regarding the impacts of climate change on
F,.,, remains areas that require further investigation.
Future literature reviews should adopt a systematic
approach to examine the results within the broader
context of  technological, economic, and
environmental considerations.

The economic evaluation should take into
account dynamic aspects, including social costs,
revenue changes, capacity expansion investment
costs, and cost-benefit analysis. From a technological
perspective, it is crucial to evaluate the impact of
meteorological variations on PV systems, including
thermal and electrical fatigue, as well as the potential
effects of technological advancements in improving
efficiency and  reducing  dependence  on
meteorological parameters.

To enhance the understanding of climate
change impacts on Py, future research should also
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explore the interplay between technological,
economic, and environmental factors. By
incorporating a systematic review methodology,
researchers can provide a more comprehensive
analysis of the subject matter. This will enable a
deeper understanding of the implications and
potential solutions for addressing the challenges
posed by climate change in the context of
photovoltaic power generation.

This review summarizes useful information
to policymakers and entrepreneurs in the field of PV
technology against climate change, besides providing
basis to clarify to researchers in the field about the
current state of the art and thus guide future efforts.
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