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RESUMO

Este trabalho apresenta o desenvolvimento, a implementação e a verificação de uma
metodologia numérica eficiente para a simulação de um modelo de crescimento tumoral na
fase avascular. O modelo matemático é composto por um sistema transiente de quatro
equações diferenciais parciais, sendo duas delas não lineares, que descrevem as interações
entre células tumorais, matriz extracelular, enzimas degradadoras da matriz e inibidores.
Para a discretização do modelo, empregou-se o método das diferenças finitas, utilizando
diferenças centrais no espaço e o esquema de Crank-Nicolson no tempo. Os termos
não lineares foram tratados por meio da linearização via expansão em série de Taylor.
A solução numérica foi obtida com o uso do método das diferenças finitas associado ao
método multigrid, buscando aliar alta acurácia a um desempenho computacional eficiente.
A verificação do código foi realizada com base em soluções analíticas fabricadas, e a técnica
de múltipla extrapolação de Richardson foi utilizada para reduzir o erro de discretização,
sendo os erros estimados por meio de estimadores confiáveis. Os resultados demonstram
a superioridade do método multigrid em relação ao método singlegrid, com redução
significativa no tempo de simulação e preservação da precisão numérica. A aplicação
da técnica de extrapolação mostrou-se eficaz na diminuição dos erros e na robustez das
estimativas, inclusive em problemas realísticos sem solução analítica conhecida. A análise
das variáveis do modelo também permitiu avaliar o papel da haptotaxia na dinâmica de
invasão tumoral e demonstrar a influência de parâmetros como o coeficiente γ na evolução
espacial do tumor. As simulações numéricas obtidas contribuem para a compreensão
dos mecanismos envolvidos na progressão tumoral e reforçam o potencial da modelagem
matemática como ferramenta de apoio em contextos biomédicos.

Palavras-chave: Análise de erros. Verificação. Simulação numérica. Crescimento tumoral.
Multigrid. Método das diferenças finitas.



ABSTRACT

This work presents the development, implementation, and verification of an efficient
numerical methodology for simulating tumor growth in the avascular phase. The
mathematical model consists of a transient system of four partial differential equations, two
of which are nonlinear, describing the interactions between tumor cells, the extracellular
matrix, matrix-degrading enzymes, and inhibitors. The model was discretized using the
finite difference method, applying central differences for spatial variables and the Crank-
Nicolson scheme for temporal discretization. The nonlinear terms were treated through
linearization via Taylor series expansion. The numerical solution was obtained using the
finite difference method combined with the multigrid technique, aiming to achieve high
accuracy with efficient computational performance. Code verification was carried out
using manufactured analytical solutions, and the Repeated Richardson Extrapolation
technique was applied to reduce discretization error, with reliable estimators used to assess
the accuracy of the solutions. The results demonstrate the superiority of the multigrid
method over the singlegrid approach, showing a significant reduction in simulation time
while maintaining numerical accuracy. The application of extrapolation technique proved
effective in minimizing errors and enhancing the robustness of the estimates, even for
realistic problems without known analytical solutions. The analysis of the model variables
also enabled the evaluation of the role of haptotaxis in tumor invasion dynamics and
highlighted the influence of parameters such as the coefficient γ on the spatial evolution of
the tumor. The numerical simulations contribute to the understanding of the mechanisms
involved in tumor progression and reinforce the potential of mathematical modeling as a
support tool in biomedical contexts.

Keywords: Erros analysis. Verification. Numerical simulations. Tumor growth. Multigrid.
Finite difference method.



LISTA DE FIGURAS

FIGURA 1 – Ordenação red-black em malha 2D. . . . . . . . . . . . . . . . . . . . 39
FIGURA 2 – Influência da iteração do método de Gauss-Seidel no erro. . . . . . . 40
FIGURA 3 – Uma sequência de engrossamento de malhas utilizando re = 2. . . . 41
FIGURA 4 – Operador de restrição por ponderação completa para o caso 2D. . . 42
FIGURA 5 – Operador de interpolação bilinear para o caso 2D. . . . . . . . . . . 42
FIGURA 6 – Estrutura do ciclo V para cinco níveis e re = 2. O símbolo •

representa suavização e o símbolo ◦ a solução exata. . . . . . . . . . 43
FIGURA 7 – Esquema prático do MER da solução numérica para G = 9 com 4

níveis de extrapolação. . . . . . . . . . . . . . . . . . . . . . . . . . 49

FIGURA 8 – Malha computacional bidimensional uniforme com tamanhos dos
espaços de malha h. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

FIGURA 9 – Erro numérico ||Eh||∞ de SG e MG versus h. . . . . . . . . . . . . . 68
FIGURA 10 – pE, pU e pA considerando ||Eh||∞ para as diversas variáveis N,F,M

e U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
FIGURA 11 – pE, pU e pA considerando PC para as diversas variáveis N,F,M e U . 70
FIGURA 12 – pE, pU e pA considerando VM para as diversas variáveis N,F,M e U . 70
FIGURA 13 – pU considerando PC para as variáveis N,F,M e U e diversos níveis

m de extrapolação. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
FIGURA 14 – Tempo computacional do ciclo V (ν1,ν2) para diferentes ν1 e ν2, com

nm = 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
FIGURA 15 – Fator de convergência médio ρm versus nm para: (a) os métodos

singlegrid e multigrid; (b) método multigrid com uma escala ajustada. 75
FIGURA 16 – tCPU dos métodos SG e MG. . . . . . . . . . . . . . . . . . . . . . . 76
FIGURA 17 – Speed-up dos métodos SG e MG. . . . . . . . . . . . . . . . . . . . . 77
FIGURA 18 – Erro de discretização sem o uso de MER (Eh) com sua estimativa

(URi), e com o uso do MER (Em) e sua estimativa (Upmc) versus a
discretização espacial h, considerando as variáveis: (a) N , (b) F , (c)
M e (d) U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

FIGURA 19 – Estimativa do erro de discretização sem o uso da MER (URi) e
com MER (Upmc) versus a discretização espacial h, considerando as
variáveis: (a) N , (b) F , (c) M e (d) U . . . . . . . . . . . . . . . . . . 84

FIGURA 20 – Evolução espacial para diferentes passos de tempos com γ = 0,01: (a)
densidade da célula tumoral; (b) densidade MEC; (c) concentração
de EDM; (d) TIMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



FIGURA 21 – Densidade das células tumorais no plano bidimensional para t =
0, 5, 10, 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

FIGURA 22 – Seção transversal horizontal no centro do domínio, conforme mostrado
na FIGURA 20, para t = 0, 5, 10 e 15, variáveis: (a) N , (b) F , (c) M
e (d) U , com γ = 0,01. . . . . . . . . . . . . . . . . . . . . . . . . . 87

FIGURA 23 – Seção transversal horizontal da densidade de células cancerosas,
variável N , em diferentes tempos para γ = 0,005 e γ = 0,01. . . . . . 88



LISTA DE TABELAS

TABELA 1 – Valores dos parâmetros físicos. . . . . . . . . . . . . . . . . . . . . . 66
TABELA 2 – Valor de ||Eh||∞ das quatro variáveis N , F , M e U , para os casos

singlegrid (SG) e multigrid (MG). . . . . . . . . . . . . . . . . . . . 67
TABELA 3 – Número de pontos nas discretizações espacial e temporal. . . . . . . 68
TABELA 4 – Tempo computacional do ciclo V (ν1,ν2) em segundos (s), variando

ν1 e ν2, para nm = 9. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
TABELA 5 – Número de iterações do método singlegrid e número de ciclos V (0,2)

do método multigrid para diferentes valores de nm. . . . . . . . . . 73
TABELA 6 – tCPU (em segundos) e Speed-up dos métodos SG e MG. . . . . . . . 76
TABELA 7 – Coeficientes c e p do tCPU(N ) na Eq. (5.14) para SG e MG. . . . . . 78
TABELA 8 – Estimativa do tCPU para os métodos singlegrid e multigrid. . . . . . 78
TABELA 9 – Efetividade dos estimadores Uψ∗ e Upmc para as variáveis N , F , M

e U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

TABELA 10 – Comparação dos métodos singlegrid e multigrid para solução realista. 82



LISTA DE ABREVIATURAS E SIGLAS

2D – Bidimensional

3D – Tridimensional

CFD – Computational fluid dynamics

MDF – Método das diferenças finitas

EDP – Equação diferencial parcial

EDM – Enzima degradativa da matriz

MEC – Matriz extracelular

TIMP – Concentração de inibidores teciduais de Metaloproteinase

CDS – Central differencing scheme

ER – Extrapolação de Richardson

MER – Múltipla extrapolação de Richardson

CN – Crank-Nicolson

ETL – Erro de truncamento local

SG – Singlegrid

MG – Multigrid

GSRB – Gauss-Seidel red-black

CPU – Unidade central de processamento



LISTA DE SÍMBOLOS

x, y – Variáveis espaciais (abscissa, ordenada)

t – Variável temporal

h – Distância entre os pontos da discretização espacial

hx, hy – Espaçamentos entre os pontos da malha nos sentidos horizontal e
vertical

Nx, Ny – Números de pontos nas discretizações espaciais x e y

Nt – Número de pontos na discretização temporal t

N – Número de pontos quando N = Nx = Ny = Nt

fn, ff , fm, fu – Termos fonte das variáveis n, f , m e u, respectivamente

p – Ordem de complexidade do solver

E – Erro numérico

Eh – Erro de discretização

pE, pU , pA, pV – Ordens efetiva, aparente, assintótica e verdadeira, respectivamente

|| . ||∞ – Norma do máximo

re – Razão de engrossamento

r – Razão de refino

tf – Tempo final

n – Variável de interesse que representa a densidade de células tumorais

f – Variável de interesse que representa a densidade de matriz extracelular

m – Variável de interesse que representa a concentração das enzimas
degradativas da matriz

u – Variável de interesse que representa a concentração de inibidores
teciduais de metaloproteinases

dn – Constante de difusão da densidade das células cancerosas

dm – Constante de difusão de EDM

du – Constante de difusão do inibidor



nm – Número de malhas

PC – Ponto central do domínio

VM – Variável média

it – Número de iterações

ρ – Fator de convergência

ρm – Fator de convergência médio

tCPU – Tempo computacional

s – Segundos

N – Número total de incógnitas

Símbolos gregos

Φ – Solução analítica para a variável de interesse

ϕ – Solução numérica para a variável de interesse

τ – Tamanho do passo de tempo

∆ – Operador laplaciano

∇ – Operador nabla

µ1 – Taxa de proliferação das células tumorais

µ2 – Taxa de crescimento da MEC

γ – Taxa de haptotaxia

Ω – Domínio geométrico contínuo

ν1 – Número de pré-suavização

ν2 – Número de pós-suavização

Subscritos

i,j – Contadores na direção espacial

F – Malha fina

G – Malha grossa

SG – Malha super-grossa



Sobrescritos

h, 2h – Malha fina e grossa, respectivamente

k – Contador na direção temporal



SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 O problema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Motivação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Revisão bibliográfica . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.1 Simulação tumoral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.2 Método multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.3 Análise de erros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5 Organização do texto . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 MODELO MATEMÁTICO . . . . . . . . . . . . . . . . . . . . 30
2.1 Modelagem tumoral . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Limitações e validade biológica do modelo avascular . . . . . . . 32

3 FUNDAMENTAÇÃO TEÓRICA . . . . . . . . . . . . . . . . . 34
3.1 Método das diferenças finitas . . . . . . . . . . . . . . . . . . . . . 34
3.2 Método de Crank-Nicolson . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Sistema linear e o método multigrid . . . . . . . . . . . . . . . . . 38
3.3.1 Método multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Operadores de restrição e prolongação . . . . . . . . . . . . . . . . . . . 41
3.3.3 Ciclos do multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Análise de erros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Erro de truncamento . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Erro de iteração . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Erro de arredondamento . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Erro de programação . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Múltipla extrapolação de Richardson . . . . . . . . . . . . . . . . 47
3.7 Estimadores para o erro de discretização . . . . . . . . . . . . . . 49
3.7.1 Estimadores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.2 Eficácia da estimativa de erro . . . . . . . . . . . . . . . . . . . . . . . . 51

4 MODELO NUMÉRICO . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Malha utilizada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Linearização . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Discretização da variável N . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Discretização da variável F . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Discretização da variável M . . . . . . . . . . . . . . . . . . . . . . 59



4.6 Discretização da variável U . . . . . . . . . . . . . . . . . . . . . . . 60

5 RESULTADOS E DISCUSSÕES: PROBLEMA COM SOLU-
ÇÃO ANALÍTICA . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Verificação numérica . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.1 Erro de discretização . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2 Ordens efetiva e aparente . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Desempenho e eficiência . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 Configuração do ciclo V (ν1,ν2) . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 Fator de convergência médio (ρm) . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 Tempo computacional (tCPU) . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.4 Complexidade dos métodos (p) . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Estimadores do erro . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 RESULTADOS E DISCUSSÕES: PROBLEMA REALISTA . 82

7 CONSIDERAÇÕES FINAIS . . . . . . . . . . . . . . . . . . . . 89
7.1 Conclusões gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Principais contribuições . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Trabalhos futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



17

1 INTRODUÇÃO

Nas Ciências e nas Engenharias, percebe-se a necessidade em compreender
fenômenos naturais, particularmente os que envolvem a dinâmica dos fluidos em movimento,
nos quais, em alguns casos, a biomatemática tem um papel fundamental. Pois, muitos destes
fenômenos relacionam formulações de equações e modelos matemáticos, proporcionando à
compreensão das dinâmicas e interações em sistemas biológicos. Entretanto, problemas
reais, normalmente, não apresentam soluções analíticas conhecidas, sendo necessário um
tratamento computacional para gerar resultados aproximados.

Dentro deste contexto, a área da Dinâmica dos Fluidos Computacional
(Computational Fluid Dynamics, CFD) estuda métodos computacionais para simulação
de fenômenos que envolvem fluidos em movimento, com ou sem trocas de calor e tem
por objetivo principal reduzir o número de experimentos e explorar fenômenos que não
poderiam ser estudados em laboratório de forma prática (FORTUNA, 2000).

Modelos matemáticos em CFD requerem o uso de métodos que forneçam soluções
numéricas acuradas e confiáveis. Devido a alguns desses modelos não apresentarem solução
analítica conhecida, aproximações numéricas são usadas para transformar o modelo contínuo
em um modelo discreto.

Essas equações são resolvidas usando diferentes técnicas numéricas para a
discretização espacial, como o método dos volumes finitos (GOLUB; ORTEGA et al., 1992;
MALISKA, 2017), elementos finitos (ZIENKIEWICZ; TAYLOR; ZHU, 2005; REDDY,
2006), método das diferenças finitas (MDF) (GOLUB; ORTEGA et al., 1992; FERZIGER;
PERIĆ; STREET, 2002; PLETCHER; TANNEHILL; ANDERSON, 2012; CUMINATO;
MENEGUETTE, 2013), entre outros. A aproximação temporal também pode ser realizada
por meio de diferentes métodos, como o de Euler e o de Crank-Nicolson, além de outras
estratégias clássicas (BURDEN; FAIRES; BURDEN, 2016).

A discretização das equações diferenciais resulta em grandes sistemas de equações
algébricas que podem ser resolvidos utilizando métodos iterativos, visto que, para problemas
de grande porte, tais métodos são mais adequados (BURDEN; FAIRES; BURDEN, 2016).

Os métodos iterativos mais usados para aproximar a solução são o método
de Jacobi, Jacobi ponderado, Gauss-Seidel, entre demais técnicas (BURDEN; FAIRES;
BURDEN, 2016). Porém, esses métodos geralmente perdem a eficiência quando o número
de iterações aumenta ou a malha é refinada (BRIGGS; HENSON; MCCORMICK, 2000).

Para isso, busca-se métodos eficientes para a obtenção das soluções numéricas. Uma
maneira de acelerar o processo de obtenção da soluções é aplicar o método multigrid (MG),
que é amplamente difundido na literatura, uma vez que melhora significativamente os
fatores de convergência no processo de solução de sistemas de equações.
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Além de buscar um método que resolva os sistemas lineares de forma eficiente,
com baixo custo computacional, é importante que as soluções sejam acuradas, visto que
sistemas lineares discretizados e resolvidos por métodos iterativos são afetados por erros
numéricos. Embora estes erros não possam ser totalmente eliminados, é imprescindível que
sejam controlados, ou minimizados, em simulações numéricas computacionais (MARCHI;
SILVA, 2002).

Segundo Roy (2005), de todas as fontes de erros numéricos, o erro de discretização
é considerado como o mais significativo. Pode-se reduzir o erro de discretização com o
refinamento de malhas; entretanto, aumenta-se o custo computacional. Outra alternativa é
a utilização de técnicas de extrapolação, as quais são consideradas um pós-processamento
de fácil implementação com baixo custo computacional (MARCHI et al., 2013).

A utilização de técnicas de extrapolação como ferramentas computacionais eficazes
é cada vez mais reconhecida no meio científico, sendo a extrapolação de Richardson
(ER) um dos métodos mais conhecidos. Segundo Zlatev et al. (2017), “a extrapolação de
Richardson é um procedimento numérico muito poderoso e popular, que pode ser utilizado
de forma eficiente nos esforços para melhorar o desempenho de programas que lidam com
grandes problemas científicos e de engenharia dependentes do tempo em computadores”.
Ao se aplicar a ER de forma recursiva, é possível potencializar a sua eficácia, e esse
processo é denominado múltipla extrapolação de Richardson (MER) (RICHARDSON;
GAUNT, 1927). Estudos que exploram a técnica MER podem ser vistos em Marchi et al.
(2016), Silva et al. (2021), Rodrigues et al. (2022), Silva et al. (2022), Foltran, Marchi e
Moura (2023).

De acordo com Marchi (2001), além de minimizar os erros, é importante estimá-los,
pois quando o erro é maior do que o aceitável, compromete a confiabilidade do uso da
solução numérica e, quando é menor do que o necessário, há desperdício de recursos
computacionais. Com o uso de estimadores, é possível prever quantitativamente o erro de
discretização. Alguns estimadores disponíveis na literatura são conhecidos como estimadores
de Richardson, delta e o Grid Convergence Index (GCI) (ROACHE, 1998).

Com base nessas considerações, pretende-se neste trabalho solucionar um modelo
matemático relacionado à CFD de forma eficiente e precisa. Para garantir a eficiência
nos resultados, será utilizada a técnica de multigrid para acelerar a convergência. Além
disso, busca-se reduzir e estimar os erros de discretização por meio da aplicação do MER,
otimizando a acurácia e a confiabilidade das simulações de um sistema biológico.

1.1 O problema

O câncer é considerado um problema de saúde pública mundial. Para o ano de
2030, a Organização Mundial da Saúde (OMS) estima que haverá 27 milhões de casos
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novos, 17 milhões de mortes de câncer e 75 milhões de pessoas vivendo com este problema.
Portanto, compreender os mecanismos que atuam é cada vez mais importante para a
prevenção e o tratamento da doença (INCA, 2019).

Segundo Oncoguia (2017), o câncer é uma doença que resulta da multiplicação
anormal de células no corpo. Normalmente, as células do nosso corpo crescem, se dividem
e morrem de forma ordenada. No entanto, as células cancerosas não seguem este plano
e continuam a crescer e se dividir sem parar, formando tumores. Estas células anormais
também podem invadir outros tecidos e órgãos, o que pode levar à propagação da doença
para outras partes do corpo, conhecido como metástase.

De acordo com Byrne (1999), inicialmente os tumores sólidos são avasculares,
ou seja, não possuem suprimento sanguíneo próprio, contam com a difusão de vasos
próximos para fornecer oxigênio, nutrientes e para remover resíduos. À medida que o tumor
cresce, a demanda de nutrientes aumenta, mas como o fluxo de nutrientes é pequeno para
fornecer toda a massa de células, o tamanho do crescimento do tumor torna-se limitado.
O crescimento pode ser retomado somente se o tumor tornar-se vascularizado, isto é, se
for permeado por uma rede de capilares. Nessa fase, fragmentos de tumor que invadem
o suprimento de sangue são transportados para outras partes do corpo em que, se as
condições forem favoráveis, estabelecem tumores secundários ou metástases. Para fazer a
transição do crescimento avascular para o vascular, o tumor sofre um processo conhecido
como angiogênese.

A invasão local e o desenvolvimento de metástases estão diretamente associados à
matriz extracelular (MEC), que constitui o ambiente localizado entre as células. A MEC
oferece suporte estrutural e bioquímico, fornecendo condições adequadas para o crescimento,
migração e diferenciação celular. Sua estrutura é constituída por fibras, proteínas e colágeno.

A degradação da MEC torna-se fundamental para o crescimento de tumores
malignos, invasão, metástase e angiogênese. Esta degradação ocorre por ação de enzimas
degradativas da matriz (EDMs), como as metaloproteinases (MMPs), que atuam
desorganizando a matriz por meio de processos que afetam as interações célula-célula
e célula-matriz (PEREIRA et al., 2005). Em contrapartida, os inibidores teciduais das
metaloproteinases (TIMPs) regulam essa atividade, neutralizando as EDMs. A homeostasia
entre MMPs e TIMPs, isto é, o equilíbrio funcional entre degradação e inibição da matriz
extracelular, é essencial para a manutenção dos tecidos. Alterações na homeostasia têm
sido associadas a doenças relacionadas à renovação não controlada da MEC, como câncer
e doenças cardiovasculares (RIBEIRO et al., 2008).

Conforme Rodrigues, Pinho e Mancera (2012), devido à complexidade do câncer, a
construção de modelos matemáticos da doença ainda permanece um grande desafio.
Por outro lado, é através do desenvolvimento e evolução dos modelos matemáticos
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que descrevem diferentes aspectos do crescimento tumoral e da aplicação de técnicas
computacionais para simulação que algumas características e detalhes da evolução do
tumor podem ser descritos, bem como efetivamente utilizados em laboratórios clínicos.

Nesse sentido, o presente trabalho busca soluções eficientes e acuradas para resolver
um sistema de equações que descreve o crescimento tumoral.

1.2 Motivação

Modelos matemáticos que representam um fenômeno físico, como a invasão de
tecido celular por células cancerosas, geralmente são expressos por sistemas de equações
diferenciais parciais (EDPs). Por se tratar de casos mais complexos, podem envolver mais
de uma equação e apresentar equações não lineares; sendo assim, soluções analíticas são
difíceis de serem determinadas ou não são conhecidas.

O modelo apresentado neste trabalho, de Kolev e Zubik-Kowal (2011a), foi
desenvolvido a partir do modelo contínuo de crescimento tumoral avascular, investigado
por Anderson et al. (2000). Este modelo consiste em um sistema de quatro EDPs acopladas,
sendo duas não lineares. As três primeiras equações descrevem a densidade das células
tumorais e do tecido hospedeiro (matriz extracelular) e a concentração das enzimas
degradativas da matriz. A quarta equação do modelo foi proposta por Chaplain e Anderson
(2003) e descreve a ação dos inibidores de tecido que são produzidos pela matriz extracelular
(MEC) como resposta às enzimas degradativas da matriz (EDMs). A solução analítica do
modelo é desconhecida; dessa forma, ele é solucionado apenas numericamente.

Ao solucionar numericamente um modelo matemático, é importante realizar a
verificação da acurácia da solução, a fim de garantir a construção de um modelo numérico
livre de erros ou inconsistências. Portanto, deve-se buscar a confiabilidade nos resultados
numéricos; para isso, empregam-se ferramentas como a verificação e a validação (ROY,
2005).

De acordo com Thacker et al. (2004), a validação é um processo que busca
determinar o grau em que o modelo representa com precisão o mundo real, dentro da
perspectiva do uso pretendido do referido modelo. Pode-se encontrar na literatura trabalhos
que comparam resultados dos modelos com observações clínicas reais, como pode ser visto
em Anderson et al. (2000). A validação não será tratada neste trabalho, pois está aquém
do objeto desta pesquisa.

A verificação, por sua vez, é dividida em duas etapas: a verificação do código
computacional e a verificação da solução. A verificação do código constitui-se na
asserção, tanto quanto possível, de que não existem erros ou inconsistências no algoritmo
implementado. Enquanto a verificação da solução consiste no processo de quantificação
dos erros decorrentes da simulação numérica (ARAKI, 2007).
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Em particular, em problemas relacionados com a modelagem tumoral, a verificação
numérica não se apresenta consolidada na literatura. Alguns trabalhos como Wise,
Lowengrub e Cristini (2011), Ng e Frieboes (2018), Wise et al. (2008) simulam modelos de
crescimento tumoral, utilizando o método multigrid para aceleração de convergência, mas
não apresentam uma análise de verificação.

Dentro deste contexto, a motivação para o desenvolvimento desta pesquisa
relaciona-se com a necessidade de resolução do sistema de equações que descrevem o
crescimento tumoral, de forma mais eficiente, robusta e acurada, em comparação com os
métodos conhecidos na literatura, aliados a um baixo custo computacional.

1.3 Objetivos

O objetivo geral do trabalho é a simulação do crescimento tumoral dado pelo
modelo bidimensional proposto por Kolev e Zubik-Kowal (2011) através de um método
eficiente, robusto e acurado. Os objetivos específicos são:

• Desenvolver uma metodologia numérica eficiente para simulação do crescimento
tumoral.

• Implementar o método multigrid para acelerar a convergência das soluções numéricas
do modelo proposto.

• Aplicar a múltipla extrapolação de Richardson (MER) para aumentar a acurácia
das soluções numéricas.

• Utilizar o método das soluções fabricadas para verificar o código computacional.

• Avaliar estimadores de erro de discretização quanto à sua precisão em diferentes
níveis de malha.

• Validar o modelo computacional em cenários realistas, analisando alguns parâmetros
na progressão tumoral.

1.4 Revisão bibliográfica

Nesta seção é detalhada uma revisão bibliográfica de forma geral sobre simulação
tumoral, método multigrid e análise de erros.

1.4.1 Simulação tumoral

A simulação tumoral é uma técnica de modelagem computacional utilizada para
estudar o crescimento e a dispersão do câncer. A modelagem matemática da progressão
do câncer, incluindo seu microambiente associado, fornece uma visão importante sobre
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a evolução do tumor. Além disso, a modelagem matemática é uma ferramenta para
prever a dinâmica do crescimento tumoral, contribuindo para a interpretação de dados
experimentais e clínicos, bem como para a avaliação de estratégias de tratamentos mais
eficazes. Embora o foco histórico tenha sido estudar esses eventos por meio de observações
experimentais e clínicas, a modelagem matemática e a simulação permitem a análise em
múltiplas escalas temporais e espaciais (WISE et al., 2008; LOWENGRUB et al., 2009).

Na década de 1990, observou-se um avanço significativo nos estudos sobre tumores
sólidos, com o desenvolvimento de modelos contínuos e discretos que abordaram desde o
crescimento avascular e vascular até fenômenos mais complexos, como invasão tecidual,
metástase, tensões residuais e mecânica multifásica tumoral (ARAUJO; MCELWAIN, 2004).
Dentre as contribuições relevantes, destacam-se os trabalhos de Gatenby e colaboradores,
que introduziram modelos inovadores baseados em equações de Lotka–Volterra para
descrever a competição entre células tumorais e normais (GATENBY, 1991; GATENBY,
1995), bem como sistemas de equações de reação–difusão para simular a dinâmica espacial
do tumor (GATENBY; GAWLINSKI, 2001; GATENBY; GAWLINSKI, 2003). Por sua vez,
Perumpanani e Byrne (1999) propuseram um modelo que incorpora a motilidade celular,
isto é, a capacidade de as células se moverem ativamente, para descrever a migração dirigida
de células tumorais invasivas ao longo de gradientes da matriz extracelular, evidenciando
mecanismos de invasão não tratados por abordagens anteriores.

Anderson et al. (2000), Chaplain e Anderson (2003), Byrne (2010), Chaplain e Lolas
(2005) discutiram vários estágios de crescimento tumoral, apresentando uma variedade
de ideias matemáticas, como o crescimento tumoral avascular, angiogênese, invasão e
interações tumor-hospedeiro; fundamentais no estudo das várias fases da progressão do
câncer.

A maioria dos modelos de simulação tumoral propostos na literatura se enquadram
em duas grandes categorias, com base na representação do tecido tumoral: modelos
contínuos e modelos discretos baseados em células.

Modelos contínuos, baseados em EDOs ou EDPs, são amplamente utilizados
para descrever densidades de células tumorais, matriz extracelular, enzimas degradativas
e concentrações de substratos como oxigênio e fatores de crescimento. Esses modelos
permitem discretização eficiente e uso de solucionadores rápidos, sendo mais viáveis em
larga escala do que modelos baseados em células individuais (LOWENGRUB et al., 2009).
Entretanto, sistemas discretos são úteis para capturar processos celulares detalhados,
porém podem ser limitados por seu alto custo computacional quando modelam um grande
número de células.

A seguir, são apresentados alguns exemplos de trabalhos que utilizaram modelos
contínuos baseados em EDPs para simulação de crescimento tumoral, com diferentes
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estratégias numéricas de resolução.

Em Anderson et al. (2000), os autores propuseram dois modelos, um contínuo
e outro discreto, para descrever a invasão de tecido saudável por células tumorais. O
modelo contínuo, que serve como base para o desenvolvimento do modelo apresentado
nesta tese, é formulado por meio de um sistema de equações diferenciais parciais (EDPs)
que considera três variáveis principais: a densidade de células tumorais, a concentração
de matriz extracelular e a concentração de enzimas degradativas (MDEs). As simulações
foram conduzidas em uma e duas dimensões, utilizando o método de Gear e o método de
linhas para o caso unidimensional, e diferenças finitas no caso bidimensional.

A partir desse modelo, diversas extensões foram propostas para incorporar novos
mecanismos biológicos e variáveis regulatórias associadas à invasão tumoral. Entre elas,
destaca-se o trabalho de Chaplain (2003), que introduziu o papel do oxigênio como nutriente
essencial ao crescimento celular e acrescentou uma equação para os inibidores endógenos das
MDEs, representados pelas metaloproteinases inibidoras de tecidos (TIMPs), responsáveis
por limitar a degradação da MEC. Em seguida, Chaplain e Lolas (2005) e Chaplain e
Lolas (2006) refinaram o modelo ao incluir termos de quimiotaxia, proliferação celular e
remodelamento tecidual, ampliando o entendimento sobre a interação entre crescimento
tumoral e microambiente.

Dando continuidade a essa linha, Kolev e Zubik-Kowal (2011a) apresentaram uma
extensão numérica robusta do modelo contínuo de Anderson et al. (2000), incorporando
as variáveis propostas em trabalhos posteriores, como as TIMPs, e analisando de forma
detalhada o comportamento espaço-temporal do sistema. O modelo proposto por Kolev e
Zubik-Kowal (2011a) é composto por quatro EDPs acopladas, descrevendo as interações
entre células tumorais, MEC, MMPs e TIMPs, e foi resolvido numericamente por meio de
métodos de diferenças finitas com controle de passo e condições de contorno de Neumann.
Essa formulação, além de estabilizar a solução numérica, serviu de base para estudos
computacionais subsequentes, como o de López, Ruiz e Castaño (2018), que implementaram
o modelo em uma e duas dimensões utilizando uma abordagem mista com o método dos
elementos finitos (MEF) e diferenças finitas no tempo.

Diversos trabalhos subsequentes buscaram estender ou refinar aspectos da dinâmica
tumoral, especialmente no contexto de invasão e metástase. Por exemplo, Franssen et al.
(2019) desenvolveram uma estrutura híbrida que incorpora tanto a invasão local quanto a
disseminação metastática, combinando elementos contínuos e discretos e empregando o
método multigrid para maior eficiência computacional. Ainda nesse contexto, destaco o
trabalho que desenvolvi em Maganin et al. (2020), no qual o modelo contínuo de crescimento
tumoral foi implementado em uma geometria bidimensional não regular, representando o
contorno de uma mama. A discretização foi realizada por meio do método de diferenças
finitas, sem a utilização de esquemas multigrid, com ênfase na análise da dinâmica tumoral
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em domínios mais realistas. Já Katsaounis et al. (2024) propuseram um modelo multiescala
híbrido em três dimensões, com maior detalhamento biológico, mantendo como referência a
formulação de Anderson et al. (2000). Por sua vez, Szymańska et al. (2024) apresentaram
um modelo contínuo com ênfase na plasticidade fenotípica das células tumorais, destacando
como essa característica pode influenciar tanto a morfologia da frente invasiva quanto a
formação de focos múltiplos de tumor.

Por fim, Sakariya, Prasad e Kumar (2025) propuseram um modelo inovador para
descrever o crescimento de tumores cerebrais em domínios bidimensionais irregulares,
incorporando derivadas fracionárias de ordem variável no tempo. A discretização temporal
foi realizada por meio do método das diferenças finitas, enquanto a discretização espacial
empregou funções de base radial gaussianas, destacando-se pela análise de existência,
unicidade e estabilidade da solução, além de explorar a influência dos parâmetros
fracionários na dinâmica tumoral.

Esses estudos evidenciam a diversidade de abordagens numéricas e a constante
evolução dos modelos matemáticos aplicados à simulação tumoral. Dando continuidade
a essa perspectiva, observa-se que o avanço dos métodos computacionais em áreas
como a biomedicina é fundamental, pois as ferramentas de simulação oferecem grande
potencial para prever comportamentos tumorais e auxiliar no planejamento de intervenções
(SANTIAGO et al., 2023). Assim, a modelagem matemática do crescimento tumoral
torna-se essencial, especialmente nas fases iniciais da doença, fornecendo percepções sobre
a dinâmica do câncer, como a interação entre células tumorais e o microambiente, o papel
de substâncias reguladoras e os fatores que influenciam o processo de invasão.

O estágio avascular do tumor é amplamente modelado com base na proliferação
celular e na degradação da matriz extracelular. Variáveis como densidade celular,
concentração de enzimas degradativas e inibidores são essenciais para entender essa fase
inicial do câncer (ANDERSON et al., 2000; CHAPLAIN; ANDERSON, 2003; CHAPLAIN;
LOLAS, 2005; BYRNE, 2010). Um destaque é a haptotaxia, que é a migração celular
orientada por gradientes na matriz extracelular, na qual direciona as células tumorais para
o tecido saudável.

Estudos recentes como Tao e Winkler (2019), Pekmen e Yirmili (2024) e Lorenzi,
Macfarlane e Painter (2024) destacam a influência da dinâmica das enzimas e da haptotaxia
na progressão tumoral. Compreender essas interações é essencial para desenvolver modelos
capazes de prever o comportamento tumoral em aplicações clínicas e experimentais (WU,
2025).
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1.4.2 Método multigrid

O método multigrid (MG) surgiu na década de 1960 como uma técnica promissora
para acelerar a convergência de métodos iterativos na resolução de sistemas oriundos da
discretização de equações diferenciais parciais (EDPs). Foi introduzido por Fedorenko em
1962, com estudos iniciais aplicados à equação de Poisson e posteriormente estendido por
Bakhvalov para problemas elípticos com a equação de advecção-difusão (FEDORENKO,
1962; FEDORENKO, 1964; BAKHVALOV, 1966).

O método MG foi empregado por outros autores como Astrakhantsev (1971),
Frederickson (1975), Wachspress (1975), Wesseling (1977), Hackbusch (1978), mas sua
consolidação se deu com os trabalhos de Brandt, que além de introduzir os conceitos
fundamentais da técnica, como a análise local de Fourier e os esquemas de correção
(Correction Scheme, CS) e de aproximação completa (Full Approximation Scheme, FAS),
também demonstrou sua eficiência em problemas lineares e não lineares (BRANDT, 1973;
BRANDT, 1977). O esquema CS é mais apropriado para problemas lineares, enquanto o
FAS é recomendado para problemas não lineares (BRIGGS; HENSON; MCCORMICK,
2000; TROTTENBERG; OOSTERLEE; SCHULLER, 2001).

Diversos estudos contribuíram para a maturidade do método, abordando sua
aplicação em diferentes tipos de problemas e malhas. Wesseling (2004) destacou a eficácia
do método em problemas elípticos, enquanto Ferziger, Perić e Street (2002) mostraram
limitações em casos dominados por advecção. Trottenberg, Oosterlee e Schuller (2001)
enfatizaram que o desempenho do método depende da escolha adequada dos parâmetros,
como o tipo de ciclo, número de níveis de malha e operadores de transferência entre malhas.
Segundo Roache (1998), o uso eficiente do método MG permite a obtenção de soluções
mais precisas em menos tempo, viabilizando simulações em malhas mais refinadas com
menor erro de discretização.

Estudos como os de Pinto e Marchi (2006) analisaram o impacto do número de
iterações internas e níveis de malha no tempo de CPU para os esquemas CS e FAS, na
equação de Laplace bidimensional. Outros autores também investigaram configurações
ótimas para o método MG (OLIVEIRA et al., 2006; SANTIAGO; MARCHI, 2007; PINTO;
MARCHI, 2007; SUERO et al., 2010; RUTZ; PINTO, 2016; ZANATTA et al., 2018).
Em especial, Santiago e Marchi (2007), Santiago, Marchi e Souza (2015) mostraram
que o acoplamento de equações não compromete a eficiência do método, além disso,
Santiago (2010), Santiago, Marchi e Souza (2015) reforçaram que não há vantagens em
aplicá-lo isoladamente em problemas que envolvem o acoplamento de equações, como nas
formulações função de fluxo–vorticidade e nas equações de Burgers.

Duas abordagens principais do método MG são destacadas: o multigrid geométrico,
adequado para malhas estruturadas (WESSELING; OOSTERLEE, 2001), e o multigrid
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algébrico, voltado a malhas não estruturadas (STÜBEN, 2001). Briggs, Henson e
McCormick (2000) compararam ambas as abordagens e mostraram que o multigrid
geométrico é geralmente mais eficiente em termos de memória e tempo computacional,
sendo o algébrico indicado quando o geométrico não é aplicável.

Nos últimos anos, os métodos multigrid com acoplamento espaço-tempo têm sido
amplamente investigados, dada sua capacidade de explorar paralelismo em simulações de
larga escala envolvendo equações diferenciais parciais dependentes do tempo. Notay (2022)
apresentou uma formulação com múltiplos passos temporais e engrossamento espacial,
destacando melhorias na eficiência computacional. Falgout et al. (2014) propuseram
um multigrid espaço-tempo voltado para arquiteturas modernas, enquanto Chaudet-
Dumas, Gander e Pogozelskyte (2023) desenvolveram uma análise teórica detalhada da
convergência de algoritmos multigrid espaço-tempo aplicados a problemas parabólicos.
No campo da poroelasticidade, Franco et al. (2018) introduziram o algoritmo Waveform
Relaxation multigrid para o modelo de Biot, combinando técnicas de análise semi-algébrica
com suavizadores do tipo Vanka. Posteriormente, Franco e Pinto (2024) estenderam
essa abordagem com uma formulação multigrid space-time eficiente para problemas com
condutividade hidráulica.

Método multigrid com aplicações na bioengenharia térmica também tem sido bem-
sucedido, como demonstrado por Santiago et al. (2023), que resolveram a equação de Pennes
em malhas 2D com o método Waveform Relaxation. Adicionalmente, Benedusi, Minion
e Krause (2021) realizaram uma comparação experimental entre diferentes estratégias
espaço-temporais em equações reação-difusão, ressaltando as vantagens relativas de cada
abordagem em termos de robustez e desempenho.

No que diz respeito ao desempenho, Oliveira et al. (2012) mostraram que, no
problema específico por eles estudado, o método MG foi até sete mil vezes mais rápido que o
método singlegrid (SG), que utiliza uma única malha, em simulações de condução de calor.
Mais recentemente, Zen, Pinto e Franco (2025) aplicaram o multigrid em um modelo
não linear de transferência de calor unidimensional em silício, com condições de contorno
relaxantes, obtendo ganhos ainda maiores, mais de 20.000 vezes mais rápido que o SG,
devido à combinação das técnicas FAS e Waveform Relaxation (uma varredura temporal não
clássica), aliada à utilização de malhas temporais e espaciais adequadas para maximizar a
eficiência do método. No mesmo contexto, Malacarne, Pinto e Franco (2025) combinaram o
multigrid com o Waveform Relaxation com subdomínios no tempo para resolver problemas
de propagação de ondas bidimensionais, alcançando melhor convergência, menos oscilações
e uma grande redução no tempo de simulação.

Na literatura, poucas são as aplicações do método MG envolvendo simulações
tumorais. Em Wise, Lowengrub e Cristini (2011), o método foi utilizado para resolver um
sistema tridimensional de advecção-difusão-reação altamente não linear com discretização
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por diferenças finitas. O estudo evidenciou o desafio computacional na resolução dessas
equações acopladas, demonstrando que o MG é uma alternativa viável. De forma
complementar, Santiago et al. (2023) apresentaram um método Multigrid Waveform
Relaxation para a resolução da equação de Pennes, empregada na modelagem do transporte
de calor em tecidos biológicos, obtendo ganhos expressivos de desempenho e precisão, o
que reforça o potencial do MG em aplicações biomédicas. Em continuidade, Ng e Frieboes
(2018) detalharam a aplicação de um algoritmo multigrid não linear totalmente adaptativo,
com discretização temporal por Crank-Nicolson, obtendo simulações realistas de tumores
ricos em matriz extracelular, como o adenocarcinoma pancreático.

Para uma compreensão mais aprofundada dos fundamentos do método multigrid,
com detalhes na aplicação, suavização e correção na malha grossa, os esquemas CS e
FAS, complexidade, tipos de ciclos, análise de Fourier, técnicas avançadas como multigrid
adaptativo e paralelo, entre outros, podem ser encontrados em livros como Wesseling
(2004), Briggs, Henson e McCormick (2000), Trottenberg, Oosterlee e Schuller (2001).

1.4.3 Análise de erros

A análise de erros em solução numérica refere-se ao estudo dos erros que surgem
durante o processo de cálculos numéricos aproximados. Quando apresentam-se problemas
matemáticos complexos ou sistemas de equações que não podem ser resolvidos de forma
exata, muitas vezes recorre-se a métodos numéricos para obter soluções aproximadas.
No entanto, essas soluções podem conter erros numéricos devido às limitações dos métodos
utilizados e à representação finita dos números em um computador.

Martins (2013) destaca que a simulação numérica, amplamente fundamentada em
equações diferenciais, tem-se tornado cada vez mais importante em aplicações científicas e
de engenharia. Em geral, as simulações numéricas em CFD destacam-se pela sua robustez
e eficiência. Contudo, conforme Stern et al. (2001) e Karimi et al. (2012), um dos grandes
desafios encontrados diz respeito ao nível de acurácia das soluções numéricas. Logo, deve-se
tentar reduzir os erros numéricos e, sempre que possível, fazer uma estimativa do erro
envolvido nas soluções apresentadas.

Vários autores analisaram erros em diferentes contextos. Gomes et al. (2012)
estudaram como o tipo de malha afeta a precisão na simulação da propagação de ondas.
Kwiatkowski Jr. et al. (2022) compararam a ordem efetiva de diminuição do erro com
o refinamento de malha em processos de aeração em grãos. Para o crescimento tumoral,
Mohammadi, Dehghan e Marchi (2021) utilizaram uma solução refinada como referência
para medir a acurácia dos métodos.

Uma técnica amplamente utilizada para reduzir erros de discretização é a
extrapolação de Richardson (ER), que elimina termos dominantes de truncamento
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(BURDEN; FAIRES; BURDEN, 2016; GRASSELLI; PELINOVSKY, 2008). Essa técnica
tem sido aplicada com sucesso em diversos problemas, como equações de difusão-reação e
vibração massa-mola (SUN; ZHANG, 2004; SOROUSHIAN; WRIGGERS; FARJOODI,
2009; WANG; ZHANG, 2009). Modificações na ER também permitem gerar estimadores
de erro. Roache (1997), Marchi (2001), Novak (2012) e Marchi et al. (2016) propuseram
novos estimadores, avaliando sua acurácia e confiabilidade.

A múltipla extrapolação de Richardson (MER) aplica ER recursivamente para
aumentar a ordem de convergência. Estudos como Marchi et al. (2010) mostraram que
MER reduz significativamente erros em malhas triangulares, enquanto Martins (2013),
Marchi et al. (2016) a aplicaram com sucesso a equações de Poisson e Burgers, adaptando
a metodologia a diferentes tipos de variáveis.

O trabalho de Rodrigues et al. (2022) aplicou a técnica MER para melhorar a
precisão em simulações de escoamento em meio poroso deformável. Usando diferenças
finitas e o método de Crank–Nicolson, os autores resolveram grandes sistemas com o
método multigrid e o suavizador Vanka. Com a metodologia empregada, reduziram
significativamente o erro de discretização; em alguns casos, o uso da MER (com 6 níveis
de extrapolação) reduziu o erro de discretização em mais de 62 mil vezes, aumentando a
acurácia e a confiabilidade das soluções.

No contexto de degradação tumoral, desenvolvi em Maganin, Pinto e Romeiro
(2022) uma análise de verificação numérica para um modelo unidimensional, avaliando as
ordens aparente e efetiva do erro de discretização e comprovando a eficácia dos estimadores
de Richardson. Nesta tese, esses conceitos são estendidos para um modelo bidimensional de
crescimento tumoral e para a aplicação da técnica MER, com o objetivo de desenvolver um
método eficiente, robusto e acurado, capaz de lidar com as complexidades multiescalares
desse fenômeno. A escolha por duas dimensões se justifica pela correspondência com
exames clínicos predominantemente bidimensionais e pela viabilidade computacional em
estudos de verificação.

Para uma visão abrangente sobre tipos de erros, técnicas de estimativa e práticas
de verificação computacional, destacam-se os trabalhos de Ferziger, Perić e Street (2002).

1.5 Organização do texto

Este trabalho está estruturado da seguinte forma: no Capítulo 2 é descrito o modelo
matemático adotado para a simulação do crescimento tumoral. O Capítulo 3 apresenta a
fundamentação teórica sobre análise de erros, técnicas de estimativa e redução do erro de
discretização, incluindo a técnica de múltipla extrapolação de Richardson, além de métodos
de discretização e o método multigrid. O Capítulo 4 detalha o modelo numérico e o processo
de discretização empregado, abrangendo tanto os aspectos espaciais quanto temporais. O
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Capítulo 5 trata da verificação dos códigos computacionais implementados usando um
modelo com solução analítica conhecida. Este capítulo também inclui a análise da ordem
do erro de discretização e a eficácia dos estimadores de erro. No Capítulo 6, discutem-se
os resultados numéricos obtidos, incluindo a eficiência do método MG e a aplicação da
MER a um problema realista. Também são exploradas simulações tumorais bidimensionais,
destacando a influência da haptotaxia. Por fim, o Capítulo 7 apresenta as considerações
finais, enfatizando as principais contribuições do trabalho e os desdobramentos futuros.



30

2 MODELO MATEMÁTICO

Desenvolvido em Kolev e Zubik-Kowal (2011a), o modelo matemático descreve o
crescimento de tumores sólidos genéricos no estágio avascular, com o objetivo de analisar
as interações entre o tumor e o tecido circundante. Neste estágio, o tumor ainda não
desenvolveu vascularização própria, mas processos de invasão local e degradação da matriz
extracelular (MEC) já estão presentes.

O modelo é baseado em um sistema acoplado de equações diferenciais parciais
(EDPs) dependentes do tempo, envolvendo quatro variáveis principais: a densidade de
células tumorais (n), a densidade da matriz extracelular (f), a concentração de enzimas
degradativas da matriz (m) e a concentração de inibidores teciduais de metaloproteinases
(TIMP) (u), também chamados de inibidores endógenos. O sistema é dado por:

∂n

∂t
= dn∆n︸ ︷︷ ︸

difusão

− γ∇.(n∇f)︸ ︷︷ ︸
haptotaxia

+µ1n(1− n− f)︸ ︷︷ ︸
proliferação

, (2.1)

∂f

∂t
= − ηmf︸ ︷︷ ︸

degradação

+µ2f(1− n− f)︸ ︷︷ ︸
renovação

, (2.2)

∂m

∂t
= dm∆m︸ ︷︷ ︸

difusão

+ αn︸︷︷︸
produção

− θum︸ ︷︷ ︸
neutralização

− βm︸︷︷︸
decaimento

, (2.3)

∂u

∂t
= du∆u︸ ︷︷ ︸

difusão

+ ξf︸︷︷︸
produção de inibidor

− θum︸ ︷︷ ︸
neutralização

− ρu︸︷︷︸
decaimento

. (2.4)

Considera-se o domínio espacial Ω ⊆ R2, onde ∆ representa o operador Laplaciano, ∇ é o
operador gradiente e ∇· denota o divergente. O intervalo de tempo (t) considerado é (0,tf ].

As condições iniciais genéricas associadas ao sistema de equações são dadas por:

n(x,y,0) = n0(x,y), (2.5)
f(x,y,0) = f0(x,y), (2.6)
m(x,y,0) = m0(x,y), (2.7)
u(x,y,0) = u0(x,y), (2.8)

em que (x,y) ∈ Ω, com funções dadas n0, f0, m0, u0 definidas em Ω.

As condições de contorno, do tipo Dirichlet, são descritas genericamente por:
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n(xb, t) = b1, (2.9)
f(xb, t) = b2, (2.10)
m(xb, t) = b3, (2.11)
u(xb, t) = b4, (2.12)

para xb ∈ ∂Ω , sendo ∂Ω o contorno do domínio assumido e 0 < t ≤ tf , onde b1, b2, b3 e
b4 são valores reais conhecidos definidos conforme o cenário físico adotado.

As condições iniciais e de contorno específicas utilizadas nos testes numéricos
serão detalhadas nos Capítulos 5 e 6. No Capítulo 5, será empregada uma solução analítica
fabricada para validação da implementação numérica, assumindo condições de Dirichlet
homogêneas (bi = 0 para i = 1,2,3,4). Já no Capítulo 6, será investigado um cenário mais
realista, no qual considera-se a presença de um nódulo tumoral inicial em Ω e a matriz
extracelular intacta nas bordas. Nesse caso, adotam-se condições de Dirichlet nulas para
n, m e u, e valor unitário para f no contorno, representando um tecido saudável ainda
não degradado.

Tais condições são amplamente adotadas na literatura, conforme apresentado
em Kolev e Zubik-Kowal (2011a), López, Ruiz e Castaño (2018), Maganin et al. (2020),
podendo ser adaptadas a diferentes contextos biomédicos conforme o problema a ser
modelado.

2.1 Modelagem tumoral

Segundo Anderson et al. (2000), o modelo, Eqs. (2.1)–(2.4), descreve o
comportamento acoplado entre células tumorais e o microambiente extracelular. O termo
de difusão dn∆n representa o movimento aleatório das células tumorais, enquanto o termo
de haptotaxia −γ∇ · (n∇f) modela o movimento direcionado ao longo de gradientes de
adesividade ou concentração da MEC. Esse mecanismo reflete a tendência das células
tumorais a migrarem em direção a regiões com maior concentração de moléculas de adesão,
como fibronectina, laminina e colágeno, substâncias que resultam da degradação parcial
da MEC e que facilitam a motilidade celular.

A taxa de proliferação µ1n(1− n− f) limita o crescimento celular em função da
densidade local e da fração ocupada pela matriz. O termo de renovação µ2f(1− n− f)
atua de forma análoga à MEC, representando a regeneração tecidual.

A concentração de enzimas degradativas da matriz (EDM) (m), que são produzidas
localmente pelas células tumorais, difunde-se no tecido e sofre decaimento natural com
taxa β. Além disso, as enzimas são neutralizadas por inibidores endógenos (TIMPs), θum.
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O termo αn modela a taxa de produção de enzimas, assumida proporcional à densidade
de células tumorais.

A variável u representa a concentração dos inibidores TIMP, produzidos pela MEC
em resposta à degradação tecidual. Assim, o termo ξf expressa essa produção regulatória.
Os inibidores difundem-se com coeficiente du, sofrem decaimento natural com taxa ρ e
reagem com as enzimas degradativas, impedindo que essas enzimas continuem degradando
a matriz extracelular.

Assim, o movimento das células tumorais combina difusão aleatória e migração
direcionada (haptotaxia), estimulada por gradientes de MEC degradada. As EDMs (m)
promovem a invasão tecidual, degradando localmente a matriz e criando espaço para a
proliferação celular. A MEC (f) é simultaneamente degradada e renovada, controlando a
resistência mecânica e estrutural do tecido. E, os inibidores (u) regulam a atividade das
enzimas, estabilizando o microambiente e retardando o avanço do tumor.

Os parâmetros dn, dm e du correspondem aos coeficientes de difusão da densidade
de células tumorais, das enzimas e dos inibidores, respectivamente. As taxas µ1 e µ2

representam a proliferação das células e o crescimento da MEC, enquanto η, α, θ, β, ξ e ρ
são constantes positivas associadas aos processos de degradação, produção, neutralização e
decaimento. Os valores numéricos utilizados estão apresentados no Capítulo 5, TABELA 1.

O modelo proposto pode ser facilmente estendido para incluir efeitos de angiogênese
ou tratamentos quimioterápicos, por meio da adição de novas variáveis e termos de
acoplamento. No entanto, neste trabalho o foco permanece no estágio avascular, de modo a
compreender em detalhe as interações locais entre o tumor e o tecido saudável circundante.

2.2 Limitações e validade biológica do modelo avascular

Embora o modelo descrito pelas Eqs. (2.1)–(2.4) forneça uma representação
matemática consistente dos mecanismos iniciais de invasão tumoral, ele apresenta limitações
inerentes à suposição de um crescimento puramente avascular. Nesse estágio, o tumor
depende exclusivamente da difusão de nutrientes e oxigênio provenientes do tecido
circundante, o que restringe seu tamanho. A ausência de vascularização impede o transporte
eficiente de oxigênio e substratos metabólicos para o interior da massa tumoral.

Esse tipo de limitação é reconhecido, por exemplo, em Maganin (2020), onde
os autores destacam que modelos avasculares são indicados apenas para representar as
fases iniciais do crescimento tumoral. O trabalho enfatiza que, à medida que o tumor
se desenvolve, esse mecanismo se torna ineficiente, exigindo a consideração de processos
angiogênicos para garantir o aporte adequado de substâncias essenciais ao crescimento
contínuo. Assim, reforça-se a necessidade de modelos mais complexos para descrever
estágios avançados da progressão tumoral.
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Outra limitação do modelo contínuo está relacionada à suposição de que os
parâmetros biológicos, como coeficientes de difusão, taxas de produção e degradação, são
constantes em todo o domínio espacial e durante toda a simulação. Essa abordagem, embora
simplificadora, é comum na literatura e permite análises mais controladas e eficientes do
ponto de vista computacional. Trabalhos como Chaplain (2003), Kolev e Zubik-Kowal
(2011a) e López, Ruiz e Castaño (2018) utilizam coeficientes de difusão constantes para as
variáveis tumorais, o que serve como base para a escolha feita nesta tese.

Por outro lado, alguns estudos mais recentes adotam coeficientes de difusão não
constantes, buscando representar de forma mais realista a heterogeneidade do meio biológico.
Em Ganesan e Lingeshwaran (2017), a difusividade das células tumorais depende da
densidade da matriz extracelular. Já em Ptashnyk e Venkataraman (2025), o coeficiente de
difusão das enzimas degradativas é modelado como função não linear da fração volumétrica
da matriz, destacando a influência do microambiente na propagação tumoral.

Apesar dessas simplificações, o modelo possui validade biológica qualitativa
comprovada, sendo amplamente aceito na literatura como uma base sólida para a
compreensão da dinâmica inicial da invasão tumoral. Estudos como o de Kolev e Zubik-
Kowal (2011b) demonstram que o modelo reproduz comportamentos coerentes com
observações experimentais, tais como a formação de frentes invasivas, a degradação
localizada da matriz extracelular e a migração celular dirigida por haptotaxia. Os autores
mostram, por meio de simulações numéricas, que a interação entre células tumorais, enzimas
degradativas e inibidores endógenos gera padrões espaciais complexos e biologicamente
plausíveis de invasão tecidual, reforçando a aplicabilidade qualitativa do modelo para
representar os estágios iniciais do câncer.



34

3 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta os fundamentos teóricos necessários para este trabalho.
São abordados os principais conceitos relacionados à discretização de equações diferenciais
parciais (EDPs), ao método proposto para a aceleração da convergência na solução de
sistemas lineares, à análise de erros numéricos e à técnica empregada para a redução dos
erros de discretização.

3.1 Método das diferenças finitas

Segundo Fortuna (2000), obter a solução de uma equação diferencial em uma
região contínua R implicaria determinar o valor da variável dependente em cada ponto
desse domínio. Computacionalmente, isso só é possível de forma exata quando existe uma
solução exata para o problema. Nos casos em que tal solução não está disponível, recorre-se
a métodos numéricos para calcular aproximações da solução em pontos discretos dentro do
domínio. Como o método numérico opera sobre um conjunto finito de pontos, a região não
pode ser tratada como verdadeiramente contínua. O processo de selecionar esses pontos e
resolver o problema apenas neles é denominado discretização do domínio, sendo o conjunto
resultante conhecido como malha.

Após a discretização do domínio, é necessário converter as equações diferenciais
em formas discretas, substituindo as derivadas presentes por expressões algébricas que
incluem a função desconhecida. Esse procedimento é conhecido como discretização das
equações (MARCHI; SILVA, 2002). Na sequência, um método numérico tem a função
de resolver as equações resultantes da discretização para estimar a solução numérica do
problema original, obtendo assim uma solução aproximada.

Um dos métodos mais utilizados para discretizar as equações diferenciais é o
método das diferenças finitas (MDF) (FERZIGER; PERIĆ; STREET, 2002; BURDEN;
FAIRES; BURDEN, 2016), porém métodos como elementos finitos (MEF) e volumes finitos
(MVF) também são muito utilizados. Neste trabalho, o MDF será empregado.

O princípio fundamental do MDF é aproximar, através de expressões algébricas,
cada termo do modelo matemático para cada ponto ou nó da malha (FERZIGER; PERIĆ;
STREET, 2002).

As aproximações numéricas por diferenças finitas podem ser obtidas através da
expansão em série de Taylor, a qual permite expressar cada tipo de aproximação e a
respectiva ordem do erro.

Por simplicidade, são apresentadas algumas aproximações para as derivadas
utilizando a expansão de Taylor, considerando uma única variável. No entanto, de
maneira análoga, podem ser obtidas aproximações ao considerar duas ou mais variáveis.
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Assim, seja f(x) uma função contínua no intervalo [a, b] e que possua derivadas contínuas
até ordem n nesse intervalo, ou seja, f pertence Cn[a,b]. Com isso, a aproximação de
Taylor é dada por:

f(x) = f(x0) + h
df

dx

∣∣∣∣∣
x0

+ h2

2!
d2f

dx2

∣∣∣∣∣
x0

+ h3

3!
d3f

dx3

∣∣∣∣∣
x0

+ . . .+Rn, (3.1)

em que h = x− x0, Rn é o resto, definido como

Rn = hn

(n)!
dnf

dxn

∣∣∣∣∣
ξ

, ξ ∈ [x0,x]. (3.2)

Para determinar a primeira derivada de uma função f no ponto xi = ih, ao qual

será denotada por df

dx

∣∣∣∣∣
i

, expande-se f(xi + h) em série de Taylor em torno do ponto xi

f(xi + h) = f(xi) + h
df

dx

∣∣∣∣∣
i

+ h2

2!
d2f

dx2

∣∣∣∣∣
i

+ h3

3!
d3f

dx3

∣∣∣∣∣
i

+ . . .+Rn. (3.3)

Isolando a primeira derivada na Eq. (3.3), pode-se escrever

df

dx

∣∣∣∣∣
i

= f(xi + h)− f(xi)
h

+ ETL, (3.4)

em que

ETL = − h2!
d2f

dx2

∣∣∣∣∣
i

− h2

3!
d3f

dx3

∣∣∣∣∣
i

− . . . . (3.5)

Ao conjunto dos termos da Eq. (3.5) dá-se o nome de erro de truncamento local
(ETL), que surge da utilização de um número finito de termos da série de Taylor. Observa-
se que o termo dominante do ETL é proporcional a h, pois a menor potência de h que
aparece na expansão do erro é h1. A essa potência dominante, associada ao comportamento
assintótico do erro de discretização quando h→ 0, dá-se o nome de ordem assintótica do
erro, denotada por pA. Neste caso, temos que o ETL é de primeira ordem, pois pA = 1.
Mais detalhes sobre esse conceito serão apresentados na Seção 3.4.1.

Para simplificar a notação dada pela Eq. (3.4), utiliza-se fi±k para f(xi ± kh),
com isso

df

dx

∣∣∣∣∣
i

≈ fi+1 − fi
h

. (3.6)

A aproximação dada pela Eq. (3.6) é uma equação de diferenças finitas que
representa uma aproximação de primeira ordem, O(h), para a primeira derivada de f ,
utilizando um ponto a jusante (Downwind Differencing Scheme, DDS).

Uma segunda aproximação de diferenças finitas pode ser obtida a partir da
expansão de f(xi − h) em série de Taylor em torno de xi, resultando em

f(xi − h) = f(xi)− h
df

dx

∣∣∣∣∣
i

+ h2

2!
d2f

dx2

∣∣∣∣∣
i

+O(h3). (3.7)
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Isolando a primeira derivada na Eq. (3.7), tem-se

df

dx

∣∣∣∣∣
i

≈ fi − fi−1

h
, (3.8)

que é outra aproximação de primeira ordem, O(h), para a primeira derivada de f , utilizando
um ponto a montante (Upwind Differencing Scheme, UDS).

Para obter uma aproximação de segunda ordem, O(h2), para a primeira derivada
de f , manipula-se convenientemente as expansões em série de Taylor, descritas nas
Eqs. (3.3) e (3.7)

f(xi + h)− f(xi − h) = 2h df
dx

∣∣∣∣∣
i

+O(h3), (3.9)

assim,
df

dx

∣∣∣∣∣
i

≈ fi+1 − fi−1

2h . (3.10)

Tem-se que a aproximação obtida em Eq. (3.10) é denominada como sendo a
aproximação por diferença central de dois pontos (Central Differencing Scheme, CDS).

Ainda utilizando as expansões Eqs. (3.3) e (3.7), manipula-se para que a primeira
derivada seja eliminada e desta maneira, encontra-se a aproximação de O(h2) para a
derivada segunda, dada por

f(xi + h) + f(xi − h) = 2f(xi) + h2d
2f

dx2

∣∣∣∣∣
i

+O(h4), (3.11)

assim, tem-se
d2f

dx2

∣∣∣∣∣
i

≈ fi+1 − 2fi + fi−1

h2 . (3.12)

Para obter uma expressão que relacione a variação de f com incrementos em
x, dado por hx, e em y, dado por hy, deve-se utilizar a expansão em série de Taylor de
funções de duas variáveis. Supondo que a função f seja contínua e que apresente derivadas
parciais contínuas até ordem n, com n maior que a derivada de maior ordem utilizada.
A série de Taylor, então, é dada por

f(xi + hx, yj + hy) = f(xi,yj) + (hx)
∂f

∂x

∣∣∣∣∣
i,j

+ (hy)
∂f

∂y

∣∣∣∣∣
i,j

+ (hx)2

2!
∂2f

∂x2

∣∣∣∣∣
i,j

+

2(hx)(hy)
2!

∂2f

∂x∂y

∣∣∣∣∣
i,j

+ (hy)2

2!
∂2f

∂y2

∣∣∣∣∣
i,j

+Rn

(3.13)

em que Rn é o resto.

Após algumas manipulações algébricas, utilizando a Eq. (3.13), que podem ser
encontradas em Fortuna (2000), tem-se as fórmulas de diferenças finitas centradas, utilizadas
para aproximar as primeiras e segundas derivadas de funções de duas variáveis, como sendo
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∂f

∂x

∣∣∣∣∣
i,j

= fi+1,j − fi−1,j

2hx
+O(h2

x), (3.14)

∂f

∂y

∣∣∣∣∣
i,j

= fi,j+1 − fi,j−1

2hy
+O(h2

y), (3.15)

∂2f

∂x2

∣∣∣∣∣
i,j

= fi+1,j − 2fi,j + fi−1,j

(hx)2 +O(h2
x), (3.16)

∂2f

∂y2

∣∣∣∣∣
i,j

= fi,j+1 − 2fi,j + fi,j−1

(hy)2 +O(h2
y). (3.17)

Para um estudo mais detalhado, consultar Ferziger, Perić e Street (2002), Fortuna
(2000), Burden, Faires e Burden (2016).

3.2 Método de Crank-Nicolson

Métodos numéricos eficientes são essenciais para a resolução de equações
diferenciais, em particular, equações diferenciais em regime transiente. O método numérico
de Crank-Nicolson (CN) se destaca por sua estabilidade e precisão, sendo amplamente
utilizado para a aproximação dos termos temporais das equações diferenciais parciais
(EDPs), como a EDP unidimensional descrita por:

∂u

∂t
= F

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)
, (3.18)

em que t e x representam as variáveis temporal e espacial, respectivamente, u(x, t) é a
função solução e F é uma função que depende de u, x, t e das derivadas espaciais de u na
EDP.

Considerando u(xi, tk) = uki como a solução numérica da equação no domínio
espacial discreto xi em um instante de tempo k, o termo espacial é discretizado utilizando
a média das diferenças entre os instantes k + 1 e k, resultando em:

uk+1
i − uki
∆t

≈ 1
2
(
F k+1
i + F k

i

)
, (3.19)

em que uk+1
i é a solução no tempo atual k + 1, ∆t é o passo de tempo, e F k

i e F k+1
i

representam as funções que dependem de u, x, t e das derivadas espaciais de u no ponto xi
nos tempos k e k + 1, respectivamente.

O método CN, conforme mostrado na Eq. (3.19), é um método implícito de
segunda ordem no tempo, com erro global de truncamento de O(∆t2) (BURDEN; FAIRES;
BURDEN, 2016), é considerado incondicionalmente estável para problemas de difusão, no
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sentido de que não impõe um limite estrito para o tamanho do passo de tempo ∆t em
função do passo espacial ∆x. No entanto, a escolha de ∆t deve ser feita de forma a manter
uma boa relação com ∆x, garantindo precisão e evitando perda significativa de acurácia
na solução numérica.

3.3 Sistema linear e o método multigrid

A discretização de equações diferenciais parciais (EDPs) por métodos numéricos,
como diferenças finitas, resulta em sistemas lineares de grande porte, que exigem técnicas
eficientes para sua resolução. Um exemplo geral desse sistema é dado por

Au = f , (3.20)

em que A é a matriz de coeficientes, u é o vetor de incógnitas e f é o vetor de termos
independentes.

Seja v uma aproximação para a solução exata u. Define-se o erro associado como

e = u− v, (3.21)

e o resíduo, uma medida calculável usada para monitorar a convergência do método, como

r = f − Av. (3.22)

O erro e o resíduo estão relacionados pela chamada equação residual:

Ae = r, (3.23)

a qual constitui a base para o funcionamento de métodos iterativos multigrid, nos quais
aproximações sucessivas são corrigidas a partir da solução de problemas residuais em
diferentes níveis de malha.

Existem diversos métodos para resolver os sistemas dados pela Eq. (3.20),
aqui chamados de solvers. Dentre eles, os métodos diretos e os métodos iterativos.
De acordo com Burden, Faires e Burden (2016) os métodos iterativos são mais eficientes
computacionalmente que os métodos diretos para resolver tais sistemas lineares de grande
porte gerados da discretização de EDPs.

Para encontrar a solução desses sistemas de equações por meio de métodos
iterativos, é necessário fornecer uma estimativa inicial para a solução. A partir dessa
aproximação, novas soluções são geradas iterativamente. Caso o processo seja convergente,
a aproximação melhora a cada iteração. O processo é encerrado quando um critério de
parada é satisfeito, o qual pode estar baseado no erro, no resíduo, no número máximo
de iterações, entre outros. A literatura apresenta diversos métodos iterativos, tais como
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Jacobi, Jacobi ponderado, Gauss–Seidel, Sobre-Relaxação Sucessiva (SOR), Fatoração LU
incompleta.

Neste trabalho, adota-se o método de Gauss–Seidel como solver padrão, pois,
segundo Briggs, Henson e McCormick (2000), Trottenberg, Oosterlee e Schuller (2001), esse
método apresenta boas propriedades de suavização (propriedade de reduzir rapidamente
os modos oscilatórios do erro, deixando apenas os modos suaves).

Em particular, utiliza-se a versão com ordenação red-black (GSRB) do método de
Gauss–Seidel, conforme descrito em Wesseling (2004), Trottenberg, Oosterlee e Schuller
(2001). Nessa abordagem, os nós da malha são organizados segundo um padrão de tabuleiro
de xadrez: primeiro, atualizam-se todos os nós vermelhos utilizando os valores antigos dos
nós pretos adjacentes; em seguida, os nós pretos são atualizados com os novos valores já
computados nos nós vermelhos.

Essa ordenação permite que os cálculos em cada subconjunto de nós (vermelhos
ou pretos) sejam realizados independentemente e de forma paralela, promovendo maior
eficiência computacional. A FIGURA 1 ilustra essa organização para o caso bidimensional,
destacando a distribuição alternada dos pontos vermelhos e pretos na malha.

FIGURA 1 – Ordenação red-black em malha 2D.

Red
Black

FONTE: A autora (2025).

O solver Gauss-Seidel red-black tem sido bastante utilizado em trabalhos
envolvendo o método multigrid, como: Trottenberg, Oosterlee e Schuller (2001), Briggs,
Henson e McCormick (2000), Wesseling e Oosterlee (2001), Pinto e Marchi (2006),
Malacarne, Pinto e Franco (2025), entre outros.

3.3.1 Método multigrid

Nesta seção será abordado o estudo proposto originalmente por Fedorenko (1964),
conhecido por método multigrid (MG). O método surgiu da necessidade de reduzir o
tempo de processamento na obtenção de soluções numéricas para equações diferenciais,



Capítulo 3. Fundamentação teórica 40

mostrando que a velocidade de convergência com o uso da técnica é superior à dos métodos
iterativos puros, ou seja, aos métodos singlegrid (SG), que utilizam uma única malha.

O método MG tem origem na propriedade de suavização dos métodos iterativos
convencionais. Um método iterativo convencional possui bom fator de convergência somente
nas primeiras iterações, onde os modos dos erros são mais oscilatórios, caracterizando a
presença de modos de alta frequência. Porém, após algumas iterações, quando os modos
dos erros tornam-se mais suaves, a convergência passa a ser mais lenta, sinalizando
a predominância de modos de baixa frequência (TROTTENBERG; OOSTERLEE;
SCHULLER, 2001). Para ilustrar este procedimento, pode-se observar na FIGURA 2,
o comportamento das componentes do erro no processo iterativo do método de Gauss-Seidel
para a equação de Poisson.

FIGURA 2 – Influência da iteração do método de Gauss-Seidel no erro.

FONTE: A autora (2025).

A FIGURA 2 apresenta o efeito da suavização do erro. Conforme observado,
inicialmente o erro apresenta oscilações acentuadas, porém, após algumas iterações, não
necessariamente fica pequeno, mas torna-se suave. De acordo com a literatura, as primeiras
iterações do método de Gauss-Seidel geralmente apresentam bom fator de suavização,
reduzindo rapidamente os modos oscilatórios do erro. No entanto, após algumas iterações,
o processo torna-se lento, indicando a predominância dos modos suaves.

O método MG visa melhorar a taxa de convergência dos métodos iterativos em
todas as faixas dos modos dos erros (oscilatórios e suaves). Segundo Briggs, Henson e
McCormick (2000), os modos suaves tornam-se mais oscilatórios em malhas mais grossas.
Com base nisso, a ideia é utilizar uma hierarquia de malhas e alternar suavizações
em cada nível de malha e as aproximações destas soluções em uma malha mais grossa
(com uma certa razão de engrossamento) através de operadores que transferem informações
da malha fina para a malha imediatamente mais grossa (operador de restrição), e em
seguida, transferir informações da malha grossa para a malha imediatamente mais fina
(operador de prolongação), desta forma reduzindo todo o espectro de erros (erros de



Capítulo 3. Fundamentação teórica 41

alta e baixa frequência) (BRIGGS; HENSON; MCCORMICK, 2000; TROTTENBERG;
OOSTERLEE; SCHULLER, 2001; WESSELING, 2004).

Como o MG é composto por uma hierarquia de malhas, é preciso utilizar alguma
razão de engrossamento re = H/h entre elas. Aqui H e h referem-se ao espaçamento entre
os nós das malhas grossa e fina, respectivamente. Segundo Briggs, Henson e McCormick
(2000) e Brandt (1977), re = 2 (ou seja, H = 2h) é a razão de engrossamento mais utilizada
e mais recomendada, e será utilizada neste trabalho. Então pode-se formar a sequência de
malhas apenas dobrando o tamanho do espaçamento da malha sucessivamente. Assumindo
que essa sequência termina com a malha mais grossa possível ou a mais grossa desejada.
Na FIGURA 3 pode-se visualizar uma sequência de malhas com re = 2, para o caso
bidimensional.

FIGURA 3 – Uma sequência de engrossamento de malhas utilizando re = 2.

FONTE: Trottenberg, Oosterlee e Schuller (2001).

3.3.2 Operadores de restrição e prolongação

Os operadores que transferem informações da malha fina (Ωh) para a malha
imediatamente mais grossa (Ω2h) são denominados operadores de restrição e são
representados genericamente por I2h

h . Os mais conhecidos são: injeção, meia ponderação e
ponderação completa. Neste trabalho, será utilizado o operador de ponderação completa.

A restrição por ponderação completa, no caso bidimensional, é feita através de
uma média ponderada entre o ponto central (P) e todos os pontos vizinhos (N, S, E, W,
NW, SW, NE, SE) (BRIGGS; HENSON; MCCORMICK, 2000). A FIGURA 4 apresenta
este processo de transferência de informações de Ωh para a malha Ω2h, indicando os
respectivos pesos.

Os operadores que transferem informações da malha grossa (Ω2h) para a malha
imediatamente mais fina (Ωh) são denominados operadores de prolongação (ou interpolação)
e são representados genericamente por Ih2h. Será empregado neste trabalho o operador
de interpolação bilinear, um dos mais utilizados na literatura, e que pode ser visto na
FIGURA 5, que apresenta a malha correspondente a este processo de transferência de
informações da malha Ω2h para a malha Ωh, indicando os pesos.
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FIGURA 4 – Operador de restrição por ponderação completa para o caso 2D.
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FONTE: Franco (2017).

FIGURA 5 – Operador de interpolação bilinear para o caso 2D.

Ωh

Ω2h1
4

1
4

1
4

1
4

FONTE: Franco (2017).

Outras informações sobre o operador de restrição completa, operadores de
interpolação bilinear e demais operadores, podem ser vistas em Briggs, Henson e McCormick
(2000), Wesseling (2004), Trottenberg, Oosterlee e Schuller (2001), Ferziger, Perić e Street
(2002). A escolha pelos operadores de restrição por ponderação completa e interpolação
bilinear baseia-se na fácil implementação e por excelentes resultados encontrados na
literatura (FRANCO; PINTO, 2024).

3.3.3 Ciclos do multigrid

As diferentes formas de percorrer as malhas no método multigrid dão origem a
diferentes tipos de ciclos. Os ciclos mais utilizados são o ciclo V e o ciclo W , sendo
selecionados conforme a complexidade do problema e as exigências de convergência
(WESSELING, 2004). Neste trabalho, adota-se o ciclo V (ν1,ν2) (veja a FIGURA 6, para o
caso de cinco níveis), em que ν1 e ν2 representam o número de pré e pós-suavizações, isto é,
o número de iterações do solver realizadas durante os processos de restrição e prolongação,
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respectivamente. A escolha do ciclo V deve-se à sua comprovada eficiência computacional
e robustez na resolução de EDPs do modelo proposto nesta tese.

FIGURA 6 – Estrutura do ciclo V para cinco níveis e re = 2. O símbolo • representa suavização
e o símbolo ◦ a solução exata.
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FONTE: Franco (2017).

Como discutido em Briggs, Henson e McCormick (2000), o método multigrid
apresenta convergência eficiente em problemas elípticos. Para outros tipos de EDPs, como
as de natureza parabólica ou hiperbólica, o uso de multigrid ainda constitui objeto de
pesquisa, especialmente no que diz respeito à escolha dos operadores e à robustez da
convergência.

A quantidade de suavizações por nível, representada por ν, influencia diretamente
a eficácia do método. Em geral, após a diminuição dos componentes oscilatórios do
erro, não é vantajoso continuar aplicando o suavizador, pois o método tende a estagnar.
Dessa forma, o número de iterações do suavizador deve ser ajustado de acordo com a
análise do comportamento do erro em cada nível de malha, podendo variar entre as
etapas de pré e pós-suavização e também entre diferentes níveis. Para problemas que
apresentam dificuldades de convergência, como os que envolvem anisotropias e malhas
não uniformes, pode ser necessário adotar um número maior de suavizações ou utilizar
estratégias complementares para assegurar a taxa de convergência desejada.

O Algoritmo 1 descreve, para um determinado nível de malha l > 1, com
espaçamentos h, 2h, 4h, . . . , 2l−1h, a estrutura do ciclo V (ν1, ν2), no qual são aplicadas ν1

iterações de pré-suavização e ν2 de pós-suavização em cada nível. Uma análise comparativa
dos efeitos da escolha de ν1 e ν2 na precisão e desempenho da solução numérica é apresentada
na Seção 5.2.1.
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Algoritmo 1: MG-V -Ciclo(l) — Algoritmo ciclo V do método multigrid
Input: Nível atual l; nível máximo Lmax; número de suavizações ν1 e ν2

Output: Aproximação v(l) da solução de Alv(l) = f (l)

1 if l = Lmax ; // nível mais grosso
2 then
3 Resolva diretamente: Alv(l) = f (l);
4 end
5 else
6 Pré-suavização: aplique ν1 iterações de suavização em Alv

(l) = f (l);
7 Compute o resíduo: r(l) = f (l) − Alv(l);
8 Restrinja o resíduo: f (l+1) = I2lh

2l−1hr
(l);

9 Inicialize v(l+1) = 0 na malha grossa;
10 MG-V -Ciclo(l + 1); // chamada recursiva
11 Interpole a correção: v(l) ← v(l) + I2l−1h

2lh v(l+1);
12 Pós-suavização: aplique ν2 iterações de suavização em Alv

(l) = f (l);
13 end

3.4 Análise de erros

Segundo Marchi (2001), três tipos de métodos podem ser empregados na solução
de um problema: experimentais (onde existem erros experimentais), analíticos (com erros
de modelagem) e numéricos (com erros de modelagem e numéricos).

Neste trabalho o interesse será pela análise de erros numéricos, em que o erro
numérico (E) corresponde à diferença entre a solução analítica exata (Φ) de uma variável
de interesse e a sua solução numérica (ϕ) (FERZIGER; PERIĆ; STREET, 2002), ou seja,

E = Φ− ϕ. (3.24)

De forma geral, o erro numérico pode ser gerado por três fontes principais: erros de
truncamento, erros de iteração e erros de arredondamento (FERZIGER; PERIĆ; STREET,
2002; MARCHI, 2001). A seguir, cada fonte de erro será descrita com mais detalhes.

3.4.1 Erro de truncamento

O erro de truncamento ocorre quando se aproxima um modelo matemático contínuo,
que contém informações em um conjunto infinito de pontos, por um modelo discreto que
possui informações em um conjunto finito de pontos. Conforme Roache (1998), o erro de
truncamento é o resultado obtido ao interromper um processo infinito.

Segundo Pletcher, Tannehill e Anderson (2012), o erro de truncamento se origina
das aproximações numéricas empregadas na discretização de um modelo matemático.
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Em uma equação diferencial, o erro de truncamento é o resíduo que resulta quando se
substitui a solução analítica exata da variável dependente na equação discretizada do
modelo matemático. Em geral, este erro se reduz com a diminuição do tamanho da malha
(MARCHI, 2001).

Dentre as fontes de erro numérico, o erro de truncamento é o mais significativo
(ROY; OBERKAMPF, 2011). Quando os erros de truncamento representam a principal
fonte do erro numérico, ou seja, quando os erros de iteração e de arredondamento são
desprezados ou minimizados, o erro numérico é denominado de erro de discretização (Eh)
(FERZIGER; PERIĆ; STREET, 2002) e pode ser definido a partir da série de Taylor por

Eh = E(ϕ) = c0h
p0 + c1h

p1 + c2h
p2 + c3h

p3 + . . . =
∞∑
V=0

cV h
pV , (3.25)

em que os coeficientes cV , V = 0,1,2,3, . . . são números reais obtidos em função da variável
dependente do problema e de suas derivadas, mas independem de h.

Por definição, as ordens verdadeiras, pV , são os expoentes de h, e são inteiros
positivos que seguem a relação p0 < p1 < p2 < p3 . . .. A primeira ordem verdadeira, p0, é
chamada ordem assintótica, conhecida na literatura por ordem de acurácia, e é denotada
por pA. A ordem assintótica é um resultado teórico que pode ser obtido a priori das
soluções numéricas a partir dos tipos de aproximações utilizadas na discretização do
problema, de forma análoga ao realizado nas Seções 3.1 e 3.2. Assim, antes de se obter
qualquer solução numérica, é possível prever o comportamento assintótico do erro de
discretização.

Através das chamadas estimativas a posteriori, é possível verificar se a ordem
assintótica do erro de discretização, calculada a priori, coincide com a obtida pelo modelo
numérico desenvolvido. A análise de pA a posteriori da solução numérica é baseada no
cálculo da ordem efetiva (pE), quando a solução analítica é conhecida; caso contrário,
baseia-se no cálculo da ordem aparente (pU), nos quais são dadas por

pE =
log

∣∣∣∣∣E(ϕG)
E(ϕF )

∣∣∣∣∣
log(r) (3.26)

e

pU =
log

∣∣∣∣∣ϕG − ϕSGϕF − ϕG

∣∣∣∣∣
log(r) , (3.27)

onde ϕF , ϕG e ϕSG são as soluções numéricas obtidas nas malhas fina (com espaçamento
hF ), grossa (hG) e super grossa (hSG), respectivamente, geradas com razão de refino
r = hG

hF
= hSG

hG
. Teoricamente, as ordens efetiva e aparente tendem à ordem assintótica
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com o refinamento da malha, ou seja, pE, pU → pA quando h → 0 (MARCHI; SILVA,
2002).

3.4.2 Erro de iteração

Os erros de iteração estão associados à utilização de métodos iterativos na solução
dos sistemas de equações algébricas obtidas do processo de discretização das equações
diferenciais governantes do fenômeno físico estudado (ARAKI, 2007).

De acordo com Ferziger, Perić e Street (2002) define-se o erro de iteração (En) da
solução numérica (ϕn) de uma variável de interesse, na iteração n, como

E(ϕn) = ϕex − ϕn, (3.28)

no qual ϕex representa a solução exata do sistema de equações algébricas.

O erro, E(ϕn), pode ser originado por diferentes fatores, como: o emprego de
métodos iterativos para a solução das equações discretizadas, modelos constituídos por
várias equações diferenciais sendo resolvidas separadamente, ou ainda pela existência de
linearização no modelo matemático. De forma geral, o erro de iteração se reduz com o
aumento do número de iterações (MARCHI, 2001).

3.4.3 Erro de arredondamento

Os erros de arredondamento estão relacionados à capacidade finita de representação
de um certo número por um computador. Desta forma, os números são armazenados levando-
se em consideração um número limitado de dígitos, que varia de acordo com a linguagem
de programação, o tipo de variável utilizada e o processador empregado (ARAKI, 2007).

Segundo Marchi (2001), quanto maior é a precisão utilizada para representar
as variáveis, menores são os erros de arredondamento; entretanto, maior é a memória
computacional necessária para o armazenamento dessas variáveis.

3.5 Erro de programação

Os erros de programação são inerentes ao processo de desenvolvimento de códigos
computacionais e não devem ser confundidos com erros numéricos. Enquanto os erros
numéricos surgem de três principais fontes: erros de truncamento, erros de iteração e erros
de arredondamento, os erros de programação estão relacionados à implementação e uso do
código.

Os erros de programação podem ocorrer devido a diversas razões, incluindo: (i) uso
incorreto de um modelo numérico na aproximação de um modelo matemático; (ii) falhas
na implementação do modelo numérico no código computacional; (iii) uso inadequado do
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código durante a solução numérica; (iv) outras fontes inesperadas de erro na programação
(ROACHE, 1998).

Para minimizar erros de programação, a literatura apresenta diversas estratégias
(FERZIGER; PERIĆ; STREET, 2002; ROACHE, 1998; MARCHI, 2001), tais como:
(a) iniciar a implementação com um programa específico e, posteriormente, generalizá-lo;
(b) desenvolver o código em etapas, facilitando a detecção de erros; (c) testar o solver em
sistemas de equações simples com solução analítica conhecida; (d) utilizar uma malha
pequena para verificar se a solução converge adequadamente, ou seja, se o erro de iteração
atinge o nível do erro de máquina; (e) resolver um problema "fabricado" e verificar se, para
h→ 0, ocorre Eh → 0 e pU , pE → pA.

No presente trabalho, todas essas estratégias foram adotadas, com especial
atenção à verificação numérica, visando garantir a correta implementação e evitar erros de
programação. Essa verificação é detalhada no Capítulo 5.

3.6 Múltipla extrapolação de Richardson

A extrapolação de Richardson (ER) é uma ferramenta amplamente utilizada na
estimativa e redução do erro de discretização em simulações numéricas. Seu uso é indicado
quando a solução numérica ϕ(h) apresenta erro com comportamento previsível em função
de um parâmetro real, geralmente o espaçamento h. A técnica consiste em combinar
soluções obtidas em malhas com diferentes resoluções (Ωh e Ωrh, com r > 1), com o
objetivo de obter uma solução extrapolada ϕ∞ (solução analítica estimada) com ordem de
erro mais elevada.

A formulação clássica da ER é dada por (RICHARDSON; GAUNT, 1927):

ϕ∞ = ϕ(h) + ϕ(h)− ϕ(rh)
rp − 1 , (3.29)

no qual p representa a ordem assintótica do erro (pA) e r = hg
hg+1

é a razão de refino entre

as malhas, onde g é uma malha grossa e g + 1 é a malha imediatamente mais fina.

A múltipla extrapolação de Richardson (MER) é uma técnica numérica baseada
na aplicação recursiva da ER, visando aumentar a ordem de acurácia das soluções
numéricas obtidas em diferentes malhas (DAHLQUIST; BJÖRCK, 2008; MARCHI et al.,
2016). Essa abordagem permite elevar progressivamente a ordem de precisão do erro de
discretização Eh, especialmente em métodos iterativos. A técnica pode ser considerada
como um pós-processamento que requer apenas soluções numéricas obtidas em diferentes
malhas, sem necessidade de alterações no código original.

Portanto, a MER realiza várias iterações de um método numérico e depois combina
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essas iterações de maneira específica para obter uma estimativa mais precisa, elevando a
pA do erro de discretização (Eh). No contexto do MDF, o erro de discretização decresce
conforme a ordem verdadeira (pV ) da equação de diferenças empregada, ou seja, a taxa
com que o erro diminui quando a malha é refinada segue a ordem esperada do método
(por exemplo, p0 = 2, p1 = 4, p2 = 6, . . ., para o caso do CDS nas variáveis espaciais e
Crank-Nicolson na variável temporal na Eq. (3.25)). Porém, se não se conhece a ordem
verdadeira, pode-se trabalhar com ordens aparentes estimadas numericamente (SILVA et
al., 2022).

Seja ϕg,0 a solução numérica na malha g sem extrapolação. A MER é definida de
forma recursiva pela expressão:

ϕg,m = ϕg,m−1 + ϕg,m−1 − ϕg−1,m−1

rp(m−1) − 1 , (3.30)

com g = m+ 1, ..., G e m = 1, ..., g − 1, em que G é o número total de malhas disponíveis.
A cada aplicação da MER, o termo de erro dominante é cancelado, elevando a ordem da
aproximação.

Os valores de pm obtidos a priori podem ser confirmados a posteriori com o conceito
de ordem efetiva (pE) do erro de discretização, o qual, generalizado para a extrapolação
de Richardson repetida, é dado por (MARCHI et al., 2013)

(pE)g,m =
log
(Ehg−1,m

Ehg,m

)
log(r) =

log
(Φ− ϕg−1,m

Φ− ϕg,m

)
log(r) . (3.31)

Em contextos no qual a solução analítica exata Φ não é conhecida, a ordem
aparente de convergência pU pode ser estimada por:

(pU)g,m =
log

(
ϕg−1,m − ϕg−2,m

ϕg,m − ϕg−1,m

)
log(r) , (3.32)

exigindo-se, portanto, no mínimo três malhas distintas para sua aplicação.

Um exemplo de representação gráfica da aplicação da MER considerando G = 9,
para o caso da ordem aparente pU , é apresentado na FIGURA 7. As linhas representam os
níveis de malha g (isto é, diferentes refinamentos do domínio computacional), enquanto as
colunas indicam os níveis de extrapolação m.

Cada nó ϕg,m corresponde a uma solução numérica obtida no nível g, após m
etapas sucessivas de extrapolação de Richardson. As setas direcionais indicam a construção
hierárquica da extrapolação: a cada novo valor ϕg,m são utilizadas três soluções consecutivas
da coluna anterior (m−1), a saber, ϕg−2,m−1, ϕg−1,m−1 e ϕg,m−1. Esse padrão é evidenciado
pelas setas convergentes que apontam para cada extrapolação computada.
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O processo avança até o ponto destacado ϕ9,4, que representa a solução extrapolada
com maior nível de acurácia possível, considerando o total de malhas disponíveis (G = 9)
e o refinamento progressivo permitido pela estrutura da MER, sendo m = 4 extrapoladas.
Quanto maiores os valores de g e m, menor será o erro de discretização associado à variável
extrapolada.

FIGURA 7 – Esquema prático do MER da solução numérica para G = 9 com 4 níveis de
extrapolação.
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FONTE: Adaptado de Silva et al. (2021).

3.7 Estimadores para o erro de discretização

Nesta seção, são discutidos aspectos relacionados à estimativa do erro de
discretização, considerando o uso de MER. Inicialmente, apresenta-se o estimador de
Richardson para o erro de discretização. Em seguida, são explorados dois estimadores
disponíveis na literatura, cujas expressões são adaptadas para aplicação em MER.

3.7.1 Estimadores

Quando a solução analítica Φ é desconhecida, o erro de discretização não pode
ser calculado. Assim, é utilizado o conceito de incerteza (U). A incerteza de uma solução
numérica é calculada pela diferença entre a solução analítica estimada (ϕ∞) para uma
variável de interesse e sua solução numérica (ϕ) (CHAPRA; CANALE, 1994), ou seja,
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U(ϕ) = ϕ∞ − ϕ. (3.33)

Uma maneira de estimar o erro de discretização é utilizar os estimadores de
erro de Richardson baseados na ordem aparente (pU) e na ordem assintótica (pA), pois
são amplamente relatados na literatura, servindo assim como estimadores de referência
(MARCHI; SANTIAGO; CARVALHO JR, 2021).

Os estimadores de erro de Richardson são dados por

URi(pU) = (ϕF − ϕG)
(rpU − 1) , URi(pA) = (ϕF − ϕG)

(rpA − 1) , (3.34)

em que ϕF e ϕG são as soluções numéricas obtidas nas malhas fina (hF ) e grossa (hG),
respectivamente, geradas com razão de refino r = hG

hF
e pU dada pela Eq. (3.27).

Para obter a estimativa do erro de discretização levando em consideração o emprego
de MER, utiliza-se dois estimadores presentes na literatura, que são eles, estimador
de Richardson corrigido (pmc) e estimador ψ corrigido (ψ∗) (MARCHI et al., 2016;
RODRIGUES et al., 2022).

O estimador de Richardson, denotado por pm, é uma extensão da formulação
clássica (Eq. 3.34) e se aplica às soluções intermediárias obtidas com MER. Conforme
apresentado em Martins (2013), Marchi et al. (2013), é definido como:

Upm(ϕg,m) = ϕg,m − ϕg−1,m

rpm − 1 , (3.35)

em que g representa o nível de malha e m o nível de extrapolação. Esse estimador é válido
para m = 0, 1, . . . , G− 2 e g = m+ 2, . . . , G. Contudo, o estimador Upm não estima o erro
de discretização para o último nível de extrapolação com m máximo. Como alternativa,
a utilização de um fator de correção rpm , de modo que o estimador passa a assumir a
forma:

Upmc(ϕg,m) = rpm · Upm(ϕg+1,m), (3.36)

com m = g − 1. O fator de correção rpm ajusta a estimativa original, ampliando sua
aplicabilidade.

Outra estimativa do erro de discretização com MER (Em) é conhecida como
estimador ψ, que é dada por:

Uψ(ϕg,m) = ϕg,m − ϕg−1,m−1

ψ − 1 , com ψ = ϕg−1,m−1 − ϕg−2,m−2

ϕg,m − ϕg−1,m−1
, (3.37)
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em que g = 3, . . . , G. Este estimador é eficaz na redução do erro somente quando a condição
|ψ| > 1 for satisfeita. Tal condição assegura a convergência.

Com base na Eq. (3.32), a ordem aparente é associada à estimativa do erro de
discretização Em na malha Ωhg . No entanto, como essa estimativa depende de soluções
obtidas em três malhas refinadas consecutivamente, considera-se que pU representa a
inclinação média do gráfico de Em, refletindo a taxa de convergência local em um intervalo
de discretização.

Partindo dessa abordagem, propõe-se que a razão de convergência calculada
a partir de três malhas consecutivas, isto é, Ωhg−1 , Ωhg , Ωhg+1 , seja atribuída à malha
intermediária Ωhg , considerando-se que hg−1, hg, hg+1 satisfaz uma razão de refino constante
r = hg−1/hg = hg/hg+1, no qual g − 1 é uma malha supergrossa, g a malha grossa e g + 1
é a malha fina.

Para isso, uma correção do estimador ψ, denominada ψ∗, é introduzida de forma
a incorporar informações de três níveis consecutivos de extrapolação da MER. O objetivo
é melhorar a estabilidade e a precisão da estimativa do erro Em. A correção é descrita por
Marchi et al. (2013), como:

Uψ∗(ϕg,m) = ϕg,m − ϕg−1,m−1

ψ∗ − 1 , ψ∗ = ψg+1; g = 2, . . . , G− 1, (3.38)

para g = 2, . . . , G, em que,

ψ∗ =



ϕg,m − ϕg−1,m−1

ϕg+1,m+1 − ϕg,m
, g = 2,3, . . . ,G− 1,

(ϕg−1,m−1 − ϕg−2,m−2)2

(ϕg,m − ϕg−1,m−1)(ϕg−2,m−2 − ϕg−3,m−3)
, g = G.

(3.39)

Esse estimador é especialmente útil nas etapas finais da extrapolação, em que o
erro de arredondamento começa a influenciar os resultados. Ao considerar três malhas
consecutivas, a razão ψ∗ permite suavizar flutuações e fornecer uma estimativa mais
robusta do erro de discretização, sobretudo quando os valores de |ψ| se aproximam de 1
ou os erros se tornam muito pequenos.

3.7.2 Eficácia da estimativa de erro

Em situações nas quais a solução analítica Φ do problema não é conhecida, torna-
se fundamental avaliar a qualidade das estimativas de erro numérico, denotadas por U .
Para isso, calibram-se os estimadores de erro nos casos que se conheça a solução analítica,
ou seja, onde o erro é acessível. Uma métrica amplamente utilizada com essa finalidade
é a efetividade da estimativa, representada por θ, a qual é definida pela razão entre a
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incerteza U e o erro real E (MARCHI, 2001; RODRIGUES et al., 2022):

θ = U

E
. (3.40)

O caso ideal ocorre quando θ = 1, isto é, quando a incerteza estimada corresponde
exatamente ao erro real cometido pela solução numérica. No entanto, esse cenário é raro
em aplicações computacionais reais.

Quando a magnitude da incerteza U é superior à do erro E, a estimativa é
classificada como confiável:

θ > 1. (3.41)

Por outro lado, quando θ está suficientemente próximo de 1, a estimativa é
considerada acurada, o que significa que o valor de U reproduz com boa fidelidade o valor
de E:

θ ≈ 1. (3.42)

Por isso, busca-se, de forma prática, que a estimativa seja acurada, indicando que
a incerteza estimada representa, com boa aproximação, o erro numérico verdadeiro.

A definição quantitativa de “quão próximo” θ deve estar da unidade para que se
considere a estimativa precisa pode variar conforme o contexto do problema, os critérios
de verificação/validação adotados e o nível de tolerância à incerteza exigido na análise.

A análise da eficácia da estimativa de erro, por meio da efetividade θ, é portanto,
uma ferramenta importante na verificação de códigos numéricos, especialmente em
problemas em que não se dispõem de soluções analíticas de referência.
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4 MODELO NUMÉRICO

A solução do modelo matemático de interesse, Eqs. (2.1) - (2.4), é obtida através
da aproximação numérica em cada um dos seus termos, usando o MDF. O método
numérico tem a finalidade de resolver as equações resultantes da discretização para estimar
a solução numérica do problema original. Para isto, considera-se N , F , M e U como
uma aproximação das soluções das equações do modelo de n, f , m e u, respectivamente.
Os termos espaciais são discretizados utilizando uma aproximação de segunda ordem do
tipo CDS, Eqs. (3.14)-(3.17). Para discretizar os termos temporais, utiliza-se o método
de Crank-Nicolson (CN), que consiste em um método das diferenças finitas implícito no
tempo e numericamente estável. Este método é obtido através da média aritmética entre
os métodos explícito e implícito (CUMINATO; MENEGUETTE, 2013).

4.1 Malha utilizada

A primeira etapa da aplicação do MDF consiste em definir o domínio discreto
onde a solução será aproximada. Para realizar a discretização, define-se uma malha, que é
um conjunto finito de pontos pertencentes ao domínio, chamados nós da malha.

A malha geométrica no MDF é geralmente estruturada localmente, ou seja, cada
nó pode ser considerado como a origem de um sistema de coordenadas local, cujos eixos
coincidem com as linhas da malha. A FIGURA 8 mostra um exemplo de malha cartesiana
bidimensional (2D) usada no MDF, em que o símbolo • denota os nós sobre os contornos
e o símbolo ◦ denota os nós internos da malha. Considera-se Nx pontos na direção x, Ny

pontos na direção y e espaçamento igual para cada intervalo e em ambas as direções, ou
seja, h = hx = hy. Neste caso, a malha é denominada uniforme e com espaçamento entre
os nós dado por h.

Cada nó é unicamente definido pela interseção das linhas de malhas na posição
(i, j). Os nós vizinhos são definidos aumentando-se ou diminuindo-se uma unidade de cada
índice i ou j. Assim o nó (i− 1, j) representa a posição oeste, (i+ 1, j) representa o nó
na posição leste, (i, j − 1) representa o nó na posição sul e (i, j + 1) representa o nó na
posição norte.

Para resolver a equação diferencial numericamente, faz-se necessário encontrar,
para os termos que aparecem no modelo, as respectivas expressões escritas em função
dos pontos da malha. Essas expressões, neste caso, são denominadas de aproximações
por diferenças finitas. O resultado final deste processo é uma equação algébrica, chamada
equações de diferenças finitas, que é descrita para cada ponto da região discretizada, em
que se deseja calcular a solução do problema. Resolvendo-se as equações de diferenças
finitas, encontra-se a solução aproximada do problema (FORTUNA, 2000).
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FIGURA 8 – Malha computacional bidimensional uniforme com tamanhos dos espaços de
malha h.

FONTE: A autora (2025).
4.2 Linearização

Uma forma de resolver sistemas de equações não lineares é utilizar algumas técnicas
de linearização, transformando-as em sequência de equações lineares e assim aplicar os
métodos tradicionais de resolução de sistemas lineares.

Observa-se que as Eqs. (2.1) e (2.2) apresentam termos quadráticos nas variáveis
n e f , assim, para a discretização destas variáveis, denotadas por N e F , respectivamente,
tem-se que linearizar o termo (i,j) quadrático no nível de tempo k+1, resultando no cálculo
de um sistema não linear implícito em cada passo de tempo. Para evitar a necessidade da
resolução do sistema não linear, lineariza-se o termo (Q2)k+1

i,j , aplicando a expansão em
série de Taylor, ou seja

(Q2)k+1
i,j = (Q2)ki,j + τ

∂

∂t
(Q2)ki,j + . . .

= (Q2)ki,j + 2Qk
i,jτ

∂

∂t
Qk
i,j + . . . ,

(4.1)

em que τ é o tamanho do passo temporal, dado por τ = tf/(Nt − 1). Aqui, Q é uma
representação genérica de N ou F ; i, j indicam a posição espacial e k + 1 o tempo atual.

Utilizando diferenças progressivas na derivada temporal da Eq. (4.1), ou seja,
∂

∂t
Qk
i,j ≃

Qk+1
i,j −Qk

ij

τ
, tem-se

(Q2)k+1
i,j ≃ (Q2)ki,j + 2Qk

i,jτ

(
Qk+1
i,j −Qk

i,j

τ

)
≃ (Q2)ki,j + 2Qk

i,jQ
k+1
i,j − 2(Q2)ki,j,

(4.2)
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logo
(Q2)k+1

i,j ≃ −(Q2)ki,j + 2Qk
i,jQ

k+1
i,j . (4.3)

Desta forma, trata-se o problema linearizado. Mais sobre essa técnica pode ser
visto em Sheu e Lin (2004, 2005), MATSUBARA JR (2017).

4.3 Discretização da variável N

Por questões didáticas, repete-se a Eq. (2.1),

∂n

∂t
= dn∆n︸ ︷︷ ︸

difusão

− γ∇.(n∇f)︸ ︷︷ ︸
haptotaxia

+µ1n(1− n− f)︸ ︷︷ ︸
proliferação

.

Aplicando os operadores de forma adequada, pode-se reescrever a Eq. (2.1), como

∂n

∂t
= dn

(
∂2n

∂x2 + ∂2n

∂y2

)
−γ

(
∂n

∂x

∂f

∂x
+ n

∂2f

∂x2 + ∂n

∂y

∂f

∂y
+ n

∂2f

∂y2

)
+µ1n(1−n−f)+sn, (4.4)

onde sn é um termo fonte que será agregado a esta equação a depender da solução do
problema (mais detalhes no Capítulo 5) e Sn sua aproximação.

Discretizando a Eq. (4.4), utilizando diferenças centrais (CDS) no espaço,
considerando o comprimento destas discretizações espaciais nas direções x e y iguais
a hx = hy = h, e utilizando o método Crank-Nicolson (CN) no tempo, tem-se:

Nk+1
i,j −Nk

i,j

τ
= 1

2

[
dn

(
Nk+1
i−1,j − 2Nk+1

i,j +Nk+1
i+1,j

h2 +
Nk+1
i,j−1 − 2Nk+1

i,j +Nk+1
i,j+1

h2

)

−γ
(
Nk+1
i+1,j −Nk+1

i−1,j

2h ·
F k+1
i+1,j − F k+1

i−1,j

2h +Nk+1
i,j

F k+1
i−1,j − 2F k+1

i,j + F k+1
i+1,j

h2 +

Nk+1
i.j+1 −Nk+1

i,j−1

2h ·
F k+1
i,j+1 − F k+1

i,j−1

2h +Nk+1
i,j

F k+1
i,j−1 − 2F k+1

i,j + F k+1
i,j+1

h2

)
+µ1N

k+1
i,j − µ1(N2)k+1

i,j − µ1N
k+1
i,j F k+1

i,j + Snk+1
i,j +

dn

(
Nk
i−1,j − 2Nk

i,j +Nk
i+1,j

h2 +
Nk
i,j−1 − 2Nk

i,j +Nk
i,j+1

h2

)

−γ
(
Nk
i+1,j −Nk

i−1,j

2h ·
F k
i+1,j − F k

i−1,j

2h +Nk
i,j

F k
i−1,j − 2F k

i,j + F k
i+1,j

h2 +

Nk
i.j+1 −Nk

i,j−1

2h ·
F k
i,j+1 − F k

i,j−1

2h +Nk
i,j

F k
i,j−1 − 2F k

i,j + F k
i,j+1

h2

)

+µ1N
k
i,j − µ1(N2)ki,j − µ1N

k
i,jF

k
i,j + Snki,j

]
.

(4.5)
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Pode-se perceber que na Eq. (4.5) há o termo quadrático (N2)k+1
i,j , que pode ser

linearizado usando a expansão em série de Taylor, como visto na Eq. (4.3). Assim,

(N2)k+1
i,j ≃ −(N2)ki,j + 2Nk

i,jN
k+1
i,j . (4.6)

Substituindo o termo quadrático linearizado pela Eq. (4.6), pode-se reescrever a
Eq. (4.5) como

Nk+1
i,j −Nk

i,j

τ
= 1

2

[
dn

(
Nk+1
i−1,j − 2Nk+1

i,j +Nk+1
i+1,j

h2 +
Nk+1
i,j−1 − 2Nk+1

i,j +Nk+1
i,j+1

h2

)

−γ
(
Nk+1
i+1,j −Nk+1

i−1,j

2h ·
F k+1
i+1,j − F k+1

i−1,j

2h +Nk+1
i,j

F k+1
i−1,j − 2F k+1

i,j + F k+1
i+1,j

h2 +

Nk+1
i.j+1 −Nk+1

i,j−1

2h ·
F k+1
i,j+1 − F k+1

i,j−1

2h +Nk+1
i,j

F k+1
i,j−1 − 2F k+1

i,j + F k+1
i,j+1

h2

)
+µ1N

k+1
i,j − µ1

(
−(N2)ki,j + 2Nk

i,jN
k+1
i,j

)
− µ1N

k+1
i,j F k+1

i,j + Snk+1
i,j +

dn

(
Nk
i−1,j − 2Nk

i,j +Nk
i+1,j

h2 +
Nk
i,j−1 − 2Nk

i,j +Nk
i,j+1

h2

)

−γ
(
Nk
i+1,j −Nk

i−1,j

2h ·
F k
i+1,j − F k

i−1,j

2h +Nk
i,j

F k
i−1,j − 2F k

i,j + F k
i+1,j

h2 +

Nk
i.j+1 −Nk

i,j−1

2h ·
F k
i,j+1 − F k

i,j−1

2h +Nk
i,j

F k
i,j−1 − 2F k

i,j + F k
i,j+1

h2

)

+µ1N
k
i,j − µ1(N2)ki,j − µ1N

k
i,jF

k
i,j + Snki,j

]
.

(4.7)

Isolando Nk+1
i,j , tem-se

[1
τ

+ 2dn
h2 + γ

2h2

(
F k+1
i,j−1 + F k+1

i,j+1 + F k+1
i−1,j + F k+1

i+1,j − 4F k+1
i,j

)
+µ1

2
(
2Nk

i,j + F k+1
i,j − 1

) ]
·Nk+1

i,j =

dn
2

(
Nk+1
i−1,j +Nk+1

i+1,j

h2 +
Nk+1
i,j−1 +Nk+1

i,j+1

h2

)
− γ

2

(
Nk+1
i+1,j −Nk+1

i−1,j

2h ·
F k+1
i+1,j − F k+1

i−1,j

2h +

Nk+1
i.j+1 −Nk+1

i,j−1

2h ·
F k+1
i,j+1 − F k+1

i,j−1

2h

)
+ µ1

2 (N2)ki,j + 1
τ
Nk
i,j + 1

2Sn
k+1
i,j +

dn
2

(
Nk
i−1,j − 2Nk

i,j +Nk
i+1,j

h2 +
Nk
i,j−1 − 2Nk

i,j +Nk
i,j+1

h2

)

−γ2

(
Nk
i+1,j −Nk

i−1,j

2h ·
F k
i+1,j − F k

i−1,j

2h +Nk
i,j

F k
i−1,j − 2F k

i,j + F k
i+1,j

h2 +

Nk
i.j+1 −Nk

i,j−1

2h ·
F k
i,j+1 − F k

i,j−1

2h +Nk
i,j

F k
i,j−1 − 2F k

i,j + F k
i,j+1

h2

)

+µ1

2
(
1−Nk

i,j − F k
i,j

)
Nk
i,j + 1

2Sn
k
i,j.

(4.8)
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Considerando

apa = 1
τ
,

an1 = dn
2h2 ,

an2 = γ

2h2 ,

an3 = µ1

2 ,

an4 = 1
τ

+ 2dn
h2 −

µ1

2 ,

an5 = an4 + an2
(
F k+1
i,j−1 + F k+1

i,j+1 + F k+1
i−1,j + F k+1

i+1,j − 4F k+1
i,j

)
+ an3

(
2Nk

i,j + F k+1
i,j

)
,

pode-se reescrever a Eq. (4.8) como

an5N
k+1
i,j = an1

(
Nk+1
i−1,j +Nk+1

i+1,j +Nk+1
i,j−1 +Nk+1

i,j+1

)

−an2

4
[(
Nk+1
i+1,j −Nk+1

i−1,j

) (
F k+1
i+1,j − F k+1

i−1,j

)
+
(
Nk+1
i,j+1 −Nk+1

i,j−1

) (
F k+1
i,j+1 − F k+1

i,j−1

)]
+Nk

i,j

(
an3N

k
i,j + apa

)
+ 1

2Sn
k+1
i,j + dn

2h2

(
Nk
i−1,j +Nk

i+1,j +Nk
i,j−1 +Nk

i,j+1 − 4Nk
i,j

)
− γ

8h2

[ (
Nk
i+1,j −Nk

i−1,j

) (
F k
i+1,j − F k

i−1,j

)
+
(
Nk
i,j+1 −Nk

i,j−1

)
(
F k
i,j+1 − F k

i,j−1

)
+ 4Nk

i,j

(
F k
i−1,j + F k

i+1,j + F k
i,j−1 + F k

i,j+1 − 4F k
i,j

) ]

+an3
(
1−Nk

i,j − F k
i,j

)
Nk
i,j + 1

2Sn
k
i,j,

(4.9)

ou ainda, fazendo

Fnk+1
i,j = Nk

i,j

(
an3N

k
i,j + apa

)
+ dn

2h2

(
Nk
i−1,j +Nk

i+1,j +Nk
i,j−1 +Nk

i,j+1 − 4Nk
i,j

)
− γ

8h2

[ (
Nk
i+1,j −Nk

i−1,j

) (
F k
i+1,j − F k

i−1,j

)
+
(
Nk
i,j+1 −Nk

i,j−1

)
(
F k
i,j+1 − F k

i,j−1

)
+ 4Nk

i,j

(
F k
i−1,j + F k

i+1,j + F k
i,j−1 + F k

i,j+1 − 4F k
i,j

) ]
+an3

(
1−Nk

i,j − F k
i,j

)
Nk
i,j + 1

2
(
Snki,j + Snk+1

i,j

)
,

(4.10)

tem-se:

an5N
k+1
i,j = an1

(
Nk+1
i−1,j +Nk+1

i+1,j +Nk+1
i,j−1 +Nk+1

i,j+1

)
− 0,25 · an2

[(
Nk+1
i+1,j −Nk+1

i−1,j

)
(
F k+1
i+1,j − F k+1

i−1,j

)
+
(
Nk+1
i,j+1 −Nk+1

i,j−1

) (
F k+1
i,j+1 − F k+1

i,j−1

) ]
+ Fnk+1

i,j . (4.11)
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4.4 Discretização da variável F

Dada a Eq. (2.2), referente à variável f ,

∂f

∂t
= − ηmf︸ ︷︷ ︸

degradação

+µ2f(1− n− f)︸ ︷︷ ︸
renovação

,

podemos reescrevê-la como,

∂f

∂t
= −ηmf + µ2f(1− n− f) + sf , (4.12)

onde sf é um termo fonte agregado a esta equação e Sf sua aproximação.

Realizando as discretizações com os mesmos métodos da seção anterior, tem-se,

F k+1
i,j − F k

i,j

τ
= 1

2
[
−ηMk+1

i,j F k+1
i,j + µ2F

k+1
i,j (1−Nk+1

i,j − F k+1
i,j ) + Sfk+1

i,j

−ηMk
i,jF

k
i,j + µ2F

k
i,j(1−Nk

i,j − F k
i,j) + Sfki,j

]
.

(4.13)

Linearizando (F 2)k+1
i,j da Eq. (4.13) com

(F 2)k+1
i,j ≃ −(F 2)ki,j + 2F k

i,jF
k+1
i,j , (4.14)

tem-se:

F k+1
i,j − F k

i,j

τ
= 1

2
[
− ηMk+1

i,j F k+1
i,j + µ2F

k+1
i,j − µ2F

k+1
i,j Nk+1

i,j + µ2(F 2)ki,j−

2µ2F
k
i,jF

k+1
i,j + Sfk+1

i,j − ηMk
i,jF

k
i,j + µ2F

k
i,j(1−Nk

i,j − F k
i,j) + Sfki,j

]
.

(4.15)

Isolando F k+1
i,j ,[1

τ
+ η

2M
k+1
i,j + µ2

2
(
Nk+1
i,j + 2F k

i,j − 1
)]
F k+1
i,j = 1

τ
F k
i,j + 1

2
[
µ2(F 2)ki,j + Sfk+1

i,j

−ηMk
i,jF

k
i,j + µ2F

k
i,j(1−Nk

i,j − F k
i,j) + Sfki,j

]
.

(4.16)

Definindo

apa = 1
τ
,

af1 = η

2 ,

af2 = µ2

2 ,

af3 = apa + af1M
k+1
i,j + af2

(
Nk+1
i,j + 2F k

i,j − 1
)
,
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fazendo

Ffk+1
i,j = apaF

k
i,j + af2(F 2)ki,j − af1M

k
i,jF

k
i,j + af2F

k
i,j(1−Nk

i,j − F k
i,j)+

1
2
(
Sfk+1

i,j + Sfki,j
)
,

(4.17)

pode-se reescrever a Eq. (4.16) como

af3F
k+1
i,j = Ffk+1

i,j . (4.18)

4.5 Discretização da variável M

Dada a Eq. (2.3),

∂m

∂t
= dm∆m︸ ︷︷ ︸

difusão

+ αn︸︷︷︸
produção

− θum︸ ︷︷ ︸
neutralização

− βm︸︷︷︸
decaimento

,

que, aplicando os operadores de forma adequada, pode-se reescrever como

∂m

∂t
= dm

(
∂2m

∂x2 + ∂2m

∂y2

)
+ αn− θum− βm+ sm, (4.19)

onde sm é um termo fonte agregado a esta equação e Sm sua discretização.

Realizando as discretizações da Eq. (4.19), equação referente à variável m, tem-se

Mk+1
i,j −Mk

i,j

τ
= 1

2

[
dm

(
Mk+1

i−1,j − 2Mk+1
i,j +Mk+1

i+1,j

h2 +
Mk+1

i,j−1 − 2Mk+1
i,j +Mk+1

i,j+1

h2

)
+αNk+1

i,j − θUk+1
i,j Mk+1

i,j − βMk+1
i,j + Smk+1

i,j

+dm
(
Mk

i−1,j − 2Mk
i,j +Mk

i+1,j

h2 +
Mk

i,j−1 − 2Mk
i,j +Mk

i,j+1

h2

)

+αNk
i,j − θUk

i,jM
k
i,j − βMk

i,j + Smk
i,j

]
.

(4.20)

Isolando Mk+1
i,j ,(

1
τ

+ 2dm
h2 + β

2 + θ

2U
k+1
i,j

)
Mk+1

i,j = dm
2h2

(
Mk+1

i−1,j +Mk+1
i+1,j +Mk+1

i,j−1 +Mk+1
i,j+1

)

+α2N
k+1
i,j + 1

τ
Mk

i,j + 1
2Sm

k+1
i,j

+ dm
2h2

(
Mk

i−1,j +Mk
i+1,j +Mk

i,j−1 +Mk
i,j+1 − 4Mk

i,j

)

+α2N
k
i,j −

θ

2U
k
i,jM

k
i,j −

β

2M
k
i,j + 1

2Sm
k
i,j.

(4.21)
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Considerando,

apa = 1
τ
,

am1 = dm
2h2 ,

am2 = β

2 ,

am3 = θ

2 ,

am4 = α

2 ,

am5 = 1
τ

+ 2dm
h2 + β

2 ,

tem-se,(
am5 + am3U

k+1
i,j

)
Mk+1

i,j = am1
(
Mk+1

i−1,j +Mk+1
i+1,j +Mk+1

i,j−1 +Mk+1
i,j+1

)
+ am4N

k+1
i,j

+apaMk
i,j + 1

2Sm
k+1
i,j + am1

(
Mk

i−1,j +Mk
i+1,j +Mk

i,j−1 +Mk
i,j+1 − 4Mk

i,j

)
+am4N

k
i,j − am3U

k
i,jM

k
i,j − am2M

k
i,j + 1

2Sm
k
i,j,

(4.22)

fazendo,
am6 = am5 + am3U

k+1
i,j , (4.23)

e

Fmk+1
i,j = apaM

k
i,j + am1

(
Mk

i−1,j +Mk
i+1,j +Mk

i,j−1 +Mk
i,j+1 − 4Mk

i,j

)
+

am4N
k
i,j − am3U

k
i,jM

k
i,j − am2M

k
i,j + 1

2
(
Smk+1

i,j + Smk
i,j

)
,

(4.24)

pode-se reescrever a Eq. (4.22) como

am6M
k+1
i,j = am1

(
Mk+1

i−1,j +Mk+1
i+1,j +Mk+1

i,j−1 +Mk+1
i,j+1

)
+ am4N

k+1
i,j + Fmk+1

i,j . (4.25)

4.6 Discretização da variável U

Dada a Eq. (2.4),

∂u

∂t
= du∆u︸ ︷︷ ︸

difusão

+ ξf︸︷︷︸
produção de inibidor

− θum︸ ︷︷ ︸
neutralização

− ρu︸︷︷︸
decaimento

,

que pode ser escrita como,

∂u

∂t
= du

(
∂2u

∂x2 + ∂2u

∂y2

)
+ ξf − θum− ρu+ su, (4.26)

onde su é um termo fonte agregado a esta equação e Su sua discretização.
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Realizando as discretizações da Eq. (4.26), equação referente à variável u, tem-se

Uk+1
i,j − Uk

i,j

τ
= 1

2

[
du

(
Uk+1
i−1,j − 2Uk+1

i,j + Uk+1
i+1,j

h2 +
Uk+1
i,j−1 − 2Uk+1

i,j + Uk+1
i,j+1

h2

)
+

ξF k+1
i,j − θUk+1

i,j Mk+1
i,j − ρUk+1

i,j + Suk+1
i,j +

du

(
Uk
i−1,j − 2Uk

i,j + Uk
i+1,j

h2 +
Uk
i,j−1 − 2Uk

i,j + Uk
i,j+1

h2

)
+

ξF k
i,j − θUk

i,jM
k
i,j − ρUk

i,j + Suki,j

]
.

(4.27)

Isolando Uk+1
i,j ,(

1
τ

+ 2du
h2 + ρ

2 + θ

2M
k+1
i,j

)
Uk+1
i,j = du

2h2

(
Uk+1
i−1,j + Uk+1

i+1,j + Uk+1
i,j−1 + Uk+1

i,j+1

)
+

ξ

2F
k+1
i,j + 1

τ
Uk
i,j + 1

2Su
k+1
i,j + du

2h2

(
Uk
i−1,j + Uk

i+1,j + Uk
i,j−1 + Uk

i,j+1 − 4Uk
i,j

)
+

ξ

2F
k
i,j −

θ

2U
k
i,jM

k
i,j −

ρ

2U
k
i,j + 1

2Su
k
i,j.

(4.28)

Considerando,

apa = 1
τ
,

au1 = du
2h2 ,

au2 = ρ

2 ,

am3 = θ

2 ,

au3 = ξ

2 ,

au4 = 1
τ

+ 2du
h2 + ρ

2 ,

tem-se,

(
au4 + am3M

k+1
i,j

)
Uk+1
i,j = au1

(
Uk+1
i−1,j + Uk+1

i+1,j + Uk+1
i,j−1 + Uk+1

i,j+1

)
+ au3F

k+1
i,j +

apaU
k
i,j + au1

(
Uk
i−1,j + Uk

i+1,j + Uk
i,j−1 + Uk

i,j+1 − 4Uk
i,j

)
+ au3F

k
i,j − am3U

k
i,jM

k
i,j

−au2U
k
i,j + 1

2
(
Suk+1

i,j + Suki,j
)
,

(4.29)

fazendo
au5 = au4 + am3M

k+1
i,j , (4.30)
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Fuk+1
i,j = apaU

k
i,j + au1

(
Uk
i−1,j + Uk

i+1,j + Uk
i,j−1 + Uk

i,j+1 − 4Uk
i,j

)
+

au3F
k
i,j − am3U

k
i,jM

k
i,j − au2U

k
i,j + 1

2
(
Suk+1

i,j + Suki,j
)
,

(4.31)

pode-se reescrever a Eq. (4.29) como

au5U
k+1
i,j = au1

(
Uk+1
i−1,j + Uk+1

i+1,j + Uk+1
i,j−1 + Uk+1

i,j+1

)
+ au3F

k+1
i,j + Fuk+1

i,j . (4.32)

Portanto, no processo de discretização das equações do modelo (2.1)–(2.4), adotou-
se o método das diferenças finitas, utilizando o esquema de diferenças centrais para as
derivadas espaciais e o método de Crank-Nicolson para a discretização temporal. Essa
combinação garante precisão de segunda ordem, tanto no espaço quanto no tempo.

A aplicação desses esquemas às equações do modelo resulta em um sistema
acoplado de equações lineares que descreve a evolução temporal das variáveis N , F , M e
U em cada ponto da malha espacial. O sistema discreto completo, expresso ponto a ponto,
é representado pelas Eqs. (4.11), (4.18), (4.25) e (4.32), dadas por:



an5N
k+1
i,j = an1

(
Nk+1
i−1,j +Nk+1

i+1,j +Nk+1
i,j−1 +Nk+1

i,j+1

)
− 0,25 an2

[
(Nk+1

i+1,j −Nk+1
i−1,j)

(F k+1
i+1,j − F k+1

i−1,j) + (Nk+1
i,j+1 −Nk+1

i,j−1)(F k+1
i,j+1 − F k+1

i,j−1)
]

+ Fnk+1
i,j ,

af3 F
k+1
i,j = Ffk+1

i,j ,

am6 M
k+1
i,j = am1

(
Mk+1

i−1,j +Mk+1
i+1,j +Mk+1

i,j−1 +Mk+1
i,j+1

)
+ am4 N

k+1
i,j + Fmk+1

i,j ,

au5 U
k+1
i,j = au1

(
Uk+1
i−1,j + Uk+1

i+1,j + Uk+1
i,j−1 + Uk+1

i,j+1

)
+ au3 F

k+1
i,j + Fuk+1

i,j .

A equação discreta da variável N envolve termos de difusão, advecção acoplada
com F e fontes. Para auxiliar na visualização da estrutura local da equação em torno
do ponto (i,j), utiliza-se a notação estêncil (BRIGGS; HENSON; MCCORMICK, 2000),
que representa os coeficientes associados a cada ponto da vizinhança imediata. Para isso,
reorganiza-se os termos em função de Nk+1

i,j , Nk+1
i−1,j , Nk+1

i+1,j , Nk+1
i,j−1 e Nk+1

i,j+1, conforme abaixo

an5N
k+1
i,j − [an1 + 0,25 an2(F k+1

i+1,j − F k+1
i−1,j)]Nk+1

i−1,j

−[an1 − 0,25 an2(F k+1
i+1,j − F k+1

i−1,j)]Nk+1
i+1,j

−[an1 + 0,25 an2(F k+1
i,j+1 − F k+1

i,j−1)]Nk+1
i,j−1

−[an1 − 0,25 an2(F k+1
i,j+1 − F k+1

i,j−1)]Nk+1
i,j+1 = −Fnk+1

i,j ,
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Denomina-se por AN a matriz local dos coeficientes do sistema linear associado à
equação de N , cuja estrutura estêncil correspondente à Eq. (4.11) é dada por:

AN =


aNk+1

i,j+1

aNk+1
i−1,j

aNk+1
i,j

aNk+1
i+1,j

aNk+1
i,j−1


Substituindo os coeficientes conforme os parâmetros do modelo, obtém-se a

expressão explícita do estêncil:

AN =


−an1 + an2

4 (F k+1
i,j+1 − F k+1

i,j−1)

−an1 −
an2

4 (F k+1
i+1,j − F k+1

i−1,j) an5 −an1 + an2

4 (F k+1
i+1,j − F k+1

i−1,j)

−an1 −
an2

4 (F k+1
i,j+1 − F k+1

i,j−1)


De modo análogo, é possível construir as estruturas estêncil para as variáveis

F , M e U , considerando as respectivas equações discretas. Embora algumas dessas
equações apresentem menor complexidade estrutural, todas seguem o mesmo princípio de
representação local dos coeficientes, o que facilita tanto a implementação computacional
quanto a análise das propriedades numéricas do sistema.

Tendo descrita a estrutura espacial do sistema discreto, é fundamental agora
considerar os aspectos relacionados à discretização temporal e à estratégia de solução
numérica ao longo do tempo. O método de Crank-Nicolson apresenta ordem de precisão
temporal igual a dois (pA = 2) e é incondicionalmente estável no tempo (THOMAS, 1995).
No entanto, o sistema de equações oriundo da discretização deve ser resolvido por meio de
um método iterativo adequado, como será descrito no Algoritmo 2. Ressalta-se ainda que
o solver precisa ser aplicado a cada passo de tempo.

Para as simulações numéricas envolvendo a variável temporal, é necessário utilizar
um método de varredura no tempo. Dentre diversos métodos de varredura no tempo para
resolução de equações diferenciais, será utilizado o método Time-Stepping (STRIKWERDA,
2004). Este método consiste em resolver espacialmente o sistema de equações discretizado
em cada passo de tempo. Para isso, é usada a solução convergida do passo de tempo
anterior k como estimativa inicial para resolver o sistema de equações correspondente
no passo de tempo atual k + 1, e esse processo se repete até que se atinja o tempo
final (VANDEWALLE; HORTON, 1993).
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Algoritmo 2: Solução numérica com Crank-Nicolson e Gauss-Seidel
red-black

Input: Nx, Ny, Nt, iter
Output: Soluções numéricas para n, f , m e u via Crank-Nicolson e Gauss-Seidel

red-black
1 Defina as constantes e parâmetros do modelo;
2 Etapa 1: Aplicação das condições iniciais e de contorno;
3 for k = 1 do
4 for i = 1 to Nx do
5 for j = 1 to Ny do
6 Atribua as condições iniciais: N0(x,y), F0(x,y), M0(x,y), U0(x,y);
7 end
8 end
9 end

10 for k = 2 to Nt do
11 Atualize as condições de contorno para t = tk;
12 Etapa 2: Iterações de Gauss-Seidel red-black;
13 for itr = 1 to iter do
14 (a) Atualização dos pontos vermelhos (red);
15 for i = 2 to Nx − 1 do
16 for j = 2 to Ny − 1 do
17 Atualize Nk+1

i,j , F k+1
i,j , Mk+1

i,j e Uk+1
i,j usando Eqs. (4.11), (4.18), (4.25)

e (4.32);
18 end
19 end
20 (b) Atualização dos pontos pretos (black);
21 for i = 2 to Nx − 1 do
22 for j = 2 to Ny − 1 do
23 Atualize Nk+1

i,j , F k+1
i,j , Mk+1

i,j e Uk+1
i,j usando Eqs. (4.11), (4.18), (4.25)

e (4.32);
24 end
25 end
26 end
27 end
28 Imprima N , F , M , U
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5 RESULTADOS E DISCUSSÕES: PROBLEMA COM SOLUÇÃO
ANALÍTICA

Neste capítulo, realiza-se a verificação do modelo numérico implementado por meio
de um problema com solução analítica conhecida. São analisados o erro de discretização, a
ordem de convergência e a eficácia dos estimadores aplicados. Também se comparam o
desempenho e a eficiência dos métodos singlegrid e multigrid.

5.1 Verificação numérica

Esta seção é dedicada ao processo de verificação do código computacional.
O objetivo da verificação é determinar em que medida um modelo matemático é resolvido
adequadamente através de um método numérico, dado que um dos desafios na simulação
numérica é o nível de acurácia das soluções.

A fim de se encontrar uma solução analítica com o intuito de verificar o código
e realizar a análise dos erros, aplica-se o método das soluções fabricadas (em inglês,
Method of Manufactured Solutions) (OBERKAMPF; BLOTTNER, 1998; SANTIAGO,
2010; AYCOCK; REBELO; CRAVEN, 2020). Tal método tem como objetivo gerar uma
solução analítica exata, sem levar em consideração a realidade física do problema. Para
isso, uma função analítica é definida e utilizada como a variável dependente na equação
diferencial, sendo suas derivadas calculadas de forma analítica. A equação é construída
de tal maneira que todos os termos adicionais que não satisfazem a EDP original são
agrupados em um termo fonte. O termo fonte é posteriormente incorporado à EDP original
para satisfazer a nova equação (ROY, 2005; RIGONI; PINTO; KWIATKOWSKI JR.,
2022).

Para o caso considerado neste trabalho, com Ω ⊆ R2, assume-se que a condição
inicial da variável u(x,t) é dada por

u(x,0) = sen(2πx) sen(2πy), (5.1)

no qual u = [n, f,m, u], x ∈ Ω, Ω = [0; 0,5] × [0; 0,5], com x = (x, y). As condições de
contorno são do tipo Dirichlet, ou seja,

u(xb, t) = 0, (5.2)

com xb ∈ ∂Ω, sendo ∂Ω o contorno do domínio assumido e 0 < t ≤ tf .

Os termos fonte sn, sf , sm e su, respectivamente dados nas Eqs. (4.4), (4.12),
(4.19) e (4.26), são obtidos de forma que as Eqs. (2.1)-(2.4) satisfaçam as soluções analíticas

u(x, t) = et sen(2πx) sen(2πy), (5.3)
f(x, t) = e−t sen(2πx) sen(2πy), (5.4)
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com u = [n,m, u], x ∈ Ω, 0 ≤ t ≤ tf .

Logo, os termos fonte são dados por

sn(x,t) = [(((−8γπ2 + µ1) sen(2πy)2 + 4γ cos(2πy)2π2) sen(2πx)2 +
4γ cos(2πx)2π2 sen(2πy)2)e−t + (1 + 8dnπ2 − µ1 + µ1e

tA)A]et, (5.5)

sf (x,t) = (η + µ2)A2 + (−1− µ2 + µ2Ae
−t)Ae−t, (5.6)

sm(x,t) = (1 + 8dmπ2 − α + β + θAet)Aet, (5.7)

su(x,t) = (1 + 8duπ2 + ρ+ θAet − ξe−2t)Aet, (5.8)

x ∈ Ω, 0 < t ≤ tf , com A = sen(2πx) sen(2πy).

Para a verificação do código com a solução analítica, consideramos tf = 0,25 e os
parâmetros físicos apresentados na TABELA 1, conforme Kolev e Zubik-Kowal (2011a),
López, Ruiz e Castaño (2018) e Maganin et al. (2020).

TABELA 1 – Valores dos parâmetros físicos.

Parâmetros γ dn, dm, du µ1 µ2, α η θ β, ρ ξ
Valores 0,01 0,001 0,2 0,1 10 0,05 0,07 0,03

A verificação de soluções numéricas para o modelo bidimensional de crescimento
tumoral (Capítulo 2) é um dos objetivos deste trabalho. Para isso, serão abordadas as
técnicas de verificação de código, a partir de simulações numéricas e análises a posteriori
dos resultados encontrados com os métodos multigrid (MG) e singlegrid (SG), utilizando
o suavizador Gauss-Seidel red-black.

Portanto, neste capítulo será verificado o comportamento do erro de discretização
mediante o refino de malha computacional e o comportamento do erro numérico (diferença
entre a solução analítica e a solução aproximada) para os métodos SG e MG. Será verificado
também se as ordens aparente pU e efetiva pE dos erros de discretização, associadas às
variáveis físicas de interesse, convergem para as suas ordens assintóticas pA quando h

tende a 0.

As simulações foram realizadas em um computador com processador Intel(R)
Core(TM) i7-7700 3.60 GHz, 32 GB de memória RAM e sistema operacional Windows 10,
com 64 bits. Os algoritmos foram implementados na linguagem Microsoft Visual Studio
2022 - Versão 17.6.0, Fortran Compiler 2023.1, com precisão dupla.

No intuito de se isolar o efeito do erro de truncamento, procura-se minimizar o
efeito das demais fontes de erro. Para isso, o processo iterativo das simulações é interrompido
quando se obtém o erro de máquina, ou seja, quando os erros de iteração forem minimizados
e levados ao nível dos erros de arredondamento, obtendo-se assim o erro de discretização.
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5.1.1 Erro de discretização

Inicialmente, realiza-se a verificação do código computacional por meio da norma do
máximo ∥Eh∥∞, conforme apresentado na TABELA 2, considerando os métodos singlegrid
(SG) e multigrid (MG), utilizando o esquema de Crank–Nicolson para a discretização
temporal e diferenças finitas centradas para o espaço. A norma do máximo é definida
como:

∥Eh∥∞ = max
x∈Ω
|u(x, T )− uh(x, T )| , (5.9)

em que u(x, T ) representa a solução analítica e uh(x, T ) a solução numérica no tempo
final T , avaliadas nos pontos da malha espacial.

Em relação ao número de pontos nas discretizações espacial e temporal, considera-
se N = Nx = Ny = Nt = 2nm + 1, conforme Tabela 3, em que nm, no caso do MG,
representa o número de níveis de malhas nas direções x e y, sendo a malha mais fina
associada ao maior nível.

TABELA 2 – Valor de ||Eh||∞ das quatro variáveis N , F , M e U , para os casos singlegrid (SG)
e multigrid (MG).

nm ||Eh_N ||∞ ||Eh_F ||∞ ||Eh_M ||∞ ||Eh_U ||∞
SG
2 7,902279E-03 3,633945E-04 9,143686E-04 1,001792E-03
3 3,755129E-03 9,302706E-05 2,326785E-04 2,545726E-04
4 1,021323E-03 2,339453E-05 5,842830E-05 6,390354E-05
5 2,795458E-04 5,857294E-06 1,462334E-05 1,599220E-05
6 7,091295E-05 1,464867E-06 3,656855E-06 3,999069E-06
7 1,787442E-05 3,662601E-07 9,142863E-07 9,998186E-07
8 4,473987E-06 9,156143E-08 2,285566E-07 2,499295E-07
9 1,118960E-06 2,284805E-08 5,702435E-08 6,233529E-08
10 2,798253E-07 5,666782E-09 1,414388E-08 1,545448E-08
11 7,008128E-08 1,315573E-09 3,272801E-09 3,569934E-09

MG
2 7,902280E-03 3,633945E-04 9,143686E-04 1,001792E-03
3 3,755129E-03 9,302707E-05 2,326785E-04 2,545726E-04
4 1,021323E-03 2,339455E-05 5,842832E-05 6,390354E-05
5 2,795458E-04 5,857294E-06 1,462334E-05 1,599220E-05
6 7,091295E-05 1,464865E-06 3,656851E-06 3,999067E-06
7 1,787443E-05 3,662432E-07 9,142557E-07 9,997995E-07
8 4,473924E-06 9,156519E-08 2,285752E-07 2,499653E-07
9 1,118741E-06 2,288140E-08 5,712724E-08 6,248654E-08
10 2,795454E-07 5,656381E-09 1,415277E-08 1,552303E-08
11 6,980147E-08 1,359111E-09 3,429498E-09 3,799326E-09

FONTE: A autora (2025).
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TABELA 3 – Número de pontos nas discretizações espacial e temporal.

nm 2 3 4 5 6 7 8 9 10 11
Nx = Ny = Nt 5 9 17 33 65 129 257 513 1025 2049

Pode-se observar que os resultados mostrados na TABELA 2, referentes aos erros
de discretização relacionados aos métodos SG e MG, são praticamente iguais, exceto por
erros de arredondamento. Para uma melhor compreensão, pode-se observar na FIGURA 9
a variação dos erros, onde os erros diminuem consideravelmente com o refinamento da
malha. Os símbolos no gráfico representam os resultados obtidos com o método SG para
as quatro variáveis do modelo, enquanto as linhas pontilhadas correspondem às soluções
obtidas com o método MG.

FIGURA 9 – Erro numérico ||Eh||∞ de SG e MG versus h.

FONTE: A autora (2025).

5.1.2 Ordens efetiva e aparente

Com base nos resultados apresentados na Seção 5.1.1, em particular na TABELA 2
e na FIGURA 9, verifica-se que os métodos SG e MG produziram erros de discretização
similares para todas as variáveis analisadas. Dado esse comportamento equivalente em
termos de acurácia, opta-se por utilizar exclusivamente o método MG nesta Seção 5.1.2
para o estudo das ordens efetiva e aparente.
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Para essa investigação, consideraram-se três métricas distintas na estimativa
das ordens efetiva (pE, Eq. (3.26)) e aparente (pU , Eq. (3.27)): o erro de discretização na
norma do máximo (||Eh||∞, Eq. (5.9)), o valor da variável de interesse no ponto central
do domínio ao final da simulação (PC) e o valor médio da variável no tempo final (VM).

As análises foram aplicadas às quatro variáveis do modelo, N , F , M e U , e os
resultados obtidos estão reunidos nas FIGURAS 10 a 12, que ilustram, respectivamente, o
comportamento das ordens para as métricas ||Eh||∞, PC e VM .

FIGURA 10 – pE , pU e pA considerando ||Eh||∞ para as diversas variáveis N, F, M e U .

FONTE: A autora (2025).

Como ilustrado nas FIGURAS 10 a 12, observa-se que as ordens pE e pU , associadas
às variáveis N , F , M e U , tendem monotonicamente à ordem assintótica pA = 2 à
medida que o espaçamento h da malha é reduzido. Tal comportamento confirma que as
discretizações adotadas nas Eqs. (4.11), (4.18), (4.25) e (4.32), produzem métodos de
segunda ordem, característica almejada nos métodos aproximados, conforme descrito na
literatura.

Com o refinamento das malhas e a aplicação da técnica MER, espera-se que os
valores de pU convirjam para as ordens verdadeiras pV correspondentes a cada nível de
extrapolação. No caso de CDS para as variáveis espaciais e Crank-Nicolson para a variável
temporal, tem-se p0 = 2, p1 = 4, p2 = 6, . . . na Eq. (3.25). Este resultado corrobora a
consistência do método na estimativa do erro de discretização em diferentes níveis de
malha, fortalecendo a confiabilidade das soluções numéricas.
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FIGURA 11 – pE , pU e pA considerando PC para as diversas variáveis N, F, M e U .

FONTE: A autora (2025).

FIGURA 12 – pE , pU e pA considerando VM para as diversas variáveis N, F, M e U .

FONTE: A autora (2025).

A FIGURA 13 apresenta os valores de pU obtidos no ponto central do domínio no
último passo de tempo (variável PC) para as quatro variáveis de interesse (N,M,F e U),
com uso de precisão quádrupla. Na FIGURA 13, a notação N(g,m) representa a variável
N para as diversas g malhas no nível m de extrapolação. Analogamente para as outras
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variáveis.

FIGURA 13 – pU considerando PC para as variáveis N, F, M e U e diversos níveis m de
extrapolação.

FONTE: A autora (2025).

Como observado na FIGURA 13, quando não há nenhuma extrapolação (m = 0),
pU se aproxima monotonicamente da ordem assintótica pA = 2 à medida que h é reduzido,
conforme já mostrado na FIGURA 11. Além disso, observa-se que, quando há extrapolação
e se emprega a técnica MER, os valores de pU convergem para as sequências das ordens
verdadeiras subsequentes, p1 = 4 e p2 = 6. Segundo Marchi et al. (2016), as ordens
verdadeiras seguem uma progressão aritmética, de modo que, para níveis adicionais de
extrapolação, continuam como p3 = 8, p4 = 10, e assim por diante.

Diante dos resultados obtidos, adota-se pV como parâmetro de referência nos
códigos implementados para avaliar a precisão das soluções numéricas, uma vez que seus
valores seguem uma progressão aritmética conforme o nível de extrapolação, coerente com
o comportamento teórico da extrapolação de Richardson.

5.2 Desempenho e eficiência

Nesta seção, serão apresentados os resultados do método numérico obtidos com a
implementação do modelo matemático de crescimento tumoral bidimensional proposto
neste trabalho.
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5.2.1 Configuração do ciclo V (ν1,ν2)

A solução do sistema de equações resultante da discretização com o MDF é
realizada com singlegrid (SG) e multigrid (MG), utilizando o método iterativo de Gauss-
Seidel red-black para o SG e como suavizador para o método MG. Adota-se o critério de
parada ||r(it)||∞

||r(0)||∞
≤ ε, em que r(it) e r(0) são os resíduos gerados na iteração atual e na

estimativa inicial, respectivamente, e ε = 10−8. Os resultados obtidos por meio do emprego
do método MG utilizam o ciclo V (ν1,ν2), operador de restrição por ponderação completa,
operador de prolongação por interpolação bilinear e re = 2 (razão de engrossamento
padrão) (BRIGGS; HENSON; MCCORMICK, 2000; TROTTENBERG; OOSTERLEE;
SCHULLER, 2001; WESSELING, 2004).

Vários autores como Briggs, Henson e McCormick (2000) e Trottenberg, Oosterlee
e Schuller (2001) enfatizam a importância de ajustar os parâmetros do método MG
adequadamente para obter uma solução precisa e minimizar o número de ciclos necessários.
No entanto, é importante notar que encontrar o conjunto ideal de parâmetros geralmente
requer experimentação e conhecimento do problema específico que está sendo resolvido.
Além disso, a complexidade e a natureza do problema também podem influenciar a
escolha dos parâmetros. Estudos mais teóricos envolvendo Análise de Fourier Local para
a determinação de tais parâmetros em diversos tipos de problemas podem ser vistos em
Franco et al. (2018), Oliveira et al. (2018), Rutz, Pinto e Gonçalves (2019), Rutz, Oliveira
e Pinto (2025).

Portanto, a escolha dos valores de ν1 e ν2 foi realizada por testes após a observação
em diferentes números de malha (nm) para determinar os melhores parâmetros do ciclo V .
Pode-se observar pela TABELA 4 que o tempo de CPU, em segundos, para ν1 = 0 e ν2 = 2
apresentou o menor valor, considerando nm = 9 com N = 29 +1 = 513 pontos nas direções
espaciais x, y e temporal t. Os resultados para diferentes nm foram qualitativamente
similares, justificando a escolha do ciclo V (0,2).

TABELA 4 – Tempo computacional do ciclo V (ν1,ν2) em segundos (s), variando ν1 e ν2, para
nm = 9.

ν1\ν2 0 1 2 3
0 7.91E+02 5.45E+01 7.49E+02
1 5.94E+02 9.09E+02 7.55E+02 1.51E+03
2 1.89E+03 8.52E+02 8.38E+02 7.50E+02
3 8.72E+02 9.86E+02 9.50E+02 8.83E+02

FONTE: A autora (2025).
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A FIGURA 14 mostra a representação gráfica da TABELA 4, em que a configuração
ν1 = 0 e ν2 = 2 resultou no menor tempo computacional, tCPU = 54,464 s. Em contraste,
a configuração ν1 = 2 e ν2 = 0 levou ao tempo de tCPU = 1894,15 s.

FIGURA 14 – Tempo computacional do ciclo V (ν1,ν2) para diferentes ν1 e ν2, com nm = 9.

FONTE: A autora (2025).

Os resultados apresentados nesta seção são comparados com o método Gauss-
Seidel red-black em sua versão singlegrid (método de malha única) para que possam ser
mensurados os ganhos ao se usar o método multigrid. A primeira comparação é realizada
a partir da TABELA 5, em que apresentam-se o número de iterações utilizando SG e o
número de ciclos com MG.

TABELA 5 – Número de iterações do método singlegrid e número de ciclos V (0,2) do método
multigrid para diferentes valores de nm.

nm 2 3 4 5 6 7 8 9 10 11
it - SG 5 5 5 6 7 8 11 16 27 47

ciclo - MG 3 4 4 4 4 4 3 3 3 3
FONTE: A autora (2025).

Pode-se observar a partir da TABELA 5, que conforme aumenta-se o número de



Capítulo 5. Resultados e discussões: Problema com solução analítica 74

malhas, o número de iterações utilizando o método SG cresce, comportamento diferente
do método MG. A quantidade de ciclos V (0,2) do multigrid apresentou pouca variação
mesmo com o refinamento de malhas. Isso indica que esse método é robusto em relação ao
refino de malhas, propriedade esperada e altamente desejada em simulações numéricas
(BRIGGS; HENSON; MCCORMICK, 2000). Essa robustez permite que o método seja
aplicado a uma ampla variedade de configurações e condições, proporcionando resultados
confiáveis e estáveis.

A seguir são apresentados mais resultados obtidos neste estudo, bem como suas
análises.

5.2.2 Fator de convergência médio (ρm)

Como medida de desempenho dos métodos singlegrid e multigrid, utiliza-se o fator
de convergência médio, ρm. Esse valor representa o fator médio de redução do resíduo ao
longo das iterações ou ciclos e pode ser calculado como a média geométrica dos fatores de
convergência individuais, ou seja,

ρm = it

√
ρ(1) · ρ(2) · ρ(3) · · · ρ(it), (5.10)

em que it é o número de iterações do método SG ou de ciclos do método MG.

Para o cálculo de cada fator de convergência ρ(it), adota-se a definição proposta
por Trottenberg, Oosterlee e Schuller (2001), que utiliza a razão entre as normas infinitas
de resíduos consecutivos:

ρ(it) = ∥r(it)∥∞

∥r(it− 1)∥∞
, (5.11)

sendo r(it) o vetor resíduo na iteração ou ciclo it.

De acordo com Briggs, Henson e McCormick (2000), à medida que ρm se aproxima
de 1, a taxa de convergência diminui. Valores pequenos de ρm, ρm ≈ 0, resultam em alta
taxa de convergência dos métodos iterativos.

Pode-se observar na FIGURA 15 os valores de ρm para os métodos singlegrid
e multigrid. Conforme a malha é refinada, observa-se na FIGURA 15(a) que o valor de
ρm → 1 para o caso SG, o que é uma propriedade indesejada, porém esperada. Para o caso
MG, o valor de ρm permanece próximo de zero. Com a escala ajustada em relação ao eixo
y, pode-se observar melhor na FIGURA 15(b), o valor de ρm para MG.

Dessa forma, pode-se garantir que o método MG, e principalmente o suavizador
associado, apresenta um bom desempenho à medida que a malha é refinada. Isto significa
que o método é capaz de resolver o problema de forma eficiente, exigindo um esforço
computacional menor, mesmo para problemas de grande porte, propriedade altamente
desejada.



Capítulo 5. Resultados e discussões: Problema com solução analítica 75

FIGURA 15 – Fator de convergência médio ρm versus nm para: (a) os métodos singlegrid e
multigrid; (b) método multigrid com uma escala ajustada.

FONTE: A autora (2025).

5.2.3 Tempo computacional (tCPU)

O tempo computacional (tCPU ), medido em segundos (s), refere-se ao tempo total
consumido pela CPU durante toda a simulação numérica. No caso do problema transiente
considerado neste trabalho, o tCPU compreende desde a inicialização do processo, incluindo
a geração das malhas, a atribuição da estimativa inicial e o pré-processamento necessário,
até a resolução do sistema linear em cada passo de tempo, repetida iterativamente até que
o critério de convergência seja satisfeito em todos os instantes da simulação. O tempo foi
medido em segundos, por meio da função TIMEF, disponível na linguagem FORTRAN.

A eficiência do método multigrid é frequentemente analisada utilizando o tempo
computacional. Segundo Roy, Anand e Donzis (2015), o esforço computacional de um
método numérico é mensurado por meio da relação entre o tCPU e o número de incógnitas
da malha (N ), onde

N = 4(Nx − 2)(Ny − 2)(Nt − 1). (5.12)

O esforço computacional dos métodos SG e MG, medidos pelo tCPU , é apresentado
na FIGURA 16.

Pode-se observar na FIGURA 16 que o método SG possui um tCPU superior com
relação ao método MG. Note que esta vantagem vai ficando mais acentuada à medida
que vai aumentando o número de incógnitas, pois as inclinações das curvas com MG são
menores do que com SG. Isso implica que o multigrid torna-se gradualmente mais eficiente,
o que é uma característica extremamente desejável. Isso pode ser comprovado através
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FIGURA 16 – tCPU dos métodos SG e MG.

FONTE: A autora (2025).

do cálculo da razão entre o tempo computacional do singlegrid (tCPU(SG)) e multigrid
(tCPU (MG)) com o aumento do número de incógnitas. Esta razão é conhecida por Speed-up,
que é dada por (FRANCO, 2017)

Speed-up = tCPU(SG)
tCPU(MG) (5.13)

e pode ser vista na FIGURA 17 e na TABELA 6.

TABELA 6 – tCPU (em segundos) e Speed-up dos métodos SG e MG.

nm tCPU - SG tCPU - MG Speed-up
7 7,69E+00 8,48E-01 9,07
8 7,46E+01 5,35E+00 13,94
9 9,73E+02 5,45E+01 17,86

10 1,26E+04 5,88E+02 21,45
11 2,69E+05 4,39E+03 61,18

FONTE: A autora (2025).

O Speed-up representa quantas vezes o MG é mais rápido que o SG. Por exemplo,
para nm = 7 (malha espacial 257 × 257 nós e com 257 passos no tempo), o tCPU do
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FIGURA 17 – Speed-up dos métodos SG e MG.

FONTE: A autora (2025).

SG e MG é de 74,6 s e 5,35 s, respectivamente, ou seja, o MG é cerca de 14 vezes mais
rápido do que o SG. Outro exemplo, para nm = 11 (malha espacial 2049 × 2049 nós e
com 2049 passos no tempo), o tCPU do SG e MG é de 268807 s e 4393 s, respectivamente,
ou seja, o MG é cerca de 61 vezes mais rápido do que o SG.

Nota-se nas FIGURAS 16 e 17 e na TABELA 6, para todos os números de
incógnitas avaliados, o MG é sempre mais rápido que o SG e esta vantagem vai aumentando
à medida que N vai crescendo.

5.2.4 Complexidade dos métodos (p)

Uma outra métrica importante para se avaliar o desempenho de um método é a
complexidade de seu algoritmo.

Segundo Burden, Faires e Burden (2016), para verificar a complexidade do
algoritmo utilizado, pode-se realizar um ajuste geométrico (ou não linear) com os resultados
do tempo computacional tCPU onde,

tCPU(N ) = cN p, (5.14)

em que N é o número total de incógnitas do problema a ser resolvido, Eq. (5.12), p
representa a ordem de complexidade do solver (inclinação da curva em escala bi-logarítmica)
e c é uma constante que depende do método. De acordo com Trottenberg, Oosterlee e
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Schuller (2001), o valor de p deve estar próximo da unidade (p ≈ 1) e o valor de c próximo
de zero para o caso do MG considerado ideal, indicando seu comportamento linear.

Analisando o desempenho do método a partir da Eq. (5.14), com os dados descritos
na FIGURA 16, considerando os valores mais significativos, ou seja, utilizando os 7 últimos
pontos, no caso SG, e os 9 pontos, no caso MG, tem-se a TABELA 7, que mostra os valores
de c e p para os métodos SG e MG.

TABELA 7 – Coeficientes c e p do tCPU (N ) na Eq. (5.14) para SG e MG.

SG MG
c p c p

1,58E − 09 1,3508 3,38E − 08 1,0549
FONTE: A autora (2025).

Com esses resultados, pode-se observar que os valores encontrados são próximos
dos descritos na literatura para MG. Isso confirma o comportamento linear do método,
apontando também a vantagem no uso do método multigrid.

Os resultados computacionais obtidos com a implementação do modelo matemático
de crescimento tumoral, proposto neste trabalho, foram realizados até nm = 11, conforme
apresentado na TABELA 6, que mostra o tempo computacional do SG e do MG. Utilizando
a Eq. (5.14), pode-se estimar o tempo de CPU para valores de nm não calculados.
A TABELA 8 apresenta tal tempo, para nm variando de 12 a 15. Pela análise do
comportamento do fator de convergência médio, mostrado na FIGURA 15(a), observa-se
que este tende a crescer com o aumento do número de malhas. Entretanto, conforme
indicado pelos tempos estimados na TABELA 8, o custo computacional para nm > 11
torna-se elevado, inviabilizando a execução prática dessas simulações dentro das condições
disponíveis neste estudo.

TABELA 8 – Estimativa do tCPU para os métodos singlegrid e multigrid.

nm tCPU - SG tCPU - MG
12 52 dias 11 horas
13 2 anos e 4 meses 4 dias
14 39 anos e 6 meses 37 dias
15 655 anos e 7 meses 11 meses

FONTE: A autora (2025).
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A TABELA 8 confirma a vantagem computacional do MG em relação ao SG. Por
exemplo, para nm = 13, o problema apresentaria 2,19849E+ 12 incógnitas, com um tempo
computacional de mais de 2 anos para rodar SG, enquanto que utilizando MG levaria
aproximadamente 4 dias.

5.3 Estimadores do erro

A avaliação do erro de discretização de uma solução numérica (ϕ) para uma
variável de interesse requer, idealmente, o conhecimento de sua solução analítica exata
(Φ). No entanto, em muitos casos práticos, essa solução exata não está disponível, sendo
necessário recorrer a estimativas do erro ou à quantificação da incerteza associada à solução
numérica disponível.

Nesta seção, emprega-se uma solução analítica fabricada, o que permite não
apenas verificar o método e o código, mas também estudar o comportamento do erro de
discretização. Para isso, utiliza-se o estimador de Richardson (URi, Eq. (3.34)) para o caso
em que não é realizada nenhuma extrapolação (sem aplicação da técnica MER), bem como
dois estimadores voltados para a análise na qual é realizada a múltipla extrapolação de
Richardson (MER): estimador de Richadson corrigido (Upmc, Eq. (3.36)) e estimador ψ
corrigido (Uψ∗ , Eq. (3.39).

Além da estimativa do erro, a verificação do código também é realizada por meio
da análise da efetividade dos estimadores. A TABELA 9 apresenta os valores obtidos para
a efetividade θ(U), calculados para os estimadores Upmc e Uψ∗ .

TABELA 9 – Efetividade dos estimadores Uψ∗ e Upmc para as variáveis N , F , M e U .

h Variável N Variável F Variável M Variável U

Uψ∗/Em Upmc/Em Uψ∗/Em Upmc/Em Uψ∗/Em Upmc/Em Uψ∗/Em Upmc/Em

6,25E-02 1,01716 1,01597 1,00731 0,99920 1,00516 0,99914 1,00488 0,99933
3,13E-02 0,95700 0,97161 0,98785 0,98707 0,98814 0,98730 1,00066 0,99999
1,56E-02 1,03044 1,00033 1,01460 1,00130 1,01400 1,00095 0,98688 0,98687
7,81E-03 0,97639 0,97671 0,99508 0,99637 0,99218 0,99311 1,00973 0,99634
3,91E-03 1,02560 1,00111 1,00504 1,00137 1,00821 1,00120 1,00500 1,00131
1,95E-03 0,99897 1,00008 0,99879 1,00015 0,99891 1,00011 0,99883 1,00013
9,77E-04 0,99946 0,99955 0,99973 0,99989 0,99961 0,99971 0,99969 0,99982
4,88E-04 1,00053 1,00007 1,00006 0,99995 1,00028 1,00000 1,01840 1,01821

FONTE: A autora (2025).

Os resultados da TABELA 9 indicam que ambos os estimadores demonstram boa
acurácia, com θ(U) ≈ 1. Para quantificar essa proximidade em relação ao valor ideal, foi
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calculado o desvio médio em torno da unidade para cada estimador. Os valores obtidos
foram aproximadamente 9,05 × 10−3 para Uψ∗ e 4,80 × 10−3 para Upmc. Como valores
menores desse desvio indicam maior proximidade média em relação ao ideal, conclui-se
que o estimador Upmc fornece uma aproximação mais confiável na avaliação do erro de
discretização em comparação com Uψ∗ . Portanto, Upmc será utilizado para gerar os gráficos
apresentados na FIGURA 18.

A FIGURA 18 ilustra os resultados para o erro de discretização (Eh) e erro
de discretização com MER (Em) com suas respectivas estimativas URi e Upmc, com o
refinamento de malha. Foi considerado as quatro variáveis de interesse do problema
N,F,M e U .

FIGURA 18 – Erro de discretização sem o uso de MER (Eh) com sua estimativa (URi), e com
o uso do MER (Em) e sua estimativa (Upmc) versus a discretização espacial h,
considerando as variáveis: (a) N , (b) F , (c) M e (d) U .

(a) (b)

(c) (d)

FONTE: A autora (2025).
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Ao analisar o erro de discretização Eh na FIGURA 18, observa-se claramente
que o uso da MER, que gera Em, é extremamente eficaz na redução desse erro para
todas as variáveis. Por exemplo, no caso da variável N , apresentado na FIGURA 18(a),
para nm = 10, o que corresponde a h = 4,8828125× 10−4, tem-se Eh ≈ 10−7, enquanto
Em ≈ 10−24. Em síntese, a aplicação da MER resulta em uma redução significativa do erro
Em em comparação com Eh.

Observa-se também nas FIGURAS 18(a)–(d) que tanto o estimador adotado para
o erro de discretização sem MER (URi), quanto com MER (Upmc), fornecem excelentes
estimativas, sendo, portanto, altamente recomendados para casos em que a solução analítica
não é conhecida.
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6 RESULTADOS E DISCUSSÕES: PROBLEMA REALISTA

No capítulo anterior, a verificação do código implementado com base em
solução analítica fabricada confirmou a precisão das simulações numéricas, com erros
de discretização reduzidos, conforme evidenciado na FIGURA 9. As análises também
mostraram que os métodos singlegrid (SG) e multigrid (MG) preservaram a taxa
de convergência de segunda ordem (FIGURAS 10–12). Em relação ao desempenho
computacional, observou-se que o método MG apresentou uma redução significativa
no tempo de execução em comparação ao método SG, como indicado pelas FIGURAS 16
e 17, que ilustram, respectivamente, o tempo de CPU (tCPU) e o speed-up obtido. Além
disso, o fator de convergência médio também foi inferior para o método MG, refletindo
sua maior eficiência na resolução dos sistemas lineares (ver FIGURA 15).

Adicionalmente, os resultados obtidos com a aplicação da técnica de múltipla
extrapolação de Richardson (MER) demonstraram sua eficácia na redução dos erros de
discretização. Os estimadores associados apresentaram alta confiabilidade na quantificação
dos erros (FIGURA 18).

Dando continuidade à análise, nesta seção, simula-se um caso realista, descrito
pelas Eqs. (2.1)-(2.4), considerando condições iniciais que refletem as características de
um tumor para as variáveis n, f , m e u.

Primeiramente, avalia-se o desempenho dos métodos SG e MG para o caso realista
em que nm = 11, conforme TABELA 10.

TABELA 10 – Comparação dos métodos singlegrid e multigrid para solução realista.

nm tCPU - SG tCPU - MG speed-up
11 3 dias e 13 horas 4 horas 21,6

FONTE: A autora (2025).

Os tempos computacionais observados confirmaram os padrões verificados
anteriormente, com o SG exigindo, aproximadamente, 3 dias e 13 horas para a execução,
enquanto o MG concluiu a mesma tarefa em apenas 4 horas. Essa diferença substancial
não apenas reafirma os resultados obtidos para a solução fabricada (TABELAS 6 e 8),
mas também comprova que o MG mantém sua eficiência na resolução do problema
realista proposto. No entanto, observa-se que o speed-up obtido neste caso não é tão
expressivo quanto aquele verificado na solução fabricada. Uma possível explicação para
esse comportamento está na natureza da solução: enquanto a solução fabricada é construída
para ser suave e satisfazer rigorosamente as hipóteses de diferenciabilidade exigidas pelos
métodos numéricos empregados, a solução do problema realista, por ser desconhecida,
pode não possuir a mesma regularidade.
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Com base nesses resultados, adota-se exclusivamente o método MG nas análises
e na aplicação do modelo tumoral ao problema realista, garantindo maior eficiência
computacional.

Para avaliar a influência da densidade das células tumorais n, da densidade da
matriz extracelular f , das enzimas degradativas da matriz m e do inibidor endógeno u,
como o papel de substâncias reguladoras e inibidoras no processo de invasão tumoral,
consideramos que essas interações ocorrem em um sistema isolado, impondo condições de
contorno do tipo Dirichlet, dadas por (MAGANIN et al., 2020; LÓPEZ; RUIZ; CASTAÑO,
2018):

n(xb,t) = 0, (6.1)
f(xb,t) = 1, (6.2)
m(xb,t) = 0, (6.3)
u(xb,t) = 0, (6.4)

para t > 0, xb ∈ ∂Ω, sendo ∂Ω o contorno do domínio Ω = [0,1]× [0,1] assumido.

Assumimos inicialmente que há um nódulo de células presente no domínio Ω,
em que a densidade inicial do tumor encontra-se centrada no ponto (0,5; 0,5), ou seja,
assumimos que o tumor já tenha degradado alguns dos tecidos circundantes do domínio
admitido. Com isso, as condições iniciais são dadas por (LÓPEZ; RUIZ; CASTAÑO, 2018)

n(x,0) = exp

(
− c2

ϵ

)
, (6.5)

f(x,0) = 1− 0,5n(x,y,0), (6.6)
m(x,0) = 0,5n(x,y,0), (6.7)

u(x,0) = 0, (6.8)

De ϵ um parâmetro que controla a largura da densidade inicial de células tumorais.
Em outras palavras, ϵ atua como um parâmetro de controle da concentração do tumor, no
qual valores menores resultam em um nódulo mais localizado, enquanto valores maiores
resultam em uma distribuição mais difusa das células tumorais. Neste trabalho será usada
a mesma de López, Ruiz e Castaño (2018), ou seja, ϵ = 0,001.

Definidas as condições de contorno e iniciais, procede-se à análise do erro de
discretização e da qualidade das estimativas geradas pelos estimadores numéricos no
contexto do problema realístico. A FIGURA 19 apresenta os resultados para o erro de
discretização com e sem a aplicação da múltipla extrapolação de Richardson (MER),
bem como as respectivas estimativas fornecidas pelos estimadores URi (Eq. (3.34)) e Upmc
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(Eq. (3.36)). As simulações foram realizadas utilizando os parâmetros da TABELA 1, com
tf = 15 e γ = 0,01 (que correspondem ao coeficiente haptotáxico).

FIGURA 19 – Estimativa do erro de discretização sem o uso da MER (URi) e com MER (Upmc)
versus a discretização espacial h, considerando as variáveis: (a) N , (b) F , (c) M e
(d) U .

(a) (b)

(c) (d)

FONTE: A autora (2025).

É possível confirmar, através da FIGURA 19, que o uso da técnica MER reduziu
significativamente o erro de discretização para este problema, resultando em soluções
numéricas mais precisas. Por exemplo, para a variável N , na FIGURA 19(a), com
nm = 10, o que corresponde a h = 9,76562× 10−4, tem-se que URi(Eh) ≈ 10−6, enquanto
Upmc(Em) ≈ 10−14.

Vale destacar que a variável F , representada na FIGURA 19(b), apresenta um
comportamento atípico, justificado pela modelagem do problema. A matriz extracelular
(MEC) se degrada rapidamente, aproximando-se de zero no ponto central do domínio, o
que provoca uma estimativa de erro muito pequena.
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Com os erros controlados e estimados, dá-se prosseguimento à análise detalhada
do comportamento dinâmico das quatro variáveis do modelo, examinando sua evolução
temporal e espacial. Essa análise permite compreender os mecanismos envolvidos na
progressão tumoral e avaliar o impacto de parâmetros fundamentais no processo invasivo.

Os resultados das simulações, apresentados na FIGURA 20, ilustram as interações
entre as células tumorais, a MEC, as MDEs e o TIMP, representados, respectivamente,
pelas variáveis N , F , M e U , nos instantes t = 0, t = 5, t = 10 e t = tf = 15.

FIGURA 20 – Evolução espacial para diferentes passos de tempos com γ = 0,01: (a) densidade
da célula tumoral; (b) densidade MEC; (c) concentração de EDM; (d) TIMP.

FONTE: A autora (2025).

As duas primeiras colunas da FIGURA 20 apresentam simulações numéricas da
interação entre as células tumorais (N) e a matriz extracelular (F ) ao longo do tempo.
Em t = 0 (condição inicial), observa-se uma alta densidade de N , enquanto F ainda não
sofreu degradação significativa. À medida que o tempo avança (t > 0), a densidade celular
aumenta nas regiões onde F está mais degradada, evidenciando o processo de invasão
tumoral. Esse comportamento pode ser parcialmente explicado pela haptotaxia, fenômeno
no qual as células migram ao longo de gradientes de moléculas adesivas imobilizadas na
matriz extracelular (CHAPLAIN; LOLAS, 2006).

A terceira coluna ilustra o aumento na concentração das enzimas degradadoras
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da matriz (M), responsáveis pela destruição progressiva de F . Por fim, a quarta coluna
apresenta a distribuição dos inibidores (U), que atuam no sentido de limitar a degradação
promovida por M , regulando o equilíbrio entre a invasão tumoral e a preservação da matriz
extracelular.

A FIGURA 21 apresenta a evolução espaço-temporal da densidade de células
tumorais ao longo do intervalo de tempo t = 0 até t = 15. Observa-se que, inicialmente, as
células estão concentradas em uma região central do domínio, representando um pequeno
nódulo tumoral. Com o avanço do tempo, a difusão celular e a proliferação promovem
a expansão do tumor em direção às regiões periféricas, formando uma frente de invasão
aproximadamente circular. A transição gradual das cores do azul para o vermelho indica
o aumento da densidade celular, evidenciando o crescimento contínuo e homogêneo da
massa tumoral ao longo do domínio Ω.

FIGURA 21 – Densidade das células tumorais no plano bidimensional para t = 0, 5, 10, 15.

FONTE: A autora (2025).

A dinâmica observada na FIGURA 21, caracterizada pela expansão da massa
tumoral a partir de uma região central com aumento progressivo da densidade celular,
é consistente com os resultados obtidos por López, Ruiz e Castaño (2018), que também
analisaram o perfil da evolução temporal da densidade das células cancerosas, e com os
dados apresentados em Maganin et al. (2020). Esses resultados indicam que o modelo
reproduz de forma coerente padrões típicos de crescimento avascular observados em exames
clínicos bidimensionais, sugerindo potencial para validação futura com imagens médicas
reais.

Uma seção transversal horizontal no centro do domínio, ao longo do eixo
bidimensional, é utilizada para melhor visualizar os resultados apresentados na FIGURA 20,
gerando os perfis de solução mostrados na FIGURA 22.

A FIGURA 22 revela a distribuição espacial das variáveis ao longo do tempo
(t = 0, 5, 10 e 15): (a) N , inicialmente concentrada no centro, se espalha gradualmente
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FIGURA 22 – Seção transversal horizontal no centro do domínio, conforme mostrado na FIGURA
20, para t = 0, 5, 10 e 15, variáveis: (a) N , (b) F , (c) M e (d) U , com γ = 0,01.

FONTE: A autora (2025).

seguindo os gradientes da matriz extracelular. Observa-se um avanço progressivo da frente
tumoral, com formação de aglomerados celulares mais densos nas regiões onde a matriz
já foi degradada. (b) F , inicialmente uniforme, é degradada nas regiões invadidas pelas
células tumorais, formando-se uma depressão acentuada no centro do domínio, refletindo
a ação das enzimas sobre a MEC. (c) M , a produção dessas enzimas é proporcional à
densidade celular, resultando em aumento significativo nas regiões com alta concentração
tumoral. (d) U , inicialmente ausente, acumula-se gradualmente nas regiões de intensa
degradação da MEC, em uma tentativa de neutralizar o avanço das enzimas degradadoras.
A FIGURA 22 está coerente com resultados encontrados em Kolev e Zubik-Kowal (2011a),
López, Ruiz e Castaño (2018), Maganin et al. (2020).

Um dos parâmetros-chave no modelo matemático que descreve o crescimento
tumoral é o coeficiente γ, que está associado ao fenômeno de haptotaxia e que corresponde
à taxa que modela a migração de células invasivas. Durante a invasão tumoral, as células
cancerosas degradam a matriz extracelular (MEC) por meio da ação de enzimas, gerando
gradientes espaciais que direcionam a migração celular, conforme destacado por Chaplain
e Lolas (2006).

Para uma melhor compreensão de tal parâmetro γ, a FIGURA 23 apresenta as
soluções das simulações paraN , considerando γ = 0,01 e γ = 0,005, com um corte horizontal
da densidade de células cancerosas em diferentes instantes de tempo (t = 1, 5, 10 e 15).

Os resultados apresentados na FIGURA 23 indicam que a taxa de migração
γ influencia a dinâmica da invasão tumoral, com impacto mais significativo nas fases
iniciais da migração celular, quando os gradientes da matriz extracelular (MEC) estão mais
definidos. Esse parâmetro é essencial para compreender a progressão e o comportamento
da massa celular ao longo do tempo.

Para γ = 0,01, observa-se que as células cancerosas se deslocam mais rapidamente
ao longo da MEC, resultando na formação de aglomerados mais densos e concentrados, o
que caracteriza um processo invasivo mais agressivo. Em contraste, com γ = 0,005, o avanço
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FIGURA 23 – Seção transversal horizontal da densidade de células cancerosas, variável N , em
diferentes tempos para γ = 0,005 e γ = 0,01.

FONTE: A autora (2025).

da massa celular é mais lento e os aglomerados formados são menos definidos, refletindo
uma migração celular menos eficiente. Esses resultados reforçam que valores mais elevados
de γ potencializam o efeito haptotáxico, promovendo uma maior disseminação tumoral
nas fases iniciais, enquanto valores mais baixos atenuam essa influência, desacelerando o
processo invasivo.
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7 CONSIDERAÇÕES FINAIS

Neste capítulo, serão apresentadas as conclusões dos resultados obtidos, principais
contribuições e o que se espera atingir nos trabalhos futuros.

7.1 Conclusões gerais

Este trabalho apresentou um método eficiente, robusto e acurado para a simulação
do crescimento tumoral na fase avascular, combinando modelagem matemática, técnicas
de discretização numérica e estratégias de aceleração de convergência e estimativa de erro.
Os resultados obtidos demonstram a robustez e a eficácia do método multigrid (MG)
associado à múltipla extrapolação de Richardson (MER), tanto para problema com solução
analítica conhecida quanto para problema com cenário realista.

No primeiro momento, a verificação do código com base em soluções fabricadas
comprovou a segunda ordem de acurácia do método numérico implementado, ao passo que
os estimadores URi e Upmc mostraram-se eficientes na quantificação do erro de discretização.
A aplicação da técnica MER promoveu significativa redução do erro numérico, validando
sua utilização em contextos onde a solução analítica não está disponível.

O segundo estudo aprofundou a avaliação dos métodos numéricos frente a um
problema realista, evidenciando a expressiva vantagem computacional do método MG em
relação ao SG, sem prejuízo na acurácia.

Por fim, no terceiro estudo, a análise detalhada das variáveis biológicas n, f , m
e u permitiu compreender os mecanismos dinâmicos de invasão tumoral, especialmente
o papel da haptotaxia representado pelo parâmetro γ. Os resultados obtidos reforçam
o potencial da modelagem matemática, contribuindo com informações relevantes para a
compreensão da progressão tumoral.

Conclui-se, portanto, que a metodologia proposta, aliando o método MG à MER
e ao uso de estimadores confiáveis de erro, representa uma contribuição significativa para
a área de métodos numéricos aplicados à Engenharia e Biomedicina.

7.2 Principais contribuições

Com base nos resultados obtidos, conclui-se que as principais contribuições desta
pesquisa podem ser destacadas nos seguintes pontos:

• Método eficiente e robusto baseado em multigrid, para a solução de um modelo
bidimensional, não linear, composto por quatro equações que descrevem o crescimento
tumoral;
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• Acurácia das soluções numéricas utilizando a múltipla extrapolação de Richardson
(MER);

• Estimadores acurados para o erro de discretização;

• Análise de parâmetro do modelo biológico.

7.3 Trabalhos futuros

Com os avanços obtidos neste trabalho, algumas ideias já estão sendo desenvolvidas,
enquanto outras podem ser exploradas futuramente para ampliar a aplicação do modelo.
Entre elas, destacam-se:

• Testar diferentes condições de contorno (Dirichlet, Neumann ou Robin) para
representar situações fisiológicas mais realistas;

• Aplicar o método multigrid em domínios com geometria mais complexa, como o
formato da mama feminina, aproximando de cenários clínicos reais;

• Avaliar o impacto de diferentes parâmetros biológicos, como taxas de difusão,
produção e degradação, para avaliar a robustez do sistema e identificar aqueles
de maior relevância na dinâmica tumoral;

• Estender o modelo para incluir termos que representem o efeito da quimioterapia,
simulando a aplicação de drogas citotóxicas no microambiente tumoral. Isso pode
ser feito por meio da inclusão de uma nova variável representando a concentração
do agente quimioterápico e de termos adicionais de reação que capturem a morte
celular induzida, além da possível resistência ou recuperação do tecido.
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