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RESUMO

Este trabalho apresenta o desenvolvimento, a implementacdo e a verificagdo de uma
metodologia numérica eficiente para a simulagdo de um modelo de crescimento tumoral na
fase avascular. O modelo mateméatico é composto por um sistema transiente de quatro
equagoes diferenciais parciais, sendo duas delas nao lineares, que descrevem as interacoes
entre células tumorais, matriz extracelular, enzimas degradadoras da matriz e inibidores.
Para a discretizacao do modelo, empregou-se o método das diferencas finitas, utilizando
diferencas centrais no espago e o esquema de Crank-Nicolson no tempo. Os termos
nao lineares foram tratados por meio da linearizacao via expansao em série de Taylor.
A solugao numérica foi obtida com o uso do método das diferencas finitas associado ao
método multigrid, buscando aliar alta acuracia a um desempenho computacional eficiente.
A verificagao do codigo foi realizada com base em solugoes analiticas fabricadas, e a técnica
de multipla extrapolacao de Richardson foi utilizada para reduzir o erro de discretizacao,
sendo os erros estimados por meio de estimadores confidveis. Os resultados demonstram
a superioridade do método multigrid em relacdo ao método singlegrid, com reducao
significativa no tempo de simulagdo e preservagao da precisao numérica. A aplicacao
da técnica de extrapolacao mostrou-se eficaz na diminuicdo dos erros e na robustez das
estimativas, inclusive em problemas realisticos sem solugao analitica conhecida. A analise
das variaveis do modelo também permitiu avaliar o papel da haptotaxia na dinamica de
invasao tumoral e demonstrar a influéncia de pardmetros como o coeficiente v na evolucao
espacial do tumor. As simula¢bes numéricas obtidas contribuem para a compreensao
dos mecanismos envolvidos na progressao tumoral e reforcam o potencial da modelagem
matematica como ferramenta de apoio em contextos biomédicos.

Palavras-chave: Analise de erros. Verificacao. Simulacao numérica. Crescimento tumoral.
Multigrid. Método das diferencgas finitas.



ABSTRACT

This work presents the development, implementation, and verification of an efficient
numerical methodology for simulating tumor growth in the avascular phase. The
mathematical model consists of a transient system of four partial differential equations, two
of which are nonlinear, describing the interactions between tumor cells, the extracellular
matrix, matrix-degrading enzymes, and inhibitors. The model was discretized using the
finite difference method, applying central differences for spatial variables and the Crank-
Nicolson scheme for temporal discretization. The nonlinear terms were treated through
linearization via Taylor series expansion. The numerical solution was obtained using the
finite difference method combined with the multigrid technique, aiming to achieve high
accuracy with efficient computational performance. Code verification was carried out
using manufactured analytical solutions, and the Repeated Richardson Extrapolation
technique was applied to reduce discretization error, with reliable estimators used to assess
the accuracy of the solutions. The results demonstrate the superiority of the multigrid
method over the singlegrid approach, showing a significant reduction in simulation time
while maintaining numerical accuracy. The application of extrapolation technique proved
effective in minimizing errors and enhancing the robustness of the estimates, even for
realistic problems without known analytical solutions. The analysis of the model variables
also enabled the evaluation of the role of haptotaxis in tumor invasion dynamics and
highlighted the influence of parameters such as the coefficient v on the spatial evolution of
the tumor. The numerical simulations contribute to the understanding of the mechanisms
involved in tumor progression and reinforce the potential of mathematical modeling as a
support tool in biomedical contexts.

Keywords: Erros analysis. Verification. Numerical simulations. Tumor growth. Multigrid.
Finite difference method.



FIGURA 1
FIGURA 2
FIGURA 3
FIGURA 4
FIGURA 5
FIGURA 6

FIGURA 7

FIGURA 8

FIGURA 9

LISTA DE FIGURAS

Ordenacao red-black em malha 2D. . . . . . . . ... ... ... ... 39
Influéncia da iteracao do método de Gauss-Seidel no erro. . . . . . . 40
Uma sequéncia de engrossamento de malhas utilizando re =2. . . . 41
Operador de restricao por ponderacao completa para o caso 2D. . . 42
Operador de interpolacao bilinear para o caso 2D. . . . . . . .. .. 42
Estrutura do ciclo V para cinco niveis e re = 2. O simbolo e

representa suavizagao e o simbolo o a solugao exata. . . . . . .. .. 43

Esquema pratico do MER da solugao numérica para G = 9 com 4

niveis de extrapolagdo. . . . . . . . ... Lo 49

Malha computacional bidimensional uniforme com tamanhos dos

espagos de malha h. . . . . . ... 54

Erro numérico ||Ep|| de SG e MG versus h. . . . . ... ... ... 68

FIGURA 10 — pg, pu e pa considerando || Eh||« para as diversas varidveis N, F, M

FIGURA 11 — pg, py e pa considerando P para as diversas variaveis N, F, M e U. 70

FIGURA 12 — pg, pu e pa considerando V), para as diversas variaveis N, F, M e U. 70

FIGURA 13 — py considerando P para as variaveis N, F, M e U e diversos niveis

FIGURA 14 —

FIGURA 15 —

FIGURA 16 —

FIGURA 17 —
FIGURA 18 —

FIGURA 19 —

FIGURA 20 —

m de extrapolagdo. . . . . . . ..o 71
Tempo computacional do ciclo V(vq,15) para diferentes vy e v, com
nm=9. . . . 73
Fator de convergéncia médio p,, versus nm para: (a) os métodos
singlegrid e multigrid; (b) método multigrid com uma escala ajustada. 75
tcpy dos métodos SGe MG. . . . .. ..o 76
Speed-up dos métodos SGe MG. . . . ... ... 77
Erro de discretizagdo sem o uso de MER (E},) com sua estimativa
(Ugi), e com o uso do MER (E,,) e sua estimativa (Upn.) versus a

discretizagao espacial h, considerando as variaveis: (a) N, (b) F, (c)

Estimativa do erro de discretizagdo sem o uso da MER (Ug;) e
com MER (Up,.) versus a discretizacao espacial h, considerando as
varidveis: (a) N, (b) F, (¢c) Me(d)U.. . ... ... ... .... 84
Evolucao espacial para diferentes passos de tempos com v = 0,01: (a)
densidade da célula tumoral; (b) densidade MEC; (c) concentragao

de EDM; (d) TIMP. . . . . .o 85



FIGURA 21 — Densidade das células tumorais no plano bidimensional para t =
0,5,10, 15.

FIGURA 22 — Secao transversal horizontal no centro do dominio, conforme mostrado
na FIGURA 20, para t = 0,5, 10 e 15, variaveis: (a) N, (b) F', (¢) M
e(d)U,comy=0,01. ... ... ...

FIGURA 23 — Secao transversal horizontal da densidade de células cancerosas,

variavel N, em diferentes tempos para v = 0,005 e v =0,01. . . . . .



TABELA 1
TABELA 2

TABELA 3
TABELA 4

TABELA 5

TABELA 6
TABELA 7
TABELA 8
TABELA 9

LISTA DE TABELAS

Valores dos parametros fisicos. . . . . . . . . .. ... ... .. ...
Valor de ||Eh||o das quatro varidveis N, F';, M e U, para os casos

singlegrid (SG) e multigrid (MG). . . . . ... .. ... ... ...
Numero de pontos nas discretizacoes espacial e temporal. . . . . . .
Tempo computacional do ciclo V(v1,v5) em segundos (s), variando

viebg,paranm =9. . . . ..
Ntmero de iteragoes do método singlegrid e nimero de ciclos V(0,2)

do método multigrid para diferentes valores de nm. . . . . . .. ..
tepy (em segundos) e Speed-up dos métodos SG e MG. . . . . . ..
Coeficientes ¢ e p do tepy(N) na Eq. (5.14) para SG e MG. . . . . .
Estimativa do topy para os métodos singlegrid e multigrid. . . . . .

Efetividade dos estimadores Uy« e Uy, para as varidveis N, F, M

66

68

72

TABELA 10 — Comparagao dos métodos singlegrid e multigrid para solugao realista. 82



2D

3D

CFD

MDF

EDP

EDM

MEC

TIMP

CDS

ER

MER

CN

ETL

SG

MG

GSRB

CPU

LISTA DE ABREVIATURAS E SIGLAS

— Bidimensional

— Tridimensional

— Computational fluid dynamics

— Método das diferencas finitas

— Equacao diferencial parcial

— Enzima degradativa da matriz

— Matriz extracelular

— Concentracao de inibidores teciduais de Metaloproteinase
— Central differencing scheme

— Extrapolacao de Richardson

— Multipla extrapolagdo de Richardson
— Crank-Nicolson

— Erro de truncamento local

— Singlegrid

— Multigrid

— Gauss-Seidel red-black

— Unidade central de processamento



LISTA DE SIMBOLOS

x,y — Varidveis espaciais (abscissa, ordenada)

t — Variavel temporal

h — Distancia entre os pontos da discretizacao espacial

Iy, hy, — Espacamentos entre os pontos da malha nos sentidos horizontal e
vertical

Nz, N, — Numeros de pontos nas discretizagoes espaciais x e y

Ny — Numero de pontos na discretizacao temporal ¢

N — Namero de pontos quando N = N, = N, = N,

fr, [s fm, fu — Termos fonte das varidveis n, f, m e u, respectivamente

P — Ordem de complexidade do solver

E — Erro numérico

Eh — Erro de discretizagao

PE,PU,Pa, Py — Ordens efetiva, aparente, assintotica e verdadeira, respectivamente

- oo — Norma do méximo

re — Razao de engrossamento

r — Razao de refino

ty — Tempo final

n — Variavel de interesse que representa a densidade de células tumorais

f — Variavel de interesse que representa a densidade de matriz extracelular

m — Variavel de interesse que representa a concentracao das enzimas

degradativas da matriz

U — Variavel de interesse que representa a concentracao de inibidores

teciduais de metaloproteinases
d,, — Constante de difusdao da densidade das células cancerosas
Ay — Constante de difusao de EDM

dy — Constante de difusdo do inibidor



nm — Ntimero de malhas

P — Ponto central do dominio
\%Y; — Variavel média

it — Numero de iteragoes

p — Fator de convergéncia

Pm — Fator de convergéncia médio
tepy — Tempo computacional

S — Segundos

N — Ntmero total de incégnitas

Simbolos gregos

o — Solucao analitica para a variavel de interesse
0] — Solucao numérica para a variavel de interesse
T — Tamanho do passo de tempo

A — Operador laplaciano

\Y% — Operador nabla

1 — Taxa de proliferagao das células tumorais

Lo — Taxa de crescimento da MEC

— Taxa de haptotaxia

{2 — Dominio geométrico continuo
2 — Numero de pré-suavizacao

Vo — Numero de pés-suavizagao
Subscritos

1,J — Contadores na direcao espacial
F — Malha fina

G — Malha grossa

SG — Malha super-grossa



Sobrescritos
h,2h — Malha fina e grossa, respectivamente

k — Contador na dire¢ao temporal



1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.5

2.1
2.2

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.6
3.7
3.7.1
3.7.2

4.1
4.2
4.3
4.4
4.5

SUMARIO

INTRODUCAO . . . . ittt e e e e e e e e e e e e e e e e e 17
O problema. . . . . ... ... . ... ... 18
Motivagao . . . . . . . . . 20
Objetivos . . . . . . . . . 21
Revisao bibliografica . . . . . . ... ... ... ... ... 21
Simulagao tumoral . . . . . . ..o 21
Método multigrid . . . . . . .o 25
Andlise de erros . . . . . .. 27
Organizacaodo texto . . . . . . . . . .. ... ... .. ... ..., 28
MODELO MATEMATICO . .. ................. 30
Modelagem tumoral . . . . . . .. ... ... 31
Limitacgoes e validade bioldgica do modelo avascular . . . . . . . 32
FUNDAMENTACAO TEORICA . . .. .. ... 34
Método das diferencas finitas . . . . . .. ... ... ... . ... . 34
Método de Crank-Nicolson . . . . . . ... ... ... ... ..... 37
Sistema linear e o método multigrid . . . . . . . .. .. ... ... 38
Método multigrid . . . . . . . ... 39
Operadores de restricdo e prolongacao . . . . . . . . . .. . ... .... 41
Ciclos do multigrid . . . . . . . . . . . 42
Analise de erros . . . . . . ... 44
Erro de truncamento . . . . ... ... 44
Erro deiteracdo . . . . . . . .. 46
Erro de arredondamento . . . . .. ... 46
Erro de programacao . . . . . . ... ... 46
Miiltipla extrapolagao de Richardson . . . .. .. ... ... ... 47
Estimadores para o erro de discretizagcao . . . .. ... ... ... 49
Estimadores . . . . . . . .. 49
Eficacia da estimativadeerro. . . . . . . .. ... 51
MODELO NUMERICO . . . ...ttt 53
Malha utilizada . . . . . . ... ... ..o 53
Linearizacao . . . . . . . . . . ... 54
Discretizacao da variavel N . . . . . .. .. ... ... ... 55
Discretizacao da variavel F' . . . . . . . ... ... L. 58

Discretizagao da variavel M . . . . . .. ... 59



4.6

5.1
0.1.1
5.1.2
5.2
0.2.1
5.2.2
5.2.3
5.2.4
5.3

7.1
7.2
7.3

Discretizagao da variavel U . . . . . . . . .. ... 60

RESULTADOS E DISCUSSOES: PROBLEMA COM SOLU-

CAO ANALITICA . . . . . e i e e 65
Verificagdo numérica . . . . . . . ... Lo 65
Erro de discretizacao . . . . .. .. .o 67
Ordens efetiva e aparente . . . . . . . . ... .. .. ... ... . .... 68
Desempenho e eficiéncia . . . . . .. ... 71
Configuracao do ciclo V(v1,vn) .« o o o o oo oo 72
Fator de convergéncia médio (p,,) . . . . . . ... 74
Tempo computacional (tcpy) - -« « « o o o oo 75
Complexidade dos métodos (p) . . . . . . . . . .. L 7
Estimadores doerro . . . . . .. ... .. ... ... 79

RESULTADOS E DISCUSSOES: PROBLEMA REALISTA . 82

CONSIDERACOES FINAIS . . . . . . it i i i i i i 89
Conclusoes gerais . . . . . . . . . . . ... ... 89
Principais contribuicées . . . . . . . . ... 89
Trabalhos futuros . . . . . . . ... ... ... ... .. 90

REFERENCIAS . . . ot e e e e e e e e e s s e e 91



17

1 INTRODUCAO

Nas Ciéncias e nas Engenharias, percebe-se a necessidade em compreender
fendmenos naturais, particularmente os que envolvem a dinamica dos fluidos em movimento,
nos quais, em alguns casos, a biomatematica tem um papel fundamental. Pois, muitos destes
fenomenos relacionam formulagoes de equagoes e modelos matematicos, proporcionando a
compreensao das dindmicas e interagoes em sistemas biologicos. Entretanto, problemas
reais, normalmente, ndo apresentam solugoes analiticas conhecidas, sendo necessario um

tratamento computacional para gerar resultados aproximados.

Dentro deste contexto, a area da Dindmica dos Fluidos Computacional
(Computational Fluid Dynamics, CFD) estuda métodos computacionais para simulagao
de fenémenos que envolvem fluidos em movimento, com ou sem trocas de calor e tem
por objetivo principal reduzir o niimero de experimentos e explorar fendmenos que nao
poderiam ser estudados em laboratério de forma pratica (FORTUNA, 2000).

Modelos matematicos em CFD requerem o uso de métodos que fornecam solugoes
numéricas acuradas e confidaveis. Devido a alguns desses modelos nao apresentarem solucao
analitica conhecida, aproximagoes numéricas sao usadas para transformar o modelo continuo

em um modelo discreto.

Essas equacoes sao resolvidas usando diferentes técnicas numéricas para a
discretizacao espacial, como o método dos volumes finitos (GOLUB; ORTEGA et al., 1992;
MALISKA, 2017), elementos finitos (ZIENKIEWICZ; TAYLOR; ZHU, 2005; REDDY,
2006), método das diferencas finitas (MDF) (GOLUB; ORTEGA et al., 1992; FERZIGER;
PERIC; STREET, 2002; PLETCHER; TANNEHILL; ANDERSON, 2012; CUMINATO:;
MENEGUETTE, 2013), entre outros. A aproximagao temporal também pode ser realizada
por meio de diferentes métodos, como o de Euler e o de Crank-Nicolson, além de outras

estratégias classicas (BURDEN; FAIRES; BURDEN, 2016).

A discretizagao das equacoes diferenciais resulta em grandes sistemas de equagoes

algébricas que podem ser resolvidos utilizando métodos iterativos, visto que, para problemas
de grande porte, tais métodos sao mais adequados (BURDEN; FAIRES; BURDEN, 2016).

Os métodos iterativos mais usados para aproximar a soluc¢do sao o método
de Jacobi, Jacobi ponderado, Gauss-Seidel, entre demais técnicas (BURDEN; FAIRES;
BURDEN, 2016). Porém, esses métodos geralmente perdem a eficiéncia quando o niimero
de iteragdes aumenta ou a malha é refinada (BRIGGS; HENSON; MCCORMICK, 2000).

Para isso, busca-se métodos eficientes para a obtencao das solugdes numéricas. Uma
maneira de acelerar o processo de obtengao da solugdes é aplicar o método multigrid (MG),
que é amplamente difundido na literatura, uma vez que melhora significativamente os

fatores de convergéncia no processo de solucao de sistemas de equacoes.
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Além de buscar um método que resolva os sistemas lineares de forma eficiente,
com baixo custo computacional, é importante que as solugoes sejam acuradas, visto que
sistemas lineares discretizados e resolvidos por métodos iterativos sao afetados por erros
numéricos. Embora estes erros nao possam ser totalmente eliminados, é imprescindivel que

sejam controlados, ou minimizados, em simulagdes numéricas computacionais (MARCHI;

SILVA, 2002).

Segundo Roy (2005), de todas as fontes de erros numéricos, o erro de discretizacao
¢é considerado como o mais significativo. Pode-se reduzir o erro de discretizacao com o
refinamento de malhas; entretanto, aumenta-se o custo computacional. Outra alternativa é
a utilizacao de técnicas de extrapolagao, as quais sdo consideradas um pos-processamento

de facil implementagao com baixo custo computacional (MARCHI et al., 2013).

A utilizacao de técnicas de extrapolagao como ferramentas computacionais eficazes
¢ cada vez mais reconhecida no meio cientifico, sendo a extrapolagao de Richardson
(ER) um dos métodos mais conhecidos. Segundo Zlatev et al. (2017), “a extrapolagio de
Richardson € um procedimento numérico muito poderoso e popular, que pode ser utilizado
de forma eficiente nos esforcos para melhorar o desempenho de programas que lidam com
grandes problemas cientificos e de engenharia dependentes do tempo em computadores”.
Ao se aplicar a ER de forma recursiva, é possivel potencializar a sua eficicia, e esse
processo é denominado multipla extrapolagao de Richardson (MER) (RICHARDSON;
GAUNT, 1927). Estudos que exploram a técnica MER podem ser vistos em Marchi et al.
(2016), Silva et al. (2021), Rodrigues et al. (2022), Silva et al. (2022), Foltran, Marchi e
Moura (2023).

De acordo com Marchi (2001), além de minimizar os erros, é importante estima-los,
pois quando o erro é maior do que o aceitavel, compromete a confiabilidade do uso da
solucao numérica e, quando é menor do que o necessario, ha desperdicio de recursos
computacionais. Com o uso de estimadores, é possivel prever quantitativamente o erro de

discretizacao. Alguns estimadores disponiveis na literatura sao conhecidos como estimadores
de Richardson, delta e o Grid Convergence Index (GCI) (ROACHE, 1998).

Com base nessas consideragoes, pretende-se neste trabalho solucionar um modelo
matematico relacionado a CFD de forma eficiente e precisa. Para garantir a eficiéncia
nos resultados, serd utilizada a técnica de multigrid para acelerar a convergéncia. Além
disso, busca-se reduzir e estimar os erros de discretizacao por meio da aplicacao do MER,

otimizando a acuracia e a confiabilidade das simulagoes de um sistema bioldgico.

1.1 O problema

O cancer ¢ considerado um problema de satde piublica mundial. Para o ano de

2030, a Organizacdo Mundial da Satde (OMS) estima que havera 27 milhoes de casos
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novos, 17 milhoes de mortes de cancer e 75 milhoes de pessoas vivendo com este problema.
Portanto, compreender os mecanismos que atuam é cada vez mais importante para a

prevencao e o tratamento da doenga (INCA, 2019).

Segundo Oncoguia (2017), o cdncer é uma doenga que resulta da multiplicagao
anormal de células no corpo. Normalmente, as células do nosso corpo crescem, se dividem
e morrem de forma ordenada. No entanto, as células cancerosas nao seguem este plano
e continuam a crescer e se dividir sem parar, formando tumores. Estas células anormais
também podem invadir outros tecidos e 6rgaos, o que pode levar a propagacao da doenca

para outras partes do corpo, conhecido como metastase.

De acordo com Byrne (1999), inicialmente os tumores sélidos sdo avasculares,
ou seja, ndo possuem suprimento sanguineo proprio, contam com a difusao de vasos
préximos para fornecer oxigénio, nutrientes e para remover residuos. A medida que o tumor
cresce, a demanda de nutrientes aumenta, mas como o fluxo de nutrientes é pequeno para
fornecer toda a massa de células, o tamanho do crescimento do tumor torna-se limitado.
O crescimento pode ser retomado somente se o tumor tornar-se vascularizado, isto é, se
for permeado por uma rede de capilares. Nessa fase, fragmentos de tumor que invadem
o suprimento de sangue sao transportados para outras partes do corpo em que, se as
condigoes forem favoraveis, estabelecem tumores secundérios ou metéastases. Para fazer a
transicao do crescimento avascular para o vascular, o tumor sofre um processo conhecido

como angiogénese.

A invasao local e o desenvolvimento de metéastases estao diretamente associados a
matriz extracelular (MEC), que constitui o ambiente localizado entre as células. A MEC
oferece suporte estrutural e bioquimico, fornecendo condig¢oes adequadas para o crescimento,

migracao e diferenciacao celular. Sua estrutura é constituida por fibras, proteinas e colageno.

A degradacao da MEC torna-se fundamental para o crescimento de tumores
malignos, invasao, metastase e angiogénese. Esta degradacdo ocorre por acao de enzimas
degradativas da matriz (EDMs), como as metaloproteinases (MMPs), que atuam
desorganizando a matriz por meio de processos que afetam as interacoes célula-célula
e célula-matriz (PEREIRA et al., 2005). Em contrapartida, os inibidores teciduais das
metaloproteinases (TIMPs) regulam essa atividade, neutralizando as EDMs. A homeostasia
entre MMPs e TIMPs, isto é, o equilibrio funcional entre degradacao e inibicdo da matriz
extracelular, é essencial para a manutencao dos tecidos. Altera¢des na homeostasia tém
sido associadas a doencgas relacionadas a renovacao nao controlada da MEC, como cancer
e doengas cardiovasculares (RIBEIRO et al., 2008).

Conforme Rodrigues, Pinho e Mancera (2012), devido a complexidade do céncer, a
construcao de modelos matematicos da doencga ainda permanece um grande desafio.

Por outro lado, é através do desenvolvimento e evolugao dos modelos matematicos
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que descrevem diferentes aspectos do crescimento tumoral e da aplicacdo de técnicas
computacionais para simulagao que algumas caracteristicas e detalhes da evolugao do

tumor podem ser descritos, bem como efetivamente utilizados em laboratérios clinicos.

Nesse sentido, o presente trabalho busca solugoes eficientes e acuradas para resolver

um sistema de equacgoes que descreve o crescimento tumoral.

1.2 Motivacao

Modelos matemaéaticos que representam um fendémeno fisico, como a invasao de
tecido celular por células cancerosas, geralmente sao expressos por sistemas de equagoes
diferenciais parciais (EDPs). Por se tratar de casos mais complexos, podem envolver mais
de uma equacao e apresentar equacoes nao lineares; sendo assim, solucoes analiticas sao

dificeis de serem determinadas ou nao sao conhecidas.

O modelo apresentado neste trabalho, de Kolev e Zubik-Kowal (2011a), foi
desenvolvido a partir do modelo continuo de crescimento tumoral avascular, investigado
por Anderson et al. (2000). Este modelo consiste em um sistema de quatro EDPs acopladas,
sendo duas nao lineares. As trés primeiras equagoes descrevem a densidade das células
tumorais e do tecido hospedeiro (matriz extracelular) e a concentragdo das enzimas
degradativas da matriz. A quarta equagdo do modelo foi proposta por Chaplain e Anderson
(2003) e descreve a acao dos inibidores de tecido que sao produzidos pela matriz extracelular
(MEC) como resposta as enzimas degradativas da matriz (EDMs). A solugdo analitica do

modelo é desconhecida; dessa forma, ele é solucionado apenas numericamente.

Ao solucionar numericamente um modelo matematico, é importante realizar a
verificacdo da acuracia da solugao, a fim de garantir a construgdo de um modelo numérico
livre de erros ou inconsisténcias. Portanto, deve-se buscar a confiabilidade nos resultados
numéricos; para isso, empregam-se ferramentas como a verificagao e a validagao (ROY,
2005).

De acordo com Thacker et al. (2004), a validagdo é um processo que busca
determinar o grau em que o modelo representa com precisao o mundo real, dentro da
perspectiva do uso pretendido do referido modelo. Pode-se encontrar na literatura trabalhos
que comparam resultados dos modelos com observacoes clinicas reais, como pode ser visto
em Anderson et al. (2000). A validagao nao sera tratada neste trabalho, pois estd aquém

do objeto desta pesquisa.

A verificagdo, por sua vez, é dividida em duas etapas: a verificagao do codigo
computacional e a verificacdo da solugao. A verificacdo do codigo constitui-se na
assercao, tanto quanto possivel, de que nao existem erros ou inconsisténcias no algoritmo
implementado. Enquanto a verificacdo da solucao consiste no processo de quantificacao

dos erros decorrentes da simulagao numérica (ARAKI, 2007).
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Em particular, em problemas relacionados com a modelagem tumoral, a verificagao
numérica nao se apresenta consolidada na literatura. Alguns trabalhos como Wise,
Lowengrub e Cristini (2011), Ng e Frieboes (2018), Wise et al. (2008) simulam modelos de
crescimento tumoral, utilizando o método multigrid para aceleracao de convergéncia, mas

nao apresentam uma analise de verificagao.

Dentro deste contexto, a motivacao para o desenvolvimento desta pesquisa
relaciona-se com a necessidade de resolucdo do sistema de equagoes que descrevem o
crescimento tumoral, de forma mais eficiente, robusta e acurada, em comparacao com os

métodos conhecidos na literatura, aliados a um baixo custo computacional.

1.3 Objetivos

O objetivo geral do trabalho é a simulagdo do crescimento tumoral dado pelo
modelo bidimensional proposto por Kolev e Zubik-Kowal (2011) através de um método

eficiente, robusto e acurado. Os objetivos especificos sao:

e Desenvolver uma metodologia numérica eficiente para simula¢ao do crescimento

tumoral.

o Implementar o método multigrid para acelerar a convergéncia das solugdes numéricas

do modelo proposto.

o Aplicar a multipla extrapolagdo de Richardson (MER) para aumentar a acuracia

das solug¢oes numéricas.
« Utilizar o método das solucoes fabricadas para verificar o cédigo computacional.

o Avaliar estimadores de erro de discretizacdo quanto a sua precisao em diferentes

niveis de malha.
o Validar o modelo computacional em cenarios realistas, analisando alguns parametros

na progressao tumoral.

1.4 Revisao bibliografica

Nesta secao é detalhada uma revisao bibliografica de forma geral sobre simulagao

tumoral, método multigrid e analise de erros.

1.4.1 Simulagao tumoral

A simulagao tumoral é uma técnica de modelagem computacional utilizada para
estudar o crescimento e a dispersao do cancer. A modelagem matematica da progressao

do cancer, incluindo seu microambiente associado, fornece uma visao importante sobre
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a evolucao do tumor. Além disso, a modelagem matematica é uma ferramenta para
prever a dinamica do crescimento tumoral, contribuindo para a interpretacao de dados
experimentais e clinicos, bem como para a avaliagao de estratégias de tratamentos mais
eficazes. Embora o foco histérico tenha sido estudar esses eventos por meio de observagoes
experimentais e clinicas, a modelagem matematica e a simulagdao permitem a analise em
multiplas escalas temporais e espaciais (WISE et al., 2008; LOWENGRUB et al., 2009).

Na década de 1990, observou-se um avanco significativo nos estudos sobre tumores
solidos, com o desenvolvimento de modelos continuos e discretos que abordaram desde o
crescimento avascular e vascular até fen6menos mais complexos, como invasao tecidual,
metastase, tensoes residuais e mecanica multifasica tumoral (ARAUJO; MCELWAIN, 2004).
Dentre as contribuicoes relevantes, destacam-se os trabalhos de Gatenby e colaboradores,
que introduziram modelos inovadores baseados em equacoes de Lotka—Volterra para
descrever a competicao entre células tumorais e normais (GATENBY, 1991; GATENBY,
1995), bem como sistemas de equagoes de reagao—difusao para simular a dindmica espacial
do tumor (GATENBY; GAWLINSKI, 2001; GATENBY; GAWLINSKI, 2003). Por sua vez,
Perumpanani e Byrne (1999) propuseram um modelo que incorpora a motilidade celular,
isto é, a capacidade de as células se moverem ativamente, para descrever a migragao dirigida
de células tumorais invasivas ao longo de gradientes da matriz extracelular, evidenciando

mecanismos de invasao nao tratados por abordagens anteriores.

Anderson et al. (2000), Chaplain e Anderson (2003), Byrne (2010), Chaplain e Lolas
(2005) discutiram varios estigios de crescimento tumoral, apresentando uma variedade
de ideias matematicas, como o crescimento tumoral avascular, angiogénese, invasao e
interagoes tumor-hospedeiro; fundamentais no estudo das varias fases da progressao do

cancer.

A maioria dos modelos de simulacao tumoral propostos na literatura se enquadram
em duas grandes categorias, com base na representacao do tecido tumoral: modelos

continuos e modelos discretos baseados em células.

Modelos continuos, baseados em EDOs ou EDPs, sdo amplamente utilizados
para descrever densidades de células tumorais, matriz extracelular, enzimas degradativas
e concentragoes de substratos como oxigénio e fatores de crescimento. Esses modelos
permitem discretizagao eficiente e uso de solucionadores rapidos, sendo mais viaveis em
larga escala do que modelos baseados em células individuais (LOWENGRUB et al., 2009).
Entretanto, sistemas discretos sao lteis para capturar processos celulares detalhados,
porém podem ser limitados por seu alto custo computacional quando modelam um grande

numero de células.

A seguir, sao apresentados alguns exemplos de trabalhos que utilizaram modelos

continuos baseados em EDPs para simulagao de crescimento tumoral, com diferentes
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estratégias numéricas de resolucao.

Em Anderson et al. (2000), os autores propuseram dois modelos, um continuo
e outro discreto, para descrever a invasao de tecido saudavel por células tumorais. O
modelo continuo, que serve como base para o desenvolvimento do modelo apresentado
nesta tese, é formulado por meio de um sistema de equagoes diferenciais parciais (EDPs)
que considera trés variaveis principais: a densidade de células tumorais, a concentracao
de matriz extracelular e a concentragao de enzimas degradativas (MDEs). As simulagoes
foram conduzidas em uma e duas dimensoes, utilizando o método de Gear e o método de

linhas para o caso unidimensional, e diferengas finitas no caso bidimensional.

A partir desse modelo, diversas extensoes foram propostas para incorporar novos
mecanismos biolégicos e variaveis regulatorias associadas a invasao tumoral. Entre elas,
destaca-se o trabalho de Chaplain (2003), que introduziu o papel do oxigénio como nutriente
essencial ao crescimento celular e acrescentou uma equagao para os inibidores endégenos das
MDEs, representados pelas metaloproteinases inibidoras de tecidos (TIMPs), responsaveis
por limitar a degradagdo da MEC. Em seguida, Chaplain e Lolas (2005) e Chaplain e
Lolas (2006) refinaram o modelo ao incluir termos de quimiotaxia, proliferacao celular e
remodelamento tecidual, ampliando o entendimento sobre a interagao entre crescimento

tumoral e microambiente.

Dando continuidade a essa linha, Kolev e Zubik-Kowal (2011a) apresentaram uma
extensdo numérica robusta do modelo continuo de Anderson et al. (2000), incorporando
as variaveis propostas em trabalhos posteriores, como as TIMPs, e analisando de forma
detalhada o comportamento espaco-temporal do sistema. O modelo proposto por Kolev e
Zubik-Kowal (2011a) é composto por quatro EDPs acopladas, descrevendo as interagoes
entre células tumorais, MEC, MMPs e TIMPs, e foi resolvido numericamente por meio de
métodos de diferencas finitas com controle de passo e condigoes de contorno de Neumann.
Essa formulacdo, além de estabilizar a solu¢do numérica, serviu de base para estudos
computacionais subsequentes, como o de Lopez, Ruiz e Castatio (2018), que implementaram
o modelo em uma e duas dimensoes utilizando uma abordagem mista com o método dos

elementos finitos (MEF) e diferengas finitas no tempo.

Diversos trabalhos subsequentes buscaram estender ou refinar aspectos da dinamica
tumoral, especialmente no contexto de invasao e metastase. Por exemplo, Franssen et al.
(2019) desenvolveram uma estrutura hibrida que incorpora tanto a invasio local quanto a
disseminac¢ao metastatica, combinando elementos continuos e discretos e empregando o
método multigrid para maior eficiéncia computacional. Ainda nesse contexto, destaco o
trabalho que desenvolvi em Maganin et al. (2020), no qual o modelo continuo de crescimento
tumoral foi implementado em uma geometria bidimensional nao regular, representando o
contorno de uma mama. A discretizacao foi realizada por meio do método de diferencas

finitas, sem a utilizagdo de esquemas multigrid, com énfase na analise da dindmica tumoral
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em dominios mais realistas. Ja& Katsaounis et al. (2024) propuseram um modelo multiescala,
hibrido em trés dimensoes, com maior detalhamento biolégico, mantendo como referéncia a
formulagao de Anderson et al. (2000). Por sua vez, Szymanska et al. (2024) apresentaram
um modelo continuo com énfase na plasticidade fenotipica das células tumorais, destacando
como essa caracteristica pode influenciar tanto a morfologia da frente invasiva quanto a

formacao de focos multiplos de tumor.

Por fim, Sakariya, Prasad e Kumar (2025) propuseram um modelo inovador para
descrever o crescimento de tumores cerebrais em dominios bidimensionais irregulares,
incorporando derivadas fracionarias de ordem variavel no tempo. A discretizagdo temporal
foi realizada por meio do método das diferencas finitas, enquanto a discretizagao espacial
empregou fungoes de base radial gaussianas, destacando-se pela andlise de existéncia,
unicidade e estabilidade da solucao, além de explorar a influéncia dos paradmetros

fraciondrios na dindmica tumoral.

Esses estudos evidenciam a diversidade de abordagens numéricas e a constante
evolucao dos modelos matematicos aplicados a simulagao tumoral. Dando continuidade
a essa perspectiva, observa-se que o avanco dos métodos computacionais em areas
como a biomedicina é fundamental, pois as ferramentas de simulagao oferecem grande
potencial para prever comportamentos tumorais e auxiliar no planejamento de intervengoes
(SANTIAGO et al., 2023). Assim, a modelagem matematica do crescimento tumoral
torna-se essencial, especialmente nas fases iniciais da doenga, fornecendo percepgoes sobre
a dindmica do cancer, como a interacao entre células tumorais e o microambiente, o papel

de substancias reguladoras e os fatores que influenciam o processo de invasao.

O estagio avascular do tumor é amplamente modelado com base na proliferacao
celular e na degradagdo da matriz extracelular. Varidveis como densidade celular,
concentracao de enzimas degradativas e inibidores sao essenciais para entender essa fase
inicial do cancer (ANDERSON et al., 2000; CHAPLAIN; ANDERSON, 2003; CHAPLAIN;
LOLAS, 2005; BYRNE, 2010). Um destaque é a haptotaxia, que é a migracao celular
orientada por gradientes na matriz extracelular, na qual direciona as células tumorais para

o tecido saudével.

Estudos recentes como Tao e Winkler (2019), Pekmen e Yirmili (2024) e Lorenzi,
Macfarlane e Painter (2024) destacam a influéncia da dindmica das enzimas e da haptotaxia
na progressao tumoral. Compreender essas interagoes é essencial para desenvolver modelos

capazes de prever o comportamento tumoral em aplicagoes clinicas e experimentais (WU,

2025).
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1.4.2 Método multigrid

O método multigrid (MG) surgiu na década de 1960 como uma técnica promissora
para acelerar a convergéncia de métodos iterativos na resolucao de sistemas oriundos da
discretizagao de equagbes diferenciais parciais (EDPs). Foi introduzido por Fedorenko em
1962, com estudos iniciais aplicados a equacao de Poisson e posteriormente estendido por
Bakhvalov para problemas elipticos com a equacao de advecgao-difusao (FEDORENKO,
1962; FEDORENKO, 1964; BAKHVALOV, 1966).

O método MG foi empregado por outros autores como Astrakhantsev (1971),
Frederickson (1975), Wachspress (1975), Wesseling (1977), Hackbusch (1978), mas sua
consolidagao se deu com os trabalhos de Brandt, que além de introduzir os conceitos
fundamentais da técnica, como a andlise local de Fourier e os esquemas de correcao
(Correction Scheme, CS) e de aproximacao completa (Full Approzimation Scheme, FAS),
também demonstrou sua eficiéncia em problemas lineares e nao lineares (BRANDT, 1973;
BRANDT, 1977). O esquema CS é mais apropriado para problemas lineares, enquanto o
FAS ¢é recomendado para problemas nao lineares (BRIGGS; HENSON; MCCORMICK,
2000; TROTTENBERG; OOSTERLEE; SCHULLER, 2001).

Diversos estudos contribuiram para a maturidade do método, abordando sua
aplicagdo em diferentes tipos de problemas e malhas. Wesseling (2004) destacou a eficicia
do método em problemas elipticos, enquanto Ferziger, Peri¢ e Street (2002) mostraram
limitagoes em casos dominados por advecgao. Trottenberg, Oosterlee e Schuller (2001)
enfatizaram que o desempenho do método depende da escolha adequada dos parametros,
como o tipo de ciclo, nimero de niveis de malha e operadores de transferéncia entre malhas.
Segundo Roache (1998), o uso eficiente do método MG permite a obtengao de solugoes
mais precisas em menos tempo, viabilizando simula¢ées em malhas mais refinadas com

menor erro de discretizacao.

Estudos como os de Pinto e Marchi (2006) analisaram o impacto do nimero de
iteracoes internas e niveis de malha no tempo de CPU para os esquemas CS e FAS, na
equacao de Laplace bidimensional. Outros autores também investigaram configuragoes
6timas para o método MG (OLIVEIRA et al., 2006; SANTIAGO; MARCHI, 2007; PINTO;
MARCHI, 2007; SUERO et al., 2010; RUTZ; PINTO, 2016; ZANATTA et al., 2018).
Em especial, Santiago e Marchi (2007), Santiago, Marchi e Souza (2015) mostraram
que o acoplamento de equagdes nao compromete a eficiéncia do método, além disso,
Santiago (2010), Santiago, Marchi e Souza (2015) reforgaram que nao ha vantagens em
aplica-lo isoladamente em problemas que envolvem o acoplamento de equacoes, como nas

formulacoes funcao de fluxo—vorticidade e nas equagoes de Burgers.

Duas abordagens principais do método MG sao destacadas: o multigrid geométrico,
adequado para malhas estruturadas (WESSELING; OOSTERLEE, 2001), e o multigrid
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algébrico, voltado a malhas ndo estruturadas (STUBEN, 2001). Briggs, Henson e
McCormick (2000) compararam ambas as abordagens e mostraram que o multigrid
geométrico é geralmente mais eficiente em termos de meméria e tempo computacional,

sendo o algébrico indicado quando o geométrico nao é aplicavel.

Nos tultimos anos, os métodos multigrid com acoplamento espaco-tempo tém sido
amplamente investigados, dada sua capacidade de explorar paralelismo em simulagoes de
larga escala envolvendo equagoes diferenciais parciais dependentes do tempo. Notay (2022)
apresentou uma formulagao com multiplos passos temporais e engrossamento espacial,
destacando melhorias na eficiéncia computacional. Falgout et al. (2014) propuseram
um multigrid espago-tempo voltado para arquiteturas modernas, enquanto Chaudet-
Dumas, Gander e Pogozelskyte (2023) desenvolveram uma anédlise tedrica detalhada da
convergéncia de algoritmos multigrid espaco-tempo aplicados a problemas parabdlicos.
No campo da poroelasticidade, Franco et al. (2018) introduziram o algoritmo Waveform
Relazxation multigrid para o modelo de Biot, combinando técnicas de analise semi-algébrica
com suavizadores do tipo Vanka. Posteriormente, Franco e Pinto (2024) estenderam
essa abordagem com uma formulagao multigrid space-time eficiente para problemas com

condutividade hidraulica.

Método multigrid com aplicagoes na bioengenharia térmica também tem sido bem-
sucedido, como demonstrado por Santiago et al. (2023), que resolveram a equagao de Pennes
em malhas 2D com o método Waveform Relazation. Adicionalmente, Benedusi, Minion
e Krause (2021) realizaram uma comparagao experimental entre diferentes estratégias
espaco-temporais em equagoes reacao-difusao, ressaltando as vantagens relativas de cada

abordagem em termos de robustez e desempenho.

No que diz respeito ao desempenho, Oliveira et al. (2012) mostraram que, no
problema especifico por eles estudado, o método MG foi até sete mil vezes mais rapido que o
método singlegrid (SG), que utiliza uma tinica malha, em simulag¢oes de condugao de calor.
Mais recentemente, Zen, Pinto e Franco (2025) aplicaram o multigrid em um modelo
nao linear de transferéncia de calor unidimensional em silicio, com condi¢des de contorno
relaxantes, obtendo ganhos ainda maiores, mais de 20.000 vezes mais rapido que o SG,
devido a combinagao das técnicas FAS e Waveform Relazation (uma varredura temporal ndo
classica), aliada a utilizagdo de malhas temporais e espaciais adequadas para maximizar a
eficiéncia do método. No mesmo contexto, Malacarne, Pinto e Franco (2025) combinaram o
multigrid com o Waveform Relazation com subdominios no tempo para resolver problemas
de propagacao de ondas bidimensionais, alcancando melhor convergéncia, menos oscilagoes

e uma grande reducao no tempo de simulagao.

Na literatura, poucas sao as aplicacdes do método MG envolvendo simulagoes
tumorais. Em Wise, Lowengrub e Cristini (2011), o método foi utilizado para resolver um

sistema tridimensional de adveccao-difusao-reagao altamente nao linear com discretizagao
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por diferencas finitas. O estudo evidenciou o desafio computacional na resolucdo dessas
equacgoes acopladas, demonstrando que o MG ¢é uma alternativa vidvel. De forma
complementar, Santiago et al. (2023) apresentaram um método Multigrid Waveform
Relaxation para a resolucao da equagao de Pennes, empregada na modelagem do transporte
de calor em tecidos biolégicos, obtendo ganhos expressivos de desempenho e precisao, o
que reforga o potencial do MG em aplicagoes biomédicas. Em continuidade, Ng e Frieboes
(2018) detalharam a aplicagao de um algoritmo multigrid nao linear totalmente adaptativo,
com discretizagdo temporal por Crank-Nicolson, obtendo simulacoes realistas de tumores

ricos em matriz extracelular, como o adenocarcinoma pancreatico.

Para uma compreensao mais aprofundada dos fundamentos do método multigrid,
com detalhes na aplicagao, suavizacao e correcao na malha grossa, os esquemas CS e
FAS, complexidade, tipos de ciclos, analise de Fourier, técnicas avancadas como multigrid
adaptativo e paralelo, entre outros, podem ser encontrados em livros como Wesseling
(2004), Briggs, Henson e McCormick (2000), Trottenberg, Oosterlee e Schuller (2001).

1.4.3 Anélise de erros

A analise de erros em solugao numérica refere-se ao estudo dos erros que surgem
durante o processo de calculos numéricos aproximados. Quando apresentam-se problemas
matematicos complexos ou sistemas de equagdes que nao podem ser resolvidos de forma
exata, muitas vezes recorre-se a métodos numéricos para obter solugoes aproximadas.
No entanto, essas solu¢oes podem conter erros numéricos devido as limitagoes dos métodos

utilizados e a representacao finita dos nimeros em um computador.

Martins (2013) destaca que a simulagdo numérica, amplamente fundamentada em
equacoes diferenciais, tem-se tornado cada vez mais importante em aplicagoes cientificas e
de engenharia. Em geral, as simulagdes numéricas em CFD destacam-se pela sua robustez
e eficiéncia. Contudo, conforme Stern et al. (2001) e Karimi et al. (2012), um dos grandes
desafios encontrados diz respeito ao nivel de acuracia das solu¢des numéricas. Logo, deve-se
tentar reduzir os erros numéricos e, sempre que possivel, fazer uma estimativa do erro

envolvido nas soluc¢oes apresentadas.

Varios autores analisaram erros em diferentes contextos. Gomes et al. (2012)
estudaram como o tipo de malha afeta a precisdao na simulacao da propagacao de ondas.
Kwiatkowski Jr. et al. (2022) compararam a ordem efetiva de diminuigdo do erro com
o refinamento de malha em processos de aeragdao em graos. Para o crescimento tumoral,
Mohammadi, Dehghan e Marchi (2021) utilizaram uma solugao refinada como referéncia

para medir a acuracia dos métodos.

Uma técnica amplamente utilizada para reduzir erros de discretizagao é a

extrapolagdo de Richardson (ER), que elimina termos dominantes de truncamento



Capitulo 1. Introdugio 28

(BURDEN; FAIRES; BURDEN, 2016; GRASSELLI; PELINOVSKY, 2008). Essa técnica
tem sido aplicada com sucesso em diversos problemas, como equacoes de difusao-reacao e
vibragado massa-mola (SUN; ZHANG, 2004; SOROUSHIAN; WRIGGERS; FARJOODI,
2009; WANG; ZHANG, 2009). Modifica¢oes na ER também permitem gerar estimadores
de erro. Roache (1997), Marchi (2001), Novak (2012) e Marchi et al. (2016) propuseram

novos estimadores, avaliando sua acuracia e confiabilidade.

A multipla extrapolagdo de Richardson (MER) aplica ER recursivamente para
aumentar a ordem de convergéncia. Estudos como Marchi et al. (2010) mostraram que
MER reduz significativamente erros em malhas triangulares, enquanto Martins (2013),
Marchi et al. (2016) a aplicaram com sucesso a equagoes de Poisson e Burgers, adaptando

a metodologia a diferentes tipos de variaveis.

O trabalho de Rodrigues et al. (2022) aplicou a técnica MER para melhorar a
precisao em simulacoes de escoamento em meio poroso deforméavel. Usando diferencas
finitas e o método de Crank—Nicolson, os autores resolveram grandes sistemas com o
método multigrid e o suavizador Vanka. Com a metodologia empregada, reduziram
significativamente o erro de discretizagao; em alguns casos, o uso da MER (com 6 niveis
de extrapolagao) reduziu o erro de discretizagdo em mais de 62 mil vezes, aumentando a

acuracia e a confiabilidade das solucoes.

No contexto de degradacao tumoral, desenvolvi em Maganin, Pinto e Romeiro
(2022) uma analise de verificacdo numérica para um modelo unidimensional, avaliando as
ordens aparente e efetiva do erro de discretizacao e comprovando a eficacia dos estimadores
de Richardson. Nesta tese, esses conceitos sao estendidos para um modelo bidimensional de
crescimento tumoral e para a aplicacao da técnica MER, com o objetivo de desenvolver um
método eficiente, robusto e acurado, capaz de lidar com as complexidades multiescalares
desse fendmeno. A escolha por duas dimensoes se justifica pela correspondéncia com
exames clinicos predominantemente bidimensionais e pela viabilidade computacional em

estudos de verificacao.

Para uma visao abrangente sobre tipos de erros, técnicas de estimativa e préaticas

de verificacdo computacional, destacam-se os trabalhos de Ferziger, Peri¢ e Street (2002).

1.5 Organizacao do texto

Este trabalho esta estruturado da seguinte forma: no Capitulo 2 é descrito o modelo
matematico adotado para a simulagao do crescimento tumoral. O Capitulo 3 apresenta a
fundamentacao tedrica sobre analise de erros, técnicas de estimativa e reducao do erro de
discretizacao, incluindo a técnica de multipla extrapolacao de Richardson, além de métodos
de discretizagao e o método multigrid. O Capitulo 4 detalha o modelo numérico e o processo

de discretizacao empregado, abrangendo tanto os aspectos espaciais quanto temporais. O
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Capitulo 5 trata da verificacdo dos cddigos computacionais implementados usando um
modelo com solugao analitica conhecida. Este capitulo também inclui a analise da ordem
do erro de discretizacao e a eficicia dos estimadores de erro. No Capitulo 6, discutem-se
os resultados numéricos obtidos, incluindo a eficiéncia do método MG e a aplicagao da
MER a um problema realista. Também sao exploradas simulagdes tumorais bidimensionais,
destacando a influéncia da haptotaxia. Por fim, o Capitulo 7 apresenta as consideragoes

finais, enfatizando as principais contribui¢oes do trabalho e os desdobramentos futuros.
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2 MODELO MATEMATICO

Desenvolvido em Kolev e Zubik-Kowal (2011a), o modelo matematico descreve o
crescimento de tumores sélidos genéricos no estagio avascular, com o objetivo de analisar
as interagoes entre o tumor e o tecido circundante. Neste estagio, o tumor ainda nao
desenvolveu vascularizagao prépria, mas processos de invasao local e degradagao da matriz

extracelular (MEC) ja estao presentes.

O modelo é baseado em um sistema acoplado de equagoes diferenciais parciais
(EDPs) dependentes do tempo, envolvendo quatro varidveis principais: a densidade de
células tumorais (n), a densidade da matriz extracelular (f), a concentragdo de enzimas
degradativas da matriz (m) e a concentracao de inibidores teciduais de metaloproteinases

(TIMP) (u), também chamados de inibidores end6genos. O sistema é dado por:

on
— =d, An—ANV.(nV )+ pun(l —n — f), (2.1)
8?5 S~——
difusdo haptotaxia proliferagao
of
—=— nqmf +pf(l—n—f), (2.2)
ot ——
degradagao renovagcao
om
— =d,Am+ aon — fum — f[Pm (2.3)
0t N—— ~ — ~—~
difusdo produgdo  neutralizacdo  {ecaimento
e 0 (2.4)
- = O, AU — um — u .

difusio  produgio de inibidor ~ nheutralizagdo  gecaimento

Considera-se o dominio espacial 2 C R?, onde A representa o operador Laplaciano, V é o

operador gradiente e V- denota o divergente. O intervalo de tempo (t) considerado é (0,t¢].

As condigoes iniciais genéricas associadas ao sistema de equagdes sdo dadas por:

n(x,y,0) = no(z,y), (2.5)
[z 0) = folzy), (2.6)
m(z,y,0) = mo(x,y), (2.7)
u(z,y,0) = uo(zy), (2.8)

em que (z,y) € {2, com fungdes dadas ng, fo, mo, uo definidas em (2.

As condigoes de contorno, do tipo Dirichlet, sdo descritas genericamente por:
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n(Xp,t) = by, (2.9)
f(Xp,t) = ba, (2.10)
m(xp,t) = bs, (2.11)
u(Xp,t) = by, (2.12)

para Xy, € 0f2 , sendo 92 o contorno do dominio assumido e 0 <t < ¢y, onde by, by, b3 €

by sao valores reais conhecidos definidos conforme o cenério fisico adotado.

As condigoes iniciais e de contorno especificas utilizadas nos testes numéricos
serao detalhadas nos Capitulos 5 e 6. No Capitulo 5, serd empregada uma solugao analitica
fabricada para validagao da implementagao numérica, assumindo condigoes de Dirichlet
homogéneas (b; = 0 para i = 1,2,3,4). J4 no Capitulo 6, serd investigado um cendrio mais
realista, no qual considera-se a presenca de um nédulo tumoral inicial em {2 e a matriz
extracelular intacta nas bordas. Nesse caso, adotam-se condigoes de Dirichlet nulas para
n, m e u, e valor unitario para f no contorno, representando um tecido saudavel ainda

nao degradado.

Tais condigoes sao amplamente adotadas na literatura, conforme apresentado
em Kolev e Zubik-Kowal (2011a), Lépez, Ruiz e Castatnio (2018), Maganin et al. (2020),
podendo ser adaptadas a diferentes contextos biomédicos conforme o problema a ser

modelado.

2.1 Modelagem tumoral

Segundo Anderson et al. (2000), o modelo, Egs. (2.1)—(2.4), descreve o
comportamento acoplado entre células tumorais e o microambiente extracelular. O termo
de difusao d,, An representa o movimento aleatério das células tumorais, enquanto o termo
de haptotaxia —yV - (nV f) modela o movimento direcionado ao longo de gradientes de
adesividade ou concentragao da MEC. Esse mecanismo reflete a tendéncia das células
tumorais a migrarem em direcao a regioes com maior concentragao de moléculas de adesao,
como fibronectina, laminina e colageno, substancias que resultam da degradacgao parcial

da MEC e que facilitam a motilidade celular.

A taxa de proliferacao pin(l —n — f) limita o crescimento celular em fungao da
densidade local e da fragdo ocupada pela matriz. O termo de renovacao usf(1 —n — f)

atua de forma analoga a MEC, representando a regeneragao tecidual.

A concentragio de enzimas degradativas da matriz (EDM) (m), que sdo produzidas
localmente pelas células tumorais, difunde-se no tecido e sofre decaimento natural com

taxa (. Além disso, as enzimas sdo neutralizadas por inibidores endégenos (TIMPs), Oum.
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O termo an modela a taxa de producao de enzimas, assumida proporcional a densidade

de células tumorais.

A varidvel u representa a concentragao dos inibidores TIMP, produzidos pela MEC
em resposta a degradacao tecidual. Assim, o termo £ f expressa essa producao regulatoria.
Os inibidores difundem-se com coeficiente d,, sofrem decaimento natural com taxa p e
reagem com as enzimas degradativas, impedindo que essas enzimas continuem degradando

a matriz extracelular.

Assim, o movimento das células tumorais combina difusdo aleatéria e migracao
direcionada (haptotaxia), estimulada por gradientes de MEC degradada. As EDMs (m)
promovem a invasao tecidual, degradando localmente a matriz e criando espago para a
proliferacao celular. A MEC (f) é simultaneamente degradada e renovada, controlando a
resisténcia mecanica e estrutural do tecido. E, os inibidores (u) regulam a atividade das

enzimas, estabilizando o microambiente e retardando o avanco do tumor.

Os parametros d,,, d,, e d, correspondem aos coeficientes de difusao da densidade
de células tumorais, das enzimas e dos inibidores, respectivamente. As taxas [ e [
representam a proliferacao das células e o crescimento da MEC, enquanto n, o, 0, 3, & e p
sao constantes positivas associadas aos processos de degradacao, producao, neutralizacao e

decaimento. Os valores numéricos utilizados estao apresentados no Capitulo 5, TABELA 1.

O modelo proposto pode ser facilmente estendido para incluir efeitos de angiogénese
ou tratamentos quimioterapicos, por meio da adicdo de novas variaveis e termos de
acoplamento. No entanto, neste trabalho o foco permanece no estagio avascular, de modo a

compreender em detalhe as interacoes locais entre o tumor e o tecido saudavel circundante.

2.2 Limitacoes e validade biol6gica do modelo avascular

Embora o modelo descrito pelas Egs. (2.1)—(2.4) forneca uma representagao
matematica consistente dos mecanismos iniciais de invasao tumoral, ele apresenta limitagoes
inerentes a suposicao de um crescimento puramente avascular. Nesse estagio, o tumor
depende exclusivamente da difusdo de nutrientes e oxigénio provenientes do tecido
circundante, o que restringe seu tamanho. A auséncia de vascularizacao impede o transporte

eficiente de oxigénio e substratos metabdlicos para o interior da massa tumoral.

Esse tipo de limitagao é reconhecido, por exemplo, em Maganin (2020), onde
os autores destacam que modelos avasculares sao indicados apenas para representar as
fases iniciais do crescimento tumoral. O trabalho enfatiza que, & medida que o tumor
se desenvolve, esse mecanismo se torna ineficiente, exigindo a consideracao de processos
angiogénicos para garantir o aporte adequado de substancias essenciais ao crescimento
continuo. Assim, reforca-se a necessidade de modelos mais complexos para descrever

estagios avancados da progressao tumoral.
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Outra limitacdo do modelo continuo esta relacionada a suposicao de que os
parametros biologicos, como coeficientes de difusao, taxas de producgao e degradacao, sao
constantes em todo o dominio espacial e durante toda a simulacao. Essa abordagem, embora
simplificadora, é comum na literatura e permite analises mais controladas e eficientes do
ponto de vista computacional. Trabalhos como Chaplain (2003), Kolev e Zubik-Kowal
(2011a) e Lépez, Ruiz e Castanio (2018) utilizam coeficientes de difusdo constantes para as

variaveis tumorais, o que serve como base para a escolha feita nesta tese.

Por outro lado, alguns estudos mais recentes adotam coeficientes de difusao nao
constantes, buscando representar de forma mais realista a heterogeneidade do meio biolégico.
Em Ganesan e Lingeshwaran (2017), a difusividade das células tumorais depende da
densidade da matriz extracelular. J&4 em Ptashnyk e Venkataraman (2025), o coeficiente de
difusao das enzimas degradativas é modelado como fung¢ao nao linear da fragdo volumétrica

da matriz, destacando a influéncia do microambiente na propagagao tumoral.

Apesar dessas simplificagoes, o modelo possui validade biolégica qualitativa
comprovada, sendo amplamente aceito na literatura como uma base solida para a
compreensao da dindmica inicial da invasao tumoral. Estudos como o de Kolev e Zubik-
Kowal (2011b) demonstram que o modelo reproduz comportamentos coerentes com
observacoes experimentais, tais como a formacao de frentes invasivas, a degradacao
localizada da matriz extracelular e a migragao celular dirigida por haptotaxia. Os autores
mostram, por meio de simulagoes numeéricas, que a interacao entre células tumorais, enzimas
degradativas e inibidores endogenos gera padroes espaciais complexos e biologicamente
plausiveis de invasao tecidual, reforcando a aplicabilidade qualitativa do modelo para

representar os estagios iniciais do cancer.
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3 FUNDAMENTACAO TEORICA

Este capitulo apresenta os fundamentos tedricos necessarios para este trabalho.
Sao abordados os principais conceitos relacionados a discretizacao de equacoes diferenciais
parciais (EDPs), ao método proposto para a aceleragdo da convergéncia na solucao de
sistemas lineares, a andlise de erros numéricos e a técnica empregada para a redugao dos

erros de discretizacao.

3.1 Meétodo das diferencas finitas

Segundo Fortuna (2000), obter a solugao de uma equacao diferencial em uma
regiao continua R implicaria determinar o valor da variavel dependente em cada ponto
desse dominio. Computacionalmente, isso s6 ¢é possivel de forma exata quando existe uma
solugao exata para o problema. Nos casos em que tal solucao nao esta disponivel, recorre-se
a métodos numéricos para calcular aproximacoes da solug¢ao em pontos discretos dentro do
dominio. Como o método numérico opera sobre um conjunto finito de pontos, a regiao nao
pode ser tratada como verdadeiramente continua. O processo de selecionar esses pontos e
resolver o problema apenas neles é denominado discretizacao do dominio, sendo o conjunto

resultante conhecido como malha.

Apés a discretizacao do dominio, é necessario converter as equacoes diferenciais
em formas discretas, substituindo as derivadas presentes por expressoes algébricas que
incluem a funcao desconhecida. Esse procedimento é conhecido como discretizagao das
equagoes (MARCHI; SILVA, 2002). Na sequéncia, um método numérico tem a fungao
de resolver as equagoes resultantes da discretizagao para estimar a solugdo numérica do

problema original, obtendo assim uma solucao aproximada.

Um dos métodos mais utilizados para discretizar as equacgoes diferenciais é o
método das diferencas finitas (MDF) (FERZIGER; PERIC; STREET, 2002; BURDEN;
FAIRES; BURDEN, 2016), porém métodos como elementos finitos (MEF) e volumes finitos
(MVF) também sao muito utilizados. Neste trabalho, o MDF serd empregado.

O principio fundamental do MDF é aproximar, através de expressoes algébricas,
cada termo do modelo matematico para cada ponto ou n6 da malha (FERZIGER; PERIC;
STREET, 2002).

As aproximacoes numéricas por diferencas finitas podem ser obtidas através da
expansao em série de Taylor, a qual permite expressar cada tipo de aproximacao e a

respectiva ordem do erro.

Por simplicidade, sao apresentadas algumas aproximacoes para as derivadas
utilizando a expansao de Taylor, considerando uma tunica varidavel. No entanto, de

maneira analoga, podem ser obtidas aproximagoes ao considerar duas ou mais variaveis.
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Assim, seja f(x) uma fungao continua no intervalo [a, b] e que possua derivadas continuas
até ordem n nesse intervalo, ou seja, f pertence C"[a,b]. Com isso, a aproximacao de

Taylor é dada por:

df h2 d*f h3 d3 f
h— — —
f(z) = f(xo) + ’ aa| TR + ...+ Ry, (3.1)
em que h = x — xg, R, ¢ o resto, definido como
h"™ d™f
= —, ). 3.2
()l da . § € [zo,] (3.2)

Para determinar a primeira derivada de uma funcao f no ponto z; = ih, ao qual

d,
sera denotada por df , expande-se f(x; + h) em série de Taylor em torno do ponto x;
x

%

df h2 d*f h3 d3 f
Isolando a primeira derivada na Eq. (3.3), pode-se escrever
df | _ flazi+h) — f(x:)
2 = ETL 4
dz |, h + ' (3.4)
em que
h d*f h?d3f
ETL =—— - —.... .
20da?|, 3!l dad|, (3.5)

Ao conjunto dos termos da Eq. (3.5) da-se o nome de erro de truncamento local
(ETL), que surge da utilizacdo de um ntmero finito de termos da série de Taylor. Observa-
se que o termo dominante do ETL é proporcional a h, pois a menor poténcia de h que
aparece na expansao do erro é h'. A essa poténcia dominante, associada ao comportamento
assintotico do erro de discretizacao quando h — 0, dé-se o nome de ordem assintotica do
erro, denotada por p,. Neste caso, temos que o ETL ¢é de primeira ordem, pois psy = 1.

Mais detalhes sobre esse conceito serao apresentados na Sec¢ao 3.4.1.

Para simplificar a notagdo dada pela Eq. (3.4), utiliza-se fiox para f(x; £+ kh),

com isso

ﬁ fz—l—l fz
dx|. h

7

(3.6)

A aproximagao dada pela Eq. (3.6) é uma equagao de diferengas finitas que
representa uma aproximagao de primeira ordem, O(h), para a primeira derivada de f,

utilizando um ponto a jusante (Downwind Differencing Scheme, DDS).

Uma segunda aproximacao de diferencas finitas pode ser obtida a partir da
expansdo de f(z; — h) em série de Taylor em torno de x;, resultando em
df h? d?

dm 2! da?|,

fli=h) = flx:) - +O0(h%). (3.7)
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Isolando a primeira derivada na Eq. (3.7), tem-se

A i fi

~ 3.8
T (35)

que é outra aproximagao de primeira ordem, O(h), para a primeira derivada de f, utilizando

um ponto a montante (Upwind Differencing Scheme, UDS).

Para obter uma aproximagao de segunda ordem, O(h?), para a primeira derivada
de f, manipula-se convenientemente as expansdes em série de Taylor, descritas nas

Egs. (3.3) e (3.7)

flzi+h)— f(z; —h) = 2h;b; + O(h?), (3.9)
assim,
df | firi— fix
T (3.10)

Tem-se que a aproximacao obtida em Eq. (3.10) é denominada como sendo a

aproximacao por diferenca central de dois pontos (Central Differencing Scheme, CDS).

Ainda utilizando as expansoes Eqgs. (3.3) e (3.7), manipula-se para que a primeira
derivada seja eliminada e desta maneira, encontra-se a aproximacio de O(h?) para a
derivada segunda, dada por

d*f

flz; +h) + f(z; — h) = 2f(z;) + hg@ + O(h*), (3.11)

assim, tem-se
d* f S —2fi+ fia
da? |, h? '

(3.12)

Para obter uma expressao que relacione a variacao de f com incrementos em
x, dado por h,, e em y, dado por h,, deve-se utilizar a expansao em série de Taylor de
fungdes de duas variaveis. Supondo que a funcao f seja continua e que apresente derivadas
parciais continuas até ordem n, com n maior que a derivada de maior ordem utilizada.
A série de Taylor, entao, é dada por
2 52
Pt by ) = Slany) + )|+ )G TSR ES

Jh)(hy) PF | ()2
21 Ozdyl|,; 21 0y?

w (3.13)
+ Rn

2
em que R, é o resto.

Apés algumas manipulagdes algébricas, utilizando a Eq. (3.13), que podem ser
encontradas em Fortuna (2000), tem-se as férmulas de diferencas finitas centradas, utilizadas

para aproximar as primeiras e segundas derivadas de fungoes de duas variaveis, como sendo
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gi - f“g;f“ +0(h2), (3.14)
?9;; y _ W +O(h2), (3.15)
gijs = firri —(QhJ::,)j;r fi1i + O(K2), (3.16)
i.j
ZZJ; - fig+1 —(i]j)j; fij-1 O(h2). (3.17)

Para um estudo mais detalhado, consultar Ferziger, Peri¢ e Street (2002), Fortuna
(2000), Burden, Faires e Burden (2016).

3.2 Meétodo de Crank-Nicolson

Métodos numéricos eficientes sao essenciais para a resolucao de equagoes
diferenciais, em particular, equacoes diferenciais em regime transiente. O método numérico
de Crank-Nicolson (CN) se destaca por sua estabilidade e precisdo, sendo amplamente
utilizado para a aproximacgao dos termos temporais das equacgoes diferenciais parciais

(EDPs), como a EDP unidimensional descrita por:

ou ou 0*u
a =F (U,Z‘,t, a, W) s (318)

em que t e z representam as varidveis temporal e espacial, respectivamente, u(z,t) é a
funcao solucao e F' é uma funcao que depende de u, x,t e das derivadas espaciais de u na
EDP.

Considerando u(w;,t,) = u¥ como a solucdo numérica da equacio no dominio
espacial discreto x; em um instante de tempo k, o termo espacial é discretizado utilizando

a média das diferencas entre os instantes k + 1 e k, resultando em:

k+1 k
L _ k]
% ~ (F++ F, (3.19)

em que uf™ é a solucdo no tempo atual k 4 1, At é o passo de tempo, e FF e FF!

representam as fungoes que dependem de u, x,t e das derivadas espaciais de u no ponto z;

nos tempos k e k + 1, respectivamente.

O método CN, conforme mostrado na Eq. (3.19), é um método implicito de
segunda ordem no tempo, com erro global de truncamento de O(At*) (BURDEN; FAIRES;

BURDEN, 2016), é considerado incondicionalmente estavel para problemas de difusdo, no
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sentido de que nao impode um limite estrito para o tamanho do passo de tempo At em
funcao do passo espacial Ax. No entanto, a escolha de At deve ser feita de forma a manter
uma boa relacdo com Az, garantindo precisao e evitando perda significativa de acuracia

na solug¢ao numérica.

3.3 Sistema linear e o método multigrid

A discretizagao de equagoes diferenciais parciais (EDPs) por métodos numéricos,
como diferencas finitas, resulta em sistemas lineares de grande porte, que exigem técnicas

eficientes para sua resolucao. Um exemplo geral desse sistema é dado por
Au =1, (3.20)

em que A é a matriz de coeficientes, u é o vetor de incégnitas e f é o vetor de termos

independentes.

Seja v uma aproximacao para a solucao exata u. Define-se o erro associado como
e=u-—yv, (3.21)
e o residuo, uma medida calculavel usada para monitorar a convergéncia do método, como

r=1f— Av. (3.22)

O erro e o residuo estao relacionados pela chamada equacao residual:
Ae =r, (3.23)

a qual constitui a base para o funcionamento de métodos iterativos multigrid, nos quais
aproximacoes sucessivas sao corrigidas a partir da solucdo de problemas residuais em

diferentes niveis de malha.

Existem diversos métodos para resolver os sistemas dados pela Eq. (3.20),
aqui chamados de solvers. Dentre eles, os métodos diretos e os métodos iterativos.
De acordo com Burden, Faires e Burden (2016) os métodos iterativos sdo mais eficientes
computacionalmente que os métodos diretos para resolver tais sistemas lineares de grande

porte gerados da discretizacao de EDPs.

Para encontrar a solucao desses sistemas de equacoes por meio de métodos
iterativos, é necessario fornecer uma estimativa inicial para a solucdo. A partir dessa
aproximagao, novas solugoes sao geradas iterativamente. Caso o processo seja convergente,
a aproximacgao melhora a cada iteragao. O processo é encerrado quando um critério de
parada é satisfeito, o qual pode estar baseado no erro, no residuo, no niimero maximo

de iteragoes, entre outros. A literatura apresenta diversos métodos iterativos, tais como
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Jacobi, Jacobi ponderado, Gauss—Seidel, Sobre-Relaxacao Sucessiva (SOR), Fatoracao LU

incompleta.

Neste trabalho, adota-se o método de Gauss—Seidel como solver padrao, pois,
segundo Briggs, Henson e McCormick (2000), Trottenberg, Oosterlee e Schuller (2001), esse
método apresenta boas propriedades de suavizagao (propriedade de reduzir rapidamente

os modos oscilatérios do erro, deixando apenas os modos suaves).

Em particular, utiliza-se a versao com ordenagao red-black (GSRB) do método de
Gauss—Seidel, conforme descrito em Wesseling (2004), Trottenberg, Oosterlee e Schuller
(2001). Nessa abordagem, os nés da malha sao organizados segundo um padrao de tabuleiro
de xadrez: primeiro, atualizam-se todos os nds vermelhos utilizando os valores antigos dos
nos pretos adjacentes; em seguida, os nos pretos sao atualizados com os novos valores ja

computados nos nos vermelhos.

Essa ordenagao permite que os célculos em cada subconjunto de nés (vermelhos
ou pretos) sejam realizados independentemente e de forma paralela, promovendo maior
eficiéncia computacional. A FIGURA 1 ilustra essa organizacao para o caso bidimensional,

destacando a distribuicao alternada dos pontos vermelhos e pretos na malha.

FIGURA 1 — Ordenagéo red-black em malha 2D.
¢ S © o o

¢ o - Y 0 o Red

|4 w w w . B lack
¢ o ¢ O o
¢ ¢ & o 0
¢ < ¢ o o

FONTE: A autora (2025).

O solver Gauss-Seidel red-black tem sido bastante utilizado em trabalhos
envolvendo o método multigrid, como: Trottenberg, Oosterlee e Schuller (2001), Briggs,
Henson e McCormick (2000), Wesseling e Oosterlee (2001), Pinto e Marchi (2006),

Malacarne, Pinto e Franco (2025), entre outros.

3.3.1 Método multigrid

Nesta se¢ao serd abordado o estudo proposto originalmente por Fedorenko (1964),
conhecido por método multigrid (MG). O método surgiu da necessidade de reduzir o

tempo de processamento na obtencao de solugdes numeéricas para equagoes diferenciais,
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mostrando que a velocidade de convergéncia com o uso da técnica é superior a dos métodos

iterativos puros, ou seja, aos métodos singlegrid (SG), que utilizam uma unica malha.

O método MG tem origem na propriedade de suavizagao dos métodos iterativos
convencionais. Um método iterativo convencional possui bom fator de convergéncia somente
nas primeiras iteracoes, onde os modos dos erros sao mais oscilatérios, caracterizando a
presenca de modos de alta frequéncia. Porém, apds algumas iteragoes, quando os modos
dos erros tornam-se mais suaves, a convergéncia passa a ser mais lenta, sinalizando
a predominancia de modos de baixa frequéncia (TROTTENBERG; OOSTERLEE;
SCHULLER, 2001). Para ilustrar este procedimento, pode-se observar na FIGURA 2,
o comportamento das componentes do erro no processo iterativo do método de Gauss-Seidel

para a equacao de Poisson.

FIGURA 2 — Influéncia da iteracdo do método de Gauss-Seidel no erro.

Erro da estimativa inicial Erro apos 5 iteragoes Erro apés 10 iteragées

FONTE: A autora (2025).

A FIGURA 2 apresenta o efeito da suavizagdo do erro. Conforme observado,
inicialmente o erro apresenta oscilacoes acentuadas, porém, apds algumas iteragoes, nao
necessariamente fica pequeno, mas torna-se suave. De acordo com a literatura, as primeiras
iteragoes do método de Gauss-Seidel geralmente apresentam bom fator de suavizacao,
reduzindo rapidamente os modos oscilatérios do erro. No entanto, apds algumas iteracoes,

0 processo torna-se lento, indicando a predominéancia dos modos suaves.

O método MG visa melhorar a taxa de convergéncia dos métodos iterativos em
todas as faixas dos modos dos erros (oscilatérios e suaves). Segundo Briggs, Henson e
McCormick (2000), os modos suaves tornam-se mais oscilatérios em malhas mais grossas.
Com base nisso, a ideia é utilizar uma hierarquia de malhas e alternar suavizagoes
em cada nivel de malha e as aproximacoes destas solu¢des em uma malha mais grossa
(com uma certa razao de engrossamento) através de operadores que transferem informagoes
da malha fina para a malha imediatamente mais grossa (operador de restrigdo), e em
seguida, transferir informacgoes da malha grossa para a malha imediatamente mais fina

(operador de prolongacao), desta forma reduzindo todo o espectro de erros (erros de
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alta e baixa frequéncia) (BRIGGS; HENSON; MCCORMICK, 2000; TROTTENBERG;
OOSTERLEE; SCHULLER, 2001; WESSELING, 2004).

Como o MG é composto por uma hierarquia de malhas, é preciso utilizar alguma
razao de engrossamento re = H/h entre elas. Aqui H e h referem-se ao espagamento entre
os n6s das malhas grossa e fina, respectivamente. Segundo Briggs, Henson e McCormick
(2000) e Brandt (1977), re = 2 (ou seja, H = 2h) é a razao de engrossamento mais utilizada
e mais recomendada, e sera utilizada neste trabalho. Entao pode-se formar a sequéncia de
malhas apenas dobrando o tamanho do espagamento da malha sucessivamente. Assumindo
que essa sequéncia termina com a malha mais grossa possivel ou a mais grossa desejada.
Na FIGURA 3 pode-se visualizar uma sequéncia de malhas com re = 2, para o caso

bidimensional.

FIGURA 3 — Uma sequéncia de engrossamento de malhas utilizando re = 2.

FONTE: Trottenberg, Oosterlee e Schuller (2001).

3.3.2 Operadores de restricao e prolongagao

Os operadores que transferem informagoes da malha fina (£2") para a malha
imediatamente mais grossa (£2*") sio denominados operadores de restricio e sdo
representados genericamente por IZ". Os mais conhecidos sao: injegao, meia ponderacio e

ponderacao completa. Neste trabalho, sera utilizado o operador de ponderacao completa.

A restricao por ponderacao completa, no caso bidimensional, é feita através de
uma média ponderada entre o ponto central (P) e todos os pontos vizinhos (N, S, E; W,
NW, SW, NE, SE) (BRIGGS; HENSON; MCCORMICK, 2000). A FIGURA 4 apresenta,
este processo de transferéncia de informacoes de 2" para a malha 2%, indicando os

respectivos pesos.

Os operadores que transferem informagoes da malha grossa (£22") para a malha
imediatamente mais fina (£2"*) sao denominados operadores de prolongacao (ou interpolagio)
e sdo representados genericamente por 2. Sera empregado neste trabalho o operador
de interpolacao bilinear, um dos mais utilizados na literatura, e que pode ser visto na
FIGURA 5, que apresenta a malha correspondente a este processo de transferéncia de

informacoes da malha (22" para a malha 2", indicando os pesos.
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FIGURA 4 — Operador de restrigao por ponderagdo completa para o caso 2D.
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FONTE: Franco (2017).

FIGURA 5 — Operador de interpolacio bilinear para o caso 2D.

FONTE: Franco (2017).

Outras informacoes sobre o operador de restricio completa, operadores de
interpolagao bilinear e demais operadores, podem ser vistas em Briggs, Henson e McCormick
(2000), Wesseling (2004), Trottenberg, Oosterlee e Schuller (2001), Ferziger, Perié¢ e Street
(2002). A escolha pelos operadores de restrigdo por ponderagao completa e interpolagao
bilinear baseia-se na facil implementacao e por excelentes resultados encontrados na
literatura (FRANCO; PINTO, 2024).

3.3.3 Ciclos do multigrid

As diferentes formas de percorrer as malhas no método multigrid dao origem a
diferentes tipos de ciclos. Os ciclos mais utilizados sao o ciclo V' e o ciclo W, sendo
selecionados conforme a complexidade do problema e as exigéncias de convergéncia
(WESSELING, 2004). Neste trabalho, adota-se o ciclo V (vy,15) (veja a FIGURA 6, para o
caso de cinco niveis), em que vy e vy representam o nimero de pré e pds-suavizagoes, isto é,

o numero de iteragoes do solver realizadas durante os processos de restricao e prolongacao,
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respectivamente. A escolha do ciclo V' deve-se a sua comprovada eficiéncia computacional

e robustez na resolucao de EDPs do modelo proposto nesta tese.

FIGURA 6 — Estrutura do ciclo V' para cinco niveis e re = 2. O simbolo e representa suavizagao
e o simbolo o a solucdo exata.
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FONTE: Franco (2017).

Como discutido em Briggs, Henson e McCormick (2000), o método multigrid
apresenta convergéncia eficiente em problemas elipticos. Para outros tipos de EDPs, como
as de natureza parabdlica ou hiperbdlica, o uso de multigrid ainda constitui objeto de
pesquisa, especialmente no que diz respeito a escolha dos operadores e a robustez da

convergencia.

A quantidade de suavizagoes por nivel, representada por v, influencia diretamente
a eficicia do método. Em geral, apés a diminuicao dos componentes oscilatérios do
erro, nao ¢ vantajoso continuar aplicando o suavizador, pois o método tende a estagnar.
Dessa forma, o nimero de iteragoes do suavizador deve ser ajustado de acordo com a
analise do comportamento do erro em cada nivel de malha, podendo variar entre as
etapas de pré e pds-suavizagao e também entre diferentes niveis. Para problemas que
apresentam dificuldades de convergéncia, como os que envolvem anisotropias e malhas
nao uniformes, pode ser necessario adotar um nimero maior de suavizagoes ou utilizar

estratégias complementares para assegurar a taxa de convergéncia desejada.

O Algoritmo 1 descreve, para um determinado nivel de malha [ > 1, com
espacamentos h, 2h, 4h, ..., 27 h, a estrutura do ciclo V(vy, %), no qual sdo aplicadas v,
iteragoes de pré-suavizacao e v, de pds-suavizacao em cada nivel. Uma andlise comparativa
dos efeitos da escolha de 11 e 15 na precisao e desempenho da solucdo numérica é apresentada

na Secao 5.2.1.
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Algoritmo 1: MG-V-Ciclo(l) — Algoritmo ciclo V' do método multigrid
Input: Nivel atual [; nivel maximo L.; niimero de suavizagoes vy € vy

Output: Aproximacao v¥) da solucao de Ajp® = f0

1if [ = Loy // nivel mais grosso
2 then

3 Resolva diretamente: 4,0 = £,

4 end

5 else

6 Pré-suavizacao: aplique v; iteracoes de suavizacio em A;p® = O,

7 Compute o residuo: ¥ = fO — A,00);

s | Restrinja o residuo: f0+) = 12, r®;

9 Inicialize v+1) = 0 na malha grossa;

10 MG-V-Ciclo(l + 1); // chamada recursiva
11 Interpole a correcao: v « v 4 Igf,;lhv(l“);

12 Pés-suavizacao: aplique v, iteracoes de suavizacio em A0 = fO;
13 end

3.4 Anadalise de erros

Segundo Marchi (2001), trés tipos de métodos podem ser empregados na solucao
de um problema: experimentais (onde existem erros experimentais), analiticos (com erros

de modelagem) e numéricos (com erros de modelagem e numéricos).

Neste trabalho o interesse sera pela andlise de erros numéricos, em que o erro
numérico (F) corresponde a diferenga entre a solugdo analitica exata (@) de uma variavel
de interesse e a sua solucio numérica (¢) (FERZIGER; PERIC; STREET, 2002), ou seja,

E=®—¢. (3.24)

De forma geral, o erro numérico pode ser gerado por trés fontes principais: erros de
truncamento, erros de iteracao e erros de arredondamento (FERZIGER; PERIC; STREET,
2002; MARCHI, 2001). A seguir, cada fonte de erro serd descrita com mais detalhes.

3.4.1 FErro de truncamento

O erro de truncamento ocorre quando se aproxima um modelo mateméatico continuo,
que contém informagcodes em um conjunto infinito de pontos, por um modelo discreto que
possui informagoes em um conjunto finito de pontos. Conforme Roache (1998), o erro de

truncamento é o resultado obtido ao interromper um processo infinito.

Segundo Pletcher, Tannehill e Anderson (2012), o erro de truncamento se origina

das aproximacoes numéricas empregadas na discretizacao de um modelo matematico.
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Em uma equacao diferencial, o erro de truncamento é o residuo que resulta quando se
substitui a solucao analitica exata da varidavel dependente na equacao discretizada do

modelo matematico. Em geral, este erro se reduz com a diminui¢ao do tamanho da malha

(MARCHI, 2001).

Dentre as fontes de erro numeérico, o erro de truncamento é o mais significativo
(ROY; OBERKAMPF, 2011). Quando os erros de truncamento representam a principal
fonte do erro numérico, ou seja, quando os erros de iteragao e de arredondamento sao

desprezados ou minimizados, o erro numérico é denominado de erro de discretizacao (Eh)
(FERZIGER; PERIC; STREET, 2002) e pode ser definido a partir da série de Taylor por

Eh = E(¢) = Cohpo + Clhpl + Cghp2 + Cghp3 +...= Z thpv, (325)
V=0
em que os coeficientes ¢y, V = 0,1,2,3, ... sdo nimeros reais obtidos em funcao da variavel

dependente do problema e de suas derivadas, mas independem de h.

Por definicao, as ordens verdadeiras, py, sao os expoentes de h, e sao inteiros
positivos que seguem a relagdo pg < p1 < p2 < p3.... A primeira ordem verdadeira, pg, é
chamada ordem assintotica, conhecida na literatura por ordem de acuracia, e é denotada
por pa. A ordem assintética é um resultado tedrico que pode ser obtido a priori das
solugoes numéricas a partir dos tipos de aproximacgoes utilizadas na discretizacao do
problema, de forma analoga ao realizado nas Se¢oes 3.1 e 3.2. Assim, antes de se obter
qualquer solucao numérica, é possivel prever o comportamento assintético do erro de

discretizacao.

Através das chamadas estimativas a posteriori, é possivel verificar se a ordem
assintética do erro de discretizagao, calculada a priori, coincide com a obtida pelo modelo
numérico desenvolvido. A andlise de p4 a posteriori da solu¢cado numeérica é baseada no
célculo da ordem efetiva (pg), quando a solugdo analitica é conhecida; caso contrério,

baseia-se no cdlculo da ordem aparente (py), nos quais sao dadas por

S|

(¢c)
9| B,
log(r)

e — Psa
dr — dg
log(r)

~—

PE (3.26)

log

pu = ; (3.27)

onde ¢p, ¢g e dsg sao as solugdes numéricas obtidas nas malhas fina (com espagamento

hr), grossa (hg) e super grossa (hsg), respectivamente, geradas com razao de refino

he  hsc . . e
= ——. Teoricamente, as ordens efetiva e aparente tendem a ordem assintética

T:E_ ha
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com o refinamento da malha, ou seja, pg,py — pa quando h — 0 (MARCHI; SILVA,
2002).

3.4.2 Erro de iteracao

Os erros de iteragao estao associados a utilizacdo de métodos iterativos na solucao
dos sistemas de equacoes algébricas obtidas do processo de discretizacao das equagoes

diferenciais governantes do fenémeno fisico estudado (ARAKI, 2007).

De acordo com Ferziger, Peri¢ e Street (2002) define-se o erro de iteracao (£,,) da

solugdo numérica (¢,) de uma variavel de interesse, na itera¢do n, como

E(¢n) = Cbex - ¢n> (328)

no qual ¢., representa a solucao exata do sistema de equagoes algébricas.

O erro, E(¢,), pode ser originado por diferentes fatores, como: o emprego de
métodos iterativos para a solucao das equacgoes discretizadas, modelos constituidos por
varias equacoes diferenciais sendo resolvidas separadamente, ou ainda pela existéncia de
linearizacao no modelo matematico. De forma geral, o erro de iteragao se reduz com o
aumento do nimero de iteragoes (MARCHI, 2001).

3.4.3 FErro de arredondamento

Os erros de arredondamento estao relacionados a capacidade finita de representacgao
de um certo niimero por um computador. Desta forma, os nimeros sao armazenados levando-
se em consideragdo um nuamero limitado de digitos, que varia de acordo com a linguagem

de programagao, o tipo de variavel utilizada e o processador empregado (ARAKI, 2007).

Segundo Marchi (2001), quanto maior é a precisao utilizada para representar
as variaveis, menores sao os erros de arredondamento; entretanto, maior é a memoria

computacional necessaria para o armazenamento dessas variaveis.

3.5 Erro de programacao

Os erros de programacgao sao inerentes ao processo de desenvolvimento de codigos
computacionais e nao devem ser confundidos com erros numéricos. Enquanto os erros
numeéricos surgem de trés principais fontes: erros de truncamento, erros de iteragao e erros
de arredondamento, os erros de programagao estao relacionados a implementacao e uso do
codigo.

Os erros de programacao podem ocorrer devido a diversas razoes, incluindo: (i) uso
incorreto de um modelo numérico na aproximagao de um modelo matematico; (ii) falhas

na implementacao do modelo numérico no cédigo computacional; (iii) uso inadequado do
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c6digo durante a solugdo numérica; (iv) outras fontes inesperadas de erro na programacgao
(ROACHE, 1998).

Para minimizar erros de programacao, a literatura apresenta diversas estratégias
(FERZIGER; PERIC; STREET, 2002; ROACHE, 1998; MARCHI, 2001), tais como:
(a) iniciar a implementagdo com um programa especifico e, posteriormente, generaliza-lo;
(b) desenvolver o cédigo em etapas, facilitando a detec¢ao de erros; (c) testar o solver em
sistemas de equagoes simples com solugdo analitica conhecida; (d) utilizar uma malha
pequena para verificar se a solugao converge adequadamente, ou seja, se o erro de iteragao
atinge o nivel do erro de maquina; (e) resolver um problema "fabricado" e verificar se, para

h — 0, ocorre E, — 0 e py,pg — pa.

No presente trabalho, todas essas estratégias foram adotadas, com especial
atencao a verificag@o numérica, visando garantir a correta implementacao e evitar erros de

programacao. Essa verificagdo é detalhada no Capitulo 5.

3.6 Multipla extrapolacao de Richardson

A extrapolacao de Richardson (ER) é uma ferramenta amplamente utilizada na
estimativa e reducao do erro de discretizacao em simulagoes numéricas. Seu uso é indicado
quando a solu¢do numérica ¢(h) apresenta erro com comportamento previsivel em fungao
de um pardmetro real, geralmente o espagamento h. A técnica consiste em combinar
solugoes obtidas em malhas com diferentes resolugdes (2" e 27", com r > 1), com o
objetivo de obter uma solugao extrapolada ¢, (solugdo analitica estimada) com ordem de

erro mais elevada.

A formulagdo classica da ER é dada por (RICHARDSON; GAUNT, 1927):

¢(h) — ¢(rh)

P —1

Do = ¢(h) + : (3.29)

hy

no qual p representa a ordem assintdtica do erro (p4) e r = é a razao de refino entre

hgi1
as malhas, onde g é uma malha grossa e g + 1 é a malha imengriatamente mais fina.

A multipla extrapolacdo de Richardson (MER) é uma técnica numérica baseada
na aplicacao recursiva da ER, visando aumentar a ordem de acuracia das solugoes
numéricas obtidas em diferentes malhas (DAHLQUIST; BJORCK, 2008; MARCHI et al.,
2016). Essa abordagem permite elevar progressivamente a ordem de precisao do erro de
discretizacao E'h, especialmente em métodos iterativos. A técnica pode ser considerada
como um poés-processamento que requer apenas solugoes numéricas obtidas em diferentes

malhas, sem necessidade de alteragoes no codigo original.

Portanto, a MER realiza varias iteragoes de um método numérico e depois combina
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essas iteragoes de maneira especifica para obter uma estimativa mais precisa, elevando a
pa do erro de discretizagao (Eh). No contexto do MDF, o erro de discretizagao decresce
conforme a ordem verdadeira (py) da equagao de diferencas empregada, ou seja, a taxa
com que o erro diminui quando a malha é refinada segue a ordem esperada do método
(por exemplo, pg = 2, py = 4, po = 6, ..., para o caso do CDS nas varidveis espaciais e
Crank-Nicolson na varidvel temporal na Eq. (3.25)). Porém, se ndo se conhece a ordem
verdadeira, pode-se trabalhar com ordens aparentes estimadas numericamente (SILVA et
al., 2022).

Seja @40 a solucao numérica na malha g sem extrapolacao. A MER ¢ definida de

forma recursiva pela expressao:

¢g,m—1 - ¢g—1,m—1 (330>

¢g,m = ¢g,m71 + P _ ] y

comg=m+1,...Gem=1,...,g — 1, em que GG é o nimero total de malhas disponiveis.
A cada aplicacao da MER, o termo de erro dominante é cancelado, elevando a ordem da

aproximacao.

Os valores de p,, obtidos a priori podem ser confirmados a posteriori com o conceito
de ordem efetiva (pg) do erro de discretizagao, o qual, generalizado para a extrapolagao
de Richardson repetida, é dado por (MARCHI et al., 2013)

log(Ehg—l,m) log((p — ¢g—1,m)
(PE)gm = Ehym ~ _ D~ Oom (3.31)
PEIom = "log(ry — —  log(r) '

Em contextos no qual a solucao analitica exata @ nao é conhecida, a ordem

aparente de convergéncia py pode ser estimada por:

1 <¢g—1,m - ¢g—2,m>
0g

m (b —1,m
(pU)g,m - g g

a0 : (3.32)

exigindo-se, portanto, no minimo trés malhas distintas para sua aplicacao.

Um exemplo de representacao gréafica da aplicacao da MER considerando G = 9,
para o caso da ordem aparente py, € apresentado na FIGURA 7. As linhas representam os
niveis de malha g (isto ¢, diferentes refinamentos do dominio computacional), enquanto as

colunas indicam os niveis de extrapolagao m.

ada no corresponde a uma solugdo numérica obtida no nive apos m
Cad 9m d 1 btid lg,

etapas sucessivas de extrapolagdo de Richardson. As setas direcionais indicam a construgao
hierdrquica da extrapolagao: a cada novo valor ¢, ,, sao utilizadas trés solucoes consecutivas
da coluna anterior (m —1), a saber, ¢g_2m_1, Pg—1.m—1 € Pg.m—1. Esse padrao é evidenciado

pelas setas convergentes que apontam para cada extrapolagao computada.
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O processo avanca até o ponto destacado ¢g 4, que representa a solucao extrapolada
com maior nivel de acuracia possivel, considerando o total de malhas disponiveis (G = 9)
e o refinamento progressivo permitido pela estrutura da MER, sendo m = 4 extrapoladas.
Quanto maiores os valores de g e m, menor sera o erro de discretizacao associado a variavel

extrapolada.

FIGURA 7 — Esquema pratico do MER da solugdo numérica para G = 9 com 4 niveis de

extrapolagao.
g=1 ¢

g=5 o590 P51 —> G52
g=6 @60 Pe,1 ¢6,2\\
\
g=T7 oo b7 P19 —> P13
g=8 ¢gp $g1 ®82 ¢8,3\\
\
g=9 9o ®o,1 ®9,2 P93 —> | o

FONTE: Adaptado de Silva et al. (2021).

3.7 Estimadores para o erro de discretizagao

Nesta secdo, sao discutidos aspectos relacionados a estimativa do erro de
discretizacao, considerando o uso de MER. Inicialmente, apresenta-se o estimador de
Richardson para o erro de discretizagdo. Em seguida, sao explorados dois estimadores

disponiveis na literatura, cujas expressoes sao adaptadas para aplicacao em MER.

3.7.1 Estimadores

Quando a solucao analitica @ é desconhecida, o erro de discretizacdo nao pode
ser calculado. Assim, ¢ utilizado o conceito de incerteza (U). A incerteza de uma solugao
numérica é calculada pela diferenga entre a solu¢ao analitica estimada (¢.,) para uma
varidvel de interesse e sua solugao numérica (¢) (CHAPRA; CANALE, 1994), ou seja,
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U(¢) = ¢poo — ¢ (3.33)

Uma maneira de estimar o erro de discretizacao é utilizar os estimadores de
erro de Richardson baseados na ordem aparente (py) e na ordem assintética (pa), pois

sao amplamente relatados na literatura, servindo assim como estimadores de referéncia

(MARCHI; SANTIAGO: CARVALHO JR, 2021).

Os estimadores de erro de Richardson sao dados por

Uri(pv) = M, Uri(pa) = M, (3.34)

em que ¢p e ¢g sao as solugoes numéricas obtidas nas malhas fina (hr) e grossa (hg),

respectivamente, geradas com razao de refino r = h—G e py dada pela Eq. (3.27).
F

Para obter a estimativa do erro de discretizacao levando em consideracao o emprego
de MER, utiliza-se dois estimadores presentes na literatura, que sao eles, estimador
de Richardson corrigido (pmc) e estimador ¢ corrigido (¢*) (MARCHI et al., 2016;
RODRIGUES et al., 2022).

O estimador de Richardson, denotado por pm, é uma extensao da formulagao
cléssica (Eq. 3.34) e se aplica as solugoes intermediarias obtidas com MER. Conforme
apresentado em Martins (2013), Marchi et al. (2013), ¢ definido como:

o ¢g,m - ¢g—17m

Upn(gum) = Z2m—Locton, (335)

em que g representa o nivel de malha e m o nivel de extrapolacao. Esse estimador ¢ valido
param =0,1,...,G—-2eg=m+2,...,G. Contudo, o estimador U,,, nao estima o erro
de discretizagao para o ultimo nivel de extrapolacdo com m maximo. Como alternativa,
a utilizacao de um fator de correcao rP™, de modo que o estimador passa a assumir a

forma:

Upmc(¢g,m) = rPm. Upm(¢g+1,m); (336>

com m = g — 1. O fator de correcao rP™ ajusta a estimativa original, ampliando sua

aplicabilidade.

Outra estimativa do erro de discretizagdo com MER (E,,) é conhecida como

estimador v, que é dada por:

Pgm — Pg—1,m-1 com = Pg-1m—1 — Pg-2.m—2 (3.37)

U m) — ’ ’
v(Pg.m) v—1 Ggm — Pg—1,m—1
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em que g = 3,...,G. Este estimador ¢ eficaz na redugdo do erro somente quando a condi¢ao

|| > 1 for satisfeita. Tal condi¢ao assegura a convergéncia.

Com base na Eq. (3.32), a ordem aparente é associada a estimativa do erro de
discretizacdo E,, na malha 2"s. No entanto, como essa estimativa depende de solucoes
obtidas em trés malhas refinadas consecutivamente, considera-se que py representa a
inclinacao média do grafico de E,,, refletindo a taxa de convergéncia local em um intervalo

de discretizacao.

Partindo dessa abordagem, propoe-se que a razao de convergéncia calculada
a partir de trés malhas consecutivas, isto é, 2%s-1 s (Me+1 seja atribuida a malha
intermediaria 2", considerando-se que hy_1, hy, h,11 satisfaz uma razao de refino constante
r = hg_1/hy = hg/hgt1, no qual g — 1 é uma malha supergrossa, g a malha grossa e g + 1

é a malha fina.

Para isso, uma correcdo do estimador ¢, denominada *, é introduzida de forma
a incorporar informagcoes de trés niveis consecutivos de extrapolacao da MER. O objetivo
é melhorar a estabilidade e a precisao da estimativa do erro F,,. A correcao é descrita por
Marchi et al. (2013), como:

U () = 22 2;*<b_g11,m1’ U =tgig=2,...,G—1, (3.38)

para g = 2,...,G, em que,

¢g,m - ¢g—1,m—1

¢ 1,m+1 — ¢ ,m7
W = g+1,m+ g 2 (3.39)
(qbg—l,m—l - ¢g—2,m—2) g= G

(ng,m - ¢g—1,m—1)(¢g—2,m—2 - ng—?um—?’)7

Esse estimador ¢é especialmente 1til nas etapas finais da extrapolacao, em que o
erro de arredondamento comeca a influenciar os resultados. Ao considerar trés malhas
consecutivas, a razao ¢* permite suavizar flutuagoes e fornecer uma estimativa mais
robusta do erro de discretizacdo, sobretudo quando os valores de [¢| se aproximam de 1

ou os erros se tornam muito pequenos.

3.7.2 Eficdcia da estimativa de erro

Em situagoes nas quais a solugao analitica @ do problema nao é conhecida, torna-
se fundamental avaliar a qualidade das estimativas de erro numérico, denotadas por U.
Para isso, calibram-se os estimadores de erro nos casos que se conheca a solucao analitica,
ou seja, onde o erro é acessivel. Uma métrica amplamente utilizada com essa finalidade

é a efetividade da estimativa, representada por 6, a qual é definida pela razao entre a
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incerteza U e o erro real £ (MARCHI, 2001; RODRIGUES et al., 2022):

0=—. (3.40)

O caso ideal ocorre quando 6 = 1, isto é, quando a incerteza estimada corresponde
exatamente ao erro real cometido pela solu¢ao numérica. No entanto, esse cendrio é raro

em aplicagbes computacionais reais.

Quando a magnitude da incerteza U é superior a do erro F, a estimativa é
classificada como confiavel:

6> 1. (3.41)

Por outro lado, quando 6 esta suficientemente préximo de 1, a estimativa é
considerada acurada, o que significa que o valor de U reproduz com boa fidelidade o valor
de F:

0~1. (3.42)

Por isso, busca-se, de forma pratica, que a estimativa seja acurada, indicando que

a incerteza estimada representa, com boa aproximagao, o erro numérico verdadeiro.

A definicdo quantitativa de “quao préoximo” 6 deve estar da unidade para que se
considere a estimativa precisa pode variar conforme o contexto do problema, os critérios

de verificacao/validagao adotados e o nivel de tolerdncia & incerteza exigido na anélise.

A andlise da eficacia da estimativa de erro, por meio da efetividade €, é portanto,
uma ferramenta importante na verificacdo de codigos numéricos, especialmente em

problemas em que nao se dispoem de solucoes analiticas de referéncia.
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4 MODELO NUMERICO

A solugao do modelo matemaético de interesse, Eqs. (2.1) - (2.4), é obtida através
da aproximacao numérica em cada um dos seus termos, usando o MDF. O método
numeérico tem a finalidade de resolver as equacoes resultantes da discretizacdo para estimar
a solucao numérica do problema original. Para isto, considera-se N, F', M e U como
uma aproximacao das solugoes das equagoes do modelo de n, f, m e u, respectivamente.
Os termos espaciais sao discretizados utilizando uma aproximacao de segunda ordem do
tipo CDS, Egs. (3.14)-(3.17). Para discretizar os termos temporais, utiliza-se o método
de Crank-Nicolson (CN), que consiste em um método das diferengas finitas implicito no
tempo e numericamente estavel. Este método é obtido através da média aritmética entre
os métodos explicito e implicito (CUMINATO; MENEGUETTE, 2013).

4.1 Malha utilizada

A primeira etapa da aplicagao do MDF consiste em definir o dominio discreto
onde a solucdo sera aproximada. Para realizar a discretizacao, define-se uma malha, que é

um conjunto finito de pontos pertencentes ao dominio, chamados nés da malha.

A malha geométrica no MDF é geralmente estruturada localmente, ou seja, cada
no6 pode ser considerado como a origem de um sistema de coordenadas local, cujos eixos
coincidem com as linhas da malha. A FIGURA 8 mostra um exemplo de malha cartesiana
bidimensional (2D) usada no MDF, em que o simbolo e denota os nds sobre os contornos
e o simbolo o denota os nds internos da malha. Considera-se N, pontos na direcao z, N,
pontos na direcao y e espacamento igual para cada intervalo e em ambas as diregoes, ou
seja, h = hx = hy. Neste caso, a malha ¢ denominada uniforme e com espagamento entre

os nos dado por h.

Cada n¢6 é unicamente definido pela intersecao das linhas de malhas na posicao
(,7). Os nés vizinhos sao definidos aumentando-se ou diminuindo-se uma unidade de cada
indice 7 ou j. Assim o n6 (7 — 1, j) representa a posigao oeste, (i + 1, j) representa o nd
na posigao leste, (i,j — 1) representa o né na posicao sul e (i, j + 1) representa o né na

posicao norte.

Para resolver a equagao diferencial numericamente, faz-se necessario encontrar,
para os termos que aparecem no modelo, as respectivas expressoes escritas em funcao
dos pontos da malha. Essas expressoes, neste caso, sao denominadas de aproximagoes
por diferencgas finitas. O resultado final deste processo é uma equagao algébrica, chamada
equagoes de diferengas finitas, que é descrita para cada ponto da regiao discretizada, em
que se deseja calcular a solu¢ao do problema. Resolvendo-se as equagoes de diferencas

finitas, encontra-se a solugao aproximada do problema (FORTUNA, 2000).
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FIGURA 8 — Malha computacional bidimensional uniforme com tamanhos dos espacos de
malha h.

FONTE: A autora (2025).

4.2 Linearizacao

Uma forma de resolver sistemas de equagoes nao lineares é utilizar algumas técnicas
de linearizacao, transformando-as em sequéncia de equacoes lineares e assim aplicar os

métodos tradicionais de resolucao de sistemas lineares.

Observa-se que as Egs. (2.1) e (2.2) apresentam termos quadraticos nas variaveis
n e f, assim, para a discretizacdo destas variaveis, denotadas por N e F', respectivamente,
tem-se que linearizar o termo (4,7) quadratico no nivel de tempo k+1, resultando no calculo

de um sistema nao linear implicito em cada passo de tempo. Para evitar a necessidade da

k+1

resolugdo do sistema nao linear, lineariza-se o termo (Q?); i, aplicando a expansao em

série de Taylor, ou seja

(QQ)kJrl - (Q ) + Ti(Q2)Z]

_ 9 k
= (@)l + 20T Ql + -

(4.1)

em que 7 é o tamanho do passo temporal, dado por 7 = t¢/(N; — 1). Aqui, @ é uma

representacao genérica de N ou F'; ¢, 7 indicam a posicao espacial e £k 4+ 1 o tempo atual.

Utilizando diferen(;as progressivas na derivada temporal da Eq. (4.1), ou seja,
a k Qk—l—l

w
, tem-se
ot T

QkJrl
(Q2)k+1 (Q2)’LJ -+ 2@ (T)
~ (Q%)F; +2Q7,Qi1 — 2(Q°)1;,
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logo
(QQ)/;}H = _(QQ)f;,j + QQﬁj f;rl (4.3)

Desta forma, trata-se o problema linearizado. Mais sobre essa técnica pode ser
visto em Sheu e Lin (2004, 2005), MATSUBARA JR (2017).

4.3 Discretizacao da variavel N

Por questoes didaticas, repete-se a Eq. (2.1),

an_

— =d,An— V. (nVf)+pun(l —n— f).
ot ~——

difusdo haptotaxia proliferacio

Aplicando os operadores de forma adequada, pode-se reescrever a Eq. (2.1), como

on <32n 3271) <3n8f 0*f  onof o0 f
d -y . + 5

—=dy |+ — 1-n— 4.4
o " ax2+ay2 )ﬂbm( n—f)+sn, (4.4)

oror o2 T ayoy  "op

onde s, é um termo fonte que serd agregado a esta equacdo a depender da solugao do

problema (mais detalhes no Capitulo 5) e Sn sua aproximagao.

Discretizando a Eq. (4.4), utilizando diferencas centrais (CDS) no espago,
considerando o comprimento destas discretizagoes espaciais nas diregoes x e y iguais

a hy = hy, = h, e utilizando o método Crank-Nicolson (CN) no tempo, tem-se:

k+1 k
Nij =N 1

k+1 k+1 k+1 k+1 k+1 k+1
[d ( i1, — 2N+ N . ij—1 — 2N+ m‘+1>
n

T 2 h? h?
k+1 k+1 k+1 k+1 k+1 k+1 k+1
B ( i1y — Niy By — By LNk FiZy, — 28 + Fiy
2h 2h J h?
k+1 k+1 k+1 k+1 k+1 k+1 k+1
i.]—ti-l - i,;_—l _ Fzgtrl - Fz;r—l 4 Nk sz+—l - 2sz+ + F;;}-l)
2h 2h b h?
NI — (N — i NSRS 4 S+
d (Nik—w _ QNZTJ- + Nilild + Nilfj—l _ 2ij + ijﬂ) (4.5)
n h2 h2
k k k k k k k
(N - NiLay B — I L NE Iy, — 20 + Fz’+1,j+
7 20 2 i g
k k k k k k k
Ni.j+1 - Ni,jfl . E,j+1 - F;,jfl _'_ Nk Fi,jfl - 2Fi,j + F;,j+1
2h 2h v h?

z’.? Z7j

+Nf; — i (N?)] — i N EE, + Snﬁj].
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Pode-se perceber que na Eq. (4.5) hé o termo quadratico (N?)¥! que pode ser

%,

linearizado usando a expansao em série de Taylor, como visto na Eq. (4.3). Assim,

(N?)itt ~ —(N?)E, + 2NE N (4.6)

Substituindo o termo quadratico linearizado pela Eq. (4.6), pode-se reescrever a
Eq. (4.5) como

i,j—1 t,j+1

h? h?

T 2

N =N 1 [d (Nik—?j —2NF + NER " S - 2N+ NS )

k+1 k+1 k+1 k+1 k+1 k+1 k+1
— itlj Ni—l,j ) Fz’+1,j — Fi—l,j k+1 Fi—l,j _ 2Fi7j + Fi+17j+
2h 2h I h?
k+1 k+1 k+1 k+1 k+1 k+1 k+1
Nije — Nijo ) Fjm — 5 4+ Nk Fijon =28 + Fija
2h 2h ” h?

+Hi N — (_(Nz)ij + 2Ni’iji]fjH) — NS 4 St

4.
d (Nz‘k—l,j — 2NE + Nf, n Nf_ — 2N + ij+1> (4.7)
" h? h2
_7<Ni]11,j - Ni]il,j . Fz‘kﬂ,j - Fi]il,j i Nk'FiIil,j - 2Fi’,€j + Filil,j
2h 2h b h?
Nfa =N Pl —F N N;c'Ffj—l —2FF + E’fjﬂ)
2h 2h bl h?

bVt~ (), = N + 50

1’7] 27‘7

Isolando N;/', tem-se

1 2d, vy

—t o o (FSE H Fh o B 4 B - 4R

4,5+ 41,5

+% (N8 + B 1) ] NI =

dy ( NER + NER LN o NS iy — NEY BEY - B n
2 h? h? 2 2h 2h
kt}l — NEFL ,ktrll — FFL 1, o 1, 1.,
i.j =1 i ij— PL(N2E 4 2Nk L Zgpktl
2h 2h >+ g N+ NG+ g Sy
4.8
do (N = Nl + Ny Ny — 2N + Nl (4.8)
2 h? h?
7 Ni]fi-l,j ~ Nik—l,j ) Fz’]ilg - Fik—l,j + N]g'f’ﬂilg—l,j - 2}’1’@' + Filfl—l,j
2 2h 2h i h?
k k K k k k k
Ny — Ny ‘ Froo—Fiia " N@E,j—l —2F7 + Fi
2h 2h e h?

+50 (1= N = FE) NE + ;Sn;ﬁj.
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Considerando
1
apa = ;,
an1 = W:
_ 7
a/TLQ - 2h2 9
H1
aAn3z = ?7
1 2dn 251
= T e Ty

_ k+1 k+1 k+1 k+1 k+1 k k+1
ans = ana+awe (2 + B+ B+ FEY = AFST) +aw (2NF + FfY),

pode-se reescrever a Eq. (4.8) como

+1 __ k+1 k+1 k+1 k+1
a5 Nij™ = am (Nil,j + Nidi; + N+ Nz‘,j+1>

-2 (v - M) (B, — BET) + (N - M) (it )

4 i+1,5 i—1,5 i,j—1 t,j—1
+ING (%3 ij Tt apa) + 9 L oh2 ( i—1j T Ny TV N 1])
(4.9)
8 k k k k k k
Y [ (NiJrl,j - Nifl,j) (Fi+1,j — Fiq,j) + (Ni,jJrl - Ny

1 z’]

(F'Ifjﬂ - Ffjﬂ) + 4N (Fi’iu + L E L F - 4sz])]

2,7

1
k k k k
+an3 (1 — Ni,j — Fi,j) Ni,j + 5577,

ou ainda, fazendo

Pt = N (o ) + 2 (0,

_# [ (Nilj-l,j - Nik—l,j> (Filj—l,j - sz—u) + (Ni’fjﬂ - ij—1)
(F']fjﬂ — K ) + AN (E"“_Lj FE Y - 41%’3)}

) 3,j—1

k k k
i T Nipy + N+ Nija

k
— AN}
(4.10)

+ans (1 — N - sza) N+ ; (S"?,j T S”faﬂ) ’

tem-se:

k+1 k+1 k+1 k+1 k+1 k+1 k+1

(Pit, = FE) + (NEfh = NEPL) (FEh = FE) | + Pl (4

’ij+1 17]71 27]71
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4.4 Discretizacao da variavel F

Dada a Eq. (2.2), referente a variavel f,

of
—=— nmf +pf(l—n—f),
at ——
degradacao renovagao
podemos reescrevé-la como,
of
o = S+ ef(L—n—f)+ s, (4.12)

onde s; ¢ um termo fonte agregado a esta equacao e Sf sua aproximagao.

Realizando as discretizagoes com os mesmos métodos da se¢ao anterior, tem-se,

Fit = FY 1 k k k k k k+1
irj i _ L[ 1 k41 11 _ okl _ gkl +
- ) [ nM;F 4 pe (1 Ny; Fy; ) + Sfi,j (4.13)
—nME + (1= Nijy — Fry) + Sff,j} :
Linearizando (FQ)fjl da Eq. (4.13) com
NE+HL 2k k okl
(F)ij " > —(F)i; + 2F 5, (4.14)

tem-se:

FEH _pk o g
= | gMEP P ol = o FEPNE () -

T 2 (4.15)
2pa FYFN + SET = M FE + pa P (1= N = FE) + SFE.
Isolando F}5™,
L on. H2 1 1
S Ikt L B2 (NERL Lok )| pRFL — 2k 4 F2)k 4 g fktl
- + Y + 2 ( 1,J + %,J ) %, T W + 2[:“/2( )z,] + f’L’j (416)
_nMiIijITj + N2Elfj(1 - ij - szy) + Sffj]

Definindo

1
Qpg = ;7
ap = 2
f1 27

M2
Qfy = ?7

afz = Qpg + CLflMilfj—-i_l + ago (Nzlf;_l + 2F;Ii7 - 1) s
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fazendo

Ff“'l = apaFi],cj + af2<F2)l'€,j - aflM'k'F'k‘ + af2Fi],€j(1 - ij - sz])+

2, (2 77 1,
1 k+1 k (4.17)
5 (815 +558).
pode-se reescrever a Eq. (4.16) como
aps P =Ffi} (4.18)
4.5 Discretizacao da variavel M
Dada a Eq. (2.3),
om
— =d,Am+ an — Hum — PBm
o ~~—— —~—
difusao producdo  neutralizacdo  Jecaimento
que, aplicando os operadores de forma adequada, pode-se reescrever como
om Pm  0’m
e m<8$2—|— ay2>+an—6um—6m+sm, (4.19)

onde s, ¢ um termo fonte agregado a esta equacao e Sm sua discretizacao.

Realizando as discretizagoes da Eq. (4.19), equagao referente a variavel m, tem-se

k+1 k k+1 k+1 k+1 k+1 k+1 k+1
Mi,j - Mz',j _ 1ld ( i—1,4 2Mz‘,j + Mi+1,j + ij—1 2Mi,j + Mz‘,j+1>
T 21 ™ h? h?
+aN[ — U MEF — BME + Smit
k
+d <Mi—171‘ - 2Mi’fj + Mi]ilvj + ij_l - 2lej + ijﬂ) (4.20)

h? h?

k k k k k

Isolando M/,

1 2d, 0 d.

LOnk g Dy Lo
2 2y} T 2y} 2 %]
(4.21)

dm
+W (Mik—l,j + Mi]j-l,j + ij—1 + Milfjﬂ - 4ij>
Q@ 0 6]

1
k k k k k
TN QUi = g My g5y
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Considerando,
1
Qpe = ;7
dm
Am1 = o2’
ima = 5
m2 27
0
am3 = 2’
«
Ama = 57
1 2d, P
tms = 2T Ty

tem-se,

+1 k+1 _ k+1 k+1 k+1 k+1 +1

1
k k+1 k k k k k
—l—apaMi’j + ismlj + am1 (Miq,j + Mi+1,j + Mi,jfl + Mi,j+1 - 4Mi,j) (4-22)

Z?]’

1
k k ask k k
+am4Ni7j — amg,lim MZ-J- — amQMi,j + §Sm4

fazendo,
Ame = Qms + am3U17;r17 (423>

E+1 k k k k k k
sz;r = apaMi,j + am1 (Mifl,j + Mi+1,j + Mi,jfl + Mi,j+1 - 4Mi,j)+

k k nsk k 1 k+1 k (4.24)
amalN}; — ams3U; ;M5 — ama M5 + 3 (Smi;_ + Smi,j) ;

pode-se reescrever a Eq. (4.22) como

k+1 __ k+1

S+ MERL + M+ M;jjjl) + ama NS+ Fmf (4.25)

i+1,5

4.6 Discretizacao da variavel U

Dada a Eq. (2.4),

ou

— =d,Au+ &f - fum —  pu

ot ~—— —— —~— ~—
difusio  produgio de inibidor ~ neutralizagdo  gecaimento

que pode ser escrita como,

ou (82u 0%u

onde s, é um termo fonte agregado a esta equacdo e Su sua discretizacao.
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Realizando as discretizagoes da Eq. (4.26), equagao referente a varidvel u, tem-se

i—1,5 % i,7—1 )
T 2

h? h?
R~ BULMET — U + Skt
k k k k k k

k+1 k k+1 k+1 k+1 k+1 k+1 k+1
Uy — Uiy 1ldu< — 20 AU | Uigoa =2V + U»j+1>+

7]_1

d h? h?

eF, - UMY, - U + 51t |

Isolando U™,

L 2dy  p 0, i1\ k1 Qu (g k1 k1 k41
<T+hg+2+2Mm‘ Uz’,j = W(Ui—l,j—f_Ui—i-l,j_’_Ui,j—l+Ui,j+1)+
§Fk+1 lUk ES k+1 ﬁ Uk: Uk Uk Uk . 4Uk
o i "‘T i,j+2 Uy 5 +2h2 i1 T Yty U0 U0 ij) T
§ O % ok Pk Lok
Considerando,
1
Qpe = ;7
dy
Ay, = 579
! 2h2
v = L
u2 27
0
am3 = 5;
s = &
u3 27
1 N 2d,, n p
Gt = 772 Ty

tem-se,

k+1 k+1 k+1 k+1 k+1 k+1 k+1
(au4 + amsM; ) Uij " = tu (Li—l,j +Ui,; + UG+ Dm+1) +auwslif +
k k k k k k k k k
Apalij + (bz‘—l,j H Uy H U + Ui — 4%;‘) + austy; — amsUp; M

i 2,j—1 7

1
Uk k+1 k
au2 i,j 5 (Sul,j Suu]) 9

fazendo

_ k+1
Ays = Qy4 + amSMi,j )

(4.27)

(4.28)

(4.29)

(4.30)
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k k k k k k k

%,] 7 7 7

1 (4.31)
augﬂ’fj — amgUi’ijfj — augUi’fj + 3 (Suf;rl + Suﬁj) ,
pode-se reescrever a Eq. (4.29) como
asUS" = an (RS + UES, + UEL + USEL) + awFl + Fulft. (4.32)

Portanto, no processo de discretizagao das equagoes do modelo (2.1)—(2.4), adotou-
se o método das diferencas finitas, utilizando o esquema de diferencas centrais para as
derivadas espaciais e o método de Crank-Nicolson para a discretizacao temporal. Essa

combinagao garante precisao de segunda ordem, tanto no espago quanto no tempo.

A aplicacao desses esquemas as equacgoes do modelo resulta em um sistema
acoplado de equacoes lineares que descreve a evolugao temporal das variaveis N, F', M e
U em cada ponto da malha espacial. O sistema discreto completo, expresso ponto a ponto,
¢ representado pelas Eqgs. (4.11), (4.18), (4.25) e (4.32), dadas por:

an5N'k—'~_1 = Un1 (ij_l%] + Nzlf:_ll,J + N’fj—tll + Nllfjtrll) - 0725 Qn2 [(Nli—i_l{j - Nzkj_l%])
(F-’“H _ Flk:rllj) + (Nk+1 _ Nkf1 )(Fk+1 _ pktl )} + Fpkt!

Z+17j 1/7j+1 17]'71 Z7j+1 7’7]71 Z:j )
k+1 __ k+1
ags " =P
k+1 __ k+1 k+1 k+1 k+1 k+1 k+1
U MEFY = @y (MFRY + MER, + MEFY, + MEFL) + apa NEFE + Fmf S

k+1 __ k+1 k+1 k+1 k+1 k+1 k+1
aus Uy j ™ = au (Uz‘—l,j + Uiy T U=+ Uz‘,j+1) +aus B+ Fug

A equacao discreta da variavel N envolve termos de difusao, advecgao acoplada
com F' e fontes. Para auxiliar na visualizagao da estrutura local da equacao em torno
do ponto (7,7), utiliza-se a notacao esténcil (BRIGGS; HENSON; MCCORMICK, 2000),
que representa os coeficientes associados a cada ponto da vizinhanca imediata. Para isso,
k41 k41 N‘k;_—ll o NF+

reorganiza-se os termos em fungao de Ni’f;“ ! N7, Ny, ii+1, conforme abaixo

ans N} = [an1 + 0,25 anQ(Fi’f:fj - ﬂﬁ}j)]Nz}il’j
—[an1 — 0,25 anz(Fi’f:rl}j - Elily)]Nﬁ:rlly
—[ans + 0,25 anp (FXFY — FEAINES,

—lan1 — 0,25 apo(FFHY — EFFA)NFL = —Fnlt!

17j+1 27.7_1 Zaj+1 - Z?] ’
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Denomina-se por Ay a matriz local dos coeficientes do sistema linear associado a
equagao de N, cuja estrutura esténcil correspondente & Eq. (4.11) é dada por:

A nrk+1
Ni,j+1

Ay = A prk+1 A Ark+1 A Ark+1
N Ni—l,j Ni,j Ni+1,j

Akt
2,7—1

Substituindo os coeficientes conforme os parametros do modelo, obtém-se a

expressao explicita do esténcil:

an2 (F-k+1 Fk+1 )

an W T F
an2 k41 k41 Gn2 k+1 k+1
Ay = | —an— 4 (Fih, — Fiovy) Gns “an1t 4 (Fivrs = Fimig)
an2 / Hk+1 k+1
—Qnl1 — 7(Fi,j+1 - Fi,j—l)

4

De modo andlogo, é possivel construir as estruturas esténcil para as variaveis
F, M e U, considerando as respectivas equacoes discretas. Embora algumas dessas
equagoes apresentem menor complexidade estrutural, todas seguem o mesmo principio de
representacao local dos coeficientes, o que facilita tanto a implementacdo computacional

quanto a analise das propriedades numéricas do sistema.

Tendo descrita a estrutura espacial do sistema discreto, é fundamental agora
considerar os aspectos relacionados a discretizacao temporal e a estratégia de solucao
numérica ao longo do tempo. O método de Crank-Nicolson apresenta ordem de precisao
temporal igual a dois (p4 = 2) e é incondicionalmente estével no tempo (THOMAS, 1995).
No entanto, o sistema de equagoes oriundo da discretizacao deve ser resolvido por meio de
um método iterativo adequado, como sera descrito no Algoritmo 2. Ressalta-se ainda que

o solver precisa ser aplicado a cada passo de tempo.

Para as simulagoes numéricas envolvendo a variavel temporal, é necessario utilizar
um método de varredura no tempo. Dentre diversos métodos de varredura no tempo para
resolugao de equagoes diferenciais, serd utilizado o método Time-Stepping (STRIKWERDA,
2004). Este método consiste em resolver espacialmente o sistema de equagoes discretizado
em cada passo de tempo. Para isso, ¢ usada a solugao convergida do passo de tempo
anterior k£ como estimativa inicial para resolver o sistema de equacoes correspondente

no passo de tempo atual k + 1, e esse processo se repete até que se atinja o tempo
final (VANDEWALLE; HORTON, 1993).
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Algoritmo 2: Solugdo numérica com Crank-Nicolson e Gauss-Seidel
red-black

Input: N, N,, N, iter
Output: Solucdes numéricas para n, f, m e u via Crank-Nicolson e Gauss-Seidel
red-black
1 Defina as constantes e parametros do modelo;

2 Etapa 1: Aplicacao das condigoes iniciais e de contorno;

3 for k=1do
4 fori=1to N, do
5 for j =1to N, do
6 Atribua as condigoes iniciais: No(z,y), Fo(z,y), Mo(z,y), Uo(z,y);
7 end
8 end
9 end
10 for £k =2 to N, do
11 Atualize as condigoes de contorno para t = tg;
12 Etapa 2: Iteracoes de Gauss-Seidel red-black;
13 for itr =1 to iter do
14 (a) Atualizagio dos pontos vermelhos (red);
15 fori=2to N, —1do
16 for j=2to N, —1do
17 Atualize N/, FlF, ME e UF™ usando Eqgs. (4.11), (4.18), (4.25)
e (4.32);
18 end
19 end
20 (b) Atualizagdo dos pontos pretos (black);
21 fori=2to N, —1do
22 for j=2to N, —1do
23 Atualize Ni’f;rl, Fi’ffl, ijl e Ufjl usando Egs. (4.11), (4.18), (4.25)
e (4.32);
24 end
25 end
26 end
27 end

28 Imprima N, F', M, U
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5 RESULTADOS E DISCUSSOES: PROBLEMA COM SOLUCAO
ANALITICA

Neste capitulo, realiza-se a verificagdo do modelo numérico implementado por meio
de um problema com solucao analitica conhecida. Sao analisados o erro de discretizacao, a
ordem de convergéncia e a eficicia dos estimadores aplicados. Também se comparam o

desempenho e a eficiéncia dos métodos singlegrid e multigrid.

5.1 Verificagcao numérica

Esta secao é dedicada ao processo de verificacdo do codigo computacional.
O objetivo da verificagao é determinar em que medida um modelo matematico é resolvido
adequadamente através de um método numérico, dado que um dos desafios na simulagao

numérica ¢ o nivel de acurdcia das solugoes.

A fim de se encontrar uma solucao analitica com o intuito de verificar o codigo
e realizar a andlise dos erros, aplica-se o método das solugoes fabricadas (em inglés,
Method of Manufactured Solutions) (OBERKAMPF; BLOTTNER, 1998; SANTIAGO,
2010; AYCOCK; REBELO; CRAVEN, 2020). Tal método tem como objetivo gerar uma
solucao analitica exata, sem levar em consideracao a realidade fisica do problema. Para
isso, uma func¢ao analitica é definida e utilizada como a variavel dependente na equacao
diferencial, sendo suas derivadas calculadas de forma analitica. A equacao é construida
de tal maneira que todos os termos adicionais que nao satisfazem a EDP original sao
agrupados em um termo fonte. O termo fonte é posteriormente incorporado a EDP original
para satisfazer a nova equacao (ROY, 2005; RIGONI; PINTO; KWIATKOWSKI JR.,
2022).

Para o caso considerado neste trabalho, com {2 C R?, assume-se que a condicao

inicial da variavel u(x,t) é dada por
u(x,0) = sen(2mx) sen(2my), (5.1)
no qual u = [n, f,m,ul, x € 2, 2 =1[0;0,5] x [0;0,5], com x = (z,y). As condigdes de
contorno sao do tipo Dirichlet, ou seja,
u(xp,t) =0, (5.2)
com xp, € 0f2, sendo 92 o contorno do dominio assumido e 0 < ¢t < ;.

Os termos fonte s,, Sf, Sy € Sy, respectivamente dados nas Eqs. (4.4), (4.12),

(4.19) e (4.26), sao obtidos de forma que as Eqs. (2.1)-(2.4) satisfacam as solugoes analiticas

u(x,t) = e’ sen(2mz) sen(2my), (5.3)
f(x,t) = e "sen(27x) sen(27y), (5.4)
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com U = [n,m,ul, x € 2,0 <t <ty
Logo, os termos fonte sao dados por
sn(x,t) = [(((—=8ym? + p1) sen(2my)? + 47 cos(2my)* ) sen(27x)? +
47y cos(2mx)*m? sen(2my)?)e ™ + (1 + 8d,7° — puy + et A) Ale’, (
sp(xt) = (1 + p2) A + (=1 — piz + paAe™") Ae ™, (5.6
sm(x,t) = (1 + 8d,,m* — a + B + 0Ae") Ae’, (5.7
su(x,1) = (1 + 8d,7* + p + 0 Ae’ — ce™") Ael, (5.8
x € £2,0<t<ty com A= sen(2nx)sen(2my).

Para a verificacao do cédigo com a solugao analitica, consideramos t; = 0,25 e os
pardmetros fisicos apresentados na TABELA 1, conforme Kolev e Zubik-Kowal (2011a),
Lépez, Ruiz e Castano (2018) e Maganin et al. (2020).

TABELA 1 — Valores dos pardmetros fisicos.

Parametros g dm dma du H1 Ha, & n 4 67 P 5
Valores | 0,01 | 0,001 |02 0,1 | 100,05 0,07 | 0,03

A verificagdo de solugoes numéricas para o modelo bidimensional de crescimento
tumoral (Capitulo 2) é um dos objetivos deste trabalho. Para isso, serao abordadas as
técnicas de verificacao de codigo, a partir de simula¢des numéricas e andlises a posteriori
dos resultados encontrados com os métodos multigrid (MG) e singlegrid (SG), utilizando

o suavizador Gauss-Seidel red-black.

Portanto, neste capitulo serd verificado o comportamento do erro de discretizagao
mediante o refino de malha computacional e o comportamento do erro numérico (diferenga
entre a solugdo analitica e a solugdo aproximada) para os métodos SG e MG. Sera verificado
também se as ordens aparente py e efetiva pr dos erros de discretizagao, associadas as
variaveis fisicas de interesse, convergem para as suas ordens assintoticas p4 quando h
tende a 0.

As simulagoes foram realizadas em um computador com processador Intel(R)
Core(TM) i7-7700 3.60 GHz, 32 GB de memoria RAM e sistema operacional Windows 10,
com 64 bits. Os algoritmos foram implementados na linguagem Microsoft Visual Studio

2022 - Versao 17.6.0, Fortran Compiler 2023.1, com precisao dupla.

No intuito de se isolar o efeito do erro de truncamento, procura-se minimizar o
efeito das demais fontes de erro. Para isso, o processo iterativo das simulagoes é interrompido
quando se obtém o erro de maquina, ou seja, quando os erros de iteracao forem minimizados

e levados ao nivel dos erros de arredondamento, obtendo-se assim o erro de discretizacao.
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5.1.1 Erro de discretizacao

Inicialmente, realiza-se a verificacao do coédigo computacional por meio da norma do
maximo || Fj||«, conforme apresentado na TABELA 2, considerando os métodos singlegrid
(SG) e multigrid (MG), utilizando o esquema de Crank—Nicolson para a discretizagao
temporal e diferencas finitas centradas para o espaco. A norma do maximo é definida
como:

Byl = max fu(x, T) — un(x, T) (5.9)

em que u(x,T') representa a solugdo analitica e uy(x,T") a solu¢gdo numérica no tempo

final T', avaliadas nos pontos da malha espacial.

Em relagao ao nimero de pontos nas discretizacoes espacial e temporal, considera-
se N =N, = N, = Ny = 2" 4 1, conforme Tabela 3, em que nm, no caso do MG,
representa o nimero de niveis de malhas nas dire¢oes = e y, sendo a malha mais fina

associada ao maior nivel.

TABELA 2 — Valor de ||Eh||o das quatro varidveis N, F, M e U, para os casos singlegrid (SG)

e multigrid (MG).

nm

|1Eh_N|o

|Eh_F]|

|1Eh_M||s

|1Eh_Ul|o

7,902279E-03
3,755129E-03
1,021323E-03
2,795458E-04
7,091205E-05
1,787442E-05
4,473987E-06
1,118960E-06
2,798253E-07
7,008128E-08

3,633945E-04
9,302706E-05
2,339453E-05
5,857294E-06
1,464867E-06
3,662601E-07
9,156143E-08
2,284805E-08
5,666782E-09
1,315573E-09

9,143686E-04
2,326785E-04
5,842830E-05
1,462334E-05
3,656855E-06
9,142863E-07
2,285566E-07
5,702435E-08
1,414388E-08
3,272801E-09

1,001792E-03
2,545726E-04
6,300354E-05
1,599220E-05
3,999069E-06
9,998186E-07
2,499295E-07
6,233529E-08
1,545448E-08
3,569934E-09

—_ = z»—t»— O8]

7,902280E-03
3,755129E-03
1,021323E-03
2,795458E-04
7,091205E-05
1,787443E-05
4,473924E-06
1,118741E-06
2,795454E-07
6,980147E-08

3,633945E-04
9,302707E-05
2,339455E-05
5,857204E-06
1,464865E-06
3,662432E-07
9,156519E-08
2,288140E-08
5,656381E-09
1,359111E-09

9,143686E-04
2,326785E-04
5,842832E-05
1,462334E-05
3,656851E-06
9,142557E-07
2,285752E-07
5,712724E-08
1,415277E-08
3,429498E-09

1,001792E-03
2,545726E-04
6,390354E-05
1,599220E-05
3,999067E-06
9,997995E-07
2,499653E-07
6,248654E-08
1,552303E-08
3,799326E-09

FONTE: A autora (2025).
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TABELA 3 — Numero de pontos nas discretizagoes espacial e temporal.

nm 213 4

5

6

7

8

9

10

11

N,=N,=N, [5]9]17

33

65

129

257

513

1025

2049

Pode-se observar que os resultados mostrados na TABELA 2, referentes aos erros

de discretizagao relacionados aos métodos SG e M@G, sao praticamente iguais, exceto por

erros de arredondamento. Para uma melhor compreensao, pode-se observar na FIGURA 9

a variacdo dos erros, onde os erros diminuem consideravelmente com o refinamento da

malha. Os simbolos no grafico representam os resultados obtidos com o método SG para

as quatro variaveis do modelo, enquanto as linhas pontilhadas correspondem as solugoes

obtidas com o método MG.

FIGURA 9 — Erro numérico ||Ep||s de SG e MG versus h.

— T SRR
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i o o
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= 109 o bl *
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__Ei"- ot ,”*
2 i3 > Eh(u)se
107 bt & ’/_J"' --------------- Eh(N),,
e g R En(F),
108 | ,’:},/' - - - - EAM)y
&
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1:/,-’ ErUhs
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103 1072 107
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FONTE: A autora (2025).

5.1.2  Ordens efetiva e aparente

Com base nos resultados apresentados na Se¢ao 5.1.1, em particular na TABELA 2

e na FIGURA 9, verifica-se que os métodos SG e MG produziram erros de discretizacao

similares para todas as varidveis analisadas. Dado esse comportamento equivalente em

termos de acuracia, opta-se por utilizar exclusivamente o método MG nesta Secao 5.1.2

para o estudo das ordens efetiva e aparente.
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Para essa investigacdo, consideraram-se trés métricas distintas na estimativa
das ordens efetiva (pg, Eq. (3.26)) e aparente (py, Eq. (3.27)): o erro de discretizagdo na
norma do méaximo (||Eh||w, Eq. (5.9)), o valor da varidvel de interesse no ponto central

do dominio ao final da simulacdo (P¢) e o valor médio da varidvel no tempo final (Vjy).

As andlises foram aplicadas as quatro variaveis do modelo, N, F';, M e U, e os
resultados obtidos estao reunidos nas FIGURAS 10 a 12, que ilustram, respectivamente, o

comportamento das ordens para as métricas ||Eh||s, Po e V.

FIGURA 10 - pg, pu e pa considerando ||Eh||, para as diversas varidveis N, F, M e U.

Ordem efetiva Ordem aparente

a—-——a\\t

a4 &

13}

12| [——P(N) —x—p(N)

——p(F) ——py(®

11 [ |-=*-pg(M) - =% - Py (M)

() 65 | (V)

L < —
107 107 107! 107 102 107!
h h

FONTE: A autora (2025).

Como ilustrado nas FIGURAS 10 a 12, observa-se que as ordens pg e py, associadas
as variaveis N, I, M e U, tendem monotonicamente a ordem assintotica py = 2 a
medida que o espacamento h da malha é reduzido. Tal comportamento confirma que as
discretizagoes adotadas nas Egs. (4.11), (4.18), (4.25) e (4.32), produzem métodos de
segunda ordem, caracteristica almejada nos métodos aproximados, conforme descrito na

literatura.

Com o refinamento das malhas e a aplicacao da técnica MER, espera-se que os
valores de py convirjam para as ordens verdadeiras py correspondentes a cada nivel de
extrapolacao. No caso de CDS para as variaveis espaciais e Crank-Nicolson para a variavel
temporal, tem-se py = 2, p; = 4, po = 6, ... na Eq. (3.25). Este resultado corrobora a
consisténcia do método na estimativa do erro de discretizacdo em diferentes niveis de

malha, fortalecendo a confiabilidade das solu¢oes numéricas.
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FIGURA 11 - pg, py e pa considerando Pp para as diversas varidveis N, F, M e U.

Ordem efetiva Ordem aparente
2.06 H
2.06 =
2.04 - b
2.04 S
202+ 1 adar |
2 f— * 2 | i

w =}
[=N [=%
1.98 1.98 - 4
1.96 | pe(N) 1.96 | ——p, (M) ]
—x—p(F) ——py,(F)
1.94 |- - - pp(M) 1 o [ p, (M) i
(S)] p, (V)
192 Pa i D,
103 107 107 107
h h
FONTE: A autora (2025).
FIGURA 12 — pg, pu e pa considerando Vj; para as diversas varidaveis N, F, M e U.
Ordem efetiva Ordem aparente
' 215F ' ' 3
215+ .
2.1 ¢ 1 2l ’
205 1 205 F B
w 2 3 — 2 2 » o ==
= I 9 .
S
195 1
195 -
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185 f——P, . S
107 107 107 107
h h

FONTE: A autora (2025).

A FIGURA 13 apresenta os valores de py obtidos no ponto central do dominio no
ultimo passo de tempo (varidavel Pg) para as quatro variaveis de interesse (N, M, F e U),
com uso de precisao quadrupla. Na FIGURA 13, a notagao N(g,m) representa a variavel

N para as diversas g malhas no nivel m de extrapolacao. Analogamente para as outras



Capitulo 5. Resultados e discussoes: Problema com solug¢do analitica 71

variaveis.

FIGURA 13 — py considerando P para as varidveis N, F,M e U e diversos niveis m de

extrapolacao.
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FONTE: A autora (2025).

Como observado na FIGURA 13, quando nao ha nenhuma extrapola¢ao (m = 0),
py se aproxima monotonicamente da ordem assintética py, = 2 a medida que h é reduzido,
conforme ja mostrado na FIGURA 11. Além disso, observa-se que, quando ha extrapolagao
e se emprega a técnica MER, os valores de py convergem para as sequéncias das ordens
verdadeiras subsequentes, p; = 4 e p; = 6. Segundo Marchi et al. (2016), as ordens
verdadeiras seguem uma progressao aritmética, de modo que, para niveis adicionais de

extrapolacao, continuam como ps = 8, py = 10, e assim por diante.

Diante dos resultados obtidos, adota-se py como parametro de referéncia nos
codigos implementados para avaliar a precisao das solugoes numéricas, uma vez que seus
valores seguem uma progressao aritmética conforme o nivel de extrapolacdo, coerente com

o comportamento tedrico da extrapolagao de Richardson.

5.2 Desempenho e eficiéncia

Nesta secao, serao apresentados os resultados do método numérico obtidos com a
implementacao do modelo mateméatico de crescimento tumoral bidimensional proposto

neste trabalho.
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5.2.1 Configuracao do ciclo V(vq,vs)

A solugao do sistema de equagoes resultante da discretizacdo com o MDF é
realizada com singlegrid (SG) e multigrid (MG), utilizando o método iterativo de Gauss-
Seidel red-black para o SG e como suavizador para o método MG. Adota-se o critério de
parada W < g, em que r(it) e r(0) sdo os residuos gerados na iteracao atual e na
estimativa inici:i, respectivamente, e £ = 1078. Os resultados obtidos por meio do emprego

do método MG utilizam o ciclo V (v4,112), operador de restrigdo por ponderagao completa,
operador de prolongagdo por interpolagdo bilinear e re = 2 (razao de engrossamento
padrao) (BRIGGS; HENSON; MCCORMICK, 2000; TROTTENBERG; OOSTERLEE;
SCHULLER, 2001; WESSELING, 2004).

Vérios autores como Briggs, Henson e McCormick (2000) e Trottenberg, Oosterlee
e Schuller (2001) enfatizam a importancia de ajustar os pardmetros do método MG
adequadamente para obter uma solucao precisa e minimizar o niimero de ciclos necessarios.
No entanto, é importante notar que encontrar o conjunto ideal de parametros geralmente
requer experimentagao e conhecimento do problema especifico que esta sendo resolvido.
Além disso, a complexidade e a natureza do problema também podem influenciar a
escolha dos parametros. Estudos mais tedricos envolvendo Anélise de Fourier Local para
a determinacgao de tais parametros em diversos tipos de problemas podem ser vistos em
Franco et al. (2018), Oliveira et al. (2018), Rutz, Pinto e Gongalves (2019), Rutz, Oliveira,
e Pinto (2025).

Portanto, a escolha dos valores de 17 e 15 foi realizada por testes apds a observagao
em diferentes nimeros de malha (nm) para determinar os melhores pardmetros do ciclo V.
Pode-se observar pela TABELA 4 que o tempo de CPU, em segundos, para vy =0 e vy = 2
apresentou o menor valor, considerando nm = 9 com N = 2° +1 = 513 pontos nas direcdes
espaciais x, y e temporal t. Os resultados para diferentes nm foram qualitativamente

similares, justificando a escolha do ciclo V/(0,2).

TABELA 4 — Tempo computacional do ciclo V' (v1,r2) em segundos (s), variando vy e vy, para
nm = 9.

v\ Vo 0 1 2 3

0 7.91E+02 [SMBEFON 7.49E+02

1 0.94E+02 9.09E+02 7.55E+02 1.51E+03
2 1.89E403 8.52E402 &8.38E+402 7.50E+02
3 8.72E+02 9.86E+02 9.50E+02 8.83E+02

FONTE: A autora (2025).
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A FIGURA 14 mostra a representacao grafica da TABELA 4, em que a configuragao
v1 = 0 e vy = 2 resultou no menor tempo computacional, tcpy = 54,464 s. Em contraste,

a configuracao v = 2 e vy = 0 levou ao tempo de topy = 1894,15 s.

FIGURA 14 — Tempo computacional do ciclo V (vy,r2) para diferentes v e vo, com nm = 9.
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FONTE: A autora (2025).

Os resultados apresentados nesta se¢do sdo comparados com o método Gauss-
Seidel red-black em sua versao singlegrid (método de malha tinica) para que possam ser
mensurados os ganhos ao se usar o método multigrid. A primeira comparacao é realizada
a partir da TABELA 5, em que apresentam-se o nimero de iteragoes utilizando SG e o

numero de ciclos com MG.

TABELA 5 — Namero de iteragdes do método singlegrid e nimero de ciclos V(0,2) do método
multigrid para diferentes valores de nm.

nm 23 45 6 7 8 9 10 11

it-SG 5 5 5 6 7 8 11 16 27 47

ciclo-MG 3 4 4 4 4 4 3 3 3 3
FONTE: A autora (2025).

Pode-se observar a partir da TABELA 5, que conforme aumenta-se o nimero de
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malhas, o niimero de iteragoes utilizando o método SG cresce, comportamento diferente
do método MG. A quantidade de ciclos V(0,2) do multigrid apresentou pouca variagao
mesmo com o refinamento de malhas. Isso indica que esse método é robusto em relagao ao
refino de malhas, propriedade esperada e altamente desejada em simulagoes numéricas
(BRIGGS; HENSON; MCCORMICK, 2000). Essa robustez permite que o método seja
aplicado a uma ampla variedade de configuragoes e condi¢oes, proporcionando resultados

confidveis e estaveis.

A seguir sao apresentados mais resultados obtidos neste estudo, bem como suas

andlises.

5.2.2  Fator de convergéncia médio (p,,)

Como medida de desempenho dos métodos singlegrid e multigrid, utiliza-se o fator
de convergéncia médio, p,,. Esse valor representa o fator médio de reducao do residuo ao
longo das iteragoes ou ciclos e pode ser calculado como a média geométrica dos fatores de

convergéncia individuais, ou seja,

pu = {Jp(1) - p(2) - p(3) - plit), (5.10)
em que it é o numero de iteragdoes do método SG ou de ciclos do método MG.

Para o célculo de cada fator de convergéncia p(it), adota-se a definicdo proposta
por Trottenberg, Oosterlee e Schuller (2001), que utiliza a razao entre as normas infinitas

de residuos consecutivos: .
ity — Dl
[r(it —1)[loo”

sendo r(it) o vetor residuo na iteragao ou ciclo it.

(5.11)

De acordo com Briggs, Henson e McCormick (2000), & medida que p,, se aproxima
de 1, a taxa de convergéncia diminui. Valores pequenos de p,,, p,, =~ 0, resultam em alta

taxa de convergéncia dos métodos iterativos.

Pode-se observar na FIGURA 15 os valores de p,, para os métodos singlegrid
e multigrid. Conforme a malha é refinada, observa-se na FIGURA 15(a) que o valor de
pm — 1 para o caso SG, o que é uma propriedade indesejada, porém esperada. Para o caso
MG, o valor de p,, permanece préximo de zero. Com a escala ajustada em relacao ao eixo
y, pode-se observar melhor na FIGURA 15(b), o valor de p,, para MG.

Dessa forma, pode-se garantir que o método MG, e principalmente o suavizador
associado, apresenta um bom desempenho a medida que a malha é refinada. Isto significa
que o método é capaz de resolver o problema de forma eficiente, exigindo um esforgo
computacional menor, mesmo para problemas de grande porte, propriedade altamente

desejada.
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FIGURA 15 — Fator de convergéncia médio p,, versus nm para: (a) os métodos singlegrid e
multigrid; (b) método multigrid com uma escala ajustada.
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FONTE: A autora (2025).

5.2.3 Tempo computacional (tcpy)

O tempo computacional (tcpy), medido em segundos (s), refere-se ao tempo total
consumido pela CPU durante toda a simulacao numérica. No caso do problema transiente
considerado neste trabalho, o tcpy compreende desde a inicializagao do processo, incluindo
a geracao das malhas, a atribuicdo da estimativa inicial e o pré-processamento necessario,
até a resolucao do sistema linear em cada passo de tempo, repetida iterativamente até que
o critério de convergéncia seja satisfeito em todos os instantes da simulacao. O tempo foi

medido em segundos, por meio da fungdo TIMEF, disponivel na linguagem FORTRAN.

A eficiéncia do método multigrid é frequentemente analisada utilizando o tempo
computacional. Segundo Roy, Anand e Donzis (2015), o esfor¢o computacional de um

método numérico é mensurado por meio da relacao entre o tcpy € 0 nimero de incognitas

da malha (N), onde

N = 4(N, — 2)(N, — 2)(N; — 1). (5.12)

O esfor¢o computacional dos métodos SG e MG, medidos pelo topy, é apresentado
na FIGURA 16.

Pode-se observar na FIGURA 16 que o método SG possui um tcpy superior com
relacao ao método MG. Note que esta vantagem vai ficando mais acentuada a medida
que vai aumentando o niimero de incégnitas, pois as inclinagoes das curvas com MG sao
menores do que com SG. Isso implica que o multigrid torna-se gradualmente mais eficiente,

0 que ¢ uma caracteristica extremamente desejavel. Isso pode ser comprovado através
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FIGURA 16 — tcpy dos métodos SG e MG.

']06 E T T T T T
—&— Singlegrid
—&— Multigrid

tCPU

FONTE: A autora (2025).

do célculo da razao entre o tempo computacional do singlegrid (tcpy(SG)) e multigrid
(tepy(M@G)) com o aumento do ntimero de incdgnitas. Esta razdao é conhecida por Speed-up,
que é dada por (FRANCO, 2017)

tory (SG)

tepu(MG) (5.13)

Speed-up =

e pode ser vista na FIGURA 17 e na TABELA 6.

TABELA 6 — tcpy (em segundos) e Speed-up dos métodos SG e MG.

nm topy - SG  tepy - MG Speed-up

7 7.69E+00  8,48E-01 9,07
8 T7.46E+01  535E+00 13,94
9 9,73E+02  545E+01 17,86
10 1.26E+04  5,88E+02 21,45
11 2,69E+05  4,39E+03 61,18

FONTE: A autora (2025).

O Speed-up representa quantas vezes o MG é mais rapido que o SG. Por exemplo,

para nm = 7 (malha espacial 257 x 257 nés e com 257 passos no tempo), o tcpy do
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FIGURA 17 — Speed-up dos métodos SG e MG.
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FONTE: A autora (2025).

SG e MG é de 74,6 s e 5,35 s, respectivamente, ou seja, o MG é cerca de 14 vezes mais
rapido do que o SG. Outro exemplo, para nm = 11 (malha espacial 2049 x 2049 nés e
com 2049 passos no tempo), o topy do SG e MG é de 268807 s e 4393 s, respectivamente,

ou seja, o MG é cerca de 61 vezes mais rapido do que o SG.

Nota-se nas FIGURAS 16 e 17 e na TABELA 6, para todos os nimeros de
incégnitas avaliados, o MG é sempre mais rapido que o SG e esta vantagem vai aumentando

a medida que N vai crescendo.

5.2.4 Complexidade dos métodos (p)

Uma outra métrica importante para se avaliar o desempenho de um método é a

complexidade de seu algoritmo.

Segundo Burden, Faires e Burden (2016), para verificar a complexidade do
algoritmo utilizado, pode-se realizar um ajuste geométrico (ou nao linear) com os resultados

do tempo computacional t-py onde,

tCPU(N) = CNp, (514)

em que N é o nimero total de incégnitas do problema a ser resolvido, Eq. (5.12), p
representa a ordem de complexidade do solver (inclinagao da curva em escala bi-logaritmica)

e ¢ é uma constante que depende do método. De acordo com Trottenberg, Oosterlee e
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Schuller (2001), o valor de p deve estar préximo da unidade (p ~ 1) e o valor de ¢ préximo

de zero para o caso do MG considerado ideal, indicando seu comportamento linear.

Analisando o desempenho do método a partir da Eq. (5.14), com os dados descritos
na FIGURA 16, considerando os valores mais significativos, ou seja, utilizando os 7 ultimos
pontos, no caso SG, e os 9 pontos, no caso MG, tem-se a TABELA 7, que mostra os valores

de ¢ e p para os métodos SG e MG.

TABELA 7 — Coeficientes ¢ e p do tcpy(N) na Eq. (5.14) para SG e MG.

SG MG
¢ p c p
1,58E — 09 1,3508 3,38 — 08 11,0549
FONTE: A autora (2025).

Com esses resultados, pode-se observar que os valores encontrados sao proximos
dos descritos na literatura para MG. Isso confirma o comportamento linear do método,

apontando também a vantagem no uso do método multigrid.

Os resultados computacionais obtidos com a implementagdo do modelo matematico
de crescimento tumoral, proposto neste trabalho, foram realizados até nm = 11, conforme
apresentado na TABELA 6, que mostra o tempo computacional do SG e do MG. Utilizando
a Eq. (5.14), pode-se estimar o tempo de CPU para valores de nm nao calculados.
A TABELA 8 apresenta tal tempo, para nm variando de 12 a 15. Pela andlise do
comportamento do fator de convergéncia médio, mostrado na FIGURA 15(a), observa-se
que este tende a crescer com o aumento do ntimero de malhas. Entretanto, conforme
indicado pelos tempos estimados na TABELA 8, o custo computacional para nm > 11
torna-se elevado, inviabilizando a execugao pratica dessas simulagoes dentro das condigoes

disponiveis neste estudo.

TABELA 8 — Estimativa do tcpy para os métodos singlegrid e multigrid.

nm tCPU - SG tch - MG
12 52 dias 11 horas
13 2 anos e 4 meses 4 dias
14 39 anos e 6 meses 37 dias
15 655 anos e 7 meses 11 meses

FONTE: A autora (2025).
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A TABELA 8 confirma a vantagem computacional do MG em rela¢ao ao SG. Por
exemplo, para nm = 13, o problema apresentaria 2,19849F + 12 incégnitas, com um tempo
computacional de mais de 2 anos para rodar SG, enquanto que utilizando MG levaria

aproximadamente 4 dias.

5.3 Estimadores do erro

A avaliacdo do erro de discretizagdo de uma solu¢do numérica (¢) para uma
variavel de interesse requer, idealmente, o conhecimento de sua solucao analitica exata
(®). No entanto, em muitos casos praticos, essa solu¢ao exata nao estd disponivel, sendo
necessario recorrer a estimativas do erro ou a quantificacao da incerteza associada a solugao

numeérica disponivel.

Nesta secao, emprega-se uma solugao analitica fabricada, o que permite nao
apenas verificar o método e o c6digo, mas também estudar o comportamento do erro de
discretizagao. Para isso, utiliza-se o estimador de Richardson (Ug;, Eq. (3.34)) para o caso
em que nao é realizada nenhuma extrapolagao (sem aplicagao da técnica MER), bem como
dois estimadores voltados para a andlise na qual é realizada a miltipla extrapolacao de
Richardson (MER): estimador de Richadson corrigido (Upme, Eq. (3.36)) e estimador v
corrigido (Uy+, Eq. (3.39).

Além da estimativa do erro, a verificacdo do cédigo também é realizada por meio
da andlise da efetividade dos estimadores. A TABELA 9 apresenta os valores obtidos para

a efetividade 0(U), calculados para os estimadores Upp,. € Uy-.

TABELA 9 - Efetividade dos estimadores Uy« e Upp, para as varidveis N, F', M e U.

b Varidvel N Variavel F Variavel M Varidvel U

Ua/)*/Em Upmc/Em Uw*/Em Upmc/Em Uw*/Em Upmc/Em Uw*/E’m Upmc/Em

6,25E-02| 1,01716 1,01597  1,00731  0,99920  1,00516 0,99914  1,00488  0,99933
3,13E-02| 0,95700 0,97161  0,98785 0,98707  0,98814 0,98730  1,00066  0,99999
1,56E-02 | 1,03044 1,00033  1,01460 1,00130  1,01400 1,00095  0,98688  0,98687
7.81E-03| 0,97639 0,97671  0,99508 0,99637  0,99218 0,99311  1,00973  0,99634
391E-03| 1,02560 1,00111  1,00504 1,00137  1,00821 1,00120  1,00500  1,00131
1,95E-03 | 0,99897 1,00008  0,99879 1,00015  0,99891 1,00011  0,99883  1,00013
9,77E-04| 0,99946  0,99955  0,99973  0,99989  0,99961  0,99971  0,99969  0,99982
4,88E-04| 1,00053 1,00007  1,00006 0,99995  1,00028 1,00000  1,01840 1,01821

FONTE: A autora (2025).

Os resultados da TABELA 9 indicam que ambos os estimadores demonstram boa

acuracia, com 0(U) ~ 1. Para quantificar essa proximidade em relagdo ao valor ideal, foi
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calculado o desvio médio em torno da unidade para cada estimador. Os valores obtidos
foram aproximadamente 9,05 x 107% para Uy e 4,80 x 107 para Uyp.. Como valores
menores desse desvio indicam maior proximidade média em relagao ao ideal, conclui-se
que o estimador U,,,. fornece uma aproximagao mais confidvel na avaliacao do erro de
discretizagao em comparagao com Uy-. Portanto, U,,,. sera utilizado para gerar os gréficos
apresentados na FIGURA 18.

A FIGURA 18 ilustra os resultados para o erro de discretizagdo (Fj) e erro
de discretizagdo com MER (E,,) com suas respectivas estimativas Ug; e Upme, com o
refinamento de malha. Foi considerado as quatro variaveis de interesse do problema
N, F.MeU.

FIGURA 18 — Erro de discretizagdo sem o uso de MER (E},) com sua estimativa (Ug;), e com
o uso do MER (E,,) e sua estimativa (Upn.) versus a discretizagdo espacial h,
considerando as varidveis: (a) N, (b) F, (c) M e (d) U.
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FONTE: A autora (2025).
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Ao analisar o erro de discretizacdo Ej, na FIGURA 18, observa-se claramente
que o uso da MER, que gera E,,, é extremamente eficaz na reducao desse erro para
todas as varidveis. Por exemplo, no caso da variavel N, apresentado na FIGURA 18(a),
para nm = 10, o que corresponde a h = 4,8828125 x 1074, tem-se E}, ~ 10~7, enquanto
E,, ~ 1072*. Em sintese, a aplicacdo da MER resulta em uma reducio significativa do erro

E,, em comparacao com E},.

Observa-se também nas FIGURAS 18(a)—(d) que tanto o estimador adotado para
o erro de discretizagdo sem MER (Ug;), quanto com MER (Up,,.), fornecem excelentes
estimativas, sendo, portanto, altamente recomendados para casos em que a solugao analitica

nao é conhecida.
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6 RESULTADOS E DISCUSSOES: PROBLEMA REALISTA

No capitulo anterior, a verificacaio do codigo implementado com base em
solucao analitica fabricada confirmou a precisdo das simulagées numéricas, com erros
de discretizacao reduzidos, conforme evidenciado na FIGURA 9. As andlises também
mostraram que os métodos singlegrid (SG) e multigrid (MG) preservaram a taxa
de convergéncia de segunda ordem (FIGURAS 10-12). Em relagdo ao desempenho
computacional, observou-se que o método MG apresentou uma reducao significativa
no tempo de execugdo em comparagao ao método SG, como indicado pelas FIGURAS 16
e 17, que ilustram, respectivamente, o tempo de CPU (tcpy) e o speed-up obtido. Além
disso, o fator de convergéncia médio também foi inferior para o método MG, refletindo

sua maior eficiéncia na resolucao dos sistemas lineares (ver FIGURA 15).

Adicionalmente, os resultados obtidos com a aplicacdo da técnica de multipla
extrapolagao de Richardson (MER) demonstraram sua eficdcia na reduc¢ao dos erros de
discretizacao. Os estimadores associados apresentaram alta confiabilidade na quantificacao
dos erros (FIGURA 18).

Dando continuidade a analise, nesta secao, simula-se um caso realista, descrito
pelas Egs. (2.1)-(2.4), considerando condigoes iniciais que refletem as caracteristicas de

um tumor para as variaveis n, f, m e u.

Primeiramente, avalia-se o desempenho dos métodos SG e MG para o caso realista
em que nm = 11, conforme TABELA 10.

TABELA 10 — Comparacao dos métodos singlegrid e multigrid para solucdo realista.

nm tcpu - SG tepy - MG speed-up

11 3 dias e 13 horas 4 horas 21,6
FONTE: A autora (2025).

Os tempos computacionais observados confirmaram os padroes verificados
anteriormente, com o SG exigindo, aproximadamente, 3 dias e 13 horas para a execucao,
enquanto o MG concluiu a mesma tarefa em apenas 4 horas. Essa diferenca substancial
nao apenas reafirma os resultados obtidos para a solucao fabricada (TABELAS 6 e 8),
mas também comprova que o MG mantém sua eficiéncia na resolucdo do problema
realista proposto. No entanto, observa-se que o speed-up obtido neste caso nao é tao
expressivo quanto aquele verificado na solugao fabricada. Uma possivel explicacao para
esse comportamento esta na natureza da solucao: enquanto a solugao fabricada é construida
para ser suave e satisfazer rigorosamente as hipdteses de diferenciabilidade exigidas pelos
métodos numéricos empregados, a solucao do problema realista, por ser desconhecida,

pode nao possuir a mesma regularidade.
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Com base nesses resultados, adota-se exclusivamente o método MG nas anélises
e na aplicagdo do modelo tumoral ao problema realista, garantindo maior eficiéncia

computacional.

Para avaliar a influéncia da densidade das células tumorais n, da densidade da
matriz extracelular f, das enzimas degradativas da matriz m e do inibidor endégeno u,
como o papel de substancias reguladoras e inibidoras no processo de invasao tumoral,
consideramos que essas interagdes ocorrem em um sistema isolado, impondo condigoes de
contorno do tipo Dirichlet, dadas por (MAGANIN et al., 2020; LOPEZ: RUIZ; CASTANO,
2018):

n(xp,t) = 0, (6.1)
Foxut) = 1, (6.2
m(xp,t) = 0, (6.3)
u(Xp,t) = 0, (6.4)

para t > 0, xp € 012, sendo 92 o contorno do dominio 2 = [0,1] x [0,1] assumido.

Assumimos inicialmente que ha um nédulo de células presente no dominio 2,
em que a densidade inicial do tumor encontra-se centrada no ponto (0,5;0,5), ou seja,
assumimos que o tumor ja tenha degradado alguns dos tecidos circundantes do dominio
admitido. Com isso, as condigoes iniciais sao dadas por (L()PEZ; RUIZ; CASTANO, 2018)

n(x,0) = exp( — 02>,

€
f(x,0) =1—0,5n(x,y,0),
m(x,0) = 0,5n(x,y,0),
u(x,0) =0,

De € um parametro que controla a largura da densidade inicial de células tumorais.
Em outras palavras, ¢ atua como um parametro de controle da concentracao do tumor, no
qual valores menores resultam em um nédulo mais localizado, enquanto valores maiores
resultam em uma distribuicdo mais difusa das células tumorais. Neste trabalho sera usada

a mesma de Lépez, Ruiz e Castano (2018), ou seja, e = 0,001.

Definidas as condig¢Oes de contorno e iniciais, procede-se a andlise do erro de
discretizacao e da qualidade das estimativas geradas pelos estimadores numéricos no
contexto do problema realistico. A FIGURA 19 apresenta os resultados para o erro de
discretizagdo com e sem a aplicacdo da multipla extrapolagdo de Richardson (MER),

bem como as respectivas estimativas fornecidas pelos estimadores Ug; (Eq. (3.34)) € Upne
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(Eq. (3.36)). As simulagoes foram realizadas utilizando os pardmetros da TABELA 1, com

ty =15 ey =0,01 (que correspondem ao coeficiente haptotaxico).

FIGURA 19 - Estimativa do erro de discretizagdo sem o uso da MER (Ug;) e com MER (Uppe)
versus a discretizagdo espacial h, considerando as variaveis: (a) N, (b) F, (¢) M e
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FONTE: A autora (2025).

E possivel confirmar, através da FIGURA 19, que o uso da técnica MER reduziu
significativamente o erro de discretizacao para este problema, resultando em solugoes
numéricas mais precisas. Por exemplo, para a varidvel N, na FIGURA 19(a), com
nm = 10, o que corresponde a h = 9,76562 x 1074, tem-se que Ug;(E}),) ~ 107, enquanto
Upme(Em) = 1074

Vale destacar que a variavel F', representada na FIGURA 19(b), apresenta um
comportamento atipico, justificado pela modelagem do problema. A matriz extracelular
(MEC) se degrada rapidamente, aproximando-se de zero no ponto central do dominio, o

que provoca uma estimativa de erro muito pequena.
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Com os erros controlados e estimados, da-se prosseguimento a analise detalhada
do comportamento dinamico das quatro variaveis do modelo, examinando sua evolucao
temporal e espacial. Essa andalise permite compreender os mecanismos envolvidos na

progressao tumoral e avaliar o impacto de pardmetros fundamentais no processo invasivo.

Os resultados das simulagoes, apresentados na FIGURA 20, ilustram as interagoes
entre as células tumorais, a MEC, as MDEs e o TIMP, representados, respectivamente,
pelas variaveis N, F', M e U, nos instantes t =0, t =5,t =10e t =t; = 15.

FIGURA 20 — Evolugédo espacial para diferentes passos de tempos com v = 0,01: (a) densidade
da célula tumoral; (b) densidade MEC; (c) concentracao de EDM; (d) TIMP.
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As duas primeiras colunas da FIGURA 20 apresentam simulag¢oes numéricas da
interagao entre as células tumorais (V) e a matriz extracelular (F') ao longo do tempo.
Em t = 0 (condicao inicial), observa-se uma alta densidade de N, enquanto F' ainda nao
sofreu degradacdo significativa. A medida que o tempo avanca (t > 0), a densidade celular
aumenta nas regioes onde F' estd mais degradada, evidenciando o processo de invasao
tumoral. Esse comportamento pode ser parcialmente explicado pela haptotaxia, fenomeno
no qual as células migram ao longo de gradientes de moléculas adesivas imobilizadas na
matriz extracelular (CHAPLAIN; LOLAS, 2006).

A terceira coluna ilustra o aumento na concentracao das enzimas degradadoras
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da matriz (M), responsaveis pela destruigdo progressiva de F'. Por fim, a quarta coluna
apresenta a distribui¢do dos inibidores (U), que atuam no sentido de limitar a degradagao
promovida por M, regulando o equilibrio entre a invasao tumoral e a preservacao da matriz

extracelular.

A FIGURA 21 apresenta a evolugao espaco-temporal da densidade de células
tumorais ao longo do intervalo de tempo ¢ = 0 até ¢ = 15. Observa-se que, inicialmente, as
células estao concentradas em uma regiao central do dominio, representando um pequeno
nodulo tumoral. Com o avanco do tempo, a difusdo celular e a proliferacao promovem
a expansao do tumor em dire¢ao as regioes periféricas, formando uma frente de invasao
aproximadamente circular. A transicao gradual das cores do azul para o vermelho indica
o aumento da densidade celular, evidenciando o crescimento continuo e homogéneo da

massa tumoral ao longo do dominio f2.

FIGURA 21 — Densidade das células tumorais no plano bidimensional para t = 0, 5, 10, 15.
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FONTE: A autora (2025).

A dinamica observada na FIGURA 21, caracterizada pela expansao da massa
tumoral a partir de uma regiao central com aumento progressivo da densidade celular,
é consistente com os resultados obtidos por Lépez, Ruiz e Castanio (2018), que também
analisaram o perfil da evolugao temporal da densidade das células cancerosas, e com o0s
dados apresentados em Maganin et al. (2020). Esses resultados indicam que o modelo
reproduz de forma coerente padroes tipicos de crescimento avascular observados em exames
clinicos bidimensionais, sugerindo potencial para validacao futura com imagens médicas

reais.

Uma secao transversal horizontal no centro do dominio, ao longo do eixo
bidimensional, é utilizada para melhor visualizar os resultados apresentados na FIGURA 20,

gerando os perfis de solu¢ao mostrados na FIGURA 22.

A FIGURA 22 revela a distribuicao espacial das variaveis ao longo do tempo

(t =0,5,10 e 15): (a) N, inicialmente concentrada no centro, se espalha gradualmente
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FIGURA 22 — Secao transversal horizontal no centro do dominio, conforme mostrado na FIGURA
20, para t = 0,5,10 e 15, varidveis: (a) N, (b) F, (c) M e (d) U, com v = 0,01.
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FONTE: A autora (2025).

seguindo os gradientes da matriz extracelular. Observa-se um avanco progressivo da frente
tumoral, com formacao de aglomerados celulares mais densos nas regioes onde a matriz
ja foi degradada. (b) F', inicialmente uniforme, é degradada nas regioes invadidas pelas
células tumorais, formando-se uma depressao acentuada no centro do dominio, refletindo
a agao das enzimas sobre a MEC. (c) M, a producao dessas enzimas é proporcional &
densidade celular, resultando em aumento significativo nas regides com alta concentragao
tumoral. (d) U, inicialmente ausente, acumula-se gradualmente nas regioes de intensa
degradacao da MEC, em uma tentativa de neutralizar o avanco das enzimas degradadoras.
A FIGURA 22 esta coerente com resultados encontrados em Kolev e Zubik-Kowal (2011a),
Loépez, Ruiz e Castano (2018), Maganin et al. (2020).

Um dos parametros-chave no modelo matematico que descreve o crescimento
tumoral é o coeficiente v, que esta associado ao fendomeno de haptotaxia e que corresponde
a taxa que modela a migragao de células invasivas. Durante a invasao tumoral, as células
cancerosas degradam a matriz extracelular (MEC) por meio da ac¢ao de enzimas, gerando

gradientes espaciais que direcionam a migracao celular, conforme destacado por Chaplain

e Lolas (2006).

Para uma melhor compreensao de tal parametro v, a FIGURA 23 apresenta as
solugoes das simulagoes para N, considerando v = 0,01 e v = 0,005, com um corte horizontal

da densidade de células cancerosas em diferentes instantes de tempo (t = 1,5,10 e 15).

Os resultados apresentados na FIGURA 23 indicam que a taxa de migragao
~ influencia a dindmica da invasao tumoral, com impacto mais significativo nas fases
iniciais da migracao celular, quando os gradientes da matriz extracelular (MEC) estao mais
definidos. Esse parametro é essencial para compreender a progressao e o comportamento

da massa celular ao longo do tempo.

Para v = 0,01, observa-se que as células cancerosas se deslocam mais rapidamente
ao longo da MEC, resultando na formacao de aglomerados mais densos e concentrados, o

que caracteriza um processo invasivo mais agressivo. Em contraste, com v = 0,005, o avanco
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FIGURA 23 — Secao transversal horizontal da densidade de células cancerosas, variavel N, em
diferentes tempos para v = 0,005 e v = 0,01.
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da massa celular é mais lento e os aglomerados formados sao menos definidos, refletindo
uma migragao celular menos eficiente. Esses resultados reforcam que valores mais elevados
de v potencializam o efeito haptotaxico, promovendo uma maior disseminagao tumoral

nas fases iniciais, enquanto valores mais baixos atenuam essa influéncia, desacelerando o

processo invasivo.
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7 CONSIDERACOES FINAIS

Neste capitulo, serao apresentadas as conclusoes dos resultados obtidos, principais

contribuigoes e o que se espera atingir nos trabalhos futuros.

7.1 Conclusoes gerais

Este trabalho apresentou um método eficiente, robusto e acurado para a simulagao
do crescimento tumoral na fase avascular, combinando modelagem matemaética, técnicas
de discretizacdo numérica e estratégias de aceleragdo de convergéncia e estimativa de erro.
Os resultados obtidos demonstram a robustez e a eficicia do método multigrid (MG)
associado a multipla extrapolagao de Richardson (MER), tanto para problema com solugao

analitica conhecida quanto para problema com cenario realista.

No primeiro momento, a verificagao do cédigo com base em solugoes fabricadas
comprovou a segunda ordem de acuracia do método numérico implementado, ao passo que
os estimadores Ug; e Uy, mostraram-se eficientes na quantificacao do erro de discretizacao.
A aplicacao da técnica MER promoveu significativa reducao do erro numérico, validando

sua utilizacao em contextos onde a solugdo analitica nao esta disponivel.

O segundo estudo aprofundou a avaliacao dos métodos numéricos frente a um
problema realista, evidenciando a expressiva vantagem computacional do método MG em

relacdo ao SG, sem prejuizo na acuracia.

Por fim, no terceiro estudo, a andlise detalhada das variaveis biologicas n, f, m
e u permitiu compreender os mecanismos dindmicos de invasao tumoral, especialmente
o papel da haptotaxia representado pelo parametro . Os resultados obtidos reforcam
o potencial da modelagem matematica, contribuindo com informacoes relevantes para a

compreensao da progressao tumoral.

Conclui-se, portanto, que a metodologia proposta, aliando o método MG a MER
e ao uso de estimadores confiaveis de erro, representa uma contribuicao significativa para

a area de métodos numeéricos aplicados a Engenharia e Biomedicina.

7.2 Principais contribuicoes

Com base nos resultados obtidos, conclui-se que as principais contribuigoes desta

pesquisa podem ser destacadas nos seguintes pontos:

o Método eficiente e robusto baseado em multigrid, para a solugdo de um modelo
bidimensional, nao linear, composto por quatro equagoes que descrevem o crescimento

tumoral;
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o Acuracia das solu¢oes numéricas utilizando a miltipla extrapolacao de Richardson
(MER);

« Estimadores acurados para o erro de discretizacao;

o Anaélise de parametro do modelo biologico.

7.3 Trabalhos futuros

Com os avancos obtidos neste trabalho, algumas ideias ja estao sendo desenvolvidas,
enquanto outras podem ser exploradas futuramente para ampliar a aplicagdo do modelo.

Entre elas, destacam-se:

o Testar diferentes condigdes de contorno (Dirichlet, Neumann ou Robin) para

representar situacoes fisioloégicas mais realistas;

o Aplicar o método multigrid em dominios com geometria mais complexa, como o

formato da mama feminina, aproximando de cenarios clinicos reais;

e Avaliar o impacto de diferentes parametros bioldgicos, como taxas de difusao,
producao e degradacao, para avaliar a robustez do sistema e identificar aqueles

de maior relevancia na dinamica tumoral;

o Estender o modelo para incluir termos que representem o efeito da quimioterapia,
simulando a aplicacao de drogas citotéxicas no microambiente tumoral. Isso pode
ser feito por meio da inclusao de uma nova variavel representando a concentracao
do agente quimioterapico e de termos adicionais de reacao que capturem a morte

celular induzida, além da possivel resisténcia ou recuperacao do tecido.
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