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RESUMO

Este trabalho tem como objetivo reduzir e estimar o erro de discretizagdo (Ej) através da
aplicacao de Multiplas Extrapolagoes de Richardson (MER) ao problema de escoamento
em meio poroso deformavel em dominios unidimensionais e bidimensionais. Tal método
caracteriza-se como um procedimento de pds-processamento que requer baixo custo
computacional fundamentado na série de Richardson. Neste sentido, realiza-se a verificagao
numérica de solugoes obtidas com o emprego do Método das Diferencas Finitas, em que
sao aplicadas aproximagoes espaciais de segunda ordem, bem como condi¢oes de contorno
de Dirichlet e Neumann. As aproximacoes temporais sao executadas através do método de
Crank-Nicolson, gerando assim grandes sistemas de equagoes lineares. Para resolver esses
sistemas, é utilizado o método multigrid em conjunto com o suavizador Vanka, otimizando
assim a convergéncia do processo iterativo. As varidveis de interesse sao classificadas de
acordo com suas localizagoes, tais como nodais e nao nodais, durante o refinamento da
malha. Os resultados sdo agrupados da seguinte forma: para variaveis com localizacao nodal
fixa, a aplicacdo de MER leva a uma reducgao substancial no erro Ej. No entanto, para
variaveis com coordenadas variaveis durante o refinamento da malha, a aplicacao direta de
MER nao se mostra eficaz. Para lidar com essa situacao, uma metodologia é proposta,
envolvendo interpolacao polinomial prévia e um método de otimizacao. Os resultados
obtidos revelam que essa abordagem ¢é promissora para reducao do erro de discretizacao e
aumento da ordem de acuracia das solu¢des numéricas, quando aplicada a esse tipo de
variavel. Além disso, busca-se a obtencao de estimativas do erro de discretizacao apos
a aplicacdo de MER. A andlise abrange diversos estimadores presentes na literatura,
destacando-se o estimador de Richardson Corrigido, recomendado por sua maior acuracia
e confiabilidade em comparacao com outros estimadores examinados neste trabalho.

Palavras-chave: Multiplas Extrapolagoes de Richardson, Erros de discretizacao, Estima-
dor de erro, Poroelasticidade



ABSTRACT

The current work aims to reduce and estimate discretization error (Ej) through the
utilization of Repeated Richardson Extrapolation (RRE) to the problem of flow in a
deformable porous medium within one-dimensional and two-dimensional domains. The
adopted methodology is characterized as a post-processing procedure, requiring low
computational cost and grounded in the Richardson series. In this context, numerical
verification is conducted on solutions attained using the Finite Difference Method,
where second-order spatial approximations are applied, alongside Dirichlet and Neumann
boundary conditions. Temporal approximations are executed through the Crank-Nicolson
method, resulting in the formulation of large systems of linear equations. To solve these
systems, the multigrid method together with the Vanka smoother is employed, thereby
optimizing the convergence of the iterative process. The variables of interest are categorized
based on their positions, including nodal and non-nodal, throughout mesh refinement. The
results are organized as follows: for variables with fixed nodal locations, the application
of RRE leads to a substantial reduction in error E}. However, for variables with varying
coordinates during mesh refinement, the direct application of RRE proves ineffective. To
address this situation, a methodology is proposed, involving prior polynomial interpolation
and an optimization method. The obtained results reveal that this approach holds promise
for reducing discretization error and enhancing the accuracy order of numerical solutions
when applied to this type of variable. Furthermore, the work seeks to obtain estimations
of discretization error subsequent to the application of RRE. The analysis encompasses
various estimators present in the literature, with the Corrected Richardson Estimator
standing out as recommended due to its greater accuracy and reliability compared to other
estimators examined in this study.

Keywords: Repeated Richardson Extrapolation, Discretization Errors, Error Estimator,
Poroelasticity.
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1 INTRODUCAO

Um dos grandes desafios dos pesquisadores na area da Dinamica dos Fluidos
Computacional (em inglés, Computational Fuid Dynamic, CFD) é avaliar o nivel de
acuracia das solugdes numéricas. Embora os erros numéricos nao possam ser totalmente
eliminados, é imprescindivel que sejam controlados, ou minimizados, em simulagoes
numéricas computacionais. De todas as fontes de erros numeéricos, o erro de discretizagao
(ER) é considerado como a mais significativa (ROY; OBEEKAMPF, 2011).

Como formas de reduzir FE},, algumas alternativas podem ser avaliadas, porém
as mesmas apresentam vantagens e desvantagens, como: o refinamento da malha, eleva
o custo computacional; o aumento da ordem de acuracia das aproximacoes, aumenta a
complexidade do modelo numérico; a utilizacao de técnicas de extrapolagao, considerada um
pés-processamento é de facil implementagao e baixo custo computacional (RICHARDSON;
GAUNT, 1927; SIDI, 2003; MARCHI et al., 2013b).

Atualmente, a utilizacdo de técnicas de extrapolacdo como ferramentas
computacionais eficazes, é cada vez mais reconhecida no meio cientifico. A qualidade de
um método de extrapolagao pode ser avaliada mediante a consideracao do comportamento
assintotico de uma sequéncia convergente, conforme (SIDI, 2003). A Extrapolacao de
Richardson (ER), um dos métodos mais conhecidos, baseia-se no comportamento assintotico
de uma sequéncia convergente para melhorar a precisdo da estimativa. O método utiliza
uma formula de extrapolacao para gerar uma nova sequéncia de estimativas com uma
taxa de convergéncia superior a sequéncia original. Ao se aplicar ER de forma recursiva é
possivel potencializar a sua eficacia e esse processo ¢ denominado Multipla Extrapolacao de
Richardson (MER) (em inglés, Repeated Richardson Eztrapolation, RRE) (DAHLQUIST;
BJORCK, 2008).

Alguns problemas em CFD possuem em seus modelos matematicos equagoes
diferenciais e seus acoplamentos (composigoes) e, a verificagdo numérica para esses
problemas requer atencao. Em particular, a poroelasticidade é um destes problemas, onde
as equacoes modelam matematicamente a interacao entre a deformacao de um material
elastico poroso e o fluxo de fluido dentro dele. No entanto, a verificagdo numérica desse
modelo nao esta consolidada na literatura e ainda é objeto de estudo e discussao. A teoria
geral, formulada por Biot (1941), é conhecida atualmente como modelo de consolidagao de
Biot. A anélise e a simulagao numérica do modelo de Biot tornaram-se mais populares
e vém sendo discutidas em trabalhos recentes devido a sua gama de aplicagoes como
na Medicina, Engenharia do Petroleo, Biomecénica, dentre outros campos da Ciéncia e
da Engenharia (EHLERS W. ANDA BLUHM, 2002; RODRIGO, 2010; FRANCO, 2017;
FRANCO et al., 2018).

Os modelos matematicos utilizados neste trabalho abordam o problema de

escoamento monofasico em meio poroso deformével tanto em casos unidimensionais quanto
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bidimensionais. O problema de escoamento de apenas um unico fluido em um meio
poroelastico, serd denotado por "problema de poroelasticidade", onde as equagoes sao
resolvidas numericamente com o emprego do Método das Diferengas Finitas (MDF)
utilizando aproximagoes espaciais de segunda ordem de acuracia, condigoes de contorno de
Dirichlet e de Neumann. Além disso, o método de Crank-Nicolson é utilizado para realizar
a aproximagao temporal e a conexao espacial e temporal, gerando com isso um sistema
de equagoes lineares que é resolvido iterativamente pelo suavizador Vanka. O suavizador
Vanka é um método que realiza suavizagoes por blocos e todas as incognitas no sistema
sao consideradas acopladas. Nas simulacdes numéricas utilizou-se precisao quadrupla e um
numero suficiente de iteragoes para atingir o nivel de acuracia conhecido como erro de
maquina.

As solucoes numéricas analisadas correspondem:

a) ao deslocamento e a pressdo para variaveis que apresentam mesma localizagdo nodal

com o processo de refinamento de malha na solugao numérica;
b) as médias dos deslocamentos e das pressoes (varidveis globais);

¢) ao valor maximo para o deslocamento e para a pressao (variaveis que apresentam
mudanga na coordenada (nodal) com o processo de refinamento de malha na solugéo

numérica).

Os resultados obtidos a partir dessas anélises indicam que a metodologia empregada
é promissora no sentido de elevar a acuracia das solugoes numéricas para o problema de

poroelasticidade.

1.1 Descricao do problema

De modo sumario, para apresentagao do problema que motivou esta tese, suponha
um processo de refinamento de malha de modo que para cada malha obtenham-se solugoes
numéricas distintas. Nesse panorama, para o modelo citado anteriormente, considera-se a
variavel pressao no centro do dominio, ou seja, a variavel p.. Tal varidvel apresenta a mesma
localizagdo nodal com o processo de refinamento de malha, embora seus valores sejam
distintos em cada malha considerada. Mediante a representacao do erro de discretizacao
associado a esta variavel, versus h (dimensao do elemento de malha ou espacamento entre
os nés de cada malha), ilustram-se na Figura 1 as magnitudes de Ej e E,,, ou seja, o
erro de discretizagdo sem e com o emprego de MER, para o problema de poroelasticidade
unidimensional (detalhes sobre o modelo matematico/numérico de poroelasticidade, bem
como sobre a técnica de MER, serdo dados nos capitulos 4 e 5).

Nota-se que os valores para Ej, (erro de discretizagao sem o emprego de MER)

sdo superiores ao FE,, (erro de discretizacdo com o emprego de MER) e E,, tornam-se
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progressivamente menores com o processo de refino de malha. Essa ¢é a situagao ideal na
aplicacao de MER, isto é, apresentar uma redugao progressiva de E,, e com isso elevar a
ordem de acuracia. Essa elevacao pode ser verificada com o aumento do declive do gréafico
do erro versus h em escala bilogaritmica (Figura 1).

Por outro lado, para varidveis que apresentam mudanga na coordenada (nodal)
com o processo de refinamento de malha, como exemplo o valor méximo da pressao (Pmaz),
a aplicacao direta de MER nao se mostra eficiente na reducao de Ej, como anteriormente
para p., ou seja, a magnitude de E,, nao apresenta reducgao significativa em relacao ao Ej,
com o processo de refino de malha (Figura 2). Logo, para esse tipo de varidvel, a aplicacgdo

direta de MER nao se mostra uma ferramenta eficiente.

Figura 1 — Desempenho de MER sobre Ej para a varidvel p..
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Figura 2 — Desempenho de MER sobre Ej para a variavel ppqq.
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Isso posto, o presente trabalho busca estabelecer uma metodologia que seja capaz
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de reduzir a magnitude de E} com o emprego de MER e estimar FE,,, especialmente para
variaveis que apresentam mudanca na coordenada (nodal) com o processo de refinamento

de malha.

1.2 Revisao bibliografica

Nesta secao sao apresentados alguns trabalhos relacionados a Multipla
Extrapolagao de Richardson (MER), destacando sua eficiéncia e algumas necessidades de
aprimoramento. Richardson e Gaunt (1927) consideraram a aplicagdo da Extrapolacao de
Richardson (ER) com dois niveis de extrapolagao, aplicando essa técnica a equagoes na
forma integral, como a equacao integral de Volterra; e diferencial, como as derivadas no
Teorema de Leibnitz.

Ertuk, Corke e Gokgol (2005) aplicaram dois niveis de ER, utilizando trés malhas
distintas no problema de escoamento permanente bidimensional de fluido incompressivel
em uma cavidade com tampa modvel e obtiveram sexta ordem de acuracia para a solucao
numérica.

Rahul e Bhattacharyya (2006) abordaram a avaliacdo da ordem de precisao das
solugoes obtidas através de aproximagoes numéricas unilaterais utilizando o método das
Diferencas Finitas. Esse estudo foi direcionado a situagoes em que as condi¢des de contorno
demandam o calculo de derivadas. Por meio da aplicacao da Miltipla Extrapolagao de
Richardson com a utilizagao de trés malhas distintas e dois niveis de extrapolacao, foi
possivel alcangar uma ordem de acuracia quatro.

Marchi e Germer (2013) avaliaram o desempenho de MER na redugdo do erro de
discretizacao quando associado a dez tipos de esquemas numéricos em CFD: de primeira,
segunda e terceira ordens de acuracia para resolver a equacao unidimensional de adveccao-
difusdo. Os autores mostraram que MER ¢é extremamente eficaz na reducao do erro
de discretizacao para todas as varidveis avaliadas (temperatura no centro do dominio,
média do campo de temperatura e taxa de transferéncia de calor), esquemas numéricos e
numero de Peclet, atingindo uma ordem de acuracia superior a 18. Dentre as aproximagoes
estudadas, o esquema de diferengas centrais (em inglés, Central Differencing Scheme,
CFD), de segunda ordem de acuracia, apresentou o melhor desempenho quando associado
com MER.

Marchi et al. (2013a) examinaram a capacidade de MER em minimizar o erro de
discretizacao em malhas triangulares e quadrangulares durante a abordagem numeérica
(por meio de volumes finitos) da equagao de Laplace. A anélise revelou que, embora o erro
numérico tenha sido reduzido, a performance tedrica esperada da MER nao se manifestou
de maneira uniforme para todas as variaveis. Especificamente, essa disparidade foi mais
evidente para as variaveis localizadas nas fronteiras do dominio computacional quando

a geometria triangular foi considerada. Os autores reconhecem que a razao subjacente
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pela qual a MER nao atingiu eficicia nesse contexto especifico de variaveis de interesse e
geometria triangular permanece ambigua.

Marchi et al. (2013b) utilizaram MER para reduzir e estimar o erro de discretizagao
de solugoes numéricas para a equacao de Laplace 2D em malhas quadrangulares. Os autores
demonstraram que MER reduziu significativamente o erro de discretizacao. Como exemplo,
de 2,25 x 1077 para 3,19 x 10732 com nove niveis de extrapolacdes e uma malha de 1.025
x 1.025 pontos (nés). Demonstraram ainda que a ordem de acuricia alcangada foi de
aproximadamente 19 e que para se obter um determinado nivel de acuracia requerido,
foi necessario muito menos tempo de processamento e de meméria RAM do que sem sua
aplicacgao.

Martins (2013) e Marchi et al. (2016) apresentaram algumas necessidades de
aprimoramento referentes ao emprego de MER e propdem um novo procedimento numérico
para reduzir o erro de discretizacao associado a varios tipos de variaveis de interesse, as quais
foram classificadas em cinco tipos de acordo com suas localiza¢oes coordenadas em malhas
distintas. Desenvolveram estratégias, propondo um conjunto de procedimentos buscando
reduzir o E}, onde a utilizacao direta de MER apresentava resultados insatisfatorios. Esses
procedimentos, que envolviam interpolacao polinomial, foram aplicados a trés problemas
modelados por equagoes classicas da literatura: Poisson 1D, Burgers 2D e Navier — Stokes
2D. Concluiram que o erro de discretizacao é significativamente reduzido e a ordem de
acuracia também ¢ elevada.

AbdelMigid et al. (2017) analisaram a solugao das equagoes de Navier-Stokes
com escoamentos incompressiveis para a faixa de variacao do nimero de Reynolds entre
100 e 5000. Utilizaram computacao paralela para obter as solu¢gbes numéricas em malhas
uniformes e MER foi usada para a reducao dos erros de discretizacao. Os autores obtiveram
uma elevagao da ordem de acuracia de 2 para 6 com o emprego de MER.

Rodrigues et al. (2020) verificaram a eficiéncia de MER para reduzir E, quando
aplicada ao problema de poroelasticidade unidimensional. As variaveis de interesse
analisadas foram o deslocamento e a pressao no centro do dominio e, o valor médio
da pressao e do deslocamento. Verificou-se que o emprego de MER resultou em uma
reducao significativa da magnitude de FEj, assim como uma elevagao da sua ordem de
acuracia.

Guo e Chang (2020) avaliaram a eficiéncia de MER associado a sequéncia de
Romberg. Esta abordagem foi desenvolvida sob o modelo de Constant Elasticity of Variance.
Os autores concluiram que o método reduziu significativamente os erros para o European
knock-out.

Rodrigues et al. (2022) realizaram um estudo para avaliar a eficiéncia de
MER, considerando variaveis com valores extremos, correspondentes ao problema de
poroelasticidade unidimensional. Os autores verificaram que a aplicagao direta de MER

em variaveis com valores extremos nao foi eficiente e utilizaram uma metodologia que
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envolve interpolacao polinomial seguida de um método de otimizagdo previamente ao
emprego de MER. Os resultados obtidos indicam que a metodologia utilizada neste estudo
¢ promissora em termos de reducao do erro de discretizagao e aumento da acuracia das
solucoes numéricas, além de obtencao de estimativas para o erro de discretizagdo confiaveis
e acuradas.

Foltran, Marchi e Moura (2023) analisaram a eficiéncia de MER em problemas de
meios participantes e ndo participantes de transferéncia de calor por radiagao, alcangando
bons resultados. As estimativas de erro mostraram-se acuradas e confidveis para verificacao
de codigo e solugao. Nesse trabalho também foram apresentadas equagoes que quantificam
o erro de discretizacao espacial dentro do dominio quando o Método das Ordenadas
Discretas é usado para simular problemas de meios participantes e quando regras basicas
de integragao numérica sao usadas para resolver problemas de meios nao participantes.

Com base nesses trabalhos pode-se considerar que a aplicacdo de MER é uma
metodologia promissora para a reducao de Fj, assim como para a elevacao da ordem de
acuracia das solugoes numéricas em CFD. Entretanto, observa-se também a alteracao
do seu desempenho conforme a tipificacao da variavel de interesse, especialmente um
certo comprometimento nos casos em que ha alteracao de coordenadas com o processo de
refinamento de malhas. Portanto, esta tese estd enquadrada nesse pleito, pois preenche a
lacuna da literatura ao apresentar verificagao numérica para o problema de poroelasticidade
unidimensional e bidimensional mediante o emprego de MER com o intuito de reduzir e

estimar Fh, em acordo com os objetivos descritos na sequéncia.

1.3 Objetivos

O presente trabalho tem como objetivo geral estabelecer o emprego da Multipla
Extrapolacao de Richardson (MER) como metodologia para a redugao e estimativa de
E}, para varidveis que apresentam mudanga na coordenada (nodal) com o processo de
refinamento de malha, no problema de poroelasticidade unidimensional e bidimensional.

Como objetivos especificos tém-se:

 analisar na literatura especializada os resultados sobre o emprego de MER na redugao

e estimativa do erro de discretizagao;

« experimentar o emprego de MER em diversos tipos de variaveis de interesse para o

problema de poroelasticidade unidimensional e bidimensional;

e propor um procedimento complementar ao emprego de MER para os casos em que

seu emprego nao resulta na reducao imediata do erro de discretizacao;

 indicar um estimador confiavel e acurado para o erro de discretizagdo com o emprego

de MER para o problema de poroelasticidade unidimensional e bidimensional.
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1.4 Organizacao do texto

Este trabalho esta dividido em mais 6 capitulos. O primeiro capitulo constou da
situagao e apresentacao desta proposta de tese, com apoio na literatura especializada. No
capitulo 2 é apresentada a teoria da consolidagao de Biot e suas equagoes; no capitulo 3
é descrita a fundamentacgao tedrica necessaria para o embasamento deste trabalho; no
capitulo 4 sao apresentados os modelos matematicos e numéricos; no capitulo 5 sao
apresentados os tipos de variaveis com base no processo de refinamento de malha e também
sao expostos os procedimentos especificos para o emprego efetivo de MER, considerando
cada tipo de variavel; no capitulo 6 sao expostos os resultados e, finalmente, no capitulo 7
sao apresentadas: as consideracoes finais, as principais contribuicao do trabalho e sugestoes

para trabalhos futuros.
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2 TEORIA DA CONSOLIDACAO DE BIOT

Quando um solo saturado é submetido a um acréscimo de tensao, a pressao dos
poros aumenta imediatamente. Para solos arenosos, o recalque elastico e o adensamento
ocorrem quase que instantaneamente, no entanto, o mesmo nao acontece para solos argilosos,
nos quais o recalque elastico ocorre quase que instantaneamente, porém o adensamento
ocorre ao longo do tempo. Essa dependéncia temporal esta relacionada com as propriedades
do solo tais como a porosidade (Figura 3), a permeabilidade, e com a velocidade que o
fluido se move entre os vazios (DAS; KHALED, 2019).

Figura 3 — Espaco poroso em solos arenosos, siltosos e argilosos.

Solo argiloso Solo siltoso Solo arenoso

Fonte: Adaptada de Ganat (2020).

O tratamento matematico desse processo foi inicialmente proposto por Terzaghi
(1923), baseado em seus experimentos de laboratério unidimensionais e é conhecido
como Teoria do Adensamento. Rendulic (1936) expande a teoria de Terzaghi para uma
analise tridimensional, originando a Teoria de Terzaghi-Rendulic, porém esta teoria ainda
considerava o problema de fluxo desacoplado do problema mecanico. A teoria tridimensional
geral da poroelasticidade foi formulada por Biot em 1941.

As hipédteses adotadas por Biot (1941) para as propriedades basicas dos solos sao

as seguintes:

e o material é considerado isotrépico, ou seja, suas propriedades fisicas sao iguais

independentemente da direcao;

e o0 material é considerado perfeitamente elastico, ou seja, o carregamento e o

descarregamento seguem o mesmo caminho no grafico tensao-deformagao;
o as deformagoes do material sao pequenas;
e a agua contida nos vazios é considerada incompressivel;
e 0 escoamento da agua no meio poroso ocorre segundo a lei de Darcy; e

e 0 solo é considerado saturado, ou seja, os vazios sao totalmente preenchidos por

agua.
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No artigo de Biot (1941) foi introduzida uma nova grandeza escalar, denominada
de variagdo do volume de agua () e definida como o incremento de volume de dgua
por unidade de volume de solo. O acoplamento de termos mecénicos no problema de
fluxo é caracterizado pela relacao de dependéncia de ( e as tensoes atuantes no solo. O
acoplamento de termos de fluido no problema mecéanico, fez-se ao introduzir o termo de
poropressao (p) nas relagoes constitutivas derivadas da lei de Hooke e descritas pela teoria
de elasticidade.

Neste capitulo sao apresentadas as relagoes constitutivas e as equacgoes de equilibrio
que darao o suporte para se descrever as equagoes que modelam o escoamento de um

fluido em um meio poroso.

2.1 Relagoes constitutivas

Os conceitos-chave da teoria poroelastica de Biot para um meio poroso isotrépico
preenchido com fluido estao contidos em apenas duas equagoes constitutivas lineares, para
o caso de um campo de tensao o aplicado. Além de o, outras grandezas utilizadas para
descrever essas equagoes sao: o incremento de volume de fluido (, a pressao do fluido p e a
deformacao volumétrica e.

As equagoes constitutivas representam € e ( como uma combinacao linear de o e

p e sdo dadas por (WANG, 2000)
€=a,,0+ a,p, (2.1)
¢= Uy O + Ay, P (2'2)

O significado fisico de cada coeficiente a;; ¢ dado pela razao entre uma varidvel
dependente e uma variavel independente, enquanto a outra variavel independente é mantida

constante. Essas razoes sao expressas por:

Oe 1 Oe 1

all 80' p=const K 7 a12 8]) o=const H 7 ( )
¢ 1 a¢ 1

a21 80 p=const Hl ’ a22 8}? o=const R , ( )

1
R

sdo os coeficientes de expansao poroelastica.

em que % é a compressibilidade drenada,

1
H,

Biot (1941) demonstra que a,, = a,,. Com isso, tem-se a seguinte relacao de

é o coeficiente de armazenamento especifico

irrestrito, % e

reciprocidade: a expansao do volume sob tensao constante devido a um aumento na pressao
dos poros é o mesmo que o volume de fluido expelido sob pressao constante devido a um

aumento na tensao de compressao. Matematicamente, essa relacao é dada por

S
- Oo

1 1 Oe

- = - 2.

p=const

o=const
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e assim, a resposta poroelastica para tensao isotrépica aplicada se caracteriza
completamente (WANG, 2000).

2.2 Equacgoes de equilibrio

Para a construcao das equacoes de equilibrio, toma-se um elemento de solo
com lados paralelos aos eixos coordenados e dimensoes suficientemente grandes quando
comparado as dimensoes dos poros existentes, de forma que o solo pode ser considerado
um material homogéneo. No entanto, o elemento deve ser suficientemente pequeno quando
comparado a dimensao macroscopica do problema, podendo ser assumido como um volume
infinitesimal no tratamento matematico, o qual serd denominado por volume elementar de

solo ilustrado na Figura 4.

Figura 4 — Volume elementar de solo.

Z,
I Ozz

Ax

N

Fonte: Adaptada de Cheng (2016).

As tensoes atuantes no volume elementar de solo, Figura 4, sdo as tensoes normais
Ozzs Oyy, Oz, € @S tensoes tangenciais, que sao caracteristicas da teoria da elasticidade. As

tensoes sao entao agrupadas em um tensor de tensoes totais o escrito como:

Ozz Ozy Ogzz
O = |Oyz Oyy Oyz|> (2.6)

Ozz Ozy Ozz

em que, as tensOes cisalhantes perpendiculares a linha de interseccao entre as faces

ortogonais do cubo sao iguais, isto é

Oxy = Oyax,

Oy,

Ozz = Ogz-
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As equagoes de equilibrio de for¢a translacional, incluindo uma forca de corpo por

unidade de volume (F), podem ser obtidas da Figura 4. Por exemplo, a forca resultante

na direcao x deve somar zero, logo

[O-xx(x + Ax,y,z) - sz(l‘ﬂyaz)}AyAz + [O-yac(x7y + Ay,Z) - O-ym(xayaz)]AxAZ (2 7)
+ [0 (2,y,2 + AZ) — 0.0 (2,y,2) | Az Ay + F, Az AyAz = 0. '

Cada termo entre colchetes, na equagao (2.7), pode ser aproximado linearmente
pela derivada do componente de tensao vezes a distancia através do volume elementar de

solo, ou seja,

Opz(T + Axyy,2) — 04e(T,y,2) = ag;gc Az
00,z

O-ya:(xvy + Ayaz) - Uym<x7yaz) = T;Ay : (28>
00,

0.y, 2 + A2) — 00 (2,y,2) = 5 Az

Com isso, as equacgoes de equilibrio de forcas sao dadas por:

004 00y 004, B
ox + dy + 0z Tl =0
0oy 0oy, 00y
Ox * dy * 0z
0oy, 00y, 00,

F p—
ox + dy + 0z =0

Denominando as componentes do vetor deslocamento do meio poroso nas diregoes

+F,=0 - (2.9)

X,y ez por u, v e w, respectivamente, e adotando a hipétese das pequenas deformacgoes

(WANG, 2000), tem-se que as deformagoes no solo sdo dadas por

o
Em_ax
ov
€yy287y
) _8w
ZZ_E
L (0u vy (2.10)
oy = 5 oy Oz
1(ou ow
“ =5\ 02 " or
i w
v 2\ 02z oy

Ao levar em consideracao as hipoteses adotadas por Biot para as propriedades
dos solos, a relacao tensao-deformacao do meio poroso ¢é expressa pela lei de Hooke, por

meio da teoria da elasticidade como
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Ozx
€= F T [ (Oyy + 022)
g 1%
Eyy = % - E (Jxx + Uzz)
€,y = U];z _ % (Uyy + sz)
, , (2.11)
o = 50
Ozz
€rz =
2G
Oyz
e

em que as constantes E, v e GG sdo, respectivamente, o médulo de elasticidade longitudinal

ou moédulo de Young, o coeficiente de Poisson e o modulo de elasticidade transversal, e
sao relacionadas por .

G = m (2.12)

Em Biot (1941), os termos definidos na equagao (2.11) sdo reescritos adicionando

um termo aos componentes de deformagoes longitudinais. Esse termo adicionado por Biot,

considera o efeito da pressao do fluido e atua apenas nas dire¢oes longitudinais do volume

elementar de solo, ndo ocasionando deformagoes cisalhantes. Com isso, a equagao (2.11) é

reescrita como

=g TR W) Ty

g 14

O-ZZ v p
€2z = — = (oyy + 0ua) + 5=

o : (2.13)
=90

o O-ZBZ

R TE

Oy
aTe

em que p é a pressao no interior dos poros, também conhecida como poropressao e %, como

jé foi dito, é o coeficiente de expansdo poroeldstica. Assim, a equagao (2.13) representa uma
das relacgoes fundamentais (equacao (2.1)), que descreve o estado de deformagoes do meio
poroso sob condigbes de equilibrio. A outra relagdo fundamental dada na equagao (2.1) é
representada pelo incremento de volume do fluido (¢). A entrada ou saida de fluido do
volume de controle pode ser dada em razao da deformacao deste volume, pela variacao da
pressdao do fluido, fontes de geragdo ou sumidouros (WANG, 2000). Essa relacao é

1 P
= —0+ = 2.14



Capitulo 2. Teoria da consolida¢io de Biot 27

em que 7 € a tensao total média dada por

g T a;’y i T (2.15)

1
e = ¢é o coeficiente de armazenamento especifico irrestrito. Verifica-se que para definir

essas relagoes, sao necessarias quatro constantes fisicas v, G, — e —, diferente do que

R
acontece na elasticidade classica que sao necessarias apenas duas.

Resolvendo a equagao (2.13) em fungao de €, tem-se

Ope = 2G €4, + 2G1 €—ap

— 2v

Oyy = 2G6yy+2G1 _V e—op

0., = 2Ge,, + 2G v €—ap
1—-2v

, (2.16)
Ozy = 2Gegy

Opz = 2G€,,

0y, = 2Gey,

em que € é a deformagao volumétrica formada pela soma das componentes normais do

tensor deformacao (€ = €,, + €,y + €,.) € o 0 coeficiente de Biot, dado por
2(1+v)G

= 2.17

3(1—-2v)H (2.17)

Substituindo as equagoes (2.16) em (2.14), pode-se escrever a equagao (2.18) para

o incremento de fluido em funcao da deformacao e da poropressao,

p
(=ae+ =, 2.18
; (218)
em que () é o mdédulo de Biot, dado por
1 1 o'
- _ = 2.19
Q R H ( )

As equacoes diferencias parciais que representam o equilibrio mecénico sao obtidas
por relagoes substitutivas nas equagoes de equilibrio de forcas. Para isso, substitui-se as

equagdes constitutivas, equacao (2.16), na equagao (2.9), resultando em

G

GV
1—21/

N Pw\  Ip
8352 8w8y 0xdz)

GV + < ¢ ( L Puw ) N F (2.20)

— 2 ﬁyax 2 8y82

G

GViu 1—2y

ﬁzax 828y + 022
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(2.21)
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em que V2 é o operador laplaciano, isso ¢é,

Nota-se que o sistema de equagoes (2.20) estd indeterminado, pois apresenta

apenas trés equacoes para quatro incognitas u, v, w e p. Logo, necessita-se de mais uma
equacao, a qual serd representada pelo modelo mateméatico do escoamento de um fluido

em um meio poroso (lei de Darcy) junto a equacao de conservagdo de massa.
2.3 Escoamento de um fluido em um meio poroso (lei de Darcy)

Em 1856 Henry P. G. Darcy realizou uma série de experimentos, expressando uma
relacdo empirica para o fluxo unidimensional por
dh
=-—K— 2.22
qZ dZ Y ( )
em que, ¢, é a descarga especifica (volume de fluido cruzando a &rea unitéria por unidade
de tempo), h é a carga hidraulica e K é a condutividade hidrdulica. A Figura 5 ilustra o

aparato experimental utilizado por Darcy para realizar este experimento.
Figura 5 — Ilustracao do experimento da coluna de areia de Darcy.

Aparelho destinado a determinar a lei do
escoamento da agua através|da areia.

Manometro
de mercirio

o
T

Manometro
de merciirio

Fonte: Adaptada de Hubbert (1957).
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Hubbert (1957) mostrou que a carga hidraulica de Darcy é a energia potencial do
fluido por unidade de peso e, para fluidos incompressiveis a carga hidraulica h pode ser
expressa em funcao da carga altimétrica e da poropressao (p). Com isso, a lei de Darcy

tridimensional pode ser expressa como (CHENG, 2016)

dp
T — _Kxi
1 dz
dp

qy = —Kyd—y . (2.23)
dp
z — _Kzi
¢ dz

Considerando a hipotese de Biot de fluido incompressivel, tem-se que a taxa de
variacao do volume de fluido, para volume elementar de solo, é igual a soma dos fluxos
que atravessam as faces do mesmo, assim

a¢

5 ="Va (2.24)

em que q = (¢, ¢y, ¢-) é o vetor de descarga especifica.

Substituindo as equagoes (2.18) e (2.23) na equagao (2.24), tem-se

gv | Ow 2.2
Q ot ot \oz Ty " 92 (2.25)

que é a equagao formulada por Biot (1941) para representar o escoamento do fluido em

1
7@ o szp _ —OZQ (8’1,6 + ov 8w> ’

um meio poroso deformavel.
Assim, a formulacao matematica para o problema classico da consolidagao de Biot

para um meio poroso saturado, homogéneo e isotropico, esta completa e é dada por

GViu —GQV (gjﬁi * 8(?1:2;}y * aa;;;) - O‘gi —h
GVt —Gzy (;yz@ux + ngz + g;i) - O‘g]g; -k 220
e e

em que, as quatro incégnitas do problema sdo os deslocamentos u, v e w, nas diregoes x, y

e z, respetivamente e, a poropressao p.
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3 FUNDAMENTACAO TEORICA

Neste capitulo sera apresentada a fundamentacao tedrica necessaria para o

embasamento da tese.

3.1 Meétodo das Diferencas Finitas

A solugao analitica de uma equagao Diferencial Parcial (EDP), ou mesmo um
sistema de EDPs, pode ser complexa, dependendo de suas equagoes, da geometria do seu
dominio e condigoes de contorno e iniciais, as quais prejudicam, ou até mesmo, tornam
impossivel a resolucao.

Para superar essas dificuldades, as EDPs sao resolvidas utilizando métodos
numéricos. Existem diversos métodos numéricos para se obter a solucdo aproximada
de uma EDP, como o Método das Diferengas Finitas (MDF) (GOLUB; ORTEGA, 1992;
FERZIGER; PERIC, 2002; SAAD, 2003; PLETCHER; TANNEHILL; ANDERSON, 2013),
dos Volumes Finitos (MVF) (GOLUB; ORTEGA, 1992; MALISKA, 2004) e dos Elementos
Finitos (MEF) (HUGHES, 2000; THOMPSON, 2005), entre outros. O principio basico
desses métodos é tornar o problema continuo, em um problema discreto, com o nimero
finito de pontos no dominio de calculo, ou seja, é estabelecido ao longo do dominio quais
coordenadas se almeja determinar para a variavel dependente por meio da aplicacao de
uma estrutura geométrica discreta. Para este trabalho, o MDF foi utilizado (GASPAR;
LISBONA; VABISHCHEVICH, 2003; FRANCO, 2017; FRANCO et al., 2018).

No Método dos Elementos Finitos (MEF), a abordagem comumente adotada
para a discretizacao emprega uma malha geométrica discreta que é organizada de forma
localizada. Nesse contexto, cada ponto, ou nd, na malha pode ser concebido como o ponto
de origem de um sistema de coordenadas local. Os eixos desse sistema coincidem com
as linhas definidas pela estrutura da malha em questao. A ilustragao das Figuras 6 e 7
exemplifica arranjos de malhas cartesianas, uniformes e em dimensoes unidimensionais e
bidimensionais, respectivamente. Os nés localizados ao longo das fronteiras sao denotados

por (e), enquanto os nés internos da malha sao indicados por (o).

Figura 6 — Exemplo de uma malha uniforme unidimensional.

h h

———fe————]
® O O O O O O O ®
1 1 —1 7 141 N

Fonte: Adaptada de Fortuna (2000).

No contexto unidimensional, cada ponto nodal é indicado pela posi¢ao i. Os nés
adjacentes sao identificados como i —1 e 14 1, correspondendo as posi¢oes Oeste e Leste em
relagdo ao né em consideracao. Para o caso bidimensional, cada né é definido unicamente

pela interse¢ao das linhas de malhas na posicao (7, j) e seus nés vizinhos, adotando a ordem
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lexicogréfica, sao definidos por (i — 1,7), (¢ + 1,7), (4,4 — 1) e (i, + 1), representando os

nos nas posicoes Oeste, Leste, Sul e Norte, respectivamente.

Figura 7 — Exemplo de uma malha uniforme bidimensional.

[————— >
Ny, @ * ° Y . . °
('3 '} '} o '} e} ®

j+1e¢—O0—O0—O—O—O0O——0

° ° @ ° ° ° )
1 i—1 i i+1 N

Fonte: Adaptada de Fortuna (2000).

Aproximacgoes pelo MDF podem ser obtidas de vérias formas, sendo as mais
comuns a expansao por série de Taylor e a interpolagao polinomial. Com a utilizacao
da expansao por série de Taylor, tanto as aproximagao numéricas quanto seus erros de
truncamento podem ser obtidos (FORTUNA, 2000). Qualquer fungao A(z) que possua
carater analitico na vizinhanca de x; pode ser representada por meio de uma expansao em

série de Taylor:

Ay = A+ (z — ;) (d/ll a0 <d2/1>i Gkl <d3A>i T (3.1)

dr 21 dx? 3! dx?

em que A, representa A(x), A; representa A(z;) e (%)i representa - A(z;).

Ao considerar todos os termos presentes na expansao em série de Taylor, a
determinagao de A, é exata. Aplicando a equacdo (3.1) aos nés i — 1 e i + 1 a partir
do ponto 7 em um malha uniforme, ou seja, com espacamento h entre os nds constante

(Figura 6), tem-se para r = x;,1,

dA h? (d*A h (d3A
Ny =N+ h|— — | —= — | — 2
e para r = x;_1,

dA\ R (AN R (dPA
Na=0—h|==) +=(55) - = (5] +.... .
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As equagbes que descrevem a derivada de primeira ordem podem ser derivadas da
combinagao das equagoes (3.2) e (3.3). A selegdo das equagoes a empregar determina a
natureza do esquema adotado, bem como a ordem do erro de truncamento incorrido. A
seguir, sao expostos os exemplos usuais dos esquemas para a aproximacao das derivadas

utilizadas nesta tese.

e Aproximacgio da primeira derivada com diferenga central (CDS)

Subtraindo-se a equacao (3.3) da equagao (3.2), tem-se que

dA\ 2 (A 2 (dA
Mpr = Ay =2 (22} 20 (90 2 (a2 4
A h(dm>i+ 6 (da:3>i+120 (d:ﬁ)ﬁ ’ (3.4)
ou
A Ay - Ay R (BA\ B (A 55
de | 2h 6 \do3). 120 \dz®). T '
K3 N———— 1 K3

considerado  desprezado (erro de truncamento)

Dessa forma, a derivada priméria de A é aproximada utilizando o esquema centrado
(CDS) no ponto i, por meio de
(dA) P M — A

- — -1 2
i) S+ 02, (3.6)

em que o erro de truncamento é expresso por
cDS
dA h? (d3A h* (d°A
el — =——|-=] ——= (=] —... = 0. (3.7)
dr ), 6 \dz?), 120 \dz® ),
De forma semelhante, ao exposto anteriormente para aproximagoes da primeira

derivada, podem ser encontradas relagoes para expressar aproximacoes da segunda derivada.

e Aproximacgio da segunda derivada com diferenca central (CDS)

Ao somar a equagao (3.2) com a equacao (3.3), tem-se

d*A ht (d*A hS (d°A
Ait Ay =24+ (d> W2 (m)ﬁ us (d> b6
ou
dQJ _ A 244 i _lﬁ d47A _ n di/l _ (3.9)
dz? i_ h? 12 \dz* ), 360 \daS ), .
considerado desprezado (erro de truncamento)

Portanto, a segunda derivada de A é calculada usando o esquema centrado com

trés pontos (CDS) no ponto P, por meio de

(d?A)CDS Ay =2+ A

el 2 + O(h?), (3.10)
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e o erro de truncamento é dado por

d27/1 CDS_ }ﬁ 6147/1 ﬁ dﬁiA h dsi/l —O(hQ) (3.11)
“\da?). T 12 \da*). 360 \da ). 20160 \da®) T VT

Com os resultados apresentados nas equagoes (3.6) e (3.10), percebe-se que
o termo de ordem O(h?) correspondente ao erro de truncamento das aproximagoes
numéricas consideradas (BURDEN; FAIRES, 2016; SAAD, 2003; FERZIGER; PERIC,
2002; FORTUNA, 2000; TANNEHILL; ANDERSON; PLETCHER, 1997).

Com expansoes em série de Taylor para qualquer funcgao analitica A(z,y) na
vizinhanga de (x;,y;), pode-se também determinar expressoes que envolvem derivadas
mistas. Neste trabalho, aproximagoes para as derivadas mistas (caso bidimensional) serdo
utilizadas na secao 4.2. Para a aproximacao destas derivadas basta utilizar a ideia
apresentada anteriormente e tomar como funcao as derivadas ja existentes. Para um
estudo mais detalhado a este respeito, consultar Dahlquist e Bjorck (2008), Fortuna (2000)
e Saad (2003).

3.2 Meétodos para a aproximacgao temporal

Para as aproximagoes temporais, tem-se na literatura as formulagdes numéricas:
explicita, implicita e totalmente implicita (MALISKA, 2004; TANNEHILL; ANDERSON;
PLETCHER, 1997). Uma formulagao é considerada explicita em relagdo a um passo de
tempo quando todas as incdgnitas adjacentes ao ponto 7 sao calculadas com base nos
passos de tempo anteriores (n), e, portanto, ja estdo estabelecidas (Figura 8a). Uma
formulagao é tida como implicita para um passo de tempo quando as incognitas vizinhas
ao ponto ¢ sdo determinadas nos passos de tempo atual (n + 1) e passado (n) (Figura 8b).
Além disso, uma formulacao é considerada totalmente implicita em relacdo a um passo de
tempo quando todas as incognitas vizinhas ao ponto ¢ sao avaliadas no instante de tempo
corrente (n + 1) e, como tal, nao sdo totalmente conhecidas (isso depende da sequéncia de
atualizagdo das incégnitas), conforme ilustrado na Figura 8c.

Para exemplificar as formulagoes explicita, implicita e totalmente implicita,
descreve-se o Problema de Valor Inicial (PVI) em uma malha bidimensional, a ser resolvido
em cada né da malha, denotado por

0] 12

uij (to) = ug;
em que u;;(t) e f; ;j(t,u;;(t)) sdo funcoes a serem resolvidas para todo nivel de tempo ¢
nos pontos (7,j) da malha. O indice (7, j) representa as coordenadas dos nés na malha,
onde ¢ varia de 1 a N e j varia de 1 a M, indicando as posi¢oes nas diregoes = e y,

respectivamente.
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A equacao diferencial parcial é expressa pela derivada temporal WT;@ igual a

uma funcgao f; ;(¢,u;;(t)), que depende do tempo t e da solugao w; ;(t) no ponto (4, j) da

onde ty é o tempo inicial e u? ; é

malha. As condigoes iniciais sio dadas por u; ;(tg) = u ;

1,77
o valor inicial da soluc¢@o u; ; no ponto (7, j) da malha.
Observa-se que a derivada temporal é considerada ordinaria, ou seja, mesmo
dependendo dos valores espaciais em cada né (i, 7), a derivada é calculada considerando
(x;,y;) como conhecidos durante o calculo da varidvel temporal. Nesse caso, a notacao
(xi,y;,t) é simplificada para u(t) para indicar que u é uma fungdo apenas da varidvel

temporal ¢.

Figura 8 — Aproximagoes temporais.

(a) Formulagao explicita.

1—1 i 141
° ® n+1
[
& A 4 n
i—1 I3 i+ 1
(b) Formulagao implicita.
i—1 i i+1
® > o ® n+1
[
L 4 A 4 n
1—1 7 i+1
(¢) Formulagao totalmente implicita.
i —1 I3 i+ 1
L >o< ® n+1
[
. . n
t—1 i i+1

FONTE: Adaptada de Maliska (2004).

3.2.1 Mcétodo de Euler

O método de Euler é um procedimento utilizado para alcangar uma aproximacao
discreta da solucao u(t) da equagdo (3.12) no intervalo [to,s], referidos como pontos
discretos na malha. Estabelece-se que esses pontos da malha estao distribuidos

uniformemente ao longo do intervalo [y, ts], € ao selecionar um niimero inteiro positivo
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Ny, os pontos da malha (em t) podem ser expressos como

thyr =to+ (n+ 1)1, (3.13)

paracadan =0,1,..., N;—1, em que o tamanho de passo de tempo é dado por 7 = tf]; to.

Ao considerar u(t) como a solucio tinica da equacio (3.12), em que u € C? [to,tt 7l,

e supondo que sua expansao em série de Taylor para cada valor de n =0,1,..., N, — 1 é
dada por:

u(tny1) = u(t,) + Tiu(tn) + chﬁu(tn) 4o (3.14)

dt 2 dt?

Utilizando v como uma aproximacao para u, o método de Euler estabelece a

construgao de v" ~ u(t,) para cada valor de n = 0,1,..., N, — 1, ao negligenciar os termos

%%u(tn) + ---. Assim, o método de Euler, que representa uma aproximacao de primeira

ordem no tempo, pode ser expresso como:

{ =y , (3.15)

vt = 0" T f (0" )

para cadan=20,1,..., N, — 1.

Para calcular o valor de v"*!, é empregado o método de Euler Implicito, onde
os valores correspondentes aos passos de tempo n e n + 1 sdo utilizados na funcao f.
Caso apenas os valores relacionados ao passo de tempo n + 1 em f sejam empregados
para determinar o valor de v"*!, o método recebe a designacio de Método de Euler
Totalmente Implicito. Alternativamente, se apenas os valores ligados ao passo de tempo n
forem necessarios, o método ¢é identificado como Método de Euler Explicito (BURDEN;
FAIRES, 2016). Os métodos Implicito e Totalmente Implicito possuem primeira ordem de
aproximacao temporal, notavelmente, exibem estabilidade incondicional, ou seja, a sua
convergéncia nao estd sujeita a relacao entre o tamanho do passo de tempo e o tamanho da
discretizacao espacial (BURDEN; FAIRES, 2016; FERZIGER; PERIC, 2002; FORTUNA,
2000; FRANCO, 2017).

3.2.2 M¢étodo de Crank-Nicolson

O método de Crank-Nicolson (CN) apresenta segunda ordem de aproximagao
temporal (O(72)) e é caracterizado por sua estabilidade incondicional (BURDEN; FAIRES,
2016; FERZIGER; PERIC, 2002; FORTUNA, 2000).

Considerando por exemplo o PVI (3.12), o método de CN consiste em fazer

V= (3.16)
T , .
o =04 T ) + 0 )
paran =0,1,..., Ny, — 1, em que os subindices n+ 1 e n indicam os passos de tempo atual

e anterior, respectivamente.



Capitulo 3. Fundamentacdo Teorica 36

3.3 Erro numérico

Para uma determinada varidvel de interesse, o erro numérico (E) é definido como

a diferenca entre a solucdo analitica exata (?) e sua solu¢ao numérica (¢) (FERZIGER;

PERIC, 2002), ou seja,
E(p) =D — ¢. (3.17)

O erro numérico pode ser causado por diversas fontes, dentre essas, o erro numérico
é tipificado como: erro de truncamento (Er), erro de iteracao (E}) e erro de arredondamento
(E,) (FERZIGER; PERIC, 2002; MARCHI, 2001). A seguir, cada fonte de erro serd descrita

com mais detalhes.

3.3.1 Erro de truncamento e erro de discretizagao

A ocorréncia do erro de truncamento se da quando se realiza a transicdo de
um modelo matematico continuo com informagoes provenientes de um conjunto infinito
para um modelo discreto com informacgoes limitadas a um conjunto finito. De forma
mais precisa, o erro de truncamento emerge como o efeito resultante da interrupcao
de um processo infinito (ROACHE, 1998). Para Tannehill, Anderson e Pletcher (1997),
ao considerarmos equagoes diferenciais, o erro de truncamento corresponde ao residuo
resultante da substituicao da solugao analitica exata da varidvel dependente na versao
discretizada do modelo matematico.

Quando E; e FE, sao minimizadas ou mesmo inexistentes, Er passa a ser
denominado em Ferziger e Peri¢ (2002) como erro de discretizacao (Ep). Sendo o Ej

a unica fonte de erro numérico, entao, o Ej, a partir da série de Taylor sera representado

por
oo
Eh = E(¢) = Cohpo + Clhpl + Cghp2 +...= Z thpv, (318)
V=0
onde os coeficientes cg, c1,ca,... sa0 nimeros reais e podem ser func¢oes da variavel
dependente e de suas derivadas, mas independem de h. Os expoentes pg, p1, P2, - . . S840 as

ordens verdadeiras de Ej e seu conjunto é representado por py = {po, p1, D2, - - - }-

Os elementos de py sdo nuimeros inteiros positivos seguindo geralmente a relacao
1 <pp < p1 < ...o0s quais representam uma progressao aritmética de razao p; — pg. O
primeiro termo py é denominado de ordem assintética (ou de acuracia) de E(¢) (ou da
solugdo numérica ¢) e serda denotado por pr.

A medida que h — 0, a contribuicio dominante para o erro E, é
predominantemente influenciado pelo primeiro componente da equagao (3.18), ou seja,
cohPr assume o papel principal na composicao de Ej. Ao considerar o grafico de Ej,
em escala bilogaritmica versus h, tem-se que a inclinacao em relacao ao eixo horizontal
converge para o valor de py. Assim, quanto maior for esse valor, mais acentuada se torna

a reducgao de Ej com o refino da malha.
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O FE), pode ser estimado a priori ou a posteriori ao calculo da solu¢ao numérica, em
que as estimativas a priori consistem, basicamente, em estimar py, (SZAB(); BABUSKA,
1991). Obtendo py,, é possivel avaliar previamente o efeito da diminui¢do de h em FEj,.
Considerando os erros de discretizaciao Ej, e Ej, obtidos e duas malhas distintas 2" e

2" grossa e fina, respectivamente, tem-se

E,, k' [k \P*
Ehl = Cth —= <h2 = TpL’ (319)
2

onde r = % representa a razao de refino de malha. Dessa forma, o fator de reducao de Ej,
com o refinamento de malha é dado por rPr.

De outro modo, a andalise de p;, a posteriori da solugao numérica é baseada no
calculo das ordens efetiva pg, quando a solugao analitica é conhecida, ou aparente py, nos

casos em que nao se conhecem a solugao analitica, dadas por

lo (Em)
_\E.) 5.20)
bE log(r) '
) s (222
B ¢3 — P2
pu = log (1) ; (3.21)

em que ¢1,¢s e ¢z correspondem, respectivamente, as solugoes numéricas obtidas nas
malhas 2™ (grossa), 2" (fina) e 2" (superfina), com 7 = hy /hy = hy/hs (razdo de refino

constante).

3.3.2  Erro de iteragao

Ao considerar a solugdo numérica (¢) para determinada varidvel de interesse, o

erro de iteragdo E7, de acordo com Ferziger e Perié (2002), é dado pela diferenga entre a

solugao exata (¢, ) para o sistema de equagoes algébricas, e a solugdo numérica na iteragao
n (¢n), definido por

Ep = ¢y — fn. (3.22)

As principais origens do erro E; compreendem diversas situagoes: a adogao de
métodos iterativos para resolver o conjunto de equacoes algébricas que surge do processo
de discretizacao; a resolucao de sistemas nao lineares, nos quais a matriz dos coeficientes é
influenciada pela variavel dependente do problema; e a presenca de modelos matematicos
constituidos por multiplas equacoes, cada uma delas sendo tratada independentemente.
Em geral, os efeitos decorrentes de E; tendem a diminuir conforme o nimero de iteragoes n
aumenta, ou seja, a medida que n — oo = E; — 0. Um estudo detalhado sobre o controle

e estimativa desse tipo de erro em CFD, pode ser encontrado em Martins e Marchi (2008).
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3.3.3 Erro de arredondamento

Os erros de arredondamento (E, ), causados pela representagao finita das varidveis
nas computagoes numéricas, estao relacionado a precisao utilizada para a representacao das
varidveis nas computagoes. Esse tipo de erro estd vinculado tanto ao compilador (software)
empregado para gerar o c6digo computacional quanto ao computador (hardware) no qual o
cddigo é executado. A precisao adotada para representar as variaveis exerce impacto direto
nos valores de F; assim, quanto maior a precisao, menores sao os valores de erro E,. No
entanto, esse aumento de precisao exige maior capacidade de memoria computacional para
o armazenamento das variaveis, (MARCHI, 2001). Em geral, as linguagens de programagao
possuem opcoes de precisao para escolha do usuario: precisao simples com quatro bytes,
precisao dupla com oito bytes ou precisao quadrupla com dezesseis bytes por variavel do

tipo real.

3.4 Estimativas para o erro de discretizacao

Ao nao se conhecer a solucao analitica exata () de um modelo matematico, o
erro da solu¢ao numérica, E(¢), para uma determinada varidvel de interesse ndao pode
ser calculado. Quando isso ocorre, uma estimativa para esse erro pode ser calculada.
Esta estimativa é denominada de incerteza da solu¢ao numérica (U) e é calculada pela
diferenga entre a solugao analitica estimada (¢.,) para a determinada varidvel de interesse
e sua solucao numérica (¢) (CHAPRA; CANALE, 1994; MEHTA, 1996). Sua expressao é

representada por
U(¢) = ¢ — ¢. (3.23)
O célculo para estimar o erro de uma solu¢ao numérica é realizado por meio dos

estimadores de erro. A seguir, serao descritos alguns desses estimadores.

3.4.1 Estimador A

Ao se considerar solugdes numéricas ¢, e ¢,_; obtidas em duas malhas distintas

2"s ¢ M9-1 respectivamente, uma estimativa para Ej, pode ser calculada com o estimador
A por

Ua(¢g) = g — dg-1l- (3.24)

Sua estimativa representa um intervalo em torno da solu¢ao numérica ¢, e nao

leva em consideragao a razao de refino (r) ou o valor da ordem assintética py.

3.4.2 Estimador de Richardson

A estimativa para o Ej com o estimador de Richardson sera denotada por Ug; e

dada por

URz’(%) = m, (3-25>

rPr — 1
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em que ¢, e ¢, representam as solugoes nas malhas 2" (fina) e 29— (grossa).
Ug; fornece, além da magnitude do Ej, o seu sinal e pode ser empregada em
diversos niveis de malhas, isto é, para 29 com g = 2,...,G (MARCHI, 2001).

3.4.3 Estimador ¢

O emprego da Extrapola¢ao de Richardson foi abordada em Marchi e Silva (2002)

por meio da série de Richardson, denotada R, e representada por

1 1 1 1
Ro=—+—+—+—+, 3.26
Yoot Y (3:26)
em que Y € R é denominada razao de convergéncia da série.

Se |[¢| > 1, a série geométrica representada pela equagao (3.26), é dada por

1
Ry =—. 3.27
T (3:27)
Ao se admitir r e P ntimeros reais positivos, pode-se definir |1)| = 7¥, de modo
que
1
> , se ¥ >1
rf—1
Ry = . , (3.28)
—m, Se w < —1

e considerando P = py,, pode-se reescrever a equagao (3.25) como

Goo = Pg + Roo(Pg — Pg—1)- (3.29)

Dessa forma, admite-se a existéncia de um estimador Uy (¢,) = ¢doo — ¢4, baseado

no valor de 9 correspondente a malha th, dado por

Uy(y) = 22— 2ot w__qsi_l- (3.30)

3.4.4 FEfetividade de uma estimativa de erro

Uma estimativa de erro (U) para o erro (E) pode ser avaliada mediante o calculo
de sua efetividade 0(U), definida em Zhu e Zienkiewicz (1990) pela razao entre U e E, ou
seja,

0(U) =

SIES

(3.31)

Para o caso ideal, a efetividade #(U) = 1, ocorrendo quando U = E. Uma
estimativa U sera dita confidvel quando #(U) > 1 = U > F; e acurada quando 0(U) =~
1= U~ FE (MARCHI, 2001).
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3.5 Multipla Extrapolacao de Richardson

Ao se dispor de uma técnica de aproximacao que apresente um termo indicativo de
erro de modo previsivel (que dependa de um pardmetro real, por exemplo, o espagamento h
entre os pontos nodais) e que tal técnica possua uma representagido por meio de uma série
analitica, entdo a metodologia denominada Extrapola¢ao de Richardson (ER) (BURDEN;
FAIRES, 2016) pode ser adotada.

A ER teve inicialmente o objetivo de combinar aproximagoes a fim de gerar
resultados com maior ordem de acurécia (p4) considerando-se alguns pardmetros especificos,
pr = 2, p1 = 4 e razao de refino r = 2. Tal procedimento ficou conhecido como
Extrapolagao de Richardson padrao e, posteriormente, passou-se a considerar valores
gerais para tais parametros, ficando entao conhecida por Extrapolacao de Richardson
generalizada (OBERKAMPF; ROY, 2010).

A ER é considerada um pdés-processamento que pode ser empregado a posteriori
nas solugoes ¢(h) obtidas em diferentes malhas 2", levando em consideracio a razao de
refino (r = hy/hyy1), em que os subindices g + 1 e g representam a malha fina e grossa,

respectivamente. A equagao de Richadson na forma original, dada em Richardson e Gaunt

(1927) é

h§¢g+1 - §+1¢g
h2 hg+1

Poo = E(¢s0), (3.32)

onde ¢ € a solucao analitica estimada, ¢441 € ¢4 sao as solucoes numéricas nas malhas
fina e grossa, respectivamente. Ao se generalizar a ER para qualquer ordem assintotica

(pr) e r, tem-se

Poo ¢g+1+¢"“ % (3.33)

rpL — 1

e serd efetiva se as solugdes numéricas ¢, possuem apenas erros de discretizacao.
A técnica conhecida como Multipla Extrapolagao de Richardson (MER) envolve
a aplicacao repetida de ER com o intuito de aumentar a ordem de acuracia do erro de
discretizacao (Ej).A abordagem recursiva é estabelecida a partir da equagio (3.33), isto é,

consiste em considerar
¢0(h9) = ¢(hg)7 g = 1727 sty (334)

$o(hg+1) — Po(hy)

rPL — 1

$1 ( g+1) ¢0( g+1)

A partir disso, considerando m os niveis de extrapolagao e ¢ indicando a malha

. g=12,.... (3.35)

2" com m e g sendo niimeros naturais ndo nulos, a generalizacio da equacio (3.35) passa

a ser representada em Marchi et al. (2013b) por

¢g,m—1 - ¢g—1,m—1 (336)

¢gvm = ¢g,M71 + rPm—1 _ 1 )

comm=12,...eg=m+1,m+2....
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Do ponto de vista tedrico, a equacao (3.36) tem a possibilidade de iteragoes
infinitas. No entanto, em contextos praticos, ¢ adotado um limite para o parametro
g, sendo definido como g = G, em que G é um valor inteiro positivo representando o
numero de malhas utilizadas. Supde-se que a aplicacao repetitiva desse processo recursivo,
como expresso na equacao (3.36), gradualmente aumente a ordem de precisao do erro Ej,
(MARCHI et al., 2016).

Uma analise da ordem de acuracia pode ser realizada a posteriori, com base nos
valores de pp quando a solugao analitica (@) é conhecida, ou os valores de py quando
@ nao ¢é conhecida. Uma generalizacao de pg e py para MER, pode ser encontrado em
Marchi et al. (2013a) como:

o (22
(elam =~ Dl (3.37)
PElgm log(r) '
(&
10g <¢g—1,m - ¢g—2,m>
_ gbg,m - ¢g—1,m
(P )gm = g () : (3.38)

emque g =2,....,Gem=1,...,g— 1 para a equacao (3.37); e g =3,...,Gem =
1,...,Int((g — 3)/2) para a equagao (3.38), onde Int(+y) corresponde a parte inteira do
numero real v. Nesta perspectiva, quando nao se conhece a solucao analitica, e portanto,
nao se conhece as ordens verdadeiras, o calculo de MER realizado pela equagao (3.36),
pode ser realizado levando-se em consideracao os valores de (py)gm—1 no lugar de pg,—1).

Uma representacao esquematica do emprego de MER ¢é apresenta na Tabela 1.
Quando m = 0, tem-se a solugdo numérica ¢ sem qualquer extrapolacao. Para m = 1
tem-se um nivel de extrapolacao, para m = 2 tem-se dois niveis de extrapolagoes e assim
sucessivamente até o valor maximo permitido para m na malha 2" ou seja, m = G — 1.
Teoricamente, ¢ -1 apresenta o maior nivel de acuracia dentre todos as ¢4 .

Ao analisar a Tabela 1 verifica-se que para cada valor obtido de ¢,, , necessita-se
da solu¢ao numérica em pelo menos duas malhas distintas (¢ e g — 1) ao aplicar pg. Isto
posto, quando se utiliza py (® nao é conhecido), faz-se necessario pelo menos trés malhas

distintas (g, —1 e g —2), (equagdo (3.38)).

3.6 Estimativas para o erro de discretizacao baseadas em MER

3.6.1 Estimador A

Para estimar o erro de discretizagao apés o emprego de MER (E,,), com G malhas
distintas, o estimador A foi proposto por Marchi, Suero e Araki (2009) para fornecer uma

estimativa do F,, para a malha mais fina adotada, da seguinte forma

UA(¢G,m) - |¢G,m—1 - ¢G—1,m—1|7 (339)
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Tabela 1 — Representagao esquematica do emprego de MER.

m=20 m=1 m=2 -+ m=G-2 m=G -1
1,0 = ¢1
N\
$2,0 = P2 — | 921
N
3,0 = @3 $31 = | ¢32
bG-1,0 = ¢a-1 bG-1,1 ba-12 - | Pa-1,6-2
N
bG,0 = da ba,1 bG2 - bG,G—2 — | %c,6-1

FONTE: Adaptada de Martins (2013).

em que m = G — 1 representa o ultimo nivel de extrapolagao considerado e m — 1 é o nivel
imediatamente anterior. Com isso, Ua(¢q,) fornece uma estimativa para E,, associada a

¢a.m levando em consideracao os valores de ¢g -1 € Og—1,m—1-

3.6.2 Estimador de Richardson corrigido (pi.)

Para solugoes obtidas com o emprego de MER, Marchi et al. (2013a) propuseram

uma extensao do estimador de Richardson (equacao (3.25)), dada por:

¢ mo ¢ —1m
Upm (¢g,m> - %

em que g representa o nivel de malha e m o nivel de extrapolacao, sendo valida para
m=1[0,G—-2]eg=[m+ 2G|

A utilizacao da simbologia U, , refere-se a aplicacao do estimador de Richardson

7 (3.40)

com base em py = {p,,,m = 0,1,2,...}, sobre as solucoes obtidas com o emprego de MER,
sendo entao, denominado estimador p,,, (MARTINS, 2013).

Mas, como pode ser verificado na equagdo (3.40) e na Tabela 2, o
estimador U, nao ¢ apropriado para estimar o erro de discretizagao associado a
dv = P21, P32, Pgg1s- - Pac1}

Sua aplicacdo é para solugoes com um nivel a menos de extrapolacao
{020,031, -, 0gg-2,---,Pc.c—2}, ou seja, m = g — 2, e seu erro de discretizacao serd
denotado por E,,,.

Tendo em vista que U, estima E,,,, entao, para se estimar F,, sob a concepcao
de U, deve-se encontrar uma relacao entre I, e E,,2. Essa relagao estda deduzida em
Martins (2013), sendo representada por

E

— = yPm, 3.41
BT (341)
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Tabela 2 — Representagao esquemética do emprego de U, .

Malha Nivel de extrapolacao m

th_l ¢g—1,’m

> ¢ ¢
2" Ggm = Upn(dgm) = W;M—T

FONTE: Adaptada de Martins (2013).

Ao se considerar a equagao (3.41), uma vez que U, estima F,,,, logo, E,, pode
ser estimado usando um fator de corregao (r?™). Esse estimador serd denotado por U, . e

descrito como
Uppme (‘bg,m) =1rPmU,,, <¢g+1,m)v (3-42>

. ~ VZ ’ . .
em que m = g — 1. Devido ao fator de correcao ", U, ~¢é denominado estimador p,

corrigido.

3.6.3 Estimador ¢*

Ao se considerar as solugbes numéricas ¢y, conforme a Tabela 1, a equagao (3.30)
referente ao estimador ¢ pode ser empregada considerando a razao de convergéncia de ¢,

para se estimar F,, da seguinte forma:

Up(6y) = 221 ” fgf’m—l, onde ¥ = (Yar)y = %g;;:‘_l ;ggfjjﬁ—Q, (3.43)

para g = 3,...,G. A Tabela 3 apresenta o emprego desse estimador para E,, (m =g —1).

Tabela 3 — Representagao esquemadtica do emprego de U,,.

Nivel de extrapolagao
m— 2 m—1 m

Malha

th—2 ¢g72,m72
e

Qhg—1 ¢g—1,m—2 - ¢g_1’m_1
; N ¢ ¢
th (bg,me - ¢!J,mfl — ¢g,m = U’lb((bg,'m) — 9m g—1,m—1

-1

FONTE: Adaptada de Martins (2013).

O emprego de Uy somente serd efetivo se |¢)| > 1, que garante a convergéncia de

®,, e, consequentemente, ocorrendo a reducao da magnitude de E,,.
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Na equacao (3.43), ¢ = (¢ar), é a ordem aparente de E,, na malha 2", Devido
seu céalculo envolver trés malhas distintas, é natural pressupor que o seu valor corresponda
a uma inclinacao média para o grafico da estimativa de E,,, nessas trés malhas.

A corregao para o estimador ¢ é dada pelo célculo de ©*, equagao (3.44), em que
a razao de convergéncia de ¢y (m = g — 1) é atribuida a malha intermediaria do trio

Qho=1 Qs e QMs+1 ou seja

Ggm = Pg—tm-1 g=23,....G—1

¢ ,m - ¢ 7m7
=4 +1(¢ e ; " . (3.44)
g—1,m—1 g—2,m—2 g= G

((bg,m - (bgfl,mfl)((bng,me - ¢gf3,mf3) ’
O célculo de ©* para g = 2,3,...,G — 1 é obtido para valores de ¢ em 2"s-1, (2"

e Mo+t e o resultado atribuido a 2"s. Para ¢ = G, a malha 2"s+! nio estd disponivel

para o calculo de ¥*, com isso, busca-se estabelecer uma relacao entre os valores obtidos
para 1 e ¥*, considerando a obtencao de ¥* através da razao entre o quadrado de ¢ para
g = G e o seu valor para g = G — 1, na equagao (3.43) (MARTINS, 2013).

O célculo da estimativa do erro numérico associado a ¢,,, apds a determinacao de

y*, por analogia a U, (equagdo (3.43)), é dado por

Uy (dgm) = Poim ;fs_g‘ll’m‘l . (3.45)

3.7 Interpolagao polinomial

Muitas vezes é necessario avaliar em uma localizacdo nao nodal, determinadas
variaveis de interesse. Neste caso, a interpolacao polinomial é uma técnica indicada para
obter um polinémio ¢ para auxiliar nesta tarefa.

Dada uma funcao continua f definida em um dominio {2 limitado, é possivel
encontrar um polinémio £ que permite mapear os pontos disponiveis tao proximos de f
quanto for desejavel (BURDEN; FAIRES, 2016). Dados p + 1 pontos distintos {x;,f(x;)},

1 =0,...,p, é possivel encontrar um polinémio ¢ de grau menor ou igual a n no qual

A equacao (3.46) representa a um sistema de equagoes algébricas lineares, que em
razao da estrutura de sua matriz de coeficientes (Matriz de Vandermonde) é determinado
e compativel. Tal estrutura garante a existéncia e unicidade do polinémio ¢ que interpola
f em 2 (ANTON; RORRES, 2012). Os métodos de Lagrange e Newton estao entre os
mais utilizados para encontrar os polindémios interpoladores (BURDEN; FAIRES, 2016).

No caso de fungdes com mais de uma variavel independente, as aproximagoes sao
denominadas aproximagdes multidimensionais. Especificamente para o caso bidimensional,

para uma fungdo f(x,y) com valores conhecidos f(z;,y;), para ¢ = 0,1,...,p e j =
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0,1,...,q, é possivel obter um polinémio de grau maximo p em x e grau maximo g em
Y, para interpolar esses valores. Para obter mais informagoes detalhadas, recomenda-se

consultar Burden e Faires (2016), Martins (2013), Dahlquist e Bjorck (2008).

3.8 Meétodos de otimizacao

Ademais da utilizacao da interpolacao polinomial na avaliacdo de uma variavel nao
nodal, como exposto anteriormente, a obtengdo de um ponto extremo (ponto de maximo
ou de minimo) pode ser necesséario, como por exemplo obter a pressdo méxima (ou minima)
em determinado campo de variagdo. Se o ponto extremo pertence a regiao do dominio de
calculo na qual ¢ esta definida, seu valor pode ser calculado com a utilizacao de métodos
de otimizacao.

Pode-se colocar o problema de otimizacao como: seja 2 C R™, £ : {2 — R, busca-se
o valor maximo de £(x) (ou o valor minimo), tal que x € (2.

Os problemas de otimizacao analisados neste trabalho sdo de maximizacao irrestrita
ou seja, a funcao objetivo nao possui restricoes. Como ¢ é considerada uma funcao
polinomial definida em um conjunto {2 convexo, ela se caracteriza como uma funcao
convexa (ou cdncava) o que garante a unicidade e existéncia do ponto de méaximo global
(BAZARAA; SHERALI; SHETTY, 2006).

Uma técnica de otimizagao irrestrita apresentada em Bazaraa, Sherali e Shetty
(2006) ¢ o método do Gradiente. Como as fungdes obtidas sdo polinomiais, o método
do Gradiente torna-se atraente devido a expressao analitica para o gradiente ser obtida
facilmente. Esta abordagem é do tipo sequencial, isto é, gera-se uma sequéncia de pontos
{X(I)} e 2 em que YD é o ponto obtido na iteracdo I, ou seja,

(1)

X = x4 60qD), (3.47)

com 6 o passo tomado na I-ésima iteracido e d\) a direcdo de subida (ou descida), em
que dD ¢ gradiente de ¢ avaliado em x~Y, ou seja, dD = £VE(xUV). Os pontos x!)
sao gerados de forma que £(x)) é uma sequéncia crescente (ou decrescente) de niimeros
reais. Assim, para um valor suficientemente grande de I, x!) é considerada uma boa
aproximagcao para a solucao investigada.

Para o caso unidimensional a equagdo (3.47) pode ser apresentada pelo método de
Newton para fungoes nao lineares (BURDEN; FAIRES, 2016) com g(x) = V{(z) = £'(x),

ou seja,

20 — LU= vg(x(lfl))*lg(x(ffl))_ (3.48)

Para o caso bidimensional, é necessario empregar um critério para determinar
50 sendo a busca linear de Armijo (BAZARAA; SHERALI; SHETTY, 2006) um método

bastante conhecido pela sua eficiéncia e facilidade na implementacao. Essa abordagem
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depende da escolha dos escalares 0 < 3 < 1 e 6 > 1; e entdo, define-se §) = 1/6™ em que
m € o primeiro inteiro, nao negativo, para o qual a seguinte condicao é satisfeita, para

maximizagao tem-se:

£(xD) > =Y 4 gD =D gD, (3.49)

ou a relacao inversa < no caso de minimizacao. Para um estudo mais detalhado sobre o

assunto, ¢ possivel encontrar mais informagoes em Martins (2013).
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4 MODELOS MATEMATICOS E NUMERICOS

4.1 Modelos matematicos

Considera-se o problema classico da consolidag¢ao de Biot para um meio poroso
saturado, homogéneo, isotropico e de fluido incompressivel que segue o modelo descrito
no Capitulo 2. Para se chegar as equagoes (4.1) e (4.8) utilizou-se relagoes entre as
constantes poroelasticas, sendo essas mesmas equacgoes descritas em Gaspar, Lisbona e
Vabishchevich (2003, 2006), Rodrigo (2010), Franco (2017) e Franco et al. (2018). Para o
caso unidimensional, considerando o dominio espacial 2 = (O !

,5) [m] e dominio temporal
(0,77 [s] tem-se

0 ou op
1 9p o (u ) op ’
it 2 (K2 =
Qo T (m) Bz < (9:1:) 7

o parametro E [N/m?] representa o médulo de Young, enquanto K [m/s] guarda informacoes

(4.1)

das caracteristicas fisicas associadas a porosidade e permeabilidade do meio, sendo
designado como coeficiente de condutividade hidraulica, o é a constante de Biot-Willis,
Q) [Pa] é o médulo de Biot, % a densidade da forga exercida sobre o corpo e & a forga
relacionada a injegdo ou extragao de fluido no meio poroso. As fungoes u(x,t) e p(x,t)
denotam o deslocamento e a pressao ao longo da dimensao espacial x, respectivamente. No
presente conjunto de equagoes, a primeira expressao corresponde a equacao de deslocamento
u, enquanto a segunda representa a equacao de pressao p

No que se refere as condigoes de contorno, é adotado um cenario no qual a
fronteira esquerda se caracteriza por um deslocamento constante e permeavel (indicativo
de drenagem livre). Por outro lado, a fronteira direita exibe rigidez (deslocamento nulo) e

auséncia de variagao de pressao.

ou

E%:O, se =0 (4.2)
p=0, se x=0
e
u=0, se x:%
K@:o, se x:%' (43)

ox

Fundamentando-se na abordagem do método das solucoes fabricadas (ROY, 2005),

ao se considerar a solucao analitica expressa por

u(x,t) = zsen(2rx)e ™’ (4.4)
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p(zt) = (sen(27rm) + 271':133) e ! (4.5)

que atendem as condigbes de contornos delineadas nas equagoes (4.2) e (4.3), é possivel

estabelecer os termos forcantes Z e &2 como

U =27 (COS(QMU) + 2E7masen(2nz) — 2E cos(2mx) + 4m2> e’ (4.6)

P = <4K7rzsen(27m:) —sen(2mx) — 2mx cos(2mx) — 16K7m") e !, (4.7)

em que as condigoes iniciais (CI), atendem as solugoes analiticas fabricadas.

O contexto da poroelasticidade em duas dimensoes é caracterizado pelo uso das
variaveis u(x,y,t) e v(x,y,t), que indicam os deslocamentos, e p(x,y,t), responsavel por
representar as variagoes de pressdao no plano bidimensional (x,y). O modelo matematico

correspondente, considerando o dominio espacial 2 = (0,1) x (0,1) [m?], é formulado como

segue:
—(A+2u)gz—ﬂg;—(k+u)£ (gi)Jrgiz%
—(A+u)§y (gg) —ug:;—umu)g;%?yQ =y (4.8)

em (x,y) € 2 et € (0,T] [s]. As constantes A [N/m?| e y1 [N/m?] representam os coeficientes

de Lamé, dados em termos do médulo de Young E [N/m?] e da razao de Poisson v como

vE E

= - —
F= o0+

I+ 0)(1—20) (49)

além disso, o pardmetro K [m/s| guarda informagoes sobre as caracteristicas fisicas
relacionadas a porosidade e permeabilidade do meio, sendo denominado coeficiente de
condutividade hidraulica. As grandezas % e ¥ indicam a densidade da forga exercida
sobre o corpo, enquanto & simboliza a forga resultante da inje¢ao ou extracao de fluido no
meio poroso. O sistema de equagdes correspondente consiste na primeira equacao referente
ao deslocamento u, a segunda referente ao deslocamento v e a terceira a pressao p.
Neste trabalho a hipdtese adotada é que 02 (a fronteira de §2) é rigida
(deslocamento zero) e permedavel (drenagem livre). Como resultado, é estabelecida uma

condicao de contorno de Dirichlet.

u(zyt) =0, wv(zyt)=0, playt)=0, (zy) €. (4.10)
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Através do método das solugoes fabricadas, considerando-se a solugdo analitica

u(z,yt) = v(z,yt) = p(z,yt) = sen(rx)sen(ry)e ™, (4.11)

tem-se as respectivas expressoes para %, ¥ e &

U = (A + 3u)r?sen(mz) sen(my)e~t — (A + pu)w? cos(wz) cos(my)e™

: (4.12)
+ 7 cos(mx) sen(my)e
¥ = (A + 3u)m?sen(mwx) sen(my)e ™t — (X + p)w? cos(mz) cos(my)e ™! (4.13)
+ msen(mzx) cos(my)e " '
e
P = 2Kn’sen(rwx)sen(my)e” — wsen(w(x +y))e ", (4.14)

em que as condigoes iniciais (CI), atendem as solugoes analiticas fabricadas.

4.2 Modelos numéricos

Para o modelo numérico, o dominio espacial é discretizado pelo Método das
Diferencas Finitas (MDF'), malhas uniformes e diferenga central (CDS). A abordagem
empregada para a aproximacgao temporal e a conexao espacial e temporal envolve a
utilizagdo de um método de discretizacao implicita. Ademais, utilizou-se uma versao
reformulada para o sistema de equagoes exposta em Gaspar et al. (2007), a qual apresenta,
um termo de suavizacao adicional na equagao correspondente a pressao, tornando o sistema
mais estavel sem alterar seu resultado final. Esse termo é dado por

h? 0Ap

AN+ 2u) ot (4.15)

As dedugbes apresentadas na sequéncia (casos uni e bidimensionais) foram retiradas
de Franco (2017, p. 80-90).

Caso unidimensional

No contexto unidimensional, sao adotadas as seguintes consideragoes: K constante,
E=X+2u @ = o0 ea=1. A equagdo (4.1) que incorpora o termo de suavizagao
(equagao (4.15)) junto a equagao da pressao, pode ser discretizada nos pontos internos,
isto é, 1 = 2,3,...,N — 1, por meio da aplicagao dos métodos de Euler implicito e

Crank-Nicolson.
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Método de FEuler

Com o emprego do método de Euler para aproximagao temporal, tem-se

n+1 n+1 n+1 n+1 n+1
_pli T 2ui "+ wT P — Pica

— %n+1
h? + 2h !
uﬁ+17un+1 u o —um +1 +1 +1
N AR R KP?H —2p" + P , (4.16)
T h?
B o e V) R U R Y
4ET h? B2 i

reorganizando os termos, tem-se

2E E 1
+1 +1 +1 +1 _ on+l) _ gyntl
2 P 72 (“?ﬂ +u?_1) T o (p?+1 _pz‘—l) =Y
U?j—rll —u LU Uy K <pn+1 _opnt! +pn+1) J (4.17)
27h 27h h2 N ' o
b [pwl —oprtt 4prtl <pﬂ — 2P 4 P )} = gt
4ET i+1 7 i—1 i+1 7 i—1 )
ou
2E E 1
n+l __ n+1 n+1 n+1 n+1 n+1
et T2 (ui—l +Ui+1) + o (1%‘—1 _pi+1> +
2K 1 1 K 1 (4.18)
= n+1 n+l _ _ n+l) [ % n+1 n+1 )
<h2 * 2ET) P g (- ) (h2 i 4ET) (i +9i)
1 n n 1 n n n n
g (s =) g (P = 20 4 al) = 20
ou ainda
2E E 1
n+1l __ n+1 n+1 n+1 n+1 n+1
el T e (uifl +“i+1) +ﬁ (pzel _pi+1) +
R2+4ETKY 0 1 /it oam W +ABETKYN [ o0 a1y - (4.19)
( 2ETH? )pi = oy (W — i)+ Ty ) (4 0)
1 1
_ n _n o 7 - () 7 n+1
o h (uifl Ui+1) AR (pz‘q 2p; +pi+1) + 7
Ju(0,t
Em x =0 (i = 1), tem-se a condi¢do de contorno E ua( ) =0, ou
x
pd —u
2h
uptt = uftt (4.20)
e considerando a equacao
Pu  Op
—E——=+—=% 4.21
dz? Oz ’ (421)
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tem-se

n+1 n+1 n+1 n+1 n+1

Uy = 2uyT g Py — Do 1

—E =yt 4.22
h? + 2h ! ( )

P2+ Po

Para p(0,t) =0, p1 =0¢
substituindo a equacao (4.20) na equagao (4.22), tem-se

=p1 =0 = py = —po, na equagao (4.22) e

n+1

n 1 n 1 1 n 1
_E + — 2" 2+ + + 1y D5 02/1n+1’
h 2h
_E n+1 2un2+1 + U;H_l 2pn+1 _ %177,4_1’
h 2h
2 <u2+1 u1+1) 4+ Z h +1 gz/ +1 (423)
Reorganizando os termos na equagao (4.23), tem-se
2E 2E 1
h2 un+1 h2 n+1 h ;+1 gz/n+1 (424)

(1 =N), tem-se

0 (0ou Pp 0 (h? 0
o (m) Kow ot <4E@x> =2, (4.25)

que na forma discretizada torna-se

P2 AETKN o0 1 o W +4BTKN 0y
() 7t = g (o o)+ (M) (i)
1 1

“orn (U%fl - u”N+1) ~ 1B (p?V L= 2%+ pNH) + P (4.26)

Em x =

N —

Considerando a condi¢ao de contorno u (2, ) =0, tem-se

UN+1 + UN-1

5 =uy=0 = uni1=—un- (4.27)

(1,t)

e com a condicao K BPT = 0, obtém-se

KpN+1 — PN-1

oh =0 = PN+1 = PN-1- (428)

Com a substitui¢do das equagoes (4.27) e (4.28) na equagao (4.26), tem-se

W +4B7KY . 1 W+ 4ETKY 4
2ETh? N ThuN ! 2ETh? Prn-1
1 1

_%UN—l " 9Rr (pgf—l - p%) + 2N (4.29)
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Método de Crank-Nicolson

Ao se aplicar o método de Crank-Nicolson (CN) para realizar a discretizacao
temporal, reformula-se a equagao da pressao conforme apresentada na equagao (4.1). Em
seguida, incorpora-se o termo de suavizacao, conforme definido na equagao (4.15) de
acordo com o seguinte procedimento:

2 42 2
gt <g;‘ _ ilEgaf;) _ Kgxf L, (4.30)
assim, tem-se

n+1 n+1

Uify —UTy U Uy B2 [ n+1

n+1 + pn+1

5T S5h Dit1 — 2p; i1 Py — 27 + p?11

T 4B

K2 K2
(4.31)

2 h? h2 2 ’

K (i =20 + ol oy — 200+ 0P\ | P+
. T 1

reorganizando os termos, tem-se

n+1 n+1 n n
Uipr — U1 Uigq — Uiy 1 n+1

27h 27h 4E7 Pit1

- QP?H + p?j_ll - (p?+1 —2pi + p?q)}
(4.32)

P+ Pp

2 )

K T mn mn n n mn
= o2 (pij_ll —2pp it + pi1 — 2p; +pi71) +

ou
K 1 1 K 1
(h2 " 2ET) Y 2rh (bt —uitt) + (2h2 " 4ET) (v +7i%)

n+1 n
+2ih (U?Jrl - U?_l) + (QKhQ B 4]1?7‘) (p?—&—l - Qp? +p?—1) T W’

ou ainda

<h2+2E7K> ntl _ nt1 n+1) n <h2+2E7K> ( nt1

(4.33)

I _ n+1
2E7—h2 7 27_h (ul—l ui-‘rl 4E7_h,2 p’i-‘rl +pi—1 )
(4.34)

— K2 n+1 n
“orh (U?fl - “?ﬂ) <2E;—é(7_h2h> (p?fl — 2} + p?+1) + W

Para os contornos, as abordagens de aproximagao seguem padroes semelhantes

aos ja descritos para o método de Euler, os quais nao serao detalhados aqui.
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Caso bidimensional

No contexto bidimensional, aborda-se a equagao (4.8) e se adiciona o termo de

suavizagao proveniente da equagao (4.15) na formulac¢ao da equagao de pressao.
M¢étodo de Euler

Utilizando o método de Euler implicito para discretizacao temporal, as equacoes
discretizadas nos pontos internos (i = j = 2,3,..., N — 1) sdo expressas da seguinte

maneira:

n+1 n+1 n+1 n+1 n+1 n+1
\ 49 Uiy — 2up T UG Upj oy = 2u;j + U
_( + /“L) h2 - h2

n+1 n+1 n+1 n+1
0 (Vi1 —Vic1,\ | Pit1y — Pic1y ntl
+ = U;;

~A g, 2h 2h

n+1 n+1 n+1 n+1 n+1
A\ 0 (uih; —wly Uiy — 2055 o
R e 2
oy 2h h
n+1 n-+1 n+1 n+1
2055 +vign n Pij+1 — Pij—1
h? 2h

n+1 n+1 n+1 n+1
Q Uipry — Ui—1,5 . Vij+1 — YVij—1
ot 2h 2h

n+1 n+1 n+1 n+1 n+1 n+1
~K (pi—l,j B N G R R B +Pz‘,j+1>

nl
—(h o+ 2p0)

=y . (4.35)

h? h?
h? 9 pyjﬁj — 27 ' +P?++11,j n ijtll —2p;; '+ pZﬁl _ gt
h2 h2 g

AN+ 2p) Ot
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ou
2 ()\ + 3#) n+1 )‘ + 2M n+1 n+1 2 n+1 n+1 (/\ + M)
T2 Y T T ( Ui—1,5 +uz+1,j> T2 (ui,jfl + ui,jJrl) T Tane
1
n+1 n+1 n+1 n+1 n—+1 n+1 _ n+1
‘ (Uz’+1,j+1 Vi1 Vi1 TV 1) + 57 oh (szrl,] P 1,j) = 02/”
A nt1 n+1 n+1 2(A+3p)
T a2 (Ui+1,j+1 — Uiy o1 T u;” 141 T Uiy 1) + Tvi,j
I n+1 n+1 )\ + 21u n+1 n+1 1 n+1 n—+1 _ n+1
2 (Uzel,j + 7}z‘+1,j> T2 ( Vi1t Uszrl) + o (ng+1 Dij— 1) = 7/”
, (4.36)
1
n+1 n+1 n+1 n+1 n n n n
o [Ui+1 G T Wity TV T Vi <Ui+1 T Wi TV Uz’,j—lﬂ
K p?+1lg - 2pn+1 +p?—:_11,j n p?jll - QPZ;H + p?ﬁh
h? h?
. 1 n+1 -9 n+1 n+1 4 n+1 —9 n+1 4 n+1
m (pz 1, 2% Piv1,; T Pij—1 2% pz',j+1)
_}_é(n _2n+n +n _2n+n ) {@n—i—l
4()\ n 2“)7_ Pi—1,5 Pij T Piv1,; T Pij—1 Pi; T Pij+1 i,
ou, ainda,
2 ()\ + 3“) n+1 >\ + 2# n+1 n+1 2 n+1 n+1 ()\ + ,U)
h2 Uij = h2 ( i— 1J+uz+1,j>+ﬁ< 15— 1+ u 7]+1)+ 4h2 '
1
n+1 n+1 n+1 n+1 n+1 n—+1 n+1
’ ( Vit1j4+1 — Vig1j—1 — Vic1 41 T Vic1 - 1) + 57 oh (pz 1,j p7,+1,]) + %]
2(A+3p) , Auy o, n n n
TUZ‘JH = T4R2 (ui:-ll,jJrl - ui:ll,jfl - Uz'jll,]ﬂ + uy +11] 1)
1% n+1 n+1 )\ + 21u n+1 n+1 1 n+1 n+1 n+1
+ﬁ (%‘-1,;‘ + Ui+1,j) + e ( ij—1 1t ,g+1> + % (pz,j 1 pz,j-i—l) + 7
, (4.37)

1 4k 1
n+1 n+1 n+1 n+1 n+1
W <Ui+1,j Uis1j T Vi vi,j—l) + <hg + O\‘*‘W’) Di;

K 1
n+1 n+1 n+1 n+1
— <h2 + 4()\+2M)T> (pz 1; T Piv1; T Pij1 +pi,j+1)
1 n
o (U?H,j — UitV — “Za’—l)
1

n n n n n n o n+1
+m (pzel,j - 2pi,j +pi+1,j +pi,j71 - 2pi,j +pi,j+1) = gzi,j
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e reorganizando os termos, tem-se

2(A+3N)un+1_)‘+2ﬂ< n—&—lA_}_un—&-l)_f_ﬂ(un—i-l +un+1)+()‘+U)_

h2 g T Tz \Mieng T ey ) g (Mg T Wi 4h2
1
n+1 n+1 n+1 n+1 n—+1 n—+1 n+1
: (Uz'+1,j+1 —Vid1j-1 — Vili 41 T Ui—l,j—l) + oh (pz‘—l,j - pi+1,j> + %1]
2 (/\ + 3[’6) n+l __ A + H n+1 _,ntl o, ntl + n+1 +
2 Vijg — Y WUip 1,541 = Wig1j—1 = Ui—1 541 T U1 51

P (o) + 2 () o (o — )+

h? h? 2h
.(4.38)
W2 +4k(N +20)TY 0 L nt1 nt1 nt1
( RO+emr )P T anr (Wil = withy + i — o)
h? + 4k + 2p)7 n+1 n+1 n+1 nt1
( 2O+ 20)7 (pifl,j + Piv1,j T Dij 1 +Pi,j+1)
1 n n n n
+% (“z‘+1,j — U1y T Vi1 — Ui,j—l)
1
n n n n n n+1
a0 gy (R~ Py~ Pl e o) +

Método de Crank-Nicolson

Ao adotar o método de Crank-Nicolson (CN) para realizar a discretizagao temporal,
reformula-se a equag@o da pressdao, conforme definida na equagao (4.8), e incorpora-se o

termo de suavizacao, como indicado na equagao (4.15), por meio do seguinte procedimento:

9t \ oz 0y 922 T 0y2) T AN+ 20) 01 \ 022 T Oy

0 |Ou Ov h? Pp  0?*p p  *p
I e bl 1 R~ Bl T
ot [3@“ "oy a2 <3x2 i 3y2>] (3562 o) T

e, com a discretizacao das variaveis espaciais pode-se escrever

2 2 2 2 2
8<8u m)_K<ap+ap> h 8<8p+0p>:y,

ou

1 1 1 1
0 [uify, — it n Vi — Vg W ity = 205+ ity
ot o o 10+ 2p0) E
+ij+—11 =20 i\ K (0 - 2i el n Pt =208 it
h? 2 h? h?

Pic1; — 200 + Py n
h? h?

5 0 n n+1 n
+ Pij—1 = 2Pi; +pz‘,j+1> + Zii + 20

2 bl
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que, com a aproximagcao temporal, fica

1
n+1 n+1 n+1 n+1 n n n n
ohr {um,j — Uiy Vi — Vi — (“i+1,j — Uiyt Vi “m—lﬂ

1 n+1 n+1 n+1 n+1 n+1 n+1 1
Oz P = 2 = 2 ) + s
K <p?—+11,j — Appft P+ i+ i

—2p Pl P — 200 Dl ) = 5 -

Pi1y — APi; P TP +P§fj+1> n P+ P
h? 2 ’

(p?—l, j

reorganizando os temos, tem-se

1 2k 1 1
= (qmtl _ ,ntl ntl _ ntl i T e o S I
2ht (bl — w2y + ofifin — i) + <h2 T zu)7> P (4(/\ +2u)7

K 1
n+1 n+1 n+1 n+1 n n n n
+ 2hQ> (piq,j +DPiv1; T Pij—1+ pz,j+1) ~ ohr (“i+1,j — Uiy T Vi — Ui,jq)
* AN+2u)r 202 (pl'*lu‘ —Api; P P pml) - 2 :

ou, ainda,

h’2 + Qk(A + QM)T n+1 1 n+1 n+1 n+1 n+1 2k(>\ + 2#)7_
(g™ = g sty s ot =)+ (T e

2
1
n+1 n+1 n+1 n+1 n n n n
+ —4h2()\ n 2#)7'> (pi—l,j +Pit1j T Dij +Pi,j+1> + Gy (uz’—i-l,j — Uiy T Vi T Ui,j—l)

A2(0h+ 20)7 ( Pi; —Pic1y — Piv1y; — Pij-1— pi,j-f—l) + - 9

4.3 Multigrid e solver Vanka

4.3.1 Método multigrid

O método conhecido como multigrid representa uma abordagem numérica que
oferece uma alternativa para a resolucao iterativa de sistemas de equagdes do tipo Au = f,
obtidos ao se discretizar uma equagao diferencial. A génese deste método pode ser atribuida
a proposta inicial apresentada por Fedorenko (1964), mostrando que a velocidade de
convergéncia com o uso de tal técnica é melhor que a dos métodos iterativos puros (sem o
uso de multigrid), neste caso, chamados de singlegrid.

O método tem como principio basico, utilizar um conjunto de malhas e alternar
suavizacoes em cada nivel de malha e as aproximagoes destas solugoes em uma malha
mais grossa (com uma certa razao de engrossamento 7). Estas solugdes em malhas grossas
sao feitas através de operadores que transferem informacdes da malha fina para a malha

imediatamente mais grossa (operador de restri¢ao), resolvem o problema nesta malha
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grossa, e em seguida, transferem informacoes da malha grossa para a malha imediatamente
mais fina (operador de prolongagao), desta forma reduzindo todo espectro de erros de
iteracao (erros de alta e baixa frequéncia) (WESSELING, 1992; BRIGGS; HENSON;
MCCORMICK, 2000; TROTTENBERG; OOSTERLEE; SCHuLLER, 2001).
Dependendo do tipo de informagao a ser transportada entre as malhas, tem-se o
esquema CS (Correction Scheme), onde ha transferéncia apenas do residuo, ou o esquema
FAS (Full Approximation Scheme), onde hé transferéncia do residuo e da solugao. Briggs,
Henson e McCormick (2000) recomendam os esquemas CS para problemas lineares e FAS
para problemas nao lineares. A ideia para o esquema CS, no caso de duas malhas, é

apresentado a seguir:

o Suavize Au = f na malha fina 2" v; vezes para para obter uma aproximacao v".

« Calcule o residuo r* = f — Av™.

x Obter r?" = [#"r" na malha grossa 22".

* Resolva a equacdo residual Ae = 7 em 22" com estimativa inicial e = 0 para

obter uma aproximacao para o erro e2".

x Obter e = I7, r* na malha fina 2"
o Corrija a aproximacdo obtida em 2" : v + v + €.

 Suavize Au = f na malha fina 2" vy vezes com estimativa inicial v".

Neste caso, 11 e vy sao chamados, respectivamente, de nimero de pré e pds-
suavizagdo, e I e Il sdo os operadores de restri¢do e prolongacio. O procedimento
apresenta um esquema CS para o caso de duas malhas, porém, pode ser estendido para
o numero de malhas desejadas. A sequéncia com que as diversas malhas sao visitadas
caracteriza um ciclo multigrid que pode ser do tipo V, W, F entre outros. As Figuras 9, 10

e 11 ilustram os ciclos V, F' e W, respectivamente.

Figura 9 — Estrutura do ciclo V.
\ _Z___ 04h /‘Prolongaggo

FONTE: O autor (2023).



Capitulo 4. Modelos matemdticos e numéricos 58

Figura 10 — Estrutura do ciclo F.

\ / o \Restrigéo
___________________________________ o2k

\ N i
N NN o+ s
—-—-—-—\-‘ZE _____ l ________ Z __________ ql6h © Resolve
FONTE: O autor (2023).

Figura 11 — Estrutura do ciclos W.

i -. 0l

\Restrigéo
2k

_____ Qdh /Prolonga,gi\o

Q8h ® Suaviza

FONTE: O autor (2023).

Uma generalizacao dos ciclos V, W e F' é apresentada em Wesseling (1992), Briggs,
Henson e McCormick (2000) e Trottenberg, Oosterlee e Schiiller (2001), compreendidos
como parte de uma familia de ciclos denominada p-ciclo. No Algoritmo 1 (FRANCO, 2017,
p. 65) apresenta-se um esquema para o ciclo V ou o ciclo W dependendo do valor de p.
Se 1 =1 tal algoritmo realiza um ciclo V e se p = 2 realiza um ciclo W. O Algoritmo 2

(FRANCO, 2017, p. 65) apresenta um esquema para o ciclo F.

Algoritmo 1: MG-p-ciclo (1)
if | = L,,4x € 0 nivel de malha mais grossa then
Resolva o sistema 4,0 = f® na malha grossa Q27
else
Suavize vy vezes Ajv® = f® na malha 02,
Calcule e restrinja o residuo: f0+H = ]gllflh(f(l) — Ap®).
for ciclo=1:p do
Resolva no préximo nivel: MG-p-ciclo (I + 1).
end for
Corrija usando interpolacao: v® « v® 4 % y+D),

Suavize vy vezes Av® = fO na malha 225,
end if
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Algoritmo 2: MG-Ciclos-F (1)
if | = L,,4: ¢ 0 nivel de malha mais grossa then

Resolva o sistema A;0® = f® na malha grossa 22 'h.
else
Suavize vy vezes A = f(l) na malha 22"

Calcule e restrinja o residuo: f(+1 = Igff‘lh(f(l) — Ap®).
Resolva no préximo nivel: MG-Ciclos-F (I + 1).

Corrija usando interpolacao:v® «— v® 4 ]22;}:1%(”1).

Suavize vy vezes Ajv® = fO na malha 227,
if [ # 1 then
Resolva no préximo nivel: M G-p-ciclo (1) usando o algoritmo 1 e = 1.
end if
end if

Sobre os diversos operadores de restri¢gao, de prolongacao e suavizadores que
podem ser utilizados, consulte Wesseling (1992), Briggs, Henson e McCormick (2000) e
Trottenberg, Oosterlee e Schiiller (2001).

4.3.2 Suavizador Vanka

O suavizador Vanka foi originalmente proposto por Vanka (1986) para resolver
as equagoes de Navier-Stokes discretizadas pelo Método das Diferencas Finitas. Sua
ideia basica é decompor a malha em pequenos subdominios e tratar esses subdominios
separadamente, (WOBKER; TUREK, 2009). Esse método pertence a uma classe
de suavizadores que realizam suavizacoes por blocos e, consiste em um algoritmo
iterativo na estrutura do método de Gauss-Seidel, no qual um sistema pontual é
empregado para atualizar simultaneamente tanto o valor da pressao quanto todas as
incognitas dos deslocamentos adjacentes. Em outras palavras, no caso unidimensional,
trés incognitas (pressao p; e deslocamentos u;_1,u;41) sdo atualizadas concomitantemente.
Ja no cendrio bidimensional, sdo tratadas cinco incognitas (pressao p; ; e deslocamentos
Wit1,j; Wi—1,j, Vi j+1, Vi j—1) a0 mesmo tempo, conforme representado na Figura 12.

Para cada ponto na malha, um sistema de equacoes é solucionado, no qual todas
as incognitas do sistema sao consideradas acopladas. Para cada ponto na malha em que as
incognitas correspondem aos deslocamentos e a pressao, como ilustrado na Figura 12, o

sistema de equacgoes ¢ resolvido.

(jb>(x):(;> (4.39)

em que A é a matriz que contém os coeficientes referentes aos deslocamentos nas equagoes

do deslocamento, b o vetor com os coeficientes referentes a pressao nas equagoes do
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deslocamento, d o vetor que contém os coeficientes referentes aos deslocamentos na
equacao referente a pressao e ¢ o vetor com os coeficientes referentes a pressao na
equagao da pressao. Os vetores x* e 2P sdo as incognitas relacionadas ao deslocamento e a
pressao, respectivamente, e f e f os respectivos termos fontes. O sistema linear dado pela
equagao (4.39) deve ser resolvido a cada ponto. Como em geral este sistema é de pequeno
porte (3 x 3 no caso 1D e 5 x 5 no caso 2D), sua solugao pode ser feita de forma eficiente
por qualquer método direto (FRANCO, 2017; FRANCO et al., 2018).

Figura 12 — Cinco incégnitas atualizadas simultaneamente com o suavizador Vanka, caso 2D.
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Fonte: Adaptada de Franco et al. (2018).

Em comparagao com os suavizadores Jacobi e Gauss-Seidel padrao (ponto a ponto),
o suavizador Vanka apresenta como vantagem crucial, a capacidade de lidar com blocos
tendendo a zero que aparecem na diagonal da matriz do sistema (em particular, o bloco
formado pelo vetor ¢, que tende a zero quando a condutividade hidrdulica é pequena).
Esses sistemas, chamados sistemas com pontos de sela, sao decorrentes da discretizacao
das equagoes da poroelasticidade (GASPAR et al., 2004; RODRIGO, 2010; GASPAR;
RODRIGO, 2015) e também pode ocorrer na discretizacao das equagoes incompressiveis

de Navier-Stokes (WOBKER; TUREK, 2009).
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5 VARIAVEIS DE INTERESSE

A utilizagao da técnica de Multipla Extrapolagao de Richardson (MER) necessita
da geracao de solugoes numéricas em varias malhas distintas, para uma variavel especifica
de interesse. Nesse trabalho as variaveis de interesse utilizadas estao divididas em dois
tipos: ) varidveis do tipo 1: sdo varidveis que apresentam mesma localiza¢ao nodal, em
todas as malhas, com o refino de 2" e, essa localizacdo pode ser predefinida. Neste tipo
estao inclusas ainda as variaveis globais, isto é, que representam as médias das variaveis de
interesse sobre o dominio de célculo; 47) variaveis do tipo 2: sdo varidveis que apresentam
mudancas em suas coordenadas com o refino de 2" e, sua localizacdo nodal ndo pode
ser predefinida. As descri¢Oes para estas variaveis sao apresentadas nas Segoes 5.1 e 5.2.
As Figuras 13 e 14, ilustram os tipos de variaveis adotadas neste trabalho, em que ¢
com coordenadas aj, ¢ com coordenadas as e ¢35 com coordenadas as, correspondem,
respectivamente, as solugdes numéricas obtidas nas malhas 2™ (grossa), £2"2 (fina) e 213

(superfina), com razao de refino constante (r = hy/hy = ha/h3).

5.1 Variaveis do tipo 1

Sao variaveis, cuja a localizagao da coordenada a; é a mesma para todas as malhas
2" utilizadas no emprego de MER, e coincide com um ponto nodal. Como exemplo, uma
variavel de interesse representada pela solugao numérica ¢; e calculada no ponto central
do dominio (Figura 13). Esse tipo de variaveis, também pode ser caracterizado por uma

variavel global.

Figura 13 — Variavel com localizacdo nodal fixa, sem alteragdo de coordenadas, ao se considerar
malhas distintas, com o refino de 2",
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ay = ag = as

Fonte: Adaptada de Marchi et al. (2016).

O emprego de MER para variaveis do tipo 1, ocorre de forma direta, isto é,

utiliza-se apenas a equagao (3.36), de acordo com o Algoritmo 3, apresentado a seguir.
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Algoritmo 3: Aplicagdo de MER em variaveis do tipo 1
Calcule ¢, em GG malhas distintas: ¢1, ¢o,--- , @
fori=1:G do

¢i,0 = (bz
end for
form=1:G—-1do
forg=m-+1:G do

(bg,mfl - (bgfl,mfl
¢gvm - ¢g7m_1 + /rpmfl _ 1 :

end for
end for

G

5.2 Variaveis do tipo 2

Para as variaveis do tipo 2, nao é possivel determinar previamente a coordenada
a; referente a solucao ¢;. A localizacao de a;, depende da malha 2" adotada, ou seja, a;
muda com o refino de 2" (Figura 14). Varidveis com ponto extremo (mdximo ou minimo),
sao exemplos de variaveis que podem pertencer ao tipo 2. A utilizacao direta de MER sobre
as ¢ obtidas em malhas distintas para esse tipo de variaveis, pode ter seu desempenho
comprometido devido a alteragdo de coordenadas ao se refinar a malha, conforme ilustrado
na secao 1.1.

Figura 14 — Varidvel com localizagao indeterminada, apresenta alteracdo de coordenadas ao se
considerar malhas distintas.
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Fonte: Adaptada de Marchi et al. (2016).

O emprego de MER para variaveis do tipo 2 deve ser realizado de forma que os
efeitos causados pela alteracdo de coordenadas em malhas distintas sejam minimizados. De
acordo com Martins (2013) e Marchi et al. (2016), a combinagao de interpolagao polinomial
com a aplicagdo de métodos de otimizagao tem demonstrado resultados satisfatorios para
esse proposito.

Diante disso, sao selecionados os p + 1 pontos nodais, situados nas proximidades

do ponto discreto de méximo (ou minimo), ou seja, corresponde ao valor nodal mais alto
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(ou mais baixo) obtido na malha (2", e esses pontos sdo utilizados para calcular &, (fungao
polinomial de grau igual ou menor que p). Dado que &, representa uma fungao convexa,
a existéncia e unicidade do ponto maximo (ou minimo) no intervalo definido por esses
pontos sao garantidas. Apds a determinagao desses pontos de maximo (ou de minimo)
(@es,), com i =1,...,G, para cada malha 2", o emprego de MER é aplicado através da

utilizagdo da equacao (3.36), conforme Algoritmo 4.

Algoritmo 4: Aplicagdo de MER em varidveis com ponto extremo
Calcule ¢, em G malhas distintas: ¢y, @2, -+, ¢,
Obtenha §,, aplicando a interpolacao polinomial.
Calcule o ponto méaximo (¢, ) de &,, para cada malha Q2" i=1,...,G.

ext;

fori=1:G do
¢i,0 - ¢(”I‘tl °
end for

form=1:G—-1do
forg=m+1:G do

Ggm—1 — Pg—1,m—1
¢g,m = ¢97mfl + gmrpm—l j 1 —.

end for
end for

Neste trabalho, para variaveis com ponto extremo, adotou-se interpolagao

polinomial de graus 2,4, 6 e 8, para o célculo de E,,,.
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6 RESULTADOS

Neste capitulo sao apresentados os resultados obtidos com a utilizagdo de MER,
metodologia descrita na se¢ao 3.5, a qual foi abordada na concepcao de reducao e estimativa
do erro de discretizacao para variaveis com mesma localizagao nodal em malhas distintas e
para varidveis com ponto extremo (localizagao variavel) no problema de poroelasticidade uni
e bidimensional. As simulagoes numéricas foram realizadas em linguagem Fortran utilizando
o compilador Intel® Fortran Compiler e Intel® oneAPI HPC Toolkit. O computador utilizado
possui processador Intel® Core™ i7-9700KF, CPU 3.60 GHz e 16 GB de meméria RAM.

6.1 Problemas de poroelasticidade unidimensionais

Nesta secao sdo expostos os resultados para dois casos, os quais foram obtidos
por meio do problemas de poroelasticidade unidimensional (equacao 4.1), com a variagdo
do médulo de Young (E) e da condutividade hidraulica (K). As solugoes numéricas foram
obtidas mediante o emprego do Método das Diferencas Finitas com aproximagoes espaciais
de segunda ordem e aproximagoes temporais pelo método de Crank-Nicolson.

Para todas as simulacoes utilizou-se o método multigrid no intuito de acelerar a
convergéncia do processo iterativo (esquema CS, ciclo W(1,1), razao de engrossamento
padrao r, = 2, operador de restricdo por ponderacao completa e operador de prolongagao
por interpolacao linear), suavizador Vanka, precisdo quadrupla e critério de parada até se

atingir o nivel de acuracia do erro de maquina. A razao de refino entre as malhas é r = 2.

6.1.1 Primeiro problema poroelastico unidimensional

Os parametros de entrada para o primeiro problema poroelastico estao listados na
Tabela 4. Esses valores de E e K sao valores tipicos, usados academicamente para avaliar a
eficacia da metodologia adotada, possibilitando o refinamento em diversos niveis de malha,

porém, sem levar em consideracao seus valores fisicos realisticos.

Tabela 4 — Parametros de entrada para o primeiro problema poroelastico 1D.

Simbolo Quantidade Valor Unidade
(2 dominio espacial (O,%) m
T tempo final 1,0 S
E modulo de Young 1,0 N/m?
K condutividade hidraulica 1,0 m/s

Fonte: O autor (2023).

Na sequéncia, sao apresentados os resultados obtidos para Ej, FE,, e suas

estimativas, para as variaveis de interesse pressao e deslocamento.
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6.1.1.1 Varidveis com mesma localiza¢do nodal em malhas distintas

Como descrito na secdo 5.1 o emprego de MER para variaveis com mesma

localizagdo nodal, ocorre de forma direta, isto é, utiliza-se apenas a equagao (3.36). Para

essas variaveis, tém-se como representantes o deslocamento e a pressao no ponto central

do dominio, as quais sdo denominadas por u. e p., respectivamente. A malha mais grossa

considerada apresenta N = 9 e a mais refinada N = 8193 pontos nodais, totalizando com

isso G = 11 malhas.

para as variaveis u. e pe.

Figura 15 — Desempenho de MER sobre E}, para varidveis u. e pe.

(a) Varidvel u..

(b) Variavel p..

Os resultados obtidos para E), e E,, sao apresentados na Figura 15 e Tabela 5,

10 T —® 10 o
—4 i — - o
10 re o 1074 P ]
24 =
1076 - ol 6 —e .
108 Y = g 10 o ¢ )i
[ i g < _g Y _
10710 N 10 g
_ © ~10 e
10712 3 5 10
107 s S 0"
10716 rid '§ o1 3/
—18
10 i 5 ot /
1 0*20 /z/
1 0—22 , Eh Ps ] 10” 18 ; Eh ]
o LY = 102 g By

6,1x107° 2,4x10°* 9.8x107* 3,9x10° 1,6x10% 6,2x10 2

Discretizagao espacial / [m]

6,1x107° 2,4x107* 9,8x107* 3.9x107° 1,6x102 6,2x10 2

Discretizagao espacial /4 [m]

FONTE: O autor (2023).

Tabela 5 — Erro de discretizacdo Ep e E,,, para as variaveis u. € pc.

variavel wu,.

variavel p,

h | En| | En| | En| | En]

6,25 x 1072 3,53 x 1073 — 7,32 x 1073 —

3,12 x 1072 8,76 x 107* 857 x 1076 1,77 x 1073 7,96 x 10~°
1,56 x 1072 219 x 107* 1,29 x 1076 4,48 x 107 1,91 x 1075
7,81 x 1073 548 x 107° 8,92 x 1078 1,12x107* 2,33 x10°¢
3,91 x 1072 1,37 x 107° 2,84 x 107° 2,80 x 10™° 1,47 x 1077
1,95 x 1073 3,42 x107¢ 569 x 1071 6,99 x 1075 5,02 x107°
9,77 x 10~* 856 x 1077 1,02x 10712 1,75 x 1075 921 x 1071
4,88 x 107* 2,14 x 1077 140 x 107 437 x 1077 8,63 x 10713
2,44 x 1074 535 x 1078 989 x 10717 1,09 x 1077 3,24 x 1071
1,22 x 10~* 1,34 x 1078 2,76 x 1071 273 x 1078 4,53 x 10718
6,10 x 10~° 3,34 x 1072 996 x 107* 6,83 x 107 6,90 x 10720

Fonte: O autor (2023).
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Observa-se na Figura 15 e Tabela 5, que a emprego de MER para variaveis
com mesma localizagdo nodal em malhas distintas apresenta resultados significativos,
corroborando com o descrito na literatura.

Muitas vezes nao é possivel calcular a solu¢ao analitica @ de um modelo matematico,
logo, o erro da solugdo numérica E(®P) para uma determinada variavel de interesse nao
pode ser calculado. Quando isso ocorre, uma estimativa para esse erro pode ser obtida. A

seguir apresenta-se alguns resultados para essas estimativas.

Estimativas para o erro de discretizacao E,,

As estimativas apresentadas a seguir, sao estimativas a posteriori para F,,
calculadas com base em solucdes numéricas obtidas em malhas 2" distintas e sdo usadas
para estimar efetivamente a magnitude do erro de discretizacao. Ao se calcular uma
estimativa para o erro, objetiva-se que ela seja confiavel e acurada. Uma forma de quantificar
essas caracteristicas, confiabilidade e acuracia, é mediante o calculo de sua efetividade
0 = % Se # > 1 a estimativa para o erro é confiavel. Se § ~ 1 a estimativa para o erro é
acurada.

As Tabelas 6 e 7 apresentam os resultados de #, obtidos para os estimadores
U,,

Uy e Uy~, para as varidveis u, e pe.

pme?

Tabela 6 — Efetividade dos estimadores Ua, Upme, Uy € Uy=, para a varidvel u..

h Ua/Ep, Upme/ Enm Uy/Enm Up-/Enm

3,12 x 1072 4,127385 x 102 1,150334 - 1,150457

1,56 x 1072 7,651851 1,069213  2,126703 x 102 9,381258 x 10~
781 x 1073 1,544825 x 10! 1,031872  1,893973 9,672636 x 10~
391 x 1073 3,237507 x 101 1,020018  2,027106 9,888630 x 10~
1,95 x 1078 5,095406 x 10'  1,017962  1,556339 9,980230 x 10!
9,77 x 1074 5,667449 x 101  1,013686  1,110068 9,058733 x 10~
4,88 x 1074 7,406959 x 10*  1,007066  1,301537 9,935574 x 10~
2,44 x 1074 1425220 x 102 1,002794  1,911767 9,957880 x 10~
1,22 x 1074 3,588580 x 102 1,000036  2,507307 9,972570 x 10~
6,10 x 1075 2,773771 x 10* - 7,708236 x 10! —1,819036 x 10°

Fonte: O autor (2023).

Observa-se que as estimativas para o erro de discretizacdo mais acuradas, sao

. . .U U
estabelecidas pelos estimadores Uy, € Uy, isto €, e le Efn

esses dois estimadores o que se apresentou mais confidvel foi Up,,., o qual obteve 6 > 1

~ 1. No entanto, dentre

para todas as malhas analisadas de u. e, para p. nao obteve # > 1 apenas na malha
h =244 x 1074

Apresenta-se na Figura 16 os erros de discretizacao Fj, F,, e suas estimativas.
Os estimadores utilizados para a confeccao dos gréaficos, sao os que apresentaram maior

acurdcia e confiabilidade (Tabelas 6 e 7).
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Tabela 7 — Efetividade dos estimadores Ua, Upme, Uy € Uy+, para a variavel pe.

h Ua/Enm Upme/ Enm, Uy/En, Up/Em

3,12 x 1072 9295681 x 10 1,240215 — 1,239921

1,56 x 1072 5,162936 1,121653 6,797615 x 1072 9,214641 x 107!
7,81 x 1072 9,220097 1,063303 1,645573 9,533573 x 107!
3,91 x 1073 1,679711 x 10! 1,034119 1,736820 9,741451 x 101
1,95 x 1073 3,030952 x 10! 1,018328 1,757795 9,852268 x 107!
9,77 x 107 5556095 x 101 1,009374 1,806038 9,913641 x 107!
4,88 x 107*  1,076759 x 10> 1,003754 1,921242 9,944830 x 107!
2,44 x 107* 2674163 x 102 9,986027 x 107!  2,469828 9,948876 x 107!
1,22 x 107 7,146842 x 10> 1,015242 —2,658890 1,016687

6,10 x 107°  6,660659 x 10* — —9,475238 x 1072 1,835524 x 10!

Fonte: O autor (2023).

Figura 16 — Erro de discretizacdo Ej, E,, e suas estimativas, variaveis u e p.

(a) Varidvel u. (b) Varidvel p.
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Fonte: O autor (2023).

[lustra-se na Figura 17 a ordem de acuricia pg para a variavel p., sem MER (pg)
e com MER (pg),,,. Observa-se que com o refino de malha, py — 2, o que é compativel
com o método de segunda ordem empregado, também apresenta um aumento progressivo
de (pg),,, que ¢ uma condigao desejada com a aplicacdo de MER.

Para a tltima malha analisada (h = 6,1 x 107°), ocorre uma queda no valor de
(PE),..» indicando que o erro de arredondamento E torna-se a principal fonte de erro
numérico, prejudicando a eficiéncia de MER. Uma justificativa pode ser elaborada a partir
da observacao da Figura 18, ou seja, uma vez que, embora os calculos sao realizados com
precisao quadrupla, nota-se que para uma malha com N = 8193 pontos nodais, o menor
valor para o residuo corresponde a grandeza aproximada de 1072°. A interpretacdo para tal
situagao é que os valores que estdo sendo usados para calcular u. na malha mais refinada,
encontram-se no limite da precisao estabelecida, e como a resolucao do sistema de equagoes

utilizado para determinar as variaveis u e p é resolvido de forma acoplada, os E, presentes
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em u. comegam a afetar p. (Figuras 16b e 17).

Figura 17 — Ordem de acurécia associada a variavel p., com e sem MER.
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FONTE: O autor (2023).

Na Figura 18 é representado o residuo adimensionalizado (L™/L°), ao longo das
iteragoes (representado na figura apenas pelo termo residuo), em que L™ é a norma infinito

do residuo na iteracdo n e LY a norma infinito do residuo da estimativa inicial.

Figura 18 — Residuo adimensionalizado ao longo das iteracdes, para a varidvel p, com 2" = 8193.
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FONTE: O autor (2023).

6.1.1.2 Varidaveis com ponto extremo

Para as variaveis com ponto extremo, tém-se como representantes o valor maximo
do deslocamento (,4;) € 0 valor maximo da pressao (Pmaz). As solugdes para ¢ = Upqy €
® = Pmax foram obtidas utilizando os mesmos dados apresentados na Segéo 6.1.1 (Tabela 4).
Com as ¢ nodais calculadas, aplica-se MER, e ao observar a Figura 19 nota-se que o seu
emprego para esse tipo de variavel nao apresenta reducao significativa de E,, com relagao

a . Em acordo com a literatura, isso ocorre devido a mudanca nas coordenadas de ¢ em
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malhas distintas, ocasionando como consequéncia, o comportamento nao convergente da

sequéncia de pg e py com o refino de malha (Tabela 8), prejudicando assim o desempenho

de MER.

Figura 19 — Desempenho de MER sobre E}, para variaveis tmaz € Pmaz-

(a) Varidvel umqyz- (b) Variavel pimaz-
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FONTE: O autor (2023).

Tabela 8 — Ordens efetiva (pg) e aparente (py) para as variaveis Umaz € Pmaz, sSem interpolagdo

polinomial.
variavel Uqz variavel ppae

h PE by PE bu
1,56 x 1072 1,9457908  2,1749278 2,1184084 2,6809902
7,81 x 1073 1,8609592  1,9767519 1,9141392 2,1856072
3,91 x 1073 1,8929451 1,8489923 2,0949736 1,8540270
1,95 x 1073 2,1667539  1,8038588 1,8525138 2,1780054
9,77 x 1074 1,6996514  2,3341417 2,3009125 1,7119923
4,88 x 1074 2,4098868  1,4695377 1,4881730 2,6095888
2,44 x 1074 1,9918371  2,5269040 3,6448813 9,7247163 x 1071
1,22 x 1074 1,9678033  1,9999998 —6,3626431 x 1072  7,9957424
6,10 x 107 1,8779512  1,9999999 2,1368503 —4,1625317

Fonte: O autor (2023).

Uma forma de melhorar o desempenho de MER para esse tipo de variavel é
usar o procedimento descrito na secao 5.2, isto ¢, aplicar interpolacao polinomial, em
seguida utilizar métodos de otimizagao para calcular o maximo de &, e, entao aplicar MER
(Algoritmo 4).

Com os valores de ¢ resultantes do célculo do valor maximo de §,, determina-se
E, de maneira equivalente a Ej, entao, posteriormente calcula-se £, com o emprego de
MER, de forma andloga a E,,. Os resultados obtidos para E,, E,,, sao apresentados na

Figura 20 e suas estimativas na Figura 21.
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Figura 20 — Erro de discretizacao para interpolacao polinomial sem MER (E,) e com MER (E,,,)
para p = 2,4, 6,8 versus discretizagao espacial (h).

(a) Variavel tmaq- (b) Varidvel pymaz.
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FONTE: O autor (2023).

Figura 21 — Erro de discretizagdo para interpolacdo polinomial sem MER (E,), com MER (Ep,)
e sua estimativa Uy, versus discretizacao espacial (h).

(a) Varidvel tpmqe (p = 6). (b) Varidvel ppqee (p =4).
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FONTE: O autor (2023).

Nota-se que, com o refino de malha (h — 0), o erro de discretizagdo E,,, — 0,
corroborando a afirmacao de que a aplicagao da interpolagao polinomial seguida de um
método de otimizagao, mostra-se eficaz para o emprego de MER em varidveis com pontos
extremos, ocasionando uma reducao significativa de £, com relagao a £,. Observa-se,
portanto, que existe um limite para o aumento de p. Para a variavel t,,,,, esse limite foi
p = 6, j& que para p = 8 os resultados sdo equivalentes (Figura 20a).

Para a variavel p,,q., esse limite foi p = 4, os resultados para valores de p > 4
sdo equivalentes (Figura 20b). Esse comportamento também foi avaliado para valores de

p > 8, por exemplo, p = 10 e p = 12, levando as mesmas conclusoes. Em outras palavras,
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nestes casos, ao se considerar polindmios interpoladores de ordem mais elevada nao ha
uma maior influéncia sobre a reducao da magnitude de E,,,.

Outro fato que deve ser destacado é que o comportamento nao convergente da
sequéncia de valores de pg e py quando A — 0, devido a mudanca de coordenadas de ¢ em
malhas distintas, apresentados na Tabela 8, é amenizado com a aplicagdo de interpolagao
polinomial seguida de um método de otimizagao, gerando um comportamento convergente
para a sequéncia de valores de pg e py quando h — 0 (Tabela 9), acarretando em resultados

promissores ao emprego de MER.

Tabela 9 — Ordens efetiva pg e aparente py para as variaveis Umaez € Pmaz-

variavel t,q, (p = 6) variavel ppae (p = 4)
h PE Pu PE bu
312x 102 1,9937449 _ 2.1033748 —

1,56 x 1072 2,0038594  1,9903697 1,9784819  2,1434947
7,81 x 1072 1,9999292  2,0051671 1,9997939  1,9713059
3,91 x 1072 2,0000267  1,9998967 1,9996272  1,9998495
1,95 x 107*  2,0000069  2,0000334 1,9999143  1,9995315
9,77 x 107 2,0000018  2,0000086 1,9999787  1,9998928
4,88 x 107*  2,0000005  2,0000023 1,9999947  1,9999733
2,44 x 10~*  2,0000001  2,0000006 1,9999987  1,9999934
1,22 x 107 2,0000000  2,0000001 1,9999997  1,9999984
6,10 x 10 2,0000000  2,0000000 1,9999999  1,9999996

Fonte: O autor (2023).

As Tabelas 10 e 11 apresentam os valores da efetividade 6 dos estimadores
Ua, Upme, Uy € Uy~ para as varidveis Upmaz € Pmas, respectivamente. Os resultados sao

semelhantes aos obtidos para as variaveis com mesma localiza¢ao nodal em malhas distintas.

Tabela 10 — Efetividade dos estimadores Ua, Upme, Uy € Uy, para Epp,, p = 6 e varidvel tyqz.

h Ua/En Upme/ Enm, Uy/En Up/Em

3,12 x 1072 6,894356 x 10? 1,319292 - 1,319214

1,56 x 1072 4,131934 1,143042  —7,921954 x 1073 8,953547 x 107!
781 x 1072 7,990945 1,070982 1,731569 9,444086 x 10!
3,91 x 1072 1,508798 x 10! 1,038599 1,783171 9,717099 x 107!
1,95 x 1073 2,690764 x 101 1,021519 1,732930 9,841570 x 107!
9,77 x 107*  4,746960 x 10 1,012060 1,736219 9,909332 x 107!
4,88 x 107*  8,391856 x 10 1,006698 1,751809 9,947648 x 10!
2,44 x 107 1,502953 x 10>  1,003803 1,781590 9,971428 x 107!

1,22 x 1074 2,639781 x 102 1,002481 1,751378 9,986884 x 107!
6,10 x 107° 4,040575 x 10? — 1,528640 —5,325574 x 102

Fonte: O autor (2023).
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Tabela 11 — Efetividade dos estimadores Ua, Upme, Uy € Uy, para Epp,, p = 4 e variavel prpaq.

h Ua/En, Upme/ Enm Uy En, Uy En,

3,12x 1072 4,431086 x 10" 1,200551 - 1,168882

1,56 x 1072 5,986230 1,104250 1,579118 x 1071 9,322780 x 10~
781 x 1073 1,059227 x 10 1,057907 1,649607 9,618432 x 10!
3,07 x 1073 1,826886 x 10 1,036576 1,658924 9,809193 x 10!
1,95 x 1073 2,833973 x 100 1,023727 1,521659 9,880366 x 107"
9,77 x 107 4,314445 x 100 1,015686 1,504188 9,923256 x 107!
4,88 x 107 6,474922 x 10! 1,010623 1,489236 9,950919 x 107!
244 x 1074 9,513034 x 10 1,005809 1,462001 9,952860 x 107!
1,22 x 1074 1,731425 x 102 9,917696 x 10~} 1,811475 9,861210 x 10!
6,10 x 107 2,628040 x 102 - —6,863061 x 1071 1,424667 x 102

Fonte: O autor (2023).

Os estimadores mais acurados sao Upn. € Uy+, ou seja, o calculo da efetividade
Uw*
Ep
o qual resultou em 6 > 1 em todas as malhas analisadas para a variavel u,,,, € para a

U. X . . ’ .
resultou em DT le ~ 1. O estimador que se apresentou mais confidvel foi U,

mce)

varidvel pmes Do ocorreu @ > 1 apenas para a malha h = 1,22 x 107
A Figura 22 ilustra o comportamento das ordens efetivas pg e (pg)ym para a

variavel ,,qz-

Figura 22 — Ordem de acuréacia associada a variavel ty,q2, com e sem MER.
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FONTE: O autor (2023).

Ao observar a Tabela 9 e a Figura 22, nota-se que quando h — 0 a ordem efetiva
pe — 2, sendo compativel com o método de segunda ordem utilizado. Também na Figura 22
nota-se um aumento progressivo de (pg)q.m, apresentando com isso a condigao desejada

na aplicacao de MER.
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6.1.2 Segundo problema poroelastico unidimensional

Na sequéncia, outro teste realizado para variaveis com ponto extremo é apresentado.
As solugdes ¢ = Upaz € ¢ = Pmae foram obtidas a partir do modelo matematico apresentado
na secao 4.1. Os parametros de entrada para o segundo problema poroelastico sao listados
na Tabela 12.

Tabela 12 — Parametros de entrada para o segundo problema poroelastico 1D.

Simbolo Quantidade Valor Unidade
P dominio espacial (O,%) m
T tempo final 1,0 S
E modulo de Young 1,0 x 102 N/m?
K condutividade hidraulica 1,0 x 1072 m/s

Fonte: O autor (2023).

O valor para a condutividade hidraulica K = 1,0 x 1072 m/s, estd relacionado
com problemas fisicos para solos como: cascalho limpo, misturas de areia e cascalho ou
para rochas de calcario carstico ou basalto permeével (BEAR, 1972; FREEZE; CHERRY,
1979; KNAPPETT; CRAIG, 2019), portanto, estes sao dados de um problema realistico.
A malha mais grossa considerada apresenta N = 9 e a mais refinada N = 8193 pontos
nodais, totalizando assim GG = 11 malhas.

A Figura 23 mostra o desempenho de MER sobre Ej, se empregado de forma

direta, para as variaveis Umez € Pmaz-

Figura 23 — Desempenho de MER sobre E},, para variaveis tmaz € Pmaz-
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FONTE: O autor (2023).

Os resultados apresentado na Figura 23 corroboram o expostos anteriormente na

Secao 6.1.1.2, ou seja, a aplicacao direta de MER para varidveis que apresentam mudancas

2
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nas coordenados nodais com o refinamento de malha nao apresenta resultados significativos

para a reducao do erro de discretizacao. Considera-se que este fato é uma consequéncia do

comportamento divergente para a sequéncia de valores de pg e/ou py em relagdo a py.
A Tabela 13 apresenta os valores de pg e py para as variaveis gz € Pmaz, SEM

interpolagao polinomial.

Tabela 13 — Ordens efetiva pg e aparente py para as varidveis Umaz € Pmaz, Sem interpolagao

polinomial.
variavel Uyqz variavel p,uz

h PE Pu PE bu
3,12 x 1072 —1,3314357 — 2,3179762 —
1,56 x 1072 2,1315617 —3,5694075 x 101 2,0930330  2,3803719
7,81 x 1073 1,9847287 2,1780047 2,0175457  2,1169555
3,91 x 1073 1,9153148 2,0089724 1,9822581  2,0293099
1,95 x 1073 2,2359338 1,8151592 1,9944983  1,9781339
9,77 x 1074 1,5232191 2,5085359 2,0408104  1,9793089
4,88 x 1074 3,0972413 1,0856383 1,9426228  2,0738056
2,44 x 1074 1,4492220 x 107! 6,3052383 2,0009023  1,9226778
1,22 x 10~* 5,5811232 —3,2721739 2,0036215  1,9999978
6,10 x 107 2,8787534 5,4270379 2,0145815  1,9999987

Fonte: O autor (2023).

Neste caso, aplica-se interpolac¢ao polinomial seguida de um método de otimizagao
com o objetivo de contornar tal impedimento, e, assim, tornar efetivo o emprego de MER
para a reducao de Ej. A Figura 24 mostra os valores de pg para .., sem interpolacao e

com interpolagao polinomial de grau p = 2,4 e 6.

Figura 24 — Ordem de efetiva pg, para variavel 4., com e sem interpolacido polinomial.
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FONTE: O autor (2023).
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Observa-se na Figura 24 que a aplicagao de interpolagao polinomial seguida de
um método de otimizacao, faz com que os valores de pg — pr, e com isso a aplicagao
da MER torna-se mais efetiva. Os resultados obtidos para E),, E,,, apés a aplicacao de
interpolacao polinomial seguida de um método de otimizacao sao ilustrados na Figura 25

para as variaveis Umaz € Pmaz-
Figura 25 — Desempenho de MER sobre E}, para interpolacdo polinomial seguida de um método
de otimizacdo para as variaveis Umqez € Prmaz-
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FONTE: O autor (2023).

Ao analisar a Figura 25 nota-se que os resultados apresentados sao semelhantes
aos expostos na Secao 6.1.1.2, isto ¢, elevando o valor de p a magnitude do E,,, ¢ reduzido,
tendo com valor limite p = 6 para U, € p = 4 para pmae.

Os valores da efetividade 0, para os estimadores Ua, Upme, Uy € Uy das varidveis

Umaz © Pmaz Sa0 apresentados nas Tabelas 14 e 15.

Tabela 14 — Efetividade dos estimadores Ua, Upme, Uy € Uy+, para Epm, p = 6 e variavel tpqz.

h Ua/Em Upme/ Em Uy/En Up/Em

3,12 x 1072 2,169207 x 10 1,147962 — 1,148161

1,56 x 1072 7,758478 1,073100 3,899486 x 10~1  9,427104 x 107!
781 x 107%  1,467994 x 10" 1,039929 1,783718 9,711337 x 107!
3,91 x 1073 2,604447 x 10" 1,023493 1,722940 9,847923 x 1071
1,95 x 1073 4,356666 x 101 1,015203 1,647340 9,920855 x 107!
9,77 x 107*  6,677492 x 10 1,010365 1,520576 9,953049 x 1071
488 x 107 9,748064 x 10! 1,007022 1,452985 9,967252 x 107!
244 x 107%  1,434128 x 10>  1,004702 1,466375 9,977120 x 107!
1,22 x 107*  2,136898 x 102 1,003309 1,486624 9,986202 x 107!
6,10 x 107°  3,032126 x 102 — 1,416980 —6,161586 x 102

Fonte: O autor (2023).
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Tabela 15 — Efetividade dos estimadores Ua, Upme, Uy € Uy+, para Epm, p = 4 e variavel ppaq-

h Ua/En Upme/ Em Uy/Em Up/Em
3,125x1072  1,556945 x 10°  1,090047 — 1,114315
1,562x1072  1,210531 x 10! 1,011227 7,920624 x 1071 9,332660 x 107!
7,812x107%  9,006947 x 10}  8,461112 x 107! 6,943958 8,382368 x 107!
3,906x1073  5,498198 1,052579 —5,116930 x 10~2  1,301796
1,953x107%  2,001895 x 10! 1,015181 —4,739841 9,661846 x 101
9,766x107*  6,687291 x 100  9,977870 x 10~  3,227521 9,831182 x 1071
4,883x107%  4,508753 x 102 1,095627 —6,628451 1,098296
2,441x107*  1,145733 x 101 1,010421 —2,790912 x 1072 9,285337 x 107!
1,221x107*  9,695968 x 10! 1,004513 7,857882 9,942130 x 107!
6,104x107°  2,225761 x 102 — 2,282269 —2,962763 x 10!

Fonte: O autor (2023).

. . ~ . U,
Constata-se que os estimadores mais acurados sao U, € Uy«, ou seja, —&= ~ 1
P ) > “Ep
Uw*
Ep
polindémio p = 6, nota-se que dentre os dois estimadores, somente o U,

e ~ 1. Entretanto, ao se analisar a Tabela 14, relacionada a variavel u,,,, e grau de

se apresentou

c

Upmc
Em

(Tabela 15), nota-se que para as malhas h = 7,81 x 1073 e h = 9,77 x 1074, o estimador

confiavel, ou seja, > 1. Contudo, para a variavel p,,., e grau de polinémio p = 4

. . .U
Upme nao se apresentou confidvel, ou seja, =52 < 1.

Apresenta-se na Figura 26 os erros de discretizagao E,, E,,, e sua estimativa Upc.
Os estimadores utilizados para a confeccao dos graficos sao os que apresentaram maiores

niveis de acurécia e confiabilidade (Tabelas 14 e 15).

Figura 26 — Erro de discretizagao para interpolacao polinomial sem MER (E,), com MER (Ep,)
e sua estimativa Uy, versus discretizacao espacial (h).
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FONTE: O autor (2023).

Na Figura 27 ilustra-se a ordem de acuracia para a variavel .., sem MER

(pe) e com MER (pg)ym. Observa-se que, com o refino de malha, pp — 2, que é um
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comportamento compativel com o método de segunda ordem empregado (py, = 2). Observa-

se também um aumento progressivo de (pg)gm, que é a condigao desejada na aplicacao de

MER.

Figura 27 — Ordem de acuréacia associada a variavel ty,q,, com e sem MER.
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FONTE: O autor (2023).

Nesta Secao 6.1, foram apresentados os resultados obtidos com a aplicagao de
MER, para variaveis com mesma localiza¢ao nodal em malhas distintas, e para variaveis
com ponto extremo, para o problema de poroelasticidade unidimensional.

Constatou-se que, para variaveis com localizagao nodal fixa em malhas distintas,
a aplicacao de MER ¢é feita de forma direta, e com isso obtém-se bons resultados
(comportamento tedrico esperado). Ao considerar varidveis que envolvem pontos extremos,
a aplicacao direta de MER ocasionou resultados ineficazes sobre a reducao de Ej, por
esse motivo, utiliza-se a interpolagao polinomial, seguido da aplicagao de um método de
otimizacao. Essa metodologia apresentou-se eficaz para a reducao de Ej,, apresentando
resultados relevantes. No que se refere as estimativas para o erro de discretizagao,
considerando solucoes obtidas com o emprego de MER, o estimador indicado ¢ Uy,

o qual destacou-se dos demais pela sua acuracia e confiabilidade.

6.2 Problemas de poroelasticidade bidimensionais

6.2.1 Primeiro problema poroelastico bidimensional

Sao apresentados os resultados obtidos com a utilizacado de MER, que foi abordada
na concep¢ao de reducao e estimativa de Ej, para varidveis com mesma localiza¢ao nodal
em malhas distintas, aplicada ao problema de poroelasticidade 2D.

Para esse tipo de variaveis, tém-se como representantes a pressao p e o0s
deslocamentos u e v em determinadas coordenadas do dominio de calculo. Assim,

consideram-se as solugoes numéricas para estas variaveis nos pontos nodais com
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coordenadas: (i,i), (%,i), (%,%), (%,%), (%,%). Por simplicidade de notagao, denota-se
i,i , Up = U (%,%), U3 = u %,%), Ug = U (1 3) eus =u (3 3), sendo as mesmas

i =u 11 11
relacoes de subindices validas para as varidveis v e p, nestas respectivas coordenadas.

As solugdes numéricas foram obtidas a partir do modelo matematico apresentado
na secao 4.1 em oito malhas distintas, em que a malha mais grossa considerada apresenta
N x N, = 5x5 e amais refinada N, x N, = 513 x 513 pontos nodais. As solucoes numéricas
foram obtidas mediante o emprego do Método das Diferencas Finitas e aproximagoes
temporais pelo método de Crank-Nicolson. Em todos os casos, o método multigrid foi
utilizado no intuito de acelerar a convergéncia do processo iterativo e a razao de refino
entre as malhas foi » = 2. A seguir sdo apresentados os resultados obtidos para diferentes
casos, obtidos a partir da variagdo do médulo de Young (E) e condutividade hidrdulica
(K).

Os parametros de entrada para este primeiro problema poroelastico bidimensional

estao listados na Tabela 16.

Tabela 16 — Parametros de entrada para o primeiro problema poroelastico 2D.

Simbolo Quantidade Valor Unidade
7 dominio espacial (0,1) x (0,1) m?
T tempo final 1,0 S
E modulo de Young 1,0 N/m?
K condutividade hidraulica 1,0 m/s
v razao de Poisson 2,0 x 107! —

Fonte: O autor (2023).

Esses valores de E e K sao valores tipicos, usados academicamente para avaliar a
eficacia da metodologia adotada, possibilitando o refinamento em diversos niveis de malha,
porém, sem levar em consideragao seus valores fisicos realisticos. Valores para E e K mais

realisticos serdao abordados nas se¢oes subsequentes.

6.2.1.1 FErro de discretizacao com e sem MER, para a varidvel pressao

As Figuras 28a e 28b ilustram o desempenho de MER sobre E},, para as variaveis
de interesse p3 e ps, respectivamente. Para as demais variaveis py, ps e psy 0s resultados
nao serao expostos, em razao de apresentarem comportamentos numéricos semelhantes,
P1 = Pp3, P2 € Py = ps.

Observa-se na Figura 28 que o emprego de MER resultou em uma reducao
significativa de Fj,. A Tabela 17 apresenta alguns exemplos que caracterizam o efeito de
MER sobre Ej,, os quais foram avaliados mediante o calculo da razao |Ey|/|E,,|. Para isso

levou-se em consideracao as trés tltimas malhas.
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Figura 28 — Desempenho de MER sobre E}, para variaveis ps e ps.

(a) Varidvel ps. (b) Varidvel ps.
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Fonte: O autor (2023).

Tabela 17 — Reducgao do erro em trés malhas distintas, varidvel ps.

Ny x N, 129 x 129 257 x 257 513 x 513
h 7,812 x107* 3,906 x 1073 1,953 x 1073
m para E,, 5 6 7
| En| 2,031 x 1075 5092 x107% 1,274 x 107©
| B 5,259 x 1078 9,654 x 10710 9,172 x 10712

EWl/|Em|  3862x 102 5274x 103 1,389 x 10°

Fonte: O autor (2023).

Verifica-se na Tabela 17 que, para a malha N, x N, = 129 x 129 nos, ao se aplicar
cinco niveis de extrapolagdo (m = 5), Ej, foi reduzido mais de 385 vezes. Ao se aumentar
o nimero de extrapolacoes empregando MER, essa reducao se torna sucessivamente maior.
Para seis niveis de extrapolacao (m = 6) a redugao foi mais de cinco mil vezes e para sete
niveis (m = 7) essa redugao ultrapassou 138 mil vezes (Tabela 17).

Essa reducao significativa de Ej, ao empregar-se MER, estd em acordo com a
literatura vigente (Marchi et al. (2016)), porém, observa-se na Figura 28b, que no primeiro
e no segundo nivel de extrapolagdo, F,, ndao apresentou reducgao sobre Ej,. Além disso, para
a variavel ps (Figura 28a) no primeiro e no segundo nivel de MER, E,, ndo apresentou uma
redugao relevante sobre Ej,. Martins (2013) relata que o emprego de MER deve ocorrer
a partir de um certo nivel de refinamento de 2" e, essa determinagdo de 2" (inicial)
pode ser realizada com base no monitoramento dos valores calculados para pg e/ou py,
sendo desejavel que a sequéncia gerada por tais parametros apresente um comportamento
convergente e monotdnico com a reducao de h e, com isso, do ponto de vista pratico,
o emprego de MER pode ser realizado sem que haja prejuizo em seu desempenho. Isso

posto, analisa-se o comportamento de pg e py para verificar se a nao reducao ou a reducao
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nao significativa de F,, sobre Ej,, mencionada anteriormente, esta relacionada com o
comportamento de pg e/ou py.

As Tabelas 18a e 18b apresentam os valores de pg e py para, respectivamente, as
variaveis p3 e ps com a reducao de h. Observa-se que, para ambos 0s casos py apresenta um
comportamento convergente com o refino de malha, porém, o comportamento monotonico

ocorre somente quando h < 3,12 x 1072, para a varidvel p3, e h < 6,25 x 1072 para ps.

Tabela 18 — Ordens efetiva pg e aparente py, para variaveis ps e ps.

(a) Varidvel ps. (b) Varidvel ps.

h pe(ps)  pu(ps) h pe(ps)  pu(ps)
1,25 x 107t 0,90764 — 1,25 x 1071 1,41674 —
6,25 x 1072 1,97294  0,23314 6,25 x 1072 1,65314  2,42776
3,12 x 1072 1,96654  1,97513 3,12 x 1072 1,96656  1,52745
1,56 x 1072 1,98466  1,96036 1,56 x 1072 1,97141  1,96490
7,81 x 1072 1,99241  1,98205 7,81 x 1072 1,98638  1,96632
3,91 x 107%  1,99622  1,99113 3,91 x 107 1,99326  1,98407
1,95 x 1073 1,99812  1,99559 1,95 x 1073 1,99664  1,99213

Fonte: O autor (2023).

Por conseguinte, a fim de determinar qual 2" (inicial) deve-se utilizar, a malha
mais grosseira foi retirada e empregou-se MER para sete malhas distintas em que a primeira
malha considerada passou a ter N, x N, = 9 x 9 pontos nodais. Desta forma, a Figura 29

ilustra o desempenho de MER sobre E), e a Tabela 19 as ordens pg, py para variaveis p3 e

Ds.
Figura 29 — Desempenho de MER sobre Ej, para variaveis p3 e ps.
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Fonte: O autor (2023).

Na Figura 29b, nota-se que o grafico do F,, apresenta o comportamento tedrico

esperado com a aplicagdo de MER, uma redugao de E,, mediante uma elevagao progressiva
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Tabela 19 — Ordens efetiva pg e aparente py, para variaveis p3 e ps.

(a) Varidvel ps. (b) Varigvel ps.

h pe(p3) pu(ps) h pE(ps) pu(ps)
6,25 x 1072 1,97294 — 6,25 x 1072 1,65314 —
3,12 x 1072 1,96654  1,97513 3,12 x 1072 1,96656  1,52745
1,56 x 1072 1,98466  1,96036 1,56 x 1072 1,97141  1,96490
7,81 x 1073 1,99241  1,98205 7,81 x 107 1,98638  1,96632
3,91 x107*  1,99622  1,99113 3,91 x 107*  1,99326  1,98407
1,95 x 1073 1,99812  1,99559 1,95 x 1073 1,99664  1,99213

Fonte: O autor (2023).

da sua ordem de acuracia, isto é, com um aumento da inclina¢ao no grafico correspondente,
0 que nao ocorre na Figura 28b (para a mesma variavel de interesse e localizagdo nodal).

Ao verificar o ultimo nivel de extrapolacao, com e sem a malha N, x N, =5 x 5,
nota-se que a magnitude do erro de discretizacao FE,, apresentou uma pequena redugao ao
retirar-se a malha N, x N, =5 X 5, isto é, para a malha mais refinada, h = 1,95 x 1072,
os valores de E,, sao 8,15 x 107! e 6,27 x 107!, respectivamente nas Figuras 28b e 29b.

Para a varidvel p; na malha mais refinada, h = 1,95 x 1073, os valores de F,,
sao de 9,17 x 10712 e 5,36 x 107! nas Figuras 28a e 29a, respectivamente. Deste ponto
em diante, todos resultados das simulagdo numéricas serao realizados com sete malhas
distintas em que a malha mais grossa considerada apresenta N, x N, =9 x 9 e a mais
refinada N, x N, = 513 x 513 pontos nodais.

6.2.1.2  FErro de discretizagio com e sem MER, para a varidvel deslocamento

Na Figura 30 ¢ apresentado o desempenho de MER sobre Ej para as variaveis
de interesse uq, us, us, uy € us. Nota-se que FE,, apresenta uma reducao relevante sobre
E}. Na Tabela 20 estao representados os resultados que caracterizam essa redugao com o
célculo da razao |Ep|/|En|, considerando-se as trés malhas mais refinadas, para a varidvel
us. Observa-se na Tabela 20 que, com o aumento dos niveis de MER, a reducao do E,,

com relagao a Fj, torna-se gradativamente mais expressiva.

Como exemplo, para N, x N, = 129 x 129, a reducao de Ej, foi superior a 300
mil vezes, ja para N, x N, = 257 x 257 ¢ N, x N, = 513 x 513 essas redugoes foram
superiores a 935 mil e 5,8 milhoes de vezes, respectivamente. Para as variaveis vy, vg, v3,
vy € v5 os resultados numéricos apresentaram valores similares das variaveis uq, ug, us, ty

e us. Na Figura 31 ilustra-se o desempenho de MER sobre Ej para as variaveis v e vy.
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Tabela 20 — Reducgao do erro em trés malhas distintas, varidvel us.

Ny x N, 129 x 129 257 x 257 513 x 513
h 7,812 x 1073 3,906 x 1073 1,953 x 1073
m para E,, 4 ) 6
| EL| 1,528 x 107° 3,819 x 107¢ 9,546 x 1077
| B 5,091 x 10711 4,083 x 1072 1,626 x 10713
|Enl/|En] 3,001 x 10° 9,352 x 10° 5,872 x 10°

Fonte: O autor (2023).

6.2.1.3 FEstimativas para o erro de discretizacao

As estimativas apresentadas a seguir, sao do erro a posteriori, calculadas com base
em solu¢des numéricas obtidas em malhas 2" distintas. Ao se calcular uma estimativa,
para o erro, objetiva-se que ela seja confiavel e acurada. Como ja dito anteriormente, uma
estimativa para o erro ¢ confiavel se a sua magnitude é maior que a magnitude do erro, e
é acurada se a magnitude da incerteza U é aproximadamente igual a do erro. Quanto mais

proximas estao as magnitudes da estimativa e do erro, mais acurado é o estimador.

Variavel de interesse: deslocamento

Nas Tabelas 21 e 22, apresentam-se os valores das efetividades dos estimadores
Ua, Upm, Upme, Uy e Uy para as varidveis ug e ug. Utilizam-se esses estimadores para

estimar o erro de discretizacao apos o emprego de MER, ou seja, para estimar F,,.

Tabela 21 — Efetividade dos estimadores Ua, Upym, Upme, Uy € Uy, para a variavel us.

h Un/En, Upm/En Upme/ Enm Uy/Enp Uy En
6,25 x 1072 5,526 x 101 1,340 x 10! 1,072 - 1,056
312x 1072 1,306 x 10! 6,253 x 102 1,000 2,141 x 10~1 9,376 x 10~
1,56 x 1072 2,160 x 103 3,035 x 1072 9,713 x 10~} 1,447 x 10> 9,709 x 107!
781 x 1073 3279 x 10! 1,688 x 1072 1,080 —1,427 x 1072 1,116
391 x 1073 1,326 x 10! 8,124 x 10=% 1,040 —4,440 x 101 9,653 x 10~
1,95 x 1073 2,591 x 10 - - 1,872 1,848 x 10!

Fonte: O autor (2023).

Observa-se que as estimativas de F,, mais acuradas, sao obtidas pelos estimadores
Upme € Uy+, ou seja, o cdlculo das suas efetividades ¢ § ~ 1. Entretanto, outra caracteristica
desejada, além da acuracia, é a confiabilidade dos estimadores. Nas Tabelas 21 e 22,
verifica-se que entre os estimadores que se apresentaram mais acurados, o estimador Uy,
¢ 0 mais confiavel, isto é, ao calcular efetividade obteve-se § > 1 em todas as malhas, para

a variavel uy, e ndo se obteve # > 1 apenas na malha h = 1,56 x 1072, para a varidvel us.
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Figura 30 — Desempenho de MER sobre Eh, para varidveis ui, ug, us, u4 € us.

(a) Variavel u;.

(b) Variavel us.
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Fonte: O autor (2023).

Nas Figuras 32a e 32b apresentam-se os erros de discretizagao e suas estimativas

para as variaveis uz e uy, respectivamente. Os estimadores utilizados para a confec¢ao dos

graficos, sdo os que apresentaram maior confiabilidade e acurdcia (Tabelas 21 e 22).
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Figura 31 — Desempenho de MER sobre E}, para varidveis vs e vy.

(a) Variavel vs. (b) Variavel vy.
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Fonte: O autor (2023).

Tabela 22 — Efetividade dos estimadores Ua, Uppm, Upme, Uy € Uy+, para a variavel uy.

h Ua/En, Upm/ Enm, Upme/ Em Uy/Enm Up+/Em
6,25 x 1072 2,185 x 10> 1,420 x 10~' 1,136 — 1,132
3,12 x 1072 7,309 6,683 x 1072 1,069 3,245 x 1072 9,480 x 107!
1,56 x 1072 1,446 x 10> 3,266 x 1072 1,045 1,750 9,788 x 107!
781 x 1073 2,245 x 10' 1,608 x 1072 1,029 1,471 9,852 x 1071
3,91 x 107® 3,501 x 10" 7,950 x 10~* 1,018 1,512 9,893 x 107!
1,95 x 1072 5,746 x 10! — — 1,611 —1,049 x 102

Fonte: O autor (2023).

Varidvel de interesse: pressao

A seguir sao apresentados os valores para a efetividade dos estimadores Ua, Upp,
Upme, Uy € Uy+, para as varidveis de interesse ps e py. Verifica-se nas Tabelas 23 e 24, que
os estimadores Up,,. e Uy- se apresentaram mais acurados para estimar F,,, ou seja, o

calculo da efitividade resulta 8 ~ 1.

Tabela 23 — Efetividade dos estimadores Ua, Upp, Upme, Uy € Uy, para a varidvel ps.

h Ua/Em Upn/ Em Upme/ Em Uy/En, Up/Enm,
6,25 x 1072 1,181 x 10> 9,775 x 1072 7,820 x 107! - 7,859 x 1071
3,12 x 1072 3,139 6,760 x 1072 1,082 1,791 x 1072 1,548
1,56 x 1072 1,243 x 10> 3,260 x 1072 1,043 —5,722 9,671 x 107!
781 x 107% 2,342 x 101 1,598 x 102 1,023 1,763 9,815 x 107!
3,91 x 107% 4,375 x 10" 7,889 x 10~* 1,010 1,805 9,874 x 107!
1,95 x 1072 1,021 x 102 — - 2,287 —1,194 x 102

Fonte: O autor (2023).
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Figura 32 — Erro de discretizagdo Ej, E,, e suas estimativas, para as variaveis us e uq.

(a) Variavel ug. (b) Varidvel ug.

—2 —2
1073 — 1073 p’
10 /./' 10 /./l
4
o 10 P . g 10t —
g . ./'/ 4 g 10° 4
N o N B /l/
© _7 © 10 © % "
g 10 5
2 . 2 10 A
5 10° 5
o -9 L [} 10 8 <
< 10 ° ) Pl
g 1 0—10 . < g 10 p
Mgl . Ey—e— 1 @ y0 W Ep —o— |
“12 /Jﬂ/ Em —=— T Em —H—
10 o Uri 1 10” Uri
10”0 13 A U gmi‘ 10 12 1 Ugmi-
391x107° 1,56x1072 6,25x102 3,91x107° 1,56x1072 6,25x102

Discretizagdo espacial 4 [m] Discretizagdo espacial 4 [m]

Fonte: O autor (2023).

Tabela 24 — Efetividade dos estimadores Ua, Upm, Upme, Uy e Uy=, para a varidvel py.

h Un/Ey, Upn/Em  Upme/Em Uy/En Upe/En
6,25 x 1072 8,859 1,364 x 1071 1,091 - 1,202
3,12x 1072 1,048 x 100 6,839 x 10°2 1,004 —1,219 1,003
1,56 x 1072 1,088 x 10! 3,209 x 102 1,056 9,717 x 10~} 9,677 x 10~
781 x 1073 1,835 x 10! 1613x 102 1,033 1,579 9,792 x 10~
391 x 1073 3,117 x 100 7,962 x 1073 1,019 1,637 9,874 x 107!
1,95 x 1073 5,286 x 10! - - 1,661 —7,674 x 10!

Fonte: O autor (2023).

Com relagao a confiabilidade dos estimadores, os resultados sao semelhantes aos
obtidos para as varidveis ug e us. O estimador que se apresenta mais confidvel entre Uy,
e Uy, é 0 Uy dado que nao se obteve f > 1 apenas na malha h = 6,25 x 1072, para ps.
Para p4, obteve-se 6 > 1 para todas as malhas consideradas.

As Figuras 33a e 33b representam os erros de discretizagdo e suas estimativas,
para as variaveis ps e py4, respectivamente.

Utilizou-se para a confeccao dos graficos os estimadores que apresentaram maiores
niveis de confiabilidade e acuracia. Para os estimadores de FE,, analisados nessa secao,
conclui-se que o estimador U, apresenta-se confidvel para todas as malhas consideradas,
porém pouco acurado. Os estimadores mais acurados para se estimar E,, sa0 Uppe € Uy-

e, entre estes estimadores o que apresenta maior confiabilidade é o Upy..
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Figura 33 — Erro de discretizacdo Ej, E,, e suas estimativas, para as variaveis ps e py.

(a) Varidvel ps. (b) Varidvel py.
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Fonte: O autor (2023).

6.2.2 Segundo problema poroelastico bidimensional

Os parametros de entrada para o segundo problema poroelastico sao listados na

Tabela 25.

Tabela 25 — Parametros de entrada para o segundo problema poroelédstico 2D.

Simbolo Quantidade Valor Unidade
? dominio espacial (0,1) x (0,1) m?
T tempo final 1,0 S
E modulo de Young 1,0 x 10* N/m?
K condutividade hidrdulica 1,0 x 107° m/s
v razao de Poisson 2,0 x 1071 -

Fonte: O autor (2023).

O valor para a condutividade hidraulica, K = 1,0 x 107% m/s, est4 relacionado com
problemas fisicos para solos tais como: areia siltosa, silte, loesse, marga, solonetz e turfa
ou para rochas como: igneas fraturadas, metamorficas e basalto permeavel, (BEAR, 1972;
FREEZE; CHERRY, 1979; KNAPPETT; CRAIG, 2019). Uma relacdo mais abrangente
para valores tipicos da condutividade hidraulica encontra-se no Apéndice A.

Nas secoes subsequentes, sao apresentados os resultados obtidos para Ej, E,, e

suas estimativas, para as variaveis de interesse pressao e deslocamento.
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6.2.2.1 FErro de discretizacao com e sem MER

Varidvel de interesse: pressao

As Figuras 34a e 34b apresentam o desempenho de MER sobre Ej, para as
variaveis p; e ps, respectivamente. As variaveis p, ps € ps nao sao apresentadas, visto que,

possuem comportamentos numéricos semelhantes, p; = ps e py = p3 = py.

Figura 34 — Desempenho de MER sobre Ej, para variaveis p; e ps.

(a) Varidvel p;. (b) Varigvel ps.
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Fonte: O autor (2023).

Observa-se na Figura 34 que o emprego de MER provocou uma reducao significativa
no erro de discretizagao. A Tabela 26, dimensiona essa redugao mediante o calculo da
razao |Ey|/|Em).

Tabela 26 — Reducdo do erro em duas malhas distintas, para as variaveis p; e ps.

variavel pq variavel ps
N, x N, 129 x 129 513 x 513 129 x 129 513 x 513
m para F,, 4 6 4 6
| En| 2,383 1,489 x 1071 3,733 x 107* 2,333 x 107°
|Epn| 1,402 x 107* 9,725 x 10710 1,363 x 1077 5,311 x 1072

|EW/|En| 1,701 x 104 1531 x 108 2,738 x 103 4,392 x 10°

Fonte: O autor (2023).

Para a variavel p, verifica-se que para a malha N, x IV, = 129 x 129, ao aplicar
quatro niveis de MER, o erro se reduz em mais de 17 mil vezes e para a malha N, x N, =
513 x 513, ao utilizar seis niveis de MER, essa reducao ¢ de mais de 1,5 x 108 vezes.

Para a varidvel ps, tem-se que essa reducio foi mais de 2,7 x 10 e 4,3 x 10° vezes

para as malhas N, x N, = 257 x 257 e N, x N, = 513 x 513, respectivamente.
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Com isso, tem-se que a aplicacao de MER para a variavel de interesse pressao,
se mostrou eficaz para a reducao do erro de discretizacao. A seguir sao apresentados os

resultados obtidos para E) e E,, para a variavel de interesse deslocamento.

Varidvel de interesse: deslocamento

Na Figura 35, representa-se o desempenho de MER sobre Ej,, para as varidveis us
e uz. As varidveis u, uy4 € us nao sao apresentadas, visto que, possuem comportamentos

numéricos semelhantes, 11 = uz = us e us = uy. O mesmo ocorre para a variavel v, isto é,

v = u.
Figura 35 — Desempenho de MER sobre E},, para variaveis us e us.
hs 3
(a) Varidvel us. (b) Varidvel us.
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Fonte: O autor (2023).

Observa-se nas Figuras 35a e 35b que o emprego de MER apresenta uma reducao
significativa do F,, em relacao ao Ej,. A Tabela 27 apresenta essa redugao tomando a razao
|EnL|/|Em|. Como exemplo, para a varidavel uz tem-se que a reducao do E,, em relagao
ao Fj, é superior a 7,2 x 10* vezes, para a malha N, x N, = 257 x 257. Para a malha

N, x N, = 513 x 513 essa redugao foi superior a 9,0 x 107 vezes.

Tabela 27 — Redugéo do erro em duas malhas distintas, varidveis us e us.

variavel uqy variavel us
N, x N, 129 x 129 513 x 513 129 x 129 513 x 513
m para E,, 4 6 4 6
| Ep| 3,819 x 107 2373 x 1077 1,891 x 107® 1,180 x 107¢
| B 2,685 x 107 1,190 x 107" 2,593 x 10719 1,307 x 10~

|Enl/|Eml 1,422 x 103 1,993 x 10° 7,294 x 10* 9,033 x 107

Fonte: O autor (2023).
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Ao se observar as Figuras 35a, 35b e a Tabela 27, percebe-se que a aplicagao de
MER se mostra como uma metodologia promissora para a reducao de Ej na resolucao
numérica do problema em estudo. A seguir sao apresentados os erro de discretizagao e

suas estimativas.

6.2.2.2  FEstimativas para o erro de discretizacao

Varidvel de interesse: deslocamento

Apresentam-se nas Tabelas 28 e 29 os valores da efetividade dos estimadores
Ua, Upm, Upme, Uy € Uy~ para as varidveis ug e us. Esses estimadores sao utilizados para

estimar o erro de discretizacao, apos o emprego de MER.

Tabela 28 — Efetividade dos estimadores Ua, Upp, Upme, Uy € Uy+, para a varidvel us.

h Ua/Enm Upn/ Em Upme/ Em Uy/En, Up/En,
6,25 x 1072 6,675 1,398 x 10~% 1,118 - 1,279
3,12 x 1072 8,269 6,395 x 1072 1,023 —1,358 9,232 x 107!
1,56 x 1072 4,143 x 10* 3,166 x 102 1,013 4,317 9,903 x 107!
7,81 x 1072 7,530 x 101 1,558 x 1072 9,971 x 107! 1,742 9,845 x 107!
3,91 x 107* 3,377 x 10> 7,932 x107* 1,015 —4,345 1,018
1,95 x 1073 6,604 x 10! — — —1,976 x 107! 1,248 x 10!

Fonte: O autor (2023).

Tabela 29 — Efetividade dos estimadores Ua, Upm, Upme, Uy € Uy+, para a varidvel us.

h Ua/Em Upm/ Em Upme/ Em Uy/En Up/En,
6,25 x 1072 9,742 1,352 x 107% 1,082 — 1,180
3,12 x 1072 1,156 x 10" 6,255 x 1072 1,001 —1,200 9,303 x 107!
1,56 x 1072 1,257 x 10> 3,076 x 1072 9,845 x 107! 9,448 x 10! 9,837 x 107!
781 x 107* 6,137 x 101 1,536 x 1072 9,830 x 1071 —4,646 x 1072 9,985 x 10~}
3,91 x 1073 5,680 x 10" 7,789 x 10~2 9,970 x 107! 9,094 x 10~* 1,015
1,95 x 1073 3,344 x 102 — — 5,926 —3,303 x 10°

Fonte: O autor (2023).

Observa-se nestas tabelas que os estimadores que se apresentaram mais acurados,
0 ~ 1, sa0 Upye € Uy+. Desses estimadores o que se apresenta mais confidvel, 6 > 1, é o
estimador Up,.. Na Figura 36 apresenta-se graficamente F,, e sua estimativa. O estimador
utilizado para a confeccao dos graficos é o que apresentou maior nivel de confiabilidade e

acuracia.
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Figura 36 — Erro de discretizagdo Ey, E,, e suas estimativas, varidveis ug e us.
(a) Variavel us. (b) Varidvel us.
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Fonte: O autor (2023).

Varidvel de interesse: pressao

Nas Tabelas 30 e 31 sao apresentados os valores da efetividade dos estimadores
Ua, Upm, Upme, Uy € Uy~ para as varidveis ps, p3. Constata-se que os estimadores mais

acurados sao Up,. e Uy- e, entre eles, o que se apresenta confidvel, § > 1, é o estimador
Upme-

Tabela 30 — Efetividade dos estimadores Ua, Upp, Upme, Uy € Uy+, para a variavel po.

h Un/Em Up/Em Upme/Enm Uy B Uy /Enm
6,25 x 1072 5054 x 100 1,422 x 10! 1,138 - 1,157
3,12 x 1072 7,230 6,596 x 1072 1,055 —1,419 x 10~1 9,358 x 10~
1,56 x 1072 1,789 x 10 3,187 x 1072 1,020 2,161 9,682 x 107!
781 x 1078 4,962 x 100 1,572 x10"2 1,006 2,599 9,864 x 10~
391 x 1073 1,716 x 102 7,853 x 1073 1,005 3,357 9,995 x 10~
1,95 x 1073 1,906 x 102 - - 1,101 —7,986 x 10!

Fonte: O autor (2023).

Na Figura 37 apresenta-se graficamente F,, e sua estimativa. O estimador utilizado

para a confeccao dos graficos é o que apresentou maior nivel confiabilidade e acuracia.

Nesta secao foram apresentados os resultados numéricos referentes a efetividade

dos estimadores U, Upnm, Upme, Uy € Uy+, em relagao as suas acuracias e confiabilidades.
Com isso, conclui-se que: a) O estimador U, se apresenta confidvel para todos os casos
analisados, porém, nao se apresenta acurado, § >> 1; b) Os estimadores U, e Uy, nio se
mostraram confiaveis e acurados nos casos analisados; ¢) Os estimadores mais acurados

580 Upme € Uy»; d) O estimador que apresentou maior confiabilidade é Upc.
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Tabela 31 — Efetividade dos estimadores Ua, Upm, Upme, Uy € Uy, para a varidvel ps.
h Ua/Ey, Upm/Em Upme/ Em Up/Em Up/Epm
6,25 x 1072 5,105 x 10! 1,389 x 107! 1,111 — 1,130
3,12 x 1072 8,733 6,499 x 1072 1,040  —1,657 x 107! 9417 x 107!
1,56 x 1072 2,449 x 10! 3,198 x 1072 1,023 2,465 9,847 x 107!
781 x 1073 4,252 x 10! 1,577 x 1072 1,009 1,655 9,865 x 107!
3,91 x 107* 1,085 x 102 7,846 x 1073 1,004 2,478 9,952 x 1071
1,95 x 1072 2,341 x 10? — — 2,130 —1,548 x 102
Fonte: O autor (2023).
Figura 37 — Erro de discretizacao Fj,, E,, e suas estimativas, varidveis po2 e ps.
(a) Varidvel ps. (b) Varidvel ps.
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Fonte: O autor (2023).

6.2.2.3 Varidveis com ponto extremo

Para as variaveis com ponto extremo, tém-se como representantes os valores
maximos para os deslocamentos (Umaz, Vmaz) € Para a pressao (Pmaz). As solugoes para
O = Umazs ® = Umaz € ® = Pmae foram obtidas utilizando os mesmos parametros de entrada
apresentados na Tabela 16.

Daqui em diante, uma mudanca na solucao fabricada anteriormente
(equagao (4.11)) fez-se necesséria. Essa mudanga justifica-se ao calcular o valor maximo
para os deslocamentos (Umaz € Umaz) € Para a pressao (Pmaz), utilizando tal equagdo. Para
ambos os casos, tem-se que as coordenadas desses pontos sao x = % ey = % Com isso, o
problema recai no caso anterior, onde as variaveis de interesse sdo do tipo 1 (apresentam
mesma localiza¢ao nodal, com o refino de malhas).

Utiliza-se entao, outra solugao fabricada dada por
u(z,yt) =v(z,y,t) = pla,yt) = sen(rz?)sen(my®)e". (6.1)

Ao se calcular gy, Vmaz € Pmaz, utilizando a equagdo (6.1), tem-se que suas
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coordenadas sao xr = g ey = g, ou seja, nao coincidem com as coordenadas dos pontos
nodais obtidos com a discretizacdo do domino 2"

Com as ¢ nodais calculadas, aplica-se MER. Nota-se que a aplicacao direta de
MER para esse tipo de varidvel nao apresenta reducao significativa de F,, em relacao a

E), (Figura 38).

Figura 38 — Desempenho de MER sobre E}, para variaveis tmaz € Pmaz-

(a) Variavel tmqq- (b) Varigvel pyaz-
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FONTE: O autor (2023).

Na Tabela 32 sao apresentados os valores de pg e py para as variaveis U,,qaz € Pmaz

sem a aplicacao de interpolacao polinomial.

Tabela 32 — Ordens efetiva pg e aparente py para as variaveis Umqz € Pmaz, Sem interpolagao

polinomial.
variavel U,qz variavel p,ae

h PE bu PE bu
6,25 x 1072 1,3506374 — 1,9391298 —
3,12 x 1072 1,1105419  1,5298274 1,3535374  2,2194888
1,56 x 1072 4,9688677  1,6786605 x 107! 9,3492440  6,3948013 x 107!
7,81 x 1073 —2,4408175  2,3295101 —6,6397309  2,7218407
3,90 x 1073 3,1557683  9,0462448 x 1072 3,3718317 —1,4757878 x 107!
1,95 x 1073 2,0221156  3,7169336 2,0207854  3,9130442

Fonte: O autor (2023).

Busca-se, entao, melhorar o desempenho de MER com o procedimento descrito na
segdo 5.2, isto é, aplica~se interpolagao polinomial e um método de otimizacao (Gradiente)
previamente ao emprego de MER (Algoritmo 4). Na Figura 39 sdo apresenta-se os valores
de pg para Upee € Pmaz, SemM e com aplicacao de interpolagao polinomial.

Como ja mencionado, para que o emprego de MER seja realizado sem que haja

prejuizo em seu desempenho, é desejavel que pg apresente um comportamento convergente
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Figura 39 — Ordem efetiva pp, para as variaveis tmqz € Pmaz COM € sem interpolacdo polinomial.
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FONTE: O autor (2023).

e monotonico com a reducao de h. Observa-se na Figura 39, que apds a aplicacao de
interpolagdo polinomial esse comportamento desejavel ocorre.
Na Figura 40, representa-se o desempenho de MER sobre Ej,, para as variaveis w4z

€ Pmaz, ap0s a aplicacao de interpolacao polinomial seguida de um método de otimizacao.

Figura 40 — Erro de discretizacao para interpolacao polinomial sem MER (E,) e com MER (Ep, ).
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FONTE: O autor (2023).
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Na Figura 20, para o caso unidimensional, verificou-se que a magnitude de E,,,
foi reduzida com a elevagao de p, porém, isso s6 era efetivo até o limite de p = 6, com
resultados equivalentes para valores de p > 6. Ao observar a Figura 40, tem-se que os

resultados sao similares para o caso bidimensional.

Estimativas para o erro de discretizacao

Para se estimar os erros de discretizagao utilizou-se os estimadores Ua, Upm, Upmes
Uy e Uy-. Nas Tabelas 33 e 34, respectivametne para Umqz © Pmaz, apresentam-se as

efetividades destes estimadores.

Tabela 33 — Efetividade dos estimadores Ua, Upm, Upme, Uy € Uy, para a varidvel ty,q, (p = 6).

h Ua/Enm Upm/ Enm, Upme/ Em Uy/Em Up+/Em
6,25 x 1072 3357 x 10" 1,344 x 10°Y 1,075 — 1,050
3,12x 1072 1,252 x 10! 6,343 x 1072 1,015 3,356 x 1071 9,477 x 10!
1,56 x 1072 6,382 x 10 3,449 x 1072 1,104 4,510 1,086
781 x 1072 1,030 x 10" 1,622 x 1072 1,038 1,697 x 1071 9,457 x 107!
3,91 x 107% 2,693 x 101 7,957 x 107* 1,018 2,433 9,819 x 107!
1,95 x 1073 5,476 x 10* — — 1,981 —3,404 x 10!

Fonte: O autor (2023).

Tabela 34 — Efetividade dos estimadores Ua, Upm, Upme, Uy € Uy, para a variavel prqaz (p = 6).

h Ua/En Upn/Em Upme/ Em Up/Em Up+/Em
6,25 x 1072 1,156 x 10" 1,489 x 107! 1,191 — 1,105
3,12 x 1072 5,459 6,658 x 1072 1,065 4,476 x 1071 9,099 x 10~*
1,56 x 1072 1,531 x 100 3223 x 1072 1,031 2,381 9,701 x 107!
781 x 107 3,183 x 10! 1,610 x 1072 1,031 1,952 9,992 x 107!
3,91 x 1073 3,316 x 101 8,002 x 1073 1,024 1,025 9,941 x 107!
1,95 x 1073 4,180 x 10* — — 1,243 —1,328 x 103

Fonte: O autor (2023).

Os estimadores que se apresentaram mais acurados (6 ~ 1), s40 Upp. € Uy, porém

o0 unico que se apresenta confidvel (§ > 1), é o estimador Upp,.

Na Figura 41 apresenta-se graficamente F,, e sua estimativa. O estimador utilizado

para a confeccao dos graficos é o que apresentou maior nivel de confiabilidade e acuracia
(Tabelas 33 e 34).
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Figura 41 — Erro de discretizacao para interpolacao polinomial sem MER (E,) e com MER (Ep, ).

(a) Varidvel tpqz- (b) Variavel pmaz-
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FONTE: O autor (2023).

6.2.3 Terceiro problema poroelastico bidimensional

Os parametros de entrada para o terceiro problema poroelastico bidimensional

sao listados na Tabela 35.

Tabela 35 — Parametros de entrada para o terceiro problema poroelastico 2D.

Simbolo Quantidade Valor Unidade
0 dominio espacial (0,1) x (0,1) m?
T tempo final 1,0 S
E modulo de Young 1,0 x 10? N/m?
K condutividade hidrdulica 1,0 x 1072 m/s
v razao de Poisson 2,0 x 107! —

Fonte: O autor (2023).

O valor para a condutividade hidraulica K = 1,0 x 1072 m/s, estd relacionado
com problemas fisicos para solos como: cascalho limpo, misturas de areia e cascalho ou
para rochas de calcario carstico ou basalto permeével (BEAR, 1972; FREEZE; CHERRY,
1979; KNAPPETT; CRAIG, 2019).

Na Figura 42 ilustra-se o desempenho do emprego direto de MER sobre E}, para
as variaveis Umaz € Pmaz- Como ja discutido anteriormente, verifica-se que a aplicacao
direta de MER nao ocasiona uma reducao significativa de FE,, com relagdo a Ej,.

Para melhorar o desempenho de MER, aplica-se o procedimento descrito na
Segdo 5.2, ou seja, utiliza-se interpolagao polinomial seguida de um método de otimizagao
(Algoritmo 4). Representa-se nas Figuras 43a e 43b o desempenho de MER sobre E,,, apds
utilizar interpolacdo polinomial seguida de um método de otimizacao, respectivamente

para as variaveis gz € Pmaz-
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Figura 42 — Desempenho de MER sobre E}, para variaveis tmaz € Pmaz-

(a) Varidvel umqz- (b) Variavel pmaz-

i

. A
/ —

E,—e—
E,—5—

,6 —
10 ‘ 10
3,9x107 1,6x1072 6,2x107 3,9x107

1,6x1072

6,2x107

Discretizacao espacial # [m] Discretizagao espacial 4 [m]

FONTE: O autor (2023).

Figura 43 — Erro de discretizacao para interpolacao polinomial sem MER (E,) e com MER (E,, ).
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FONTE: O autor (2023).

Ao se comparar a Figura 42 com a Figura 43, verifica-se que a aplicagao da

interpolacdo polinomial seguida de um método de otimizacao faz com que MER apresente

melhores resultados, reduzindo E,,, com o aumento de p. Como dito anteriormente, essa

melhora no desempenho ¢é efetiva até o limite de p = 6, para valores de p > 6 os resultados

sao semelhantes.

Estimativas para o erro de discretizacao

Para se estimar os erros de discretizagao, utilizou-se os estimadores Ua, Uppm,

Upme, Uy e Uy+. Nas Tabelas 36 e 37 apresentam-se os valores para as efetividades desses

estimadores. Os estimadores mais acurados sao Uy, € Uy«, um seja, os valores para 6 ~ 1.
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Tabela 36 — Efetividade dos estimadores Ua, Upm, Upme, Uy € Uy=, para a variavel wpmqz (p = 6).

h Ua/E,, Upn/ Enm, Upme/ Em Uy/En Up/Em
6,25 x 1072 3,933 x 101 1,321 x 107! 1,057 - 1,036
3,12 x 1072 1,627 x 101 6,158 x 1072 9,852 x 10~% 3,674 x 107! 9,357 x 10~}
1,56 x 1072 6,261 x 10 2,723 x 1072 8,713 x 10~ —3,360 8,828 x 107!
7,81 x 1073 6,558 1,639 x 1072 1,049 8,949 x 1072 1,241
3,91 x 1073 2,120 x 10! 7,965 x 1073 1,019 —3,948 9,734 x 107!
1,95 x 1072 5,191 x 10* — - 2,365 1,225 x 10!

Fonte: O autor (2023).

Tabela 37 — Efetividade dos estimadores Ua, Upm, Upme, Uy € Uy, para a variavel prqaq. (p = 6).

h Ua/Em Upm/ Em Upme/ Em Uy/En, Up/En,
3,12x 1072 2455 x 10! 1,382 x 107! 1,106 - 1,144
1,56 x 1072 9,161 6,475 x 1072 1,036 —3,660 x 1071 9,427 x 107!
7,81 x 1072 2,700 x 101 3,015 x 1072 9,646 x 107! 2,593 9,334 x 107!
3,91 x 1072 2,643 x 101 1,630 x 1072 1,043 —8,843 x 1071 1,085
1,95 x 1073 2,367 x 10! — — —9,562 x 1071 1,282 x 10!

Fonte: O autor (2023).

Com relacao a confiabilidade, levando em consideracao os estimadores com maior

nivel de acuracia, (Upme € Uy~ ), para a varidvel u,,,, tem-se que ambos os estimadores

apresentam-se confidveis para as malhas h = 6,25 x 1072 e h = 7,81 x 1073, Para a varidvel

Prmaz, garante-se a confiabilidade para as malhas h = 3,12 x 1072 e h = 3,91 x 1073 com o

estimador Uy, e ndo se garante para a malha h = 7,81 x 1073, com o estimador Uy,..

Na Figura 44 apresenta-se graficamente F,, e sua estimativa.

Figura 44 — Erro de discretizacao para interpolacao polinomial sem MER (E,) e com MER (E,,).
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Nesta Secao 6.2.3, foram apresentados os resultados obtidos com a aplicacao de
MER, para variaveis com ponto extremo, que apresentam mudanga de coordenadas nodais
com o refino da malha, para o problema de poroelasticidade bidimensional.

Constatou-se que a aplicacao direta de MER ocasionou resultados nao exitosos em
relagdo a redugao de Fj,. Utilizou-se, entao, interpolacao polinomial seguida da aplicacao de
um método de otimizagao previamente ao emprego de MER. Essa metodologia apresentou-
se eficaz para a reducao do erro de discretizagao, apresentando resultados promissores. No
que se refere as estimativas para o erro de discritizagao, considerando soluc¢oes obtidas
com o emprego de MER, com os testes analisados, indica-se Up,., 0 qual destacou-se dos

demais pela sua acuracia e confiabilidade.
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7 CONSIDERACOES FINAIS

Neste capitulo apresenta-se um resumo das principais constatagoes e contribuigoes
desta tese. Ao final, sugestoes de temas para trabalhos futuros sdo propostas, a fim de

complementar as limitacoes do estudo ora exposto.

7.1 Escopo do trabalho

Neste trabalho foi realizada a verificacdo numérica de solugoes resultantes do
emprego de MER no problema da consolidacao de Biot para um meio poroso saturado,
homogéneo, isotrépico e incompressivel (problema de poroelasticidade) para os casos uni e
bidimensional.

Diferentes valores para médulo de Young (E) e condutividade hidraulica (K') foram
utilizados, sendo E = 1,0 N/m? ¢ K = 1,0 m/s considerado como um problema académico,
a fim de avaliar a eficdcia da metodologia adotada, possibilitando o refinamento em diversos
niveis de malha, porém, sem levar em consideragdo seus valores fisicos realisticos. Outros
valores para E e K foram E = 10? N/m? e K = 102 m/s relacionado com valores tipicos
para a condutividade hidraulica para solos como: cascalho limpo, misturas de areia e
cascalho ou para rochas de calcdrio cérstico ou basalto permeével, e E = 10* N/m? e
K =107% m/s relacionado com valores tipicos para a condutividade hidrdulica para solos
tais como: areia siltosa, silte, loesse, marga, solonetz e turfa ou para rochas como: igneas
fraturadas, metamorficas e basalto permeavel.

O trabalho teve como objetivo reduzir e estimar Ej. O desempenho de alguns
estimadores disponiveis na literatura foram utilizados como alternativas para a obtencao
de estimativas para os erros de discretizacao apos o emprego de MER. Os estimadores
utilizados foram Ua, Upm, Upme, Uy € Uy-.

O problema foi discretizado utilizando o método de diferencas finitas (discretizacao
espacial) e o método de Crank-Nicolson (discretizagdo temporal). Para calcular as solugoes
numeéricas utilizou-se o método multigrid no intuito de acelerar a convergéncia do processo
iterativo (esquema CS, ciclo W(1,1), razao de engrossamento padrao, operador de restrigdo
por ponderagdo completa e operador de prolongagao por interpolagao linear (caso 1D) e
bilinear (caso 2D)), suavizador Vanka, precisdo quadrupla e critério de parada até atingir

o erro de maquina.

7.2 Conclusao geral

Avaliou-se a eficacia de MER a fim de se reduzir e estimar o FEj, resultante de
solugoes numeéricas do problema de poroelasticidade uni e bidimensional para dois tipos de
varidveis: 1) varidveis locais (varidveis com coordenada nodal fixa com o refino de malha);

e 2) variaveis com mudanga na coordenada nodal com o refino de malha, visando reduzir



Capitulo 7. Consideracoes Finais 100

o erro de discretizacao e aumentar a precisao da solugao numérica. A partir dos testes

realizados, conclui-se que:

7.3

o uso de MER mostrou-se promissor na elevagao do nivel de acuracia das solucoes

numeéricas para problemas de poroelasticidade;

para o primeiro tipo de varidvel estudado, varidveis com localizacao nodal fixa, o
emprego direto de MER ¢é recomendado, ou seja, ocorreu um redugao significante de
Ep;

para o segundo tipo de variavel estudado, variaveis com localizagao nodal previamente
indeterminada, o emprego direto de MER nao é recomendado. Recomenda-se o
emprego prévio de interpolagdo polinomial seguido de um método de otimizacao,

para entao se aplicar MER.

a aplicacao prévia de interpolagao polinomial para variaveis com valores extremos
seguida do uso de um método de otimizagao resultou em uma reducao consideravel
de Ey;

com relagao a ordem de acuracia do erro de discretizagdo, MER proporcionou uma

elevagdo progressiva e significativa.

no que diz respeito as estimativas para o erro de discretizacdo, considerando as
solugoes obtidas com a aplicagao de MER, o estimador de Richardson Corrigido
(Upme) € recomendado por fornecer melhor precisao e confiabilidade do que os outros

analisados neste trabalho.

Principais contribuigoes

Mediante os resultados obtidos, considera-se que o objetivo geral da tese foi

alcancado. Com isso, as contribui¢oes podem ser sumarizadas como:

desenvolvimento de verificagdo numérica no problema de poroelasticidade uni e

bidimensional;

estabelecimento de MER como uma alternativa para a reducao do erro de discretizacao

no problema de poroelasticidade uni e bidimensional;

investigacao sobre o comportamento de MER para diferentes casos, obtidos a partir

da variacao do médulo de Young (E) e condutividade hidraulica (K);

analise sobre a realizacao de procedimentos numéricos prévios ao emprego de MER,
para variaveis que apresentam mudancas de coordenadas nodais com o refino de

malha;



Capitulo 7. Consideracoes Finais 101

» estudo sobre estimadores para o erro de discretizacao resultante da aplicacao de

MER no problema de poroelasticidade uni e bidimensional.

7.4 Propostas de trabalhos futuros

Com a finalidade de complementar e expandir os estudos deste trabalho, os

seguintes temas sao sugeridos:

« realizacdo de verificagdo das solugoes numéricas do problema de poroelasticidade

tridimensional mediante o emprego de MER;

o verificacao das solu¢des numéricas mediante o emprego de MER, porém, para

escoamento multifasico;

e resolver o problema de poroelasticidade por meio do método de volumes finitos,
empregar MER para redugao e estimativa de £} e comparar os resultados com os

obtidos neste trabalho.
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APENDICE A - VALORES TIiPICOS PARA A CONDUTIVIDADE

Figura 45 — Intervalos de valores de condutividade hidraulica K e de permeabilidade £.
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Fonte: Traduzida de Freeze e Cherry (1979).
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Figura 46 — Valores tipicos de condutividade hidraulica K.
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[m/s] I I I I I I I I I I
Permeabilidade Permedvel Semipermeével Impermeavel
Cascalho Areia limpa ou Areia muito fina, silte,
limpo areia e cascalho | loesse, marga, solonetz
Solos
Turfa Argila estratificada| Argila intemperizada
Rochas Rochas petroliferas| Arenito Calcér:io, Granito
dolomita

Fonte: Traduzida e Adaptada de Bear (1972).
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