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RESUMO

Este trabalho tem como objetivo reduzir e estimar o erro de discretização (Eh) através da
aplicação de Múltiplas Extrapolações de Richardson (MER) ao problema de escoamento
em meio poroso deformável em domínios unidimensionais e bidimensionais. Tal método
caracteriza-se como um procedimento de pós-processamento que requer baixo custo
computacional fundamentado na série de Richardson. Neste sentido, realiza-se a verificação
numérica de soluções obtidas com o emprego do Método das Diferenças Finitas, em que
são aplicadas aproximações espaciais de segunda ordem, bem como condições de contorno
de Dirichlet e Neumann. As aproximações temporais são executadas através do método de
Crank-Nicolson, gerando assim grandes sistemas de equações lineares. Para resolver esses
sistemas, é utilizado o método multigrid em conjunto com o suavizador Vanka, otimizando
assim a convergência do processo iterativo. As variáveis de interesse são classificadas de
acordo com suas localizações, tais como nodais e não nodais, durante o refinamento da
malha. Os resultados são agrupados da seguinte forma: para variáveis com localização nodal
fixa, a aplicação de MER leva a uma redução substancial no erro Eh. No entanto, para
variáveis com coordenadas variáveis durante o refinamento da malha, a aplicação direta de
MER não se mostra eficaz. Para lidar com essa situação, uma metodologia é proposta,
envolvendo interpolação polinomial prévia e um método de otimização. Os resultados
obtidos revelam que essa abordagem é promissora para redução do erro de discretização e
aumento da ordem de acurácia das soluções numéricas, quando aplicada a esse tipo de
variável. Além disso, busca-se a obtenção de estimativas do erro de discretização após
a aplicação de MER. A análise abrange diversos estimadores presentes na literatura,
destacando-se o estimador de Richardson Corrigido, recomendado por sua maior acurácia
e confiabilidade em comparação com outros estimadores examinados neste trabalho.

Palavras-chave: Multiplas Extrapolações de Richardson, Erros de discretização, Estima-
dor de erro, Poroelasticidade



ABSTRACT

The current work aims to reduce and estimate discretization error (Eh) through the
utilization of Repeated Richardson Extrapolation (RRE) to the problem of flow in a
deformable porous medium within one-dimensional and two-dimensional domains. The
adopted methodology is characterized as a post-processing procedure, requiring low
computational cost and grounded in the Richardson series. In this context, numerical
verification is conducted on solutions attained using the Finite Difference Method,
where second-order spatial approximations are applied, alongside Dirichlet and Neumann
boundary conditions. Temporal approximations are executed through the Crank-Nicolson
method, resulting in the formulation of large systems of linear equations. To solve these
systems, the multigrid method together with the Vanka smoother is employed, thereby
optimizing the convergence of the iterative process. The variables of interest are categorized
based on their positions, including nodal and non-nodal, throughout mesh refinement. The
results are organized as follows: for variables with fixed nodal locations, the application
of RRE leads to a substantial reduction in error Eh. However, for variables with varying
coordinates during mesh refinement, the direct application of RRE proves ineffective. To
address this situation, a methodology is proposed, involving prior polynomial interpolation
and an optimization method. The obtained results reveal that this approach holds promise
for reducing discretization error and enhancing the accuracy order of numerical solutions
when applied to this type of variable. Furthermore, the work seeks to obtain estimations
of discretization error subsequent to the application of RRE. The analysis encompasses
various estimators present in the literature, with the Corrected Richardson Estimator
standing out as recommended due to its greater accuracy and reliability compared to other
estimators examined in this study.

Keywords: Repeated Richardson Extrapolation, Discretization Errors, Error Estimator,
Poroelasticity.
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1 INTRODUÇÃO

Um dos grandes desafios dos pesquisadores na área da Dinâmica dos Fluidos
Computacional (em inglês, Computational Fuid Dynamic, CFD) é avaliar o nível de
acurácia das soluções numéricas. Embora os erros numéricos não possam ser totalmente
eliminados, é imprescindível que sejam controlados, ou minimizados, em simulações
numéricas computacionais. De todas as fontes de erros numéricos, o erro de discretização
(Eh) é considerado como a mais significativa (ROY; OBEEKAMPF, 2011).

Como formas de reduzir Eh, algumas alternativas podem ser avaliadas, porém
as mesmas apresentam vantagens e desvantagens, como: o refinamento da malha, eleva
o custo computacional; o aumento da ordem de acurácia das aproximações, aumenta a
complexidade do modelo numérico; a utilização de técnicas de extrapolação, considerada um
pós-processamento é de fácil implementação e baixo custo computacional (RICHARDSON;
GAUNT, 1927; SIDI, 2003; MARCHI et al., 2013b).

Atualmente, a utilização de técnicas de extrapolação como ferramentas
computacionais eficazes, é cada vez mais reconhecida no meio científico. A qualidade de
um método de extrapolação pode ser avaliada mediante a consideração do comportamento
assintótico de uma sequência convergente, conforme (SIDI, 2003). A Extrapolação de
Richardson (ER), um dos métodos mais conhecidos, baseia-se no comportamento assintótico
de uma sequência convergente para melhorar a precisão da estimativa. O método utiliza
uma fórmula de extrapolação para gerar uma nova sequência de estimativas com uma
taxa de convergência superior à sequência original. Ao se aplicar ER de forma recursiva é
possível potencializar a sua eficácia e esse processo é denominado Múltipla Extrapolação de
Richardson (MER) (em inglês, Repeated Richardson Extrapolation, RRE) (DAHLQUIST;
BJORCK, 2008).

Alguns problemas em CFD possuem em seus modelos matemáticos equações
diferenciais e seus acoplamentos (composições) e, a verificação numérica para esses
problemas requer atenção. Em particular, a poroelasticidade é um destes problemas, onde
as equações modelam matematicamente a interação entre a deformação de um material
elástico poroso e o fluxo de fluido dentro dele. No entanto, a verificação numérica desse
modelo não está consolidada na literatura e ainda é objeto de estudo e discussão. A teoria
geral, formulada por Biot (1941), é conhecida atualmente como modelo de consolidação de
Biot. A análise e a simulação numérica do modelo de Biot tornaram-se mais populares
e vêm sendo discutidas em trabalhos recentes devido a sua gama de aplicações como
na Medicina, Engenharia do Petróleo, Biomecânica, dentre outros campos da Ciência e
da Engenharia (EHLERS W. ANDA BLUHM, 2002; RODRIGO, 2010; FRANCO, 2017;
FRANCO et al., 2018).

Os modelos matemáticos utilizados neste trabalho abordam o problema de
escoamento monofásico em meio poroso deformável tanto em casos unidimensionais quanto
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bidimensionais. O problema de escoamento de apenas um único fluido em um meio
poroelástico, será denotado por "problema de poroelasticidade", onde as equações são
resolvidas numericamente com o emprego do Método das Diferenças Finitas (MDF)
utilizando aproximações espaciais de segunda ordem de acurácia, condições de contorno de
Dirichlet e de Neumann. Além disso, o método de Crank-Nicolson é utilizado para realizar
a aproximação temporal e a conexão espacial e temporal, gerando com isso um sistema
de equações lineares que é resolvido iterativamente pelo suavizador Vanka. O suavizador
Vanka é um método que realiza suavizações por blocos e todas as incógnitas no sistema
são consideradas acopladas. Nas simulações numéricas utilizou-se precisão quádrupla e um
número suficiente de iterações para atingir o nível de acurácia conhecido como erro de
máquina.

As soluções numéricas analisadas correspondem:

a) ao deslocamento e a pressão para variáveis que apresentam mesma localização nodal
com o processo de refinamento de malha na solução numérica;

b) às médias dos deslocamentos e das pressões (variáveis globais);

c) ao valor máximo para o deslocamento e para a pressão (variáveis que apresentam
mudança na coordenada (nodal) com o processo de refinamento de malha na solução
numérica).

Os resultados obtidos a partir dessas análises indicam que a metodologia empregada
é promissora no sentido de elevar a acurácia das soluções numéricas para o problema de
poroelasticidade.

1.1 Descrição do problema

De modo sumário, para apresentação do problema que motivou esta tese, suponha
um processo de refinamento de malha de modo que para cada malha obtenham-se soluções
numéricas distintas. Nesse panorama, para o modelo citado anteriormente, considera-se a
variável pressão no centro do domínio, ou seja, a variável pc. Tal variável apresenta a mesma
localização nodal com o processo de refinamento de malha, embora seus valores sejam
distintos em cada malha considerada. Mediante a representação do erro de discretização
associado a esta variável, versus h (dimensão do elemento de malha ou espaçamento entre
os nós de cada malha), ilustram-se na Figura 1 as magnitudes de Eh e Em, ou seja, o
erro de discretização sem e com o emprego de MER, para o problema de poroelasticidade
unidimensional (detalhes sobre o modelo matemático/numérico de poroelasticidade, bem
como sobre a técnica de MER, serão dados nos capítulos 4 e 5).

Nota-se que os valores para Eh (erro de discretização sem o emprego de MER)
são superiores ao Em (erro de discretização com o emprego de MER) e Em tornam-se
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progressivamente menores com o processo de refino de malha. Essa é a situação ideal na
aplicação de MER, isto é, apresentar uma redução progressiva de Em e com isso elevar a
ordem de acurácia. Essa elevação pode ser verificada com o aumento do declive do gráfico
do erro versus h em escala bilogarítmica (Figura 1).

Por outro lado, para variáveis que apresentam mudança na coordenada (nodal)
com o processo de refinamento de malha, como exemplo o valor máximo da pressão (pmax),
a aplicação direta de MER não se mostra eficiente na redução de Eh, como anteriormente
para pc, ou seja, a magnitude de Em não apresenta redução significativa em relação ao Eh
com o processo de refino de malha (Figura 2). Logo, para esse tipo de variável, a aplicação
direta de MER não se mostra uma ferramenta eficiente.

Figura 1 – Desempenho de MER sobre Eh para a variável pc.
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Figura 2 – Desempenho de MER sobre Eh para a variável pmax.
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Isso posto, o presente trabalho busca estabelecer uma metodologia que seja capaz
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de reduzir a magnitude de Eh com o emprego de MER e estimar Em, especialmente para
variáveis que apresentam mudança na coordenada (nodal) com o processo de refinamento
de malha.

1.2 Revisão bibliográfica

Nesta seção são apresentados alguns trabalhos relacionados à Múltipla
Extrapolação de Richardson (MER), destacando sua eficiência e algumas necessidades de
aprimoramento. Richardson e Gaunt (1927) consideraram a aplicação da Extrapolação de
Richardson (ER) com dois níveis de extrapolação, aplicando essa técnica a equações na
forma integral, como a equação integral de Volterra; e diferencial, como as derivadas no
Teorema de Leibnitz.

Ertuk, Corke e Gokçol (2005) aplicaram dois níveis de ER, utilizando três malhas
distintas no problema de escoamento permanente bidimensional de fluido incompressível
em uma cavidade com tampa móvel e obtiveram sexta ordem de acurácia para a solução
numérica.

Rahul e Bhattacharyya (2006) abordaram a avaliação da ordem de precisão das
soluções obtidas através de aproximações numéricas unilaterais utilizando o método das
Diferenças Finitas. Esse estudo foi direcionado a situações em que as condições de contorno
demandam o cálculo de derivadas. Por meio da aplicação da Múltipla Extrapolação de
Richardson com a utilização de três malhas distintas e dois níveis de extrapolação, foi
possível alcançar uma ordem de acurácia quatro.

Marchi e Germer (2013) avaliaram o desempenho de MER na redução do erro de
discretização quando associado a dez tipos de esquemas numéricos em CFD: de primeira,
segunda e terceira ordens de acurácia para resolver a equação unidimensional de advecção-
difusão. Os autores mostraram que MER é extremamente eficaz na redução do erro
de discretização para todas as variáveis avaliadas (temperatura no centro do domínio,
média do campo de temperatura e taxa de transferência de calor), esquemas numéricos e
número de Peclet, atingindo uma ordem de acurácia superior a 18. Dentre as aproximações
estudadas, o esquema de diferenças centrais (em inglês, Central Differencing Scheme,
CFD), de segunda ordem de acurácia, apresentou o melhor desempenho quando associado
com MER.

Marchi et al. (2013a) examinaram a capacidade de MER em minimizar o erro de
discretização em malhas triangulares e quadrangulares durante a abordagem numérica
(por meio de volumes finitos) da equação de Laplace. A análise revelou que, embora o erro
numérico tenha sido reduzido, a performance teórica esperada da MER não se manifestou
de maneira uniforme para todas as variáveis. Especificamente, essa disparidade foi mais
evidente para as variáveis localizadas nas fronteiras do domínio computacional quando
a geometria triangular foi considerada. Os autores reconhecem que a razão subjacente
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pela qual a MER não atingiu eficácia nesse contexto específico de variáveis de interesse e
geometria triangular permanece ambígua.

Marchi et al. (2013b) utilizaram MER para reduzir e estimar o erro de discretização
de soluções numéricas para a equação de Laplace 2D em malhas quadrangulares. Os autores
demonstraram que MER reduziu significativamente o erro de discretização. Como exemplo,
de 2,25× 10−7 para 3,19× 10−32 com nove níveis de extrapolações e uma malha de 1.025
× 1.025 pontos (nós). Demonstraram ainda que a ordem de acurácia alcançada foi de
aproximadamente 19 e que para se obter um determinado nível de acurácia requerido,
foi necessário muito menos tempo de processamento e de memória RAM do que sem sua
aplicação.

Martins (2013) e Marchi et al. (2016) apresentaram algumas necessidades de
aprimoramento referentes ao emprego de MER e propõem um novo procedimento numérico
para reduzir o erro de discretização associado a vários tipos de variáveis de interesse, as quais
foram classificadas em cinco tipos de acordo com suas localizações coordenadas em malhas
distintas. Desenvolveram estratégias, propondo um conjunto de procedimentos buscando
reduzir o Eh onde a utilização direta de MER apresentava resultados insatisfatórios. Esses
procedimentos, que envolviam interpolação polinomial, foram aplicados a três problemas
modelados por equações clássicas da literatura: Poisson 1D, Burgers 2D e Navier – Stokes
2D. Concluiram que o erro de discretização é significativamente reduzido e a ordem de
acurácia também é elevada.

AbdelMigid et al. (2017) analisaram a solução das equações de Navier-Stokes
com escoamentos incompressíveis para a faixa de variação do número de Reynolds entre
100 e 5000. Utilizaram computação paralela para obter as soluções numéricas em malhas
uniformes e MER foi usada para a redução dos erros de discretização. Os autores obtiveram
uma elevação da ordem de acurácia de 2 para 6 com o emprego de MER.

Rodrigues et al. (2020) verificaram a eficiência de MER para reduzir Eh quando
aplicada ao problema de poroelasticidade unidimensional. As variáveis de interesse
analisadas foram o deslocamento e a pressão no centro do domínio e, o valor médio
da pressão e do deslocamento. Verificou-se que o emprego de MER resultou em uma
redução significativa da magnitude de Eh, assim como uma elevação da sua ordem de
acurácia.

Guo e Chang (2020) avaliaram a eficiência de MER associado a sequência de
Romberg. Esta abordagem foi desenvolvida sob o modelo de Constant Elasticity of Variance.
Os autores concluíram que o método reduziu significativamente os erros para o European
knock-out.

Rodrigues et al. (2022) realizaram um estudo para avaliar a eficiência de
MER, considerando variáveis com valores extremos, correspondentes ao problema de
poroelasticidade unidimensional. Os autores verificaram que a aplicação direta de MER
em variáveis com valores extremos não foi eficiente e utilizaram uma metodologia que
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envolve interpolação polinomial seguida de um método de otimização previamente ao
emprego de MER. Os resultados obtidos indicam que a metodologia utilizada neste estudo
é promissora em termos de redução do erro de discretização e aumento da acurácia das
soluções numéricas, além de obtenção de estimativas para o erro de discretização confiáveis
e acuradas.

Foltran, Marchi e Moura (2023) analisaram a eficiência de MER em problemas de
meios participantes e não participantes de transferência de calor por radiação, alcançando
bons resultados. As estimativas de erro mostraram-se acuradas e confiáveis para verificação
de código e solução. Nesse trabalho também foram apresentadas equações que quantificam
o erro de discretização espacial dentro do domínio quando o Método das Ordenadas
Discretas é usado para simular problemas de meios participantes e quando regras básicas
de integração numérica são usadas para resolver problemas de meios não participantes.

Com base nesses trabalhos pode-se considerar que a aplicação de MER é uma
metodologia promissora para a redução de Eh, assim como para a elevação da ordem de
acurácia das soluções numéricas em CFD. Entretanto, observa-se também a alteração
do seu desempenho conforme a tipificação da variável de interesse, especialmente um
certo comprometimento nos casos em que há alteração de coordenadas com o processo de
refinamento de malhas. Portanto, esta tese está enquadrada nesse pleito, pois preenche a
lacuna da literatura ao apresentar verificação numérica para o problema de poroelasticidade
unidimensional e bidimensional mediante o emprego de MER com o intuito de reduzir e
estimar Eh, em acordo com os objetivos descritos na sequência.

1.3 Objetivos

O presente trabalho tem como objetivo geral estabelecer o emprego da Múltipla
Extrapolação de Richardson (MER) como metodologia para a redução e estimativa de
Eh para variáveis que apresentam mudança na coordenada (nodal) com o processo de
refinamento de malha, no problema de poroelasticidade unidimensional e bidimensional.

Como objetivos específicos têm-se:

• analisar na literatura especializada os resultados sobre o emprego de MER na redução
e estimativa do erro de discretização;

• experimentar o emprego de MER em diversos tipos de variáveis de interesse para o
problema de poroelasticidade unidimensional e bidimensional;

• propor um procedimento complementar ao emprego de MER para os casos em que
seu emprego não resulta na redução imediata do erro de discretização;

• indicar um estimador confiável e acurado para o erro de discretização com o emprego
de MER para o problema de poroelasticidade unidimensional e bidimensional.
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1.4 Organização do texto

Este trabalho está dividido em mais 6 capítulos. O primeiro capítulo constou da
situação e apresentação desta proposta de tese, com apoio na literatura especializada. No
capítulo 2 é apresentada a teoria da consolidação de Biot e suas equações; no capítulo 3
é descrita a fundamentação teórica necessária para o embasamento deste trabalho; no
capítulo 4 são apresentados os modelos matemáticos e numéricos; no capítulo 5 são
apresentados os tipos de variáveis com base no processo de refinamento de malha e também
são expostos os procedimentos específicos para o emprego efetivo de MER, considerando
cada tipo de variável; no capítulo 6 são expostos os resultados e, finalmente, no capítulo 7
são apresentadas: as considerações finais, as principais contribuição do trabalho e sugestões
para trabalhos futuros.
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2 TEORIA DA CONSOLIDAÇÃO DE BIOT

Quando um solo saturado é submetido a um acréscimo de tensão, a pressão dos
poros aumenta imediatamente. Para solos arenosos, o recalque elástico e o adensamento
ocorrem quase que instantaneamente, no entanto, o mesmo não acontece para solos argilosos,
nos quais o recalque elástico ocorre quase que instantaneamente, porém o adensamento
ocorre ao longo do tempo. Essa dependência temporal está relacionada com as propriedades
do solo tais como a porosidade (Figura 3), a permeabilidade, e com a velocidade que o
fluido se move entre os vazios (DAS; KHALED, 2019).

Figura 3 – Espaço poroso em solos arenosos, siltosos e argilosos.

Solo argiloso Solo siltoso Solo arenoso

Fonte: Adaptada de Ganat (2020).

O tratamento matemático desse processo foi inicialmente proposto por Terzaghi
(1923), baseado em seus experimentos de laboratório unidimensionais e é conhecido
como Teoria do Adensamento. Rendulic (1936) expande a teoria de Terzaghi para uma
análise tridimensional, originando a Teoria de Terzaghi-Rendulic, porém esta teoria ainda
considerava o problema de fluxo desacoplado do problema mecânico. A teoria tridimensional
geral da poroelasticidade foi formulada por Biot em 1941.

As hipóteses adotadas por Biot (1941) para as propriedades básicas dos solos são
as seguintes:

• o material é considerado isotrópico, ou seja, suas propriedades físicas são iguais
independentemente da direção;

• o material é considerado perfeitamente elástico, ou seja, o carregamento e o
descarregamento seguem o mesmo caminho no gráfico tensão-deformação;

• as deformações do material são pequenas;

• a água contida nos vazios é considerada incompressível;

• o escoamento da água no meio poroso ocorre segundo a lei de Darcy; e

• o solo é considerado saturado, ou seja, os vazios são totalmente preenchidos por
água.
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No artigo de Biot (1941) foi introduzida uma nova grandeza escalar, denominada
de variação do volume de água (ζ) e definida como o incremento de volume de água
por unidade de volume de solo. O acoplamento de termos mecânicos no problema de
fluxo é caracterizado pela relação de dependência de ζ e às tensões atuantes no solo. O
acoplamento de termos de fluido no problema mecânico, fez-se ao introduzir o termo de
poropressão (p) nas relações constitutivas derivadas da lei de Hooke e descritas pela teoria
de elasticidade.

Neste capítulo são apresentadas as relações constitutivas e as equações de equilíbrio
que darão o suporte para se descrever as equações que modelam o escoamento de um
fluido em um meio poroso.

2.1 Relações constitutivas

Os conceitos-chave da teoria poroelástica de Biot para um meio poroso isotrópico
preenchido com fluido estão contidos em apenas duas equações constitutivas lineares, para
o caso de um campo de tensão σ aplicado. Além de σ, outras grandezas utilizadas para
descrever essas equações são: o incremento de volume de fluido ζ, a pressão do fluido p e a
deformação volumétrica ϵ.

As equações constitutivas representam ϵ e ζ como uma combinação linear de σ e
p e são dadas por (WANG, 2000)

ϵ = a11σ + a12p, (2.1)
ζ = a21σ + a22p. (2.2)

O significado físico de cada coeficiente aij é dado pela razão entre uma variável
dependente e uma variável independente, enquanto a outra variável independente é mantida
constante. Essas razões são expressas por:

a11 = ∂ϵ

∂σ

∣∣∣∣∣
p=const

≡ 1
K

; a12 = ∂ϵ

∂p

∣∣∣∣∣
σ=const

≡ 1
H

; (2.3)

a21 = ∂ζ

∂σ

∣∣∣∣∣
p=const

≡ 1
H1

; a22 = ∂ζ

∂p

∣∣∣∣∣
σ=const

≡ 1
R
, (2.4)

em que 1
K

é a compressibilidade drenada, 1
R

é o coeficiente de armazenamento específico
irrestrito, 1

H
e 1
H1

são os coeficientes de expansão poroelástica.
Biot (1941) demonstra que a12 = a21 . Com isso, tem-se a seguinte relação de

reciprocidade: a expansão do volume sob tensão constante devido a um aumento na pressão
dos poros é o mesmo que o volume de fluido expelido sob pressão constante devido a um
aumento na tensão de compressão. Matematicamente, essa relação é dada por

1
H

= 1
H1
⇒ ∂ϵ

∂p

∣∣∣∣∣
σ=const

= ∂ζ

∂σ

∣∣∣∣∣
p=const

, (2.5)
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e assim, a resposta poroelástica para tensão isotrópica aplicada se caracteriza
completamente (WANG, 2000).

2.2 Equações de equilíbrio

Para a construção das equações de equilíbrio, toma-se um elemento de solo
com lados paralelos aos eixos coordenados e dimensões suficientemente grandes quando
comparado às dimensões dos poros existentes, de forma que o solo pode ser considerado
um material homogêneo. No entanto, o elemento deve ser suficientemente pequeno quando
comparado à dimensão macroscópica do problema, podendo ser assumido como um volume
infinitesimal no tratamento matemático, o qual será denominado por volume elementar de
solo ilustrado na Figura 4.

Figura 4 – Volume elementar de solo.
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Fonte: Adaptada de Cheng (2016).

As tensões atuantes no volume elementar de solo, Figura 4, são as tensões normais
σxx, σyy, σzz e as tensões tangenciais, que são características da teoria da elasticidade. As
tensões são então agrupadas em um tensor de tensões totais σ escrito como:

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 , (2.6)

em que, as tensões cisalhantes perpendiculares à linha de intersecção entre as faces
ortogonais do cubo são iguais, isto é

σxy = σyx,

σyz = σzy,

σzx = σxz.
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As equações de equilíbrio de força translacional, incluindo uma força de corpo por
unidade de volume (F⃗), podem ser obtidas da Figura 4. Por exemplo, a força resultante
na direção x deve somar zero, logo

[σxx(x+∆x,y,z)− σxx(x,y,z)]∆y∆z + [σyx(x,y +∆y,z)− σyx(x,y,z)]∆x∆z
+ [σzx(x,y,z +∆z)− σzx(x,y,z)]∆x∆y + Fx∆x∆y∆z = 0.

(2.7)

Cada termo entre colchetes, na equação (2.7), pode ser aproximado linearmente
pela derivada do componente de tensão vezes a distância através do volume elementar de
solo, ou seja, 

σxx(x+∆x,y,z)− σxx(x,y,z) = ∂σxx
∂x

∆x

σyx(x,y +∆y,z)− σyx(x,y,z) = ∂σyx
∂y

∆y

σzx(x,y,z +∆z)− σzx(x,y,z) = ∂σzx
∂z

∆z

· (2.8)

Com isso, as equações de equilíbrio de forças são dadas por:

∂σxx
∂x

+ ∂σyx
∂y

+ ∂σzx
∂z

+ Fx = 0

∂σxy
∂x

+ ∂σyy
∂y

+ ∂σzy
∂z

+ Fy = 0

∂σxz
∂x

+ ∂σyz
∂y

+ ∂σzz
∂z

+ Fz = 0

· (2.9)

Denominando as componentes do vetor deslocamento do meio poroso nas direções
x, y e z por u, v e w, respectivamente, e adotando a hipótese das pequenas deformações
(WANG, 2000), tem-se que as deformações no solo são dadas por

ϵxx = ∂u

∂x

ϵyy = ∂v

∂y

ϵzz = ∂w

∂z

ϵxy = 1
2

(
∂u

∂y
+ ∂v

∂x

)

ϵxz = 1
2

(
∂u

∂z
+ ∂w

∂x

)

ϵyz = 1
2

(
∂v

∂z
+ ∂w

∂y

)

· (2.10)

Ao levar em consideração as hipóteses adotadas por Biot para as propriedades
dos solos, a relação tensão-deformação do meio poroso é expressa pela lei de Hooke, por
meio da teoria da elasticidade como
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

ϵxx = σxx
E − ν

E (σyy + σzz)

ϵyy = σyy
E − ν

E (σxx + σzz)

ϵzz = σzz
E −

ν

E (σyy + σxx)

ϵxy = σxy
2G

ϵxz = σxz
2G

ϵyz = σyz
2G

, (2.11)

em que as constantes E, ν e G são, respectivamente, o módulo de elasticidade longitudinal
ou módulo de Young, o coeficiente de Poisson e o módulo de elasticidade transversal, e
são relacionadas por

G = E
2(1 + ν) · (2.12)

Em Biot (1941), os termos definidos na equação (2.11) são reescritos adicionando
um termo aos componentes de deformações longitudinais. Esse termo adicionado por Biot,
considera o efeito da pressão do fluido e atua apenas nas direções longitudinais do volume
elementar de solo, não ocasionando deformações cisalhantes. Com isso, a equação (2.11) é
reescrita como 

ϵxx = σxx
E − ν

E (σyy + σzz) + p

3H

ϵyy = σyy
E − ν

E (σxx + σzz) + p

3H

ϵzz = σzz
E −

ν

E (σyy + σxx) + p

3H

ϵxy = σxy
2G

ϵxz = σxz
2G

ϵyz = σyz
2G

, (2.13)

em que p é a pressão no interior dos poros, também conhecida como poropressão e 1
H

, como
já foi dito, é o coeficiente de expansão poroelástica. Assim, a equação (2.13) representa uma
das relações fundamentais (equação (2.1)), que descreve o estado de deformações do meio
poroso sob condições de equilíbrio. A outra relação fundamental dada na equação (2.1) é
representada pelo incremento de volume do fluido (ζ). A entrada ou saída de fluido do
volume de controle pode ser dada em razão da deformação deste volume, pela variação da
pressão do fluido, fontes de geração ou sumidouros (WANG, 2000). Essa relação é

ζ = 1
H
σ + p

R
, (2.14)
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em que σ é a tensão total média dada por

σ = σxx + σyy + σzz
3 , (2.15)

e 1
R

é o coeficiente de armazenamento específico irrestrito. Verifica-se que para definir

essas relações, são necessárias quatro constantes físicas ν,G, 1
R

e 1
H

, diferente do que
acontece na elasticidade clássica que são necessárias apenas duas.

Resolvendo a equação (2.13) em função de ϵ, tem-se

σxx = 2Gϵxx + 2G ν

1− 2ν ϵ− αp

σyy = 2Gϵyy + 2G ν

1− 2ν ϵ− αp

σzz = 2Gϵzz + 2G ν

1− 2ν ϵ− αp

σxy = 2Gϵxy

σxz = 2Gϵxz

σyz = 2Gϵyz

, (2.16)

em que ϵ é a deformação volumétrica formada pela soma das componentes normais do
tensor deformação (ϵ = ϵxx + ϵyy + ϵzz) e α o coeficiente de Biot, dado por

α = 2(1 + ν)G
3(1− 2ν)H · (2.17)

Substituindo as equações (2.16) em (2.14), pode-se escrever a equação (2.18) para
o incremento de fluido em função da deformação e da poropressão,

ζ = αϵ+ p

Q
, (2.18)

em que Q é o módulo de Biot, dado por
1
Q

= 1
R
− α

H
· (2.19)

As equações diferencias parciais que representam o equilíbrio mecânico são obtidas
por relações substitutivas nas equações de equilíbrio de forças. Para isso, substitui-se as
equações constitutivas, equação (2.16), na equação (2.9), resultando em



G∇2u+ G

1− 2ν

(
∂2u

∂x2 + ∂2v

∂x∂y
+ ∂2w

∂x∂z

)
= α

∂p

∂x
− Fx

G∇2v + G

1− 2ν

(
∂2u

∂y∂x
+ ∂2v

∂y2 + ∂2w

∂y∂z

)
= α

∂p

∂y
− Fy

G∇2w + G

1− 2ν

(
∂2u

∂z∂x
+ ∂2v

∂z∂y
+ ∂2w

∂z2

)
= α

∂p

∂z
− Fz

, (2.20)
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em que ∇2 é o operador laplaciano, isso é,

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 · (2.21)

Nota-se que o sistema de equações (2.20) está indeterminado, pois apresenta
apenas três equações para quatro incógnitas u, v, w e p. Logo, necessita-se de mais uma
equação, a qual será representada pelo modelo matemático do escoamento de um fluido
em um meio poroso (lei de Darcy) junto à equação de conservação de massa.

2.3 Escoamento de um fluido em um meio poroso (lei de Darcy)

Em 1856 Henry P. G. Darcy realizou uma série de experimentos, expressando uma
relação empírica para o fluxo unidimensional por

qz = −Kdh

dz
, (2.22)

em que, qz é a descarga específica (volume de fluido cruzando a área unitária por unidade
de tempo), h é a carga hidráulica e K é a condutividade hidráulica. A Figura 5 ilustra o
aparato experimental utilizado por Darcy para realizar este experimento.

Figura 5 – Ilustração do experimento da coluna de areia de Darcy.

escoamento da água através da areia.

Manômetro
de mercúrio

Manômetro
de mercúrio

Aparelho destinado a determinar a lei do

Fonte: Adaptada de Hubbert (1957).
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Hubbert (1957) mostrou que a carga hidráulica de Darcy é a energia potencial do
fluido por unidade de peso e, para fluidos incompressíveis a carga hidráulica h pode ser
expressa em função da carga altimétrica e da poropressão (p). Com isso, a lei de Darcy
tridimensional pode ser expressa como (CHENG, 2016)

qx = −Kx
dp

dx

qy = −Ky
dp

dy

qz = −Kz
dp

dz

. (2.23)

Considerando a hipótese de Biot de fluido incompressível, tem-se que a taxa de
variação do volume de fluido, para volume elementar de solo, é igual a soma dos fluxos
que atravessam as faces do mesmo, assim

∂ζ

∂t
= −∇ · q, (2.24)

em que q = (qx, qy, qz) é o vetor de descarga específica.
Substituindo as equações (2.18) e (2.23) na equação (2.24), tem-se

1
Q

∂p

∂t
−K∇2p = −α ∂

∂t

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
, (2.25)

que é a equação formulada por Biot (1941) para representar o escoamento do fluido em
um meio poroso deformável.

Assim, a formulação matemática para o problema clássico da consolidação de Biot
para um meio poroso saturado, homogêneo e isotrópico, está completa e é dada por



G∇2u+ G

1− 2ν

(
∂2u

∂x2 + ∂2v

∂x∂y
+ ∂2w

∂x∂z

)
= α

∂p

∂x
− Fx

G∇2v + G

1− 2ν

(
∂2u

∂y∂x
+ ∂2v

∂y2 + ∂2w

∂y∂z

)
= α

∂p

∂y
− Fy

G∇2w + G

1− 2ν

(
∂2u

∂z∂x
+ ∂2v

∂z∂y
+ ∂2w

∂z2

)
= α

∂p

∂z
− Fz

1
Q

∂p

∂t
+ α

∂

∂t

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
−K∇2p = 0

, (2.26)

em que, as quatro incógnitas do problema são os deslocamentos u, v e w, nas direções x, y
e z, respetivamente e, a poropressão p.
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3 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo será apresentada a fundamentação teórica necessária para o
embasamento da tese.

3.1 Método das Diferenças Finitas

A solução analítica de uma equação Diferencial Parcial (EDP), ou mesmo um
sistema de EDPs, pode ser complexa, dependendo de suas equações, da geometria do seu
domínio e condições de contorno e iniciais, as quais prejudicam, ou até mesmo, tornam
impossível a resolução.

Para superar essas dificuldades, as EDPs são resolvidas utilizando métodos
numéricos. Existem diversos métodos numéricos para se obter a solução aproximada
de uma EDP, como o Método das Diferenças Finitas (MDF) (GOLUB; ORTEGA, 1992;
FERZIGER; PERIĆ, 2002; SAAD, 2003; PLETCHER; TANNEHILL; ANDERSON, 2013),
dos Volumes Finitos (MVF) (GOLUB; ORTEGA, 1992; MALISKA, 2004) e dos Elementos
Finitos (MEF) (HUGHES, 2000; THOMPSON, 2005), entre outros. O princípio básico
desses métodos é tornar o problema contínuo, em um problema discreto, com o número
finito de pontos no domínio de cálculo, ou seja, é estabelecido ao longo do domínio quais
coordenadas se almeja determinar para a variável dependente por meio da aplicação de
uma estrutura geométrica discreta. Para este trabalho, o MDF foi utilizado (GASPAR;
LISBONA; VABISHCHEVICH, 2003; FRANCO, 2017; FRANCO et al., 2018).

No Método dos Elementos Finitos (MEF), a abordagem comumente adotada
para a discretização emprega uma malha geométrica discreta que é organizada de forma
localizada. Nesse contexto, cada ponto, ou nó, na malha pode ser concebido como o ponto
de origem de um sistema de coordenadas local. Os eixos desse sistema coincidem com
as linhas definidas pela estrutura da malha em questão. A ilustração das Figuras 6 e 7
exemplifica arranjos de malhas cartesianas, uniformes e em dimensões unidimensionais e
bidimensionais, respectivamente. Os nós localizados ao longo das fronteiras são denotados
por (•), enquanto os nós internos da malha são indicados por (◦).

Figura 6 – Exemplo de uma malha uniforme unidimensional.

i i+ 1i− 1 Nx1

hh

Fonte: Adaptada de Fortuna (2000).

No contexto unidimensional, cada ponto nodal é indicado pela posição i. Os nós
adjacentes são identificados como i−1 e i+1, correspondendo às posições Oeste e Leste em
relação ao nó em consideração. Para o caso bidimensional, cada nó é definido unicamente
pela interseção das linhas de malhas na posição (i, j) e seus nós vizinhos, adotando a ordem
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lexicográfica, são definidos por (i− 1, j), (i+ 1, j), (i, j − 1) e (i, j + 1), representando os
nós nas posições Oeste, Leste, Sul e Norte, respectivamente.

Figura 7 – Exemplo de uma malha uniforme bidimensional.

1 i+ 1i− 1 i

j + 1

j − 1

j
(i, j)

Nx

Ny

hx hx

hy

hy

Fonte: Adaptada de Fortuna (2000).

Aproximações pelo MDF podem ser obtidas de várias formas, sendo as mais
comuns a expansão por série de Taylor e a interpolação polinomial. Com a utilização
da expansão por série de Taylor, tanto as aproximação numéricas quanto seus erros de
truncamento podem ser obtidos (FORTUNA, 2000). Qualquer função Λ(x) que possua
caráter analítico na vizinhança de xi pode ser representada por meio de uma expansão em
série de Taylor:

Λx = Λi + (x− xi)
(
dΛ

dx

)
i

+ (x− xi)2

2!

(
d2Λ

dx2

)
i

+ (x− xi)3

3!

(
d3Λ

dx3

)
i

+ . . . (3.1)

em que Λx representa Λ(x), Λi representa Λ(xi) e
(
dΛ
dx

)
i

representa d
dx
Λ(xi).

Ao considerar todos os termos presentes na expansão em série de Taylor, a
determinação de Λx é exata. Aplicando a equação (3.1) aos nós i − 1 e i + 1 a partir
do ponto i em um malha uniforme, ou seja, com espaçamento h entre os nós constante
(Figura 6), tem-se para x = xi+1,

Λi+1 = Λi + h

(
dΛ

dx

)
i

+ h2

2

(
d2Λ

dx2

)
i

+ h3

6

(
d3Λ

dx3

)
i

+ . . . (3.2)

e para x = xi−1,

Λi−1 = Λi − h
(
dΛ

dx

)
i

+ h2

2

(
d2Λ

dx2

)
i

− h3

6

(
d3Λ

dx3

)
i

+ . . . . (3.3)
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As equações que descrevem a derivada de primeira ordem podem ser derivadas da
combinação das equações (3.2) e (3.3). A seleção das equações a empregar determina a
natureza do esquema adotado, bem como a ordem do erro de truncamento incorrido. A
seguir, são expostos os exemplos usuais dos esquemas para a aproximação das derivadas
utilizadas nesta tese.

• Aproximação da primeira derivada com diferença central (CDS)
Subtraindo-se a equação (3.3) da equação (3.2), tem-se que

Λi+1 − Λi−1 = 2h
(
dΛ

dx

)
i

+ 2h3

6

(
d3Λ

dx3

)
i

+ 2h5

120

(
d5Λ

dx5

)
i

+ . . . , (3.4)

ou (
dΛ

dx

)
i

= Λi+1 − Λi−1

2h︸ ︷︷ ︸ −
h2

6

(
d3Λ

dx3

)
i

− h4

120

(
d5Λ

dx5

)
i

− . . .︸ ︷︷ ︸ . (3.5)

considerado desprezado (erro de truncamento)

Dessa forma, a derivada primária de Λ é aproximada utilizando o esquema centrado
(CDS) no ponto i, por meio de(

dΛ

dx

)CDS
i

= Λi+1 − Λi−1

2h +O(h2), (3.6)

em que o erro de truncamento é expresso por

ε

(
dΛ

dx

)CDS
i

= −h
2

6

(
d3Λ

dx3

)
i

− h4

120

(
d5Λ

dx5

)
i

− . . . = O(h2). (3.7)

De forma semelhante, ao exposto anteriormente para aproximações da primeira
derivada, podem ser encontradas relações para expressar aproximações da segunda derivada.

• Aproximação da segunda derivada com diferença central (CDS)
Ao somar a equação (3.2) com a equação (3.3), tem-se

Λi−1 + Λi+1 = 2Λi + h2
(
d2Λ

dx2

)
i

+ h4

12

(
d4Λ

dx4

)
i

+ h6

360

(
d6Λ

dx6

)
i

+ . . . , (3.8)

ou (
d2Λ

dx2

)
i

= Λi−1 − 2Λi + Λi+1

h2︸ ︷︷ ︸ −
h2

12

(
d4Λ

dx4

)
i

− h4

360

(
d6Λ

dx6

)
i

− . . .︸ ︷︷ ︸ (3.9)

considerado desprezado (erro de truncamento)

Portanto, a segunda derivada de Λ é calculada usando o esquema centrado com
três pontos (CDS) no ponto P , por meio de(

d2Λ

dx2

)CDS
i

= Λi−1 − 2Λi + Λi+1

h2 +O(h2), (3.10)
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e o erro de truncamento é dado por

ε

(
d2Λ

dx2

)CDS
i

= −h
2

12

(
d4Λ

dx4

)
i

− h4

360

(
d6Λ

dx6

)
i

− h6

20160

(
d8Λ

dx8

)
i

− . . . = O(h2). (3.11)

Com os resultados apresentados nas equações (3.6) e (3.10), percebe-se que
o termo de ordem O(h2) correspondente ao erro de truncamento das aproximações
numéricas consideradas (BURDEN; FAIRES, 2016; SAAD, 2003; FERZIGER; PERIĆ,
2002; FORTUNA, 2000; TANNEHILL; ANDERSON; PLETCHER, 1997).

Com expansões em série de Taylor para qualquer função analítica Λ(x,y) na
vizinhança de (xi, yi), pode-se também determinar expressões que envolvem derivadas
mistas. Neste trabalho, aproximações para as derivadas mistas (caso bidimensional) serão
utilizadas na seção 4.2. Para a aproximação destas derivadas basta utilizar a ideia
apresentada anteriormente e tomar como função as derivadas já existentes. Para um
estudo mais detalhado a este respeito, consultar Dahlquist e Bjorck (2008), Fortuna (2000)
e Saad (2003).

3.2 Métodos para a aproximação temporal

Para as aproximações temporais, tem-se na literatura as formulações numéricas:
explícita, implícita e totalmente implícita (MALISKA, 2004; TANNEHILL; ANDERSON;
PLETCHER, 1997). Uma formulação é considerada explícita em relação a um passo de
tempo quando todas as incógnitas adjacentes ao ponto i são calculadas com base nos
passos de tempo anteriores (n), e, portanto, já estão estabelecidas (Figura 8a). Uma
formulação é tida como implícita para um passo de tempo quando as incógnitas vizinhas
ao ponto i são determinadas nos passos de tempo atual (n+ 1) e passado (n) (Figura 8b).
Além disso, uma formulação é considerada totalmente implícita em relação a um passo de
tempo quando todas as incógnitas vizinhas ao ponto i são avaliadas no instante de tempo
corrente (n+ 1) e, como tal, não são totalmente conhecidas (isso depende da sequência de
atualização das incógnitas), conforme ilustrado na Figura 8c.

Para exemplificar as formulações explícita, implícita e totalmente implícita,
descreve-se o Problema de Valor Inicial (PVI) em uma malha bidimensional, a ser resolvido
em cada nó da malha, denotado por


dui,j(t)
dt

= fi,j(t,ui,j(t))
ui,j (t0) = u0

i,j

, (3.12)

em que ui,j(t) e fi,j(t,ui,j(t)) são funções a serem resolvidas para todo nível de tempo t
nos pontos (i, j) da malha. O índice (i, j) representa as coordenadas dos nós na malha,
onde i varia de 1 a N e j varia de 1 a M , indicando as posições nas direções x e y,
respectivamente.
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A equação diferencial parcial é expressa pela derivada temporal dui,j(t)
dt

igual a
uma função fi,j(t,ui,j(t)), que depende do tempo t e da solução ui,j(t) no ponto (i, j) da
malha. As condições iniciais são dadas por ui,j(t0) = u0

i,j , onde t0 é o tempo inicial e u0
i,j é

o valor inicial da solução ui,j no ponto (i, j) da malha.
Observa-se que a derivada temporal é considerada ordinária, ou seja, mesmo

dependendo dos valores espaciais em cada nó (i, j), a derivada é calculada considerando
(xi, yj) como conhecidos durante o cálculo da variável temporal. Nesse caso, a notação
(xi, yj, t) é simplificada para u(t) para indicar que u é uma função apenas da variável
temporal t.

Figura 8 – Aproximações temporais.

(a) Formulação explícita.
i

i

i− 1 i+ 1
n+ 1

n
i− 1 i+ 1

(b) Formulação implícita.
i

i

i− 1 i+ 1
n+ 1

n
i− 1 i+ 1

(c) Formulação totalmente implícita.
i

i

i− 1 i+ 1
n+ 1

n
i− 1 i+ 1

FONTE: Adaptada de Maliska (2004).

3.2.1 Método de Euler

O método de Euler é um procedimento utilizado para alcançar uma aproximação
discreta da solução u(t) da equação (3.12) no intervalo [t0, tf ], referidos como pontos
discretos na malha. Estabelece-se que esses pontos da malha estão distribuídos
uniformemente ao longo do intervalo [t0, tf ], e ao selecionar um número inteiro positivo
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Nt, os pontos da malha (em t) podem ser expressos como

tn+1 = t0 + (n+ 1)τ, (3.13)

para cada n = 0, 1, . . . , Nt−1, em que o tamanho de passo de tempo é dado por τ = tf − t0
Nt

.
Ao considerar u(t) como a solução única da equação (3.12), em que u ∈ C2[t0, tf ],

e supondo que sua expansão em série de Taylor para cada valor de n = 0, 1, . . . , Nt − 1 é
dada por:

u(tn+1) = u(tn) + τ
d

dt
u(tn) + τ 2

2
d2

dt2
u(tn) + · · · . (3.14)

Utilizando v como uma aproximação para u, o método de Euler estabelece a
construção de vn ≈ u(tn) para cada valor de n = 0, 1, . . . , Nt− 1, ao negligenciar os termos
τ2

2
d2

dt2
u(tn) + · · · . Assim, o método de Euler, que representa uma aproximação de primeira

ordem no tempo, pode ser expresso como: v0 = y0

vn+1 = vn + τf(vn+1,tn+1)
, (3.15)

para cada n = 0, 1, . . . , Nt − 1.
Para calcular o valor de vn+1, é empregado o método de Euler Implícito, onde

os valores correspondentes aos passos de tempo n e n + 1 são utilizados na função f .
Caso apenas os valores relacionados ao passo de tempo n + 1 em f sejam empregados
para determinar o valor de vn+1, o método recebe a designação de Método de Euler
Totalmente Implícito. Alternativamente, se apenas os valores ligados ao passo de tempo n
forem necessários, o método é identificado como Método de Euler Explícito (BURDEN;
FAIRES, 2016). Os métodos Implícito e Totalmente Implícito possuem primeira ordem de
aproximação temporal, notavelmente, exibem estabilidade incondicional, ou seja, a sua
convergência não está sujeita à relação entre o tamanho do passo de tempo e o tamanho da
discretização espacial (BURDEN; FAIRES, 2016; FERZIGER; PERIĆ, 2002; FORTUNA,
2000; FRANCO, 2017).

3.2.2 Método de Crank-Nicolson

O método de Crank-Nicolson (CN) apresenta segunda ordem de aproximação
temporal (O(τ 2)) e é caracterizado por sua estabilidade incondicional (BURDEN; FAIRES,
2016; FERZIGER; PERIĆ, 2002; FORTUNA, 2000).

Considerando por exemplo o PVI (3.12), o método de CN consiste em fazer v0 = y0

vn+1 = vn + τ

2 [f(vn+1,tn+1) + f(vn,tn)]
, (3.16)

para n = 0, 1, . . . , Nt− 1, em que os subindices n+ 1 e n indicam os passos de tempo atual
e anterior, respectivamente.
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3.3 Erro numérico

Para uma determinada variável de interesse, o erro numérico (E) é definido como
a diferença entre a solução analítica exata (Φ) e sua solução numérica (ϕ) (FERZIGER;
PERIĆ, 2002), ou seja,

E(ϕ) = Φ− ϕ. (3.17)

O erro numérico pode ser causado por diversas fontes, dentre essas, o erro numérico
é tipificado como: erro de truncamento (ET ), erro de iteração (EI) e erro de arredondamento
(Eπ) (FERZIGER; PERIĆ, 2002; MARCHI, 2001). A seguir, cada fonte de erro será descrita
com mais detalhes.

3.3.1 Erro de truncamento e erro de discretização

A ocorrência do erro de truncamento se dá quando se realiza a transição de
um modelo matemático contínuo com informações provenientes de um conjunto infinito
para um modelo discreto com informações limitadas a um conjunto finito. De forma
mais precisa, o erro de truncamento emerge como o efeito resultante da interrupção
de um processo infinito (ROACHE, 1998). Para Tannehill, Anderson e Pletcher (1997),
ao considerarmos equações diferenciais, o erro de truncamento corresponde ao resíduo
resultante da substituição da solução analítica exata da variável dependente na versão
discretizada do modelo matemático.

Quando EI e Eπ são minimizadas ou mesmo inexistentes, ET passa a ser
denominado em Ferziger e Perić (2002) como erro de discretização (Eh). Sendo o Eh

a única fonte de erro numérico, então, o Eh a partir da série de Taylor será representado
por

Eh = E(ϕ) = c0h
p0 + c1h

p1 + c2h
p2 + . . . =

∞∑
V=0

cV h
pV , (3.18)

onde os coeficientes c0, c1, c2, . . . são números reais e podem ser funções da variável
dependente e de suas derivadas, mas independem de h. Os expoentes p0, p1, p2, . . . são as
ordens verdadeiras de Eh e seu conjunto é representado por pV = {p0, p1, p2, . . .}.

Os elementos de pV são números inteiros positivos seguindo geralmente a relação
1 ≤ p0 < p1 < . . . os quais representam uma progressão aritmética de razão p1 − p0. O
primeiro termo p0 é denominado de ordem assintótica (ou de acurácia) de E(ϕ) (ou da
solução numérica ϕ) e será denotado por pL.

À medida que h → 0, a contribuição dominante para o erro Eh é
predominantemente influenciado pelo primeiro componente da equação (3.18), ou seja,
c0h

p
L assume o papel principal na composição de Eh. Ao considerar o gráfico de Eh

em escala bilogarítmica versus h, tem-se que a inclinação em relação ao eixo horizontal
converge para o valor de pL. Assim, quanto maior for esse valor, mais acentuada se torna
a redução de Eh com o refino da malha.
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O Eh pode ser estimado a priori ou a posteriori ao cálculo da solução numérica, em
que as estimativas a priori consistem, basicamente, em estimar pL (SZABÓ; BABUSKA,
1991). Obtendo pL, é possível avaliar previamente o efeito da diminuição de h em Eh.
Considerando os erros de discretização Eh1 e Eh2 obtidos e duas malhas distintas Ωh1 e
Ωh2 , grossa e fina, respectivamente, tem-se

Eh1

Eh2

= chpL1
chpL2

=
(
h1

h2

)pL
= rpL , (3.19)

onde r = h1
h2

representa a razão de refino de malha. Dessa forma, o fator de redução de Eh,
com o refinamento de malha é dado por rpL .

De outro modo, a análise de pL a posteriori da solução numérica é baseada no
cálculo das ordens efetiva pE, quando a solução analítica é conhecida, ou aparente pU , nos
casos em que não se conhecem a solução analítica, dadas por

pE =
log

(
Eh1

Eh2

)
log(r) (3.20)

e

pU =
log

(
ϕ2 − ϕ1

ϕ3 − ϕ2

)
log(r) , (3.21)

em que ϕ1, ϕ2 e ϕ3 correspondem, respectivamente, às soluções numéricas obtidas nas
malhas Ωh1 (grossa), Ωh2 (fina) e Ωh3 (superfina), com r = h1/h2 = h2/h3 (razão de refino
constante).

3.3.2 Erro de iteração

Ao considerar a solução numérica (ϕ) para determinada variável de interesse, o
erro de iteração EI , de acordo com Ferziger e Perić (2002), é dado pela diferença entre a
solução exata (ϕex) para o sistema de equações algébricas, e a solução numérica na iteração
n (ϕn), definido por

EI = ϕex − ϕn. (3.22)

As principais origens do erro EI compreendem diversas situações: a adoção de
métodos iterativos para resolver o conjunto de equações algébricas que surge do processo
de discretização; a resolução de sistemas não lineares, nos quais a matriz dos coeficientes é
influenciada pela variável dependente do problema; e a presença de modelos matemáticos
constituídos por múltiplas equações, cada uma delas sendo tratada independentemente.
Em geral, os efeitos decorrentes de EI tendem a diminuir conforme o número de iterações n
aumenta, ou seja, à medida que n→∞⇒ EI → 0. Um estudo detalhado sobre o controle
e estimativa desse tipo de erro em CFD, pode ser encontrado em Martins e Marchi (2008).
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3.3.3 Erro de arredondamento

Os erros de arredondamento (Eπ), causados pela representação finita das variáveis
nas computações numéricas, estão relacionado à precisão utilizada para a representação das
variáveis nas computações. Esse tipo de erro está vinculado tanto ao compilador (software)
empregado para gerar o código computacional quanto ao computador (hardware) no qual o
código é executado. A precisão adotada para representar as variáveis exerce impacto direto
nos valores de Eπ; assim, quanto maior a precisão, menores são os valores de erro Eπ. No
entanto, esse aumento de precisão exige maior capacidade de memória computacional para
o armazenamento das variáveis, (MARCHI, 2001). Em geral, as linguagens de programação
possuem opções de precisão para escolha do usuário: precisão simples com quatro bytes,
precisão dupla com oito bytes ou precisão quádrupla com dezesseis bytes por variável do
tipo real.

3.4 Estimativas para o erro de discretização

Ao não se conhecer a solução analítica exata (Φ) de um modelo matemático, o
erro da solução numérica, E(ϕ), para uma determinada variável de interesse não pode
ser calculado. Quando isso ocorre, uma estimativa para esse erro pode ser calculada.
Esta estimativa é denominada de incerteza da solução numérica (U) e é calculada pela
diferença entre a solução analítica estimada (ϕ∞) para a determinada variável de interesse
e sua solução numérica (ϕ) (CHAPRA; CANALE, 1994; MEHTA, 1996). Sua expressão é
representada por

U(ϕ) = ϕ∞ − ϕ. (3.23)

O cálculo para estimar o erro de uma solução numérica é realizado por meio dos
estimadores de erro. A seguir, serão descritos alguns desses estimadores.

3.4.1 Estimador ∆

Ao se considerar soluções numéricas ϕg e ϕg−1 obtidas em duas malhas distintas
Ωhg e Ωhg−1 , respectivamente, uma estimativa para Eh pode ser calculada com o estimador
∆ por

U∆(ϕg) = |ϕg − ϕg−1|. (3.24)

Sua estimativa representa um intervalo em torno da solução numérica ϕg e não
leva em consideração a razão de refino (r) ou o valor da ordem assintótica pL.

3.4.2 Estimador de Richardson

A estimativa para o Eh com o estimador de Richardson será denotada por URi e
dada por

URi(ϕg) = ϕg − ϕg−1

rpL − 1 , (3.25)
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em que ϕg e ϕg−1 representam as soluções nas malhas Ωhg (fina) e Ωhg−1 (grossa).
URi fornece, além da magnitude do Eh, o seu sinal e pode ser empregada em

diversos níveis de malhas, isto é, para Ωg com g = 2, . . . , G (MARCHI, 2001).

3.4.3 Estimador ψ

O emprego da Extrapolação de Richardson foi abordada em Marchi e Silva (2002)
por meio da série de Richardson, denotada R∞ e representada por

R∞ = 1
ψ

+ 1
ψ2 + 1

ψ3 + 1
ψ4 + · · · , (3.26)

em que ψ ∈ R é denominada razão de convergência da série.
Se |ψ| > 1, a série geométrica representada pela equação (3.26), é dada por

R∞ = 1
ψ − 1 . (3.27)

Ao se admitir r e P números reais positivos, pode-se definir |ψ| = rP , de modo
que

R∞ =


1

rP − 1 , se ψ > 1

− 1
rP + 1 , se ψ < −1

, (3.28)

e considerando P = pL, pode-se reescrever a equação (3.25) como

ϕ∞ = ϕg +R∞(ϕg − ϕg−1). (3.29)

Dessa forma, admite-se a existência de um estimador Uψ(ϕg) = ϕ∞ − ϕg, baseado
no valor de ψ correspondente à malha Ωhg , dado por

Uψ(ϕg) = ϕg − ϕg−1

ψ − 1 . (3.30)

3.4.4 Efetividade de uma estimativa de erro

Uma estimativa de erro (U) para o erro (E) pode ser avaliada mediante o cálculo
de sua efetividade θ(U), definida em Zhu e Zienkiewicz (1990) pela razão entre U e E, ou
seja,

θ(U) = U

E
. (3.31)

Para o caso ideal, a efetividade θ(U) = 1, ocorrendo quando U = E. Uma
estimativa U será dita confiável quando θ(U) ≥ 1 ⇒ U ≥ E; e acurada quando θ(U) ≈
1⇒ U ≈ E (MARCHI, 2001).
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3.5 Múltipla Extrapolação de Richardson

Ao se dispor de uma técnica de aproximação que apresente um termo indicativo de
erro de modo previsível (que dependa de um parâmetro real, por exemplo, o espaçamento h
entre os pontos nodais) e que tal técnica possua uma representação por meio de uma série
analítica, então a metodologia denominada Extrapolação de Richardson (ER) (BURDEN;
FAIRES, 2016) pode ser adotada.

A ER teve inicialmente o objetivo de combinar aproximações a fim de gerar
resultados com maior ordem de acurácia (pA) considerando-se alguns parâmetros específicos,
pL = 2, p1 = 4 e razão de refino r = 2. Tal procedimento ficou conhecido como
Extrapolação de Richardson padrão e, posteriormente, passou-se a considerar valores
gerais para tais parâmetros, ficando então conhecida por Extrapolação de Richardson
generalizada (OBERKAMPF; ROY, 2010).

A ER é considerada um pós-processamento que pode ser empregado a posteriori
nas soluções ϕ(h) obtidas em diferentes malhas Ωh, levando em consideração a razão de
refino (r = hg/hg+1), em que os subíndices g + 1 e g representam a malha fina e grossa,
respectivamente. A equação de Richadson na forma original, dada em Richardson e Gaunt
(1927) é

ϕ∞ =
h2
gϕg+1 − h2

g+1ϕg

h2
g − h2

g+1
+ E(ϕ∞), (3.32)

onde ϕ∞ é a solução analítica estimada, ϕg+1 e ϕg são as soluções numéricas nas malhas
fina e grossa, respectivamente. Ao se generalizar a ER para qualquer ordem assintótica
(pL) e r, tem-se

ϕ∞ = ϕg+1 + ϕg+1 − ϕg
rpL − 1 , (3.33)

e será efetiva se as soluções numéricas ϕg possuem apenas erros de discretização.
A técnica conhecida como Múltipla Extrapolação de Richardson (MER) envolve

a aplicação repetida de ER com o intuito de aumentar a ordem de acurácia do erro de
discretização (Eh).A abordagem recursiva é estabelecida a partir da equação (3.33), isto é,
consiste em considerar

ϕ0(hg) = ϕ(hg), g = 1,2, . . . , (3.34)

ϕ1(hg+1) = ϕ0(hg+1) + ϕ0(hg+1)− ϕ0(hg)
rpL − 1 , g = 1,2, . . . . (3.35)

A partir disso, considerando m os níveis de extrapolação e g indicando a malha
Ωh, com m e g sendo números naturais não nulos, a generalização da equação (3.35) passa
a ser representada em Marchi et al. (2013b) por

ϕg,m = ϕg,m−1 + ϕg,m−1 − ϕg−1,m−1

rpm−1 − 1 , (3.36)

com m = 1,2, . . . e g = m+ 1,m+ 2 . . . .
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Do ponto de vista teórico, a equação (3.36) tem a possibilidade de iterações
infinitas. No entanto, em contextos práticos, é adotado um limite para o parâmetro
g, sendo definido como g = G, em que G é um valor inteiro positivo representando o
número de malhas utilizadas. Supõe-se que a aplicação repetitiva desse processo recursivo,
como expresso na equação (3.36), gradualmente aumente a ordem de precisão do erro Eh,
(MARCHI et al., 2016).

Uma análise da ordem de acurácia pode ser realizada a posteriori, com base nos
valores de pE quando a solução analítica (Φ) é conhecida, ou os valores de pU quando
Φ não é conhecida. Uma generalização de pE e pU para MER, pode ser encontrado em
Marchi et al. (2013a) como:

(pE)g,m =
log

(
Ehg−1,m

Ehg,m

)
log(r) (3.37)

e

(pU)g,m =
log

(
ϕg−1,m − ϕg−2,m

ϕg,m − ϕg−1,m

)
log(r) , (3.38)

em que g = 2, . . . , G e m = 1, . . . , g − 1 para a equação (3.37); e g = 3, . . . , G e m =
1, . . . , Int((g − 3)/2) para a equação (3.38), onde Int(γ) corresponde à parte inteira do
número real γ. Nesta perspectiva, quando não se conhece a solução analítica, e portanto,
não se conhece as ordens verdadeiras, o cálculo de MER realizado pela equação (3.36),
pode ser realizado levando-se em consideração os valores de (pU)g,m−1 no lugar de p(m−1).

Uma representação esquemática do emprego de MER é apresenta na Tabela 1.
Quando m = 0, tem-se a solução numérica ϕ sem qualquer extrapolação. Para m = 1
tem-se um nível de extrapolação, para m = 2 tem-se dois níveis de extrapolações e assim
sucessivamente até o valor máximo permitido para m na malha Ωhg , ou seja, m = G− 1.
Teoricamente, ϕG,G−1 apresenta o maior nível de acurácia dentre todos as ϕg,m.

Ao analisar a Tabela 1 verifica-se que para cada valor obtido de ϕm,g , necessita-se
da solução numérica em pelo menos duas malhas distintas (g e g − 1) ao aplicar pE. Isto
posto, quando se utiliza pU (Φ não é conhecido), faz-se necessário pelo menos três malhas
distintas (g, g − 1 e g − 2), (equação (3.38)).

3.6 Estimativas para o erro de discretização baseadas em MER

3.6.1 Estimador ∆

Para estimar o erro de discretização após o emprego de MER (Em), com G malhas
distintas, o estimador ∆ foi proposto por Marchi, Suero e Araki (2009) para fornecer uma
estimativa do Em para a malha mais fina adotada, da seguinte forma

U∆(ϕG,m) = |ϕG,m−1 − ϕG−1,m−1|, (3.39)
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Tabela 1 – Representação esquemática do emprego de MER.

m = 0 m = 1 m = 2 · · · m = G− 2 m = G− 1

ϕ1,0 = ϕ1
↘

ϕ2,0 = ϕ2 → ϕ2,1

↘
ϕ3,0 = ϕ3 ϕ3,1 → ϕ3,2

...
...

... . . .
ϕG−1,0 = ϕG−1 ϕG−1,1 ϕG−1,2 · · · ϕG−1,G−2

↘
ϕG,0 = ϕG ϕG,1 ϕG,2 · · · ϕG,G−2 → ϕG,G−1

FONTE: Adaptada de Martins (2013).

em que m = G− 1 representa o último nível de extrapolação considerado e m− 1 é o nível
imediatamente anterior. Com isso, U∆(ϕG,m) fornece uma estimativa para Em associada a
ϕG,m levando em consideração os valores de ϕG,m−1 e ϕG−1,m−1.

3.6.2 Estimador de Richardson corrigido (pmc)

Para soluções obtidas com o emprego de MER, Marchi et al. (2013a) propuseram
uma extensão do estimador de Richardson (equação (3.25)), dada por:

Upm(ϕg,m) = ϕg,m − ϕg−1,m

rpm − 1 , (3.40)

em que g representa o nível de malha e m o nível de extrapolação, sendo válida para
m = [0,G− 2] e g = [m+ 2,G].

A utilização da simbologia Upm , refere-se à aplicação do estimador de Richardson
com base em pV = {pm,m = 0,1,2, . . .}, sobre as soluções obtidas com o emprego de MER,
sendo então, denominado estimador pm (MARTINS, 2013).

Mas, como pode ser verificado na equação (3.40) e na Tabela 2, o
estimador Upm não é apropriado para estimar o erro de discretização associado à
ϕM = {ϕ2,1, ϕ3,2, . . . , ϕg,g−1, . . . , ϕG,G−1}.

Sua aplicação é para soluções com um nível a menos de extrapolação
{ϕ2,0, ϕ3,1, . . . , ϕg,g−2, . . . , ϕG,G−2}, ou seja, m = g − 2, e seu erro de discretização será
denotado por Em2 .

Tendo em vista que Upm estima Em2 , então, para se estimar Em sob a concepção
de Upm deve-se encontrar uma relação entre Em e Em2. Essa relação está deduzida em
Martins (2013), sendo representada por

Em
Em2

= rpm . (3.41)
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Tabela 2 – Representação esquemática do emprego de Upm
.

Malha Nível de extrapolação m

Ωhg−1 ϕg−1,m
↘

Ωhg ϕg,m → Upm(ϕg,m) = ϕg,m − ϕg−1,m

rpm − 1

FONTE: Adaptada de Martins (2013).

Ao se considerar a equação (3.41), uma vez que Upm estima Em2 , logo, Em pode
ser estimado usando um fator de correção (rpm). Esse estimador será denotado por Upmc e
descrito como

Upmc(ϕg,m) = rpmUpm(ϕg+1,m), (3.42)

em que m = g − 1. Devido ao fator de correção rpm , Upmc é denominado estimador pm
corrigido.

3.6.3 Estimador ψ∗

Ao se considerar as soluções numéricas ϕM conforme a Tabela 1, a equação (3.30)
referente ao estimador ψ pode ser empregada considerando a razão de convergência de ϕM
para se estimar Em da seguinte forma:

Uψ(ϕg,m) = ϕg,m − ϕg−1,m−1

ψ − 1 , onde ψ = (ψM)g = ϕg−1,m−1 − ϕg−2,m−2

ϕg,m − ϕg−1,m−1
, (3.43)

para g = 3, . . . , G. A Tabela 3 apresenta o emprego desse estimador para Em (m = g − 1).

Tabela 3 – Representação esquemática do emprego de U
ψ

.

Malha Nível de extrapolação
m− 2 m− 1 m

Ωhg−2 ϕg−2,m−2
↘

Ωhg−1 ϕg−1,m−2 → ϕg−1,m−1
↘ ↘

Ωhg ϕg,m−2 → ϕg,m−1 → ϕg,m ⇒ Uψ(ϕg,m) = ϕg,m − ϕg−1,m−1

ψ − 1

FONTE: Adaptada de Martins (2013).

O emprego de Uψ somente será efetivo se |ψ| > 1, que garante a convergência de
ϕ
M

e, consequentemente, ocorrendo a redução da magnitude de Em.
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Na equação (3.43), ψ = (ψM)g é a ordem aparente de Em na malha Ωhg . Devido
seu cálculo envolver três malhas distintas, é natural pressupor que o seu valor corresponda
a uma inclinação média para o gráfico da estimativa de Em, nessas três malhas.

A correção para o estimador ψ é dada pelo cálculo de ψ∗, equação (3.44), em que
a razão de convergência de ϕM (m = g − 1) é atribuída à malha intermediária do trio
Ωhg−1 , Ωhg e Ωhg+1 , ou seja

ψ∗ =



ϕg,m − ϕg−1,m−1

ϕg+1,m+1 − ϕg,m
, g = 2,3, . . . , G− 1

(ϕg−1,m−1 − ϕg−2,m−2)2

(ϕg,m − ϕg−1,m−1)(ϕg−2,m−2 − ϕg−3,m−3)
, g = G

. (3.44)

O cálculo de ψ∗ para g = 2, 3, . . . , G− 1 é obtido para valores de ϕ em Ωhg−1 , Ωhg

e Ωhg+1 e o resultado atribuído a Ωhg . Para g = G, a malha Ωhg+1 não está disponível
para o calculo de ψ∗, com isso, busca-se estabelecer uma relação entre os valores obtidos
para ψ e ψ∗, considerando a obtenção de ψ∗ através da razão entre o quadrado de ψ para
g = G e o seu valor para g = G− 1, na equação (3.43) (MARTINS, 2013).

O cálculo da estimativa do erro numérico associado a ϕ
M

, após a determinação de
ψ∗, por analogia a Uψ (equação (3.43)), é dado por

Uψ∗(ϕg,m) = ϕg,m − ϕg−1,m−1

ψ∗ − 1 . (3.45)

3.7 Interpolação polinomial

Muitas vezes é necessário avaliar em uma localização não nodal, determinadas
variáveis de interesse. Neste caso, a interpolação polinomial é uma técnica indicada para
obter um polinômio ξ para auxiliar nesta tarefa.

Dada uma função contínua f definida em um domínio Ω limitado, é possível
encontrar um polinômio ξ que permite mapear os pontos disponíveis tão próximos de f
quanto for desejável (BURDEN; FAIRES, 2016). Dados p+ 1 pontos distintos {xi,f(xi)},
i = 0, . . . , p, é possível encontrar um polinômio ξ de grau menor ou igual a n no qual

ξ(xi) = f(xi), i = 0, ..., p, xi ∈ Ω. (3.46)

A equação (3.46) representa a um sistema de equações algébricas lineares, que em
razão da estrutura de sua matriz de coeficientes (Matriz de Vandermonde) é determinado
e compatível. Tal estrutura garante a existência e unicidade do polinômio ξ que interpola
f em Ω (ANTON; RORRES, 2012). Os métodos de Lagrange e Newton estão entre os
mais utilizados para encontrar os polinômios interpoladores (BURDEN; FAIRES, 2016).

No caso de funções com mais de uma variável independente, as aproximações são
denominadas aproximações multidimensionais. Especificamente para o caso bidimensional,
para uma função f(x,y) com valores conhecidos f(xi,yj), para i = 0, 1, . . . , p e j =
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0, 1, . . . , q, é possível obter um polinômio de grau máximo p em x e grau máximo q em
y, para interpolar esses valores. Para obter mais informações detalhadas, recomenda-se
consultar Burden e Faires (2016), Martins (2013), Dahlquist e Bjorck (2008).

3.8 Métodos de otimização

Ademais da utilização da interpolação polinomial na avaliação de uma variável não
nodal, como exposto anteriormente, a obtenção de um ponto extremo (ponto de máximo
ou de mínimo) pode ser necessário, como por exemplo obter a pressão máxima (ou mínima)
em determinado campo de variação. Se o ponto extremo pertence à região do domínio de
cálculo na qual ξ está definida, seu valor pode ser calculado com a utilização de métodos
de otimização.

Pode-se colocar o problema de otimização como: seja Ω ⊂ Rn, ξ : Ω → R, busca-se
o valor máximo de ξ(χ) (ou o valor mínimo), tal que χ ∈ Ω.

Os problemas de otimização analisados neste trabalho são de maximização irrestrita
ou seja, a função objetivo não possui restrições. Como ξ é considerada uma função
polinomial definida em um conjunto Ω convexo, ela se caracteriza como uma função
convexa (ou côncava) o que garante a unicidade e existência do ponto de máximo global
(BAZARAA; SHERALI; SHETTY, 2006).

Uma técnica de otimização irrestrita apresentada em Bazaraa, Sherali e Shetty
(2006) é o método do Gradiente. Como as funções obtidas são polinomiais, o método
do Gradiente torna-se atraente devido a expressão analítica para o gradiente ser obtida
facilmente. Esta abordagem é do tipo sequencial, isto é, gera-se uma sequência de pontos{
χ(I)

}
∈ Ω em que χ(I) é o ponto obtido na iteração I, ou seja,

χ(I) = χ(I−1) + δ(I)d(I), (3.47)

com δ(I) o passo tomado na I-ésima iteração e d(I) a direção de subida (ou descida), em
que d(I) é gradiente de ξ avaliado em χ(I−1), ou seja, d(I) = ±∇ξ(χ(I−1)). Os pontos χ(I)

são gerados de forma que ξ(χ(I)) é uma sequência crescente (ou decrescente) de números
reais. Assim, para um valor suficientemente grande de I, χ(I) é considerada uma boa
aproximação para a solução investigada.

Para o caso unidimensional a equação (3.47) pode ser apresentada pelo método de
Newton para funções não lineares (BURDEN; FAIRES, 2016) com g(x) = ∇ξ(x) = ξ′(x),
ou seja,

x(I) = x(I−1) ±∇g(x(I−1))−1g(x(I−1)). (3.48)

Para o caso bidimensional, é necessário empregar um critério para determinar
δ(I), sendo a busca linear de Armijo (BAZARAA; SHERALI; SHETTY, 2006) um método
bastante conhecido pela sua eficiência e facilidade na implementação. Essa abordagem
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depende da escolha dos escalares 0 < β < 1 e θ > 1; e então, define-se δ(I) = 1/θm em que
m é o primeiro inteiro, não negativo, para o qual a seguinte condição é satisfeita, para
maximização tem-se:

ξ(χ(I)) ≥ χ(I−1) + βδ(I)χ(I−1)d(I), (3.49)

ou a relação inversa ≤ no caso de minimização. Para um estudo mais detalhado sobre o
assunto, é possível encontrar mais informações em Martins (2013).



47

4 MODELOS MATEMÁTICOS E NUMÉRICOS

4.1 Modelos matemáticos

Considera-se o problema clássico da consolidação de Biot para um meio poroso
saturado, homogêneo, isotrópico e de fluido incompressível que segue o modelo descrito
no Capítulo 2. Para se chegar às equações (4.1) e (4.8) utilizou-se relações entre as
constantes poroelásticas, sendo essas mesmas equações descritas em Gaspar, Lisbona e
Vabishchevich (2003, 2006), Rodrigo (2010), Franco (2017) e Franco et al. (2018). Para o
caso unidimensional, considerando o domínio espacial Ω =

(
0,12
)

[m] e domínio temporal
(0,T ] [s] tem-se 

− ∂

∂x

(
E∂u
∂x

)
+ α

∂p

∂x
= U

1
Q

∂p

∂t
+ α

∂

∂t

(
∂u

∂x

)
− ∂

∂x

(
K
∂p

∂x

)
= P

, (4.1)

o parâmetro E [N/m2] representa o módulo de Young, enquanto K [m/s] guarda informações
das características físicas associadas à porosidade e permeabilidade do meio, sendo
designado como coeficiente de condutividade hidráulica, α é a constante de Biot-Willis,
Q [Pa] é o módulo de Biot, U a densidade da força exercida sobre o corpo e P a força
relacionada à injeção ou extração de fluido no meio poroso. As funções u(x,t) e p(x,t)
denotam o deslocamento e a pressão ao longo da dimensão espacial x, respectivamente. No
presente conjunto de equações, a primeira expressão corresponde à equação de deslocamento
u, enquanto a segunda representa a equação de pressão p

No que se refere às condições de contorno, é adotado um cenário no qual a
fronteira esquerda se caracteriza por um deslocamento constante e permeável (indicativo
de drenagem livre). Por outro lado, a fronteira direita exibe rigidez (deslocamento nulo) e
ausência de variação de pressão. E∂u

∂x
= 0, se x = 0

p = 0, se x = 0
(4.2)

e 
u = 0, se x = 1

2

K
∂p

∂x
= 0, se x = 1

2

· (4.3)

Fundamentando-se na abordagem do método das soluções fabricadas (ROY, 2005),
ao se considerar a solução analítica expressa por

u(x,t) = xsen(2πx)e−t (4.4)
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e
p(x,t) =

(
sen(2πx) + 8

3πx
3
)

e−t, (4.5)

que atendem às condições de contornos delineadas nas equações (4.2) e (4.3), é possível
estabelecer os termos forçantes U e P como

U = 2π
(
cos(2πx) + 2Eπxsen(2πx)− 2E cos(2πx) + 4x2

)
e−t (4.6)

e
P =

(
4Kπ2sen(2πx)− sen(2πx)− 2πx cos(2πx)− 16Kπx

)
e−t, (4.7)

em que as condições iniciais (CI), atendem as soluções analíticas fabricadas.
O contexto da poroelasticidade em duas dimensões é caracterizado pelo uso das

variáveis u(x,y,t) e v(x,y,t), que indicam os deslocamentos, e p(x,y,t), responsável por
representar as variações de pressão no plano bidimensional (x,y). O modelo matemático
correspondente, considerando o domínio espacial Ω = (0,1)× (0,1) [m2], é formulado como
segue: 

−(λ+ 2µ)∂
2u

∂x2 − µ
∂2u

∂y2 − (λ+ µ) ∂
∂y

(
∂v

∂x

)
+ ∂p

∂x
= U

−(λ+ µ) ∂
∂y

(
∂u

∂x

)
− µ∂

2v

∂x2 − (λ+ 2µ)∂
2v

∂y2 + ∂p

∂y
= V

∂

∂t

(
∂u

∂x
+ ∂v

∂y

)
−K

(
∂2p

∂x2 + ∂2p

∂y2

)
= P

, (4.8)

em (x,y) ∈ Ω e t ∈ (0,T ] [s]. As constantes λ [N/m2] e µ [N/m2] representam os coeficientes
de Lamé, dados em termos do módulo de Young E [N/m2] e da razão de Poisson ν como

λ = νE
(1 + ν)(1− 2ν) , µ = E

2(1 + ν) , (4.9)

além disso, o parâmetro K [m/s] guarda informações sobre as características físicas
relacionadas à porosidade e permeabilidade do meio, sendo denominado coeficiente de
condutividade hidráulica. As grandezas U e V indicam a densidade da força exercida
sobre o corpo, enquanto P simboliza a força resultante da injeção ou extração de fluido no
meio poroso. O sistema de equações correspondente consiste na primeira equação referente
ao deslocamento u, a segunda referente ao deslocamento v e a terceira à pressão p.

Neste trabalho a hipótese adotada é que ∂Ω (a fronteira de Ω) é rígida
(deslocamento zero) e permeável (drenagem livre). Como resultado, é estabelecida uma
condição de contorno de Dirichlet.

u(x,y,t) = 0, v(x,y,t) = 0, p(x,y,t) = 0, (x,y) ∈ ∂Ω. (4.10)
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Através do método das soluções fabricadas, considerando-se a solução analítica

u(x,y,t) = v(x,y,t) = p(x,y,t) = sen(πx) sen(πy)e−t, (4.11)

tem-se as respectivas expressões para U , V e P

U = (λ+ 3µ)π2 sen(πx) sen(πy)e−t − (λ+ µ)π2 cos(πx) cos(πy)e−t

+ π cos(πx) sen(πy)e−t , (4.12)

V = (λ+ 3µ)π2 sen(πx) sen(πy)e−t − (λ+ µ)π2 cos(πx) cos(πy)e−t

+π sen(πx) cos(πy)e−t (4.13)

e

P = 2Kπ2 sen(πx) sen(πy)e−t − π sen(π(x+ y))e−t, (4.14)

em que as condições iniciais (CI), atendem as soluções analíticas fabricadas.

4.2 Modelos numéricos

Para o modelo numérico, o domínio espacial é discretizado pelo Método das
Diferenças Finitas (MDF), malhas uniformes e diferença central (CDS). A abordagem
empregada para a aproximação temporal e a conexão espacial e temporal envolve a
utilização de um método de discretização implícita. Ademais, utilizou-se uma versão
reformulada para o sistema de equações exposta em Gaspar et al. (2007), a qual apresenta
um termo de suavização adicional na equação correspondente à pressão, tornando o sistema
mais estável sem alterar seu resultado final. Esse termo é dado por

− h2

4(λ+ 2µ)
∂∆p

∂t
. (4.15)

As deduções apresentadas na sequência (casos uni e bidimensionais) foram retiradas
de Franco (2017, p. 80–90).

Caso unidimensional

No contexto unidimensional, são adotadas as seguintes considerações: K constante,
E = λ + 2µ, Q → ∞ e α = 1. A equação (4.1) que incorpora o termo de suavização
(equação (4.15)) junto à equação da pressão, pode ser discretizada nos pontos internos,
isto é, i = 2, 3, . . . , N − 1, por meio da aplicação dos métodos de Euler implícito e
Crank-Nicolson.
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Método de Euler

Com o emprego do método de Euler para aproximação temporal, tem-se

−Eu
n+1
i+1 − 2un+1

i + un+1
i−1

h2 + pn+1
i+1 − pn+1

i−1
2h = U n+1

i

un+1
i+1 −un+1

i−1
2h − uni+1−uni−1

2h
τ

−Kpn+1
i+1 − 2pn+1

i + pn+1
i−1

h2

− h2

4Eτ

[
pn+1
i+1 − 2pn+1

i + pn+1
i−1

h2 −
pni+1 − 2pni + pni−1

h2

]
= Pn+1

i

, (4.16)

reorganizando os termos, tem-se

2E
h2 u

n+1
i − E

h2

(
un+1
i+1 + un+1

i−1

)
+ 1

2h
(
pn+1
i+1 − pn+1

i−1

)
= U n+1

i

un+1
i+1 − un+1

i−1
2τh −

uni+1 − uni−1
2τh − K

h2

(
pn+1
i+1 − 2pn+1

i + pn+1
i−1

)
− 1

4Eτ
[
pn+1
i+1 − 2pn+1

i + pn+1
i−1 −

(
pni+1 − 2pni + pni−1

)]
= Pn+1

i

, (4.17)

ou 

2E
h2 u

n+1
i = E

h2

(
un+1
i−1 + un+1

i+1

)
+ 1

2h
(
pn+1
i−1 − pn+1

i+1

)
+ U n+1

i

(2K
h2 + 1

2Eτ

)
pn+1
i + 1

2τh
(
un+1
i+1 − un+1

i−1

)
−
(
K

h2 + 1
4Eτ

) (
pn+1
i+1 + pn+1

i−1

)
− 1

2τh
(
uni+1 − uni−1

)
+ 1

4Eτ
(
pni+1 − 2pni + pni−1

)
= Pn+1

i

, (4.18)

ou ainda

2E
h2 u

n+1
i = E

h2

(
un+1
i−1 + un+1

i+1

)
+ 1

2h
(
pn+1
i−1 − pn+1

i+1

)
+ U n+1

i

(
h2 + 4EτK

2Eτh2

)
pn+1
i = 1

2τh
(
un+1
i−1 − un+1

i+1

)
+
(
h2 + 4EτK

4Eτh2

)(
pn+1
i−1 + pn+1

i+1

)
− 1

2τh
(
uni−1 − uni+1

)
− 1

4Eτ
(
pni−1 − 2pni + pni+1

)
+ Pn+1

i

. (4.19)

Em x = 0 (i = 1), tem-se a condição de contorno E∂u(0,t)
∂x

= 0, ou

Eu
n+1
2 − un+1

0
2h = 0

un+1
0 = un+1

2 (4.20)

e considerando a equação
−E∂

2u

∂x2 + ∂p

∂x
= U , (4.21)
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tem-se

−Eu
n+1
2 − 2un+1

1 + un+1
0

h2 + pn+1
2 − pn+1

0
2h = U n+1

i . (4.22)

Para p(0,t) = 0, p1 = 0 e p2 + p0

2 = p1 = 0 =⇒ p0 = −p2, na equação (4.22) e
substituindo a equação (4.20) na equação (4.22), tem-se

−Eu
n+1
2 − 2un+1

1 + un+1
2

h2 + pn+1
2 + pn+1

2
2h = U n+1

1 ,

−Eu
n+1
2 − 2un+1

1 + un+1
2

h2 + 2pn+1
2

2h = U n+1
1 ,

−2E
h2 (un+1

2 − un+1
1 ) + 1

h
pn+1

2 = U n+1
1 . (4.23)

Reorganizando os termos na equação (4.23), tem-se

2E
h2 u

n+1
1 = 2E

h2 u
n+1
2 − 1

h
pn+1

2 + U n+1
1 . (4.24)

Em x = 1
2 (i = N), tem-se

∂

∂t

(
∂u

∂x

)
−K ∂2p

∂x2 −
∂

∂t

(
h2

4E
∂2p

∂x2

)
= P, (4.25)

que na forma discretizada torna-se(
h2 + 4EτK

2Eτh2

)
pn+1
N = 1

2τh
(
un+1
N−1 − un+1

N+1

)
+
(
h2 + 4EτK

4Eτh2

)(
pn+1
N−1 + pn+1

N+1

)
− 1

2τh
(
unN−1 − unN+1

)
− 1

4Eτ
(
pnN−1 − 2pnN + pnN+1

)
+ Pn+1

N . (4.26)

Considerando a condição de contorno u
(

1
2 ,t
)

= 0, tem-se

uN+1 + uN−1

2 = uN = 0 ⇒ uN+1 = −uN−1 (4.27)

e com a condição K ∂p(1,t)
∂x

= 0, obtém-se

K
pN+1 − pN−1

2h = 0 ⇒ pN+1 = pN−1. (4.28)

Com a substituição das equações (4.27) e (4.28) na equação (4.26), tem-se(
h2 + 4EτK

2Eτh2

)
pn+1
N = 1

τh
un+1
N−1 +

(
h2 + 4EτK

2Eτh2

)
pn+1
N−1

− 1
τh
unN−1 −

1
2Eτ

(
pnN−1 − pnN

)
+ Pn+1

N . (4.29)
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Método de Crank-Nicolson

Ao se aplicar o método de Crank-Nicolson (CN) para realizar a discretização
temporal, reformula-se a equação da pressão conforme apresentada na equação (4.1). Em
seguida, incorpora-se o termo de suavização, conforme definido na equação (4.15) de
acordo com o seguinte procedimento:

∂

∂t

(
∂u

∂x
− h2

4E
∂2p

∂x2

)
= K

∂2p

∂x2 + P, (4.30)

assim, tem-se

un+1
i+1 −un+1

i−1
2h − uni+1−uni−1

2h
τ

− h2

4Eτ

[
pn+1
i+1 − 2pn+1

i + pn+1
i−1

h2 −
pni+1 − 2pni + pni−1

h2

]
(4.31)

= K

2

(
pn+1
i+1 − 2pn+1

i + pn+1
i−1

h2 + pni+1 − 2pni + pni−1
h2

)
+ Pn+1

i + Pn
i

2 ,

reorganizando os termos, tem-se

un+1
i+1 − un+1

i−1
2τh −

uni+1 − uni−1
2τh − 1

4Eτ
[
pn+1
i+1 − 2pn+1

i + pn+1
i−1 −

(
pni+1 − 2pni + pni−1

)]
(4.32)

= K

2h2

(
pn+1
i+1 − 2pn+1

i + pn+1
i−1 + pni+1 − 2pni + pni−1

)
+ Pn+1

i + Pn
i

2 ,

ou (
K

h2 + 1
2Eτ

)
pn+1
i = − 1

2τh
(
un+1
i+1 − un+1

i−1

)
+
(
K

2h2 + 1
4Eτ

) (
pn+1
i+1 + pn+1

i−1

)
(4.33)

+ 1
2τh

(
uni+1 − uni−1

)
+
(
K

2h2 −
1

4Eτ

) (
pni+1 − 2pni + pni−1

)
+ Pn+1

i + Pn
i

2 ,

ou ainda(
h2 + 2EτK

2Eτh2

)
pn+1
i = 1

2τh
(
un+1
i−1 − un+1

i+1

)
+
(
h2 + 2EτK

4Eτh2

)(
pn+1
i+1 + pn+1

i−1

)
(4.34)

− 1
2τh

(
uni−1 − uni+1

)
+
(

2EτK − h2

4Eτh2

)(
pni−1 − 2pni + pni+1

)
+ Pn+1

i + Pn
i

2 ·

Para os contornos, as abordagens de aproximação seguem padrões semelhantes
aos já descritos para o método de Euler, os quais não serão detalhados aqui.
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Caso bidimensional

No contexto bidimensional, aborda-se a equação (4.8) e se adiciona o termo de
suavização proveniente da equação (4.15) na formulação da equação de pressão.

Método de Euler

Utilizando o método de Euler implícito para discretização temporal, as equações
discretizadas nos pontos internos (i = j = 2, 3, . . . , N − 1) são expressas da seguinte
maneira:



−(λ+ 2µ)
un+1
i−1,j − 2un+1

i,j + un+1
i+1,j

h2 − µ
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

h2

−(λ+ µ) ∂
∂y

(
vn+1
i+1,j − vn+1

i−1,j

2h

)
+
pn+1
i+1,j − pn+1

i−1,j

2h = U n+1
i,j

−(λ+ µ) ∂
∂y

(
un+1
i+1,j − un+1

i−1,j

2h

)
− µ

vn+1
i−1,j − 2vn+1

i,j + vn+1
i+1,j

h2

−(λ+ 2µ)
vn+1
i,j−1 − 2vn+1

i,j + vn+1
i,j+1

h2 +
pn+1
i,j+1 − pn+1

i,j−1

2h = V n+1
i,j

∂

∂t

(
un+1
i+1,j − un+1

i−1,j

2h +
vn+1
i,j+1 − vn+1

i,j−1

2h

)

−K
(
pn+1
i−1,j − 2pn+1

i,j + pn+1
i+1,j

h2 +
pn+1
i,j−1 − 2pn+1

i,j + pn+1
i,j+1

h2

)

− h2

4(λ+ 2µ)
∂

∂t

(
pn+1
i−1,j − 2pn+1

i,j + pn+1
i+1,j

h2 +
pn+1
i,j−1 − 2pn+1

i,j + pn+1
i,j+1

h2

)
= Pn+1

i,j

, (4.35)



Capítulo 4. Modelos matemáticos e numéricos 54

ou

2 (λ+ 3µ)
h2 un+1

i,j −
λ+ 2µ
h2

(
un+1
i−1,j + un+1

i+1,j

)
− µ

h2

(
un+1
i,j−1 + un+1

i,j+1

)
− (λ+ µ)

4h2 ·

·
(
vn+1
i+1,j+1 − vn+1

i+1,j−1 − vn+1
i−1,j+1 + vn+1

i−1,j−1

)
+ 1

2h
(
pn+1
i+1,j − pn+1

i−1,j

)
= U n+1

i,j

−λ+ µ

4h2

(
un+1
i+1,j+1 − un+1

i+1,j−1 − un+1
i−1,j+1 + un+1

i−1,j−1

)
+ 2 (λ+ 3µ)

h2 vn+1
i,j

− µ

h2

(
vn+1
i−1,j + vn+1

i+1,j

)
− λ+ 2µ

h2

(
vn+1
i,j−1 + vn+1

i,j+1

)
+ 1

2h
(
pn+1
i,j+1 − pn+1

i,j−1

)
= V n+1

i,j

1
2hτ

[
un+1
i+1,j − un+1

i−1,j + vn+1
i,j+1 − vn+1

i,j−1 −
(
uni+1,j − uni−1,j + vni,j+1 − vni,j−1

)]
−K

(
pn+1
i−1,j − 2pn+1

i,j + pn+1
i+1,j

h2 +
pn+1
i,j−1 − 2pn+1

i,j + pn+1
i,j+1

h2

)

− 1
4(λ+ 2µ)τ

(
pn+1
i−1,j − 2pn+1

i,j + pn+1
i+1,j + pn+1

i,j−1 − 2pn+1
i,j + pn+1

i,j+1

)
+ 1

4(λ+ 2µ)τ
(
pni−1,j − 2pni,j + pni+1,j + pni,j−1 − 2pni,j + pni,j+1

)
= Pn+1

i,j

, (4.36)

ou, ainda,

2 (λ+ 3µ)
h2 un+1

i,j = λ+ 2µ
h2

(
un+1
i−1,j + un+1

i+1,j

)
+ µ

h2

(
un+1
i,j−1 + un+1

i,j+1

)
+ (λ+ µ)

4h2 ·

·
(
vn+1
i+1,j+1 − vn+1

i+1,j−1 − vn+1
i−1,j+1 + vn+1

i−1,j−1

)
+ 1

2h
(
pn+1
i−1,j − pn+1

i+1,j

)
+ U n+1

i,j

2 (λ+ 3µ)
h2 vn+1

i,j = λ+ µ

4h2

(
un+1
i+1,j+1 − un+1

i+1,j−1 − un+1
i−1,j+1 + un+1

i−1,j−1

)
+ µ

h2

(
vn+1
i−1,j + vn+1

i+1,j

)
+ λ+ 2µ

h2

(
vn+1
i,j−1 + vn+1

i,j+1

)
+ 1

2h
(
pn+1
i,j−1 − pn+1

i,j+1

)
+ V n+1

i,j

1
2hτ

(
un+1
i+1,j − un+1

i−1,j + vn+1
i,j+1 − vn+1

i,j−1

)
+
(

4k
h2 + 1

(λ+ 2µ)τ

)
pn+1
i,j

−
(
K

h2 + 1
4(λ+ 2µ)τ

)(
pn+1
i−1,j + pn+1

i+1,j + pn+1
i,j−1 + pn+1

i,j+1

)
− 1

2hτ
(
uni+1,j − uni−1,j + vni,j+1 − vni,j−1

)
+ 1

4(λ+ 2µ)τ
(
pni−1,j − 2pni,j + pni+1,j + pni,j−1 − 2pni,j + pni,j+1

)
= Pn+1

i,j

, (4.37)
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e reorganizando os termos, tem-se

2 (λ+ 3µ)
h2 un+1

i,j = λ+ 2µ
h2

(
un+1
i−1,j + un+1

i+1,j

)
+ µ

h2

(
un+1
i,j−1 + un+1

i,j+1

)
+ (λ+ µ)

4h2 ·

·
(
vn+1
i+1,j+1 − vn+1

i+1,j−1 − vn+1
i−1,j+1 + vn+1

i−1,j−1

)
+ 1

2h
(
pn+1
i−1,j − pn+1

i+1,j

)
+ U n+1

i,j

2 (λ+ 3µ)
h2 vn+1

i,j = λ+ µ

4h2

(
un+1
i+1,j+1 − un+1

i+1,j−1 − un+1
i−1,j+1 + un+1

i−1,j−1

)
+

+ µ

h2

(
vn+1
i−1,j + vn+1

i+1,j

)
+ λ+ 2µ

h2

(
vn+1
i,j−1 + vn+1

i,j+1

)
+ 1

2h
(
pn+1
i,j−1 − pn+1

i,j+1

)
+ V n+1

i,j

(
h2 + 4k(λ+ 2µ)τ
h2(λ+ 2µ)τ

)
pn+1
i,j = 1

2hτ
(
un+1
i−1,j − un+1

i+1,j + vn+1
i,j−1 − vn+1

i,j+1

)

+
(
h2 + 4k(λ+ 2µ)τ

4h2(λ+ 2µ)τ

)(
pn+1
i−1,j + pn+1

i+1,j + pn+1
i,j−1 + pn+1

i,j+1

)
+ 1

2hτ
(
uni+1,j − uni−1,j + vni,j+1 − vni,j−1

)
+ 1

4(λ+ 2µ)τ
(
4pni,j − pni−1,j − pni+1,j − pni,j−1 − pni,j+1

)
+ Pn+1

i,j

. (4.38)

Método de Crank-Nicolson

Ao adotar o método de Crank-Nicolson (CN) para realizar a discretização temporal,
reformula-se a equação da pressão, conforme definida na equação (4.8), e incorpora-se o
termo de suavização, como indicado na equação (4.15), por meio do seguinte procedimento:

∂

∂t

(
∂u

∂x
+ ∂v

∂y

)
−K

(
∂2p

∂x2 + ∂2p

∂y2

)
− h2

4(λ+ 2µ)
∂

∂t

(
∂2p

∂x2 + ∂2p

∂y2

)
= P,

ou
∂

∂t

[
∂u

∂x
+ ∂v

∂y
− h2

4(λ+ 2µ)

(
∂2p

∂x2 + ∂2p

∂y2

)]
= K

(
∂2p

∂x2 + ∂2p

∂y2

)
+ P,

e, com a discretização das variáveis espaciais pode-se escrever

∂

∂t

[
un+1
i+1,j − un+1

i−1,j

2h +
vn+1
i,j+1 − vn+1

i,j−1

2h − h2

4(λ+ 2µ)

(
pn+1
i−1,j − 2pn+1

i,j + pn+1
i+1,j

h2

+
pn+1
i,j−1 − 2pn+1

i,j + pn+1
i,j+1

h2

)]
= K

2

(
pn+1
i−1,j − 2pn+1

i,j + pn+1
i+1,j

h2 +
pn+1
i,j−1 − 2pn+1

i,j + pn+1
i,j+1

h2

+
pni−1,j − 2pni,j + pni+1,j

h2 +
pni,j−1 − 2pni,j + pni,j+1

h2

)
+

Pn+1
i,j + Pn

i,j

2 ,
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que, com a aproximação temporal, fica

1
2hτ

[
un+1
i+1,j − un+1

i−1,j + vn+1
i,j+1 − vn+1

i,j−1 −
(
uni+1,j − uni−1,j + vni,j+1 − vni,j−1

)]
− 1

4(λ+ 2µ)τ
(
pn+1
i−1,j − 2pn+1

i,j + pn+1
i+1,j + pn+1

i,j−1 − 2pn+1
i,j + pn+1

i,j+1

)
+ 1

4(λ+ 2µ)τ
(
pni−1,j

−2pni,j + pni+1,j + pni,j−1 − 2pni,j + pni,j+1

)
= K

2

(
pn+1
i−1,j − 4pn+1

i,j + pn+1
i+1,j + pn+1

i,j−1 + pn+1
i,j+1

h2

pni−1,j − 4pni,j + pni+1,j + pni,j−1 + pni,j+1

h2

)
+

Pn+1
i,j + Pn

i,j

2 ,

reorganizando os temos, tem-se

1
2hτ

(
un+1
i+1,j − un+1

i−1,j + vn+1
i,j+1 − vn+1

i,j−1

)
+
(

2k
h2 + 1

(λ+ 2µ)τ

)
pn+1
i,j −

(
1

4(λ+ 2µ)τ

+ K

2h2

) (
pn+1
i−1,j + pn+1

i+1,j + pn+1
i,j−1 + pn+1

i,j+1

)
− 1

2hτ
(
uni+1,j − uni−1,j + vni,j+1 − vni,j−1

)
+
(

1
4(λ+ 2µ)τ −

K

2h2

)(
pni−1,j − 4pni,j + pni+1,j + pni,j−1 + pni,j+1

)
=

Pn+1
i,j + Pn

i,j

2 ,

ou, ainda,(
h2 + 2k(λ+ 2µ)τ
h2(λ+ 2µ)τ

)
pn+1
i,j = 1

2hτ
(
un+1
i−1,j − un+1

i+1,j + vn+1
i,j−1 − vn+1

i,j+1

)
+
(

2k(λ+ 2µ)τ
4h2(λ+ 2µ)τ

+ h2

4h2(λ+ 2µ)τ

)(
pn+1
i−1,j + pn+1

i+1,j + pn+1
i,j−1 + pn+1

i,j+1

)
+ 1

2hτ
(
uni+1,j − uni−1,j + vni,j+1 − vni,j−1

)

+
(
h2 − 2k(λ+ 2µ)τ

4h2(λ+ 2µ)τ

)(
4pni,j − pni−1,j − pni+1,j − pni,j−1 − pni,j+1

)
+

Pn+1
i,j + Pn

i,j

2 .

4.3 Multigrid e solver Vanka

4.3.1 Método multigrid

O método conhecido como multigrid representa uma abordagem numérica que
oferece uma alternativa para a resolução iterativa de sistemas de equações do tipo Au = f ,
obtidos ao se discretizar uma equação diferencial. A gênese deste método pode ser atribuída
à proposta inicial apresentada por Fedorenko (1964), mostrando que a velocidade de
convergência com o uso de tal técnica é melhor que a dos métodos iterativos puros (sem o
uso de multigrid), neste caso, chamados de singlegrid.

O método tem como princípio básico, utilizar um conjunto de malhas e alternar
suavizações em cada nível de malha e as aproximações destas soluções em uma malha
mais grossa (com uma certa razão de engrossamento re). Estas soluções em malhas grossas
são feitas através de operadores que transferem informações da malha fina para a malha
imediatamente mais grossa (operador de restrição), resolvem o problema nesta malha
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grossa, e em seguida, transferem informações da malha grossa para a malha imediatamente
mais fina (operador de prolongação), desta forma reduzindo todo espectro de erros de
iteração (erros de alta e baixa frequência) (WESSELING, 1992; BRIGGS; HENSON;
MCCORMICK, 2000; TROTTENBERG; OOSTERLEE; SCHüLLER, 2001).

Dependendo do tipo de informação a ser transportada entre as malhas, tem-se o
esquema CS (Correction Scheme), onde há transferência apenas do resíduo, ou o esquema
FAS (Full Approximation Scheme), onde há transferência do resíduo e da solução. Briggs,
Henson e McCormick (2000) recomendam os esquemas CS para problemas lineares e FAS
para problemas não lineares. A ideia para o esquema CS, no caso de duas malhas, é
apresentado a seguir:

• Suavize Au = f na malha fina Ωh ν1 vezes para para obter uma aproximação vh.

• Calcule o resíduo rh = f − Avh.

∗ Obter r2h = I2h
h r

h na malha grossa Ω2h.

∗ Resolva a equação residual Ae = r em Ω2h com estimativa inicial e = 0 para
obter uma aproximação para o erro e2h.

∗ Obter eh = Ih2hr
2h na malha fina Ωh.

• Corrija a aproximação obtida em Ωh : vh ← vh + eh.

• Suavize Au = f na malha fina Ωh ν2 vezes com estimativa inicial vh.

Neste caso, ν1 e ν2 são chamados, respectivamente, de número de pré e pós-
suavização, e I2h

h e Ih2h são os operadores de restrição e prolongação. O procedimento
apresenta um esquema CS para o caso de duas malhas, porém, pode ser estendido para
o número de malhas desejadas. A sequência com que as diversas malhas são visitadas
caracteriza um ciclo multigrid que pode ser do tipo V,W, F, entre outros. As Figuras 9, 10
e 11 ilustram os ciclos V, F e W , respectivamente.

Figura 9 – Estrutura do ciclo V .
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FONTE: O autor (2023).
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Figura 10 – Estrutura do ciclo F .
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FONTE: O autor (2023).

Figura 11 – Estrutura do ciclos W .
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FONTE: O autor (2023).

Uma generalização dos ciclos V,W e F é apresentada em Wesseling (1992), Briggs,
Henson e McCormick (2000) e Trottenberg, Oosterlee e Schüller (2001), compreendidos
como parte de uma família de ciclos denominada µ-ciclo. No Algoritmo 1 (FRANCO, 2017,
p. 65) apresenta-se um esquema para o ciclo V ou o ciclo W dependendo do valor de µ.
Se µ = 1 tal algoritmo realiza um ciclo V e se µ = 2 realiza um ciclo W. O Algoritmo 2
(FRANCO, 2017, p. 65) apresenta um esquema para o ciclo F.

Algoritmo 1: MG-µ-ciclo (l)
if l = Lmax é o nível de malha mais grossa then

Resolva o sistema Alv(l) = f (l) na malha grossa Ω2l−1h.
else

Suavize ν1 vezes Alv(l) = f (l) na malha Ω2l−1h.
Calcule e restrinja o residuo: f (l+1) = I2lh

2l−1h(f (l) − Alv(l)).
for ciclo = 1 : µ do

Resolva no próximo nível: MG-µ-ciclo (l + 1).
end for
Corrija usando interpolação: v(l) ← v(l) + I2l−1h

2lh v(l+1).
Suavize ν2 vezes Alv(l) = f (l) na malha Ω2l−1h.

end if
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Algoritmo 2: MG-Ciclos-F (l)
if l = Lmax é o nível de malha mais grossa then

Resolva o sistema Alv(l) = f (l) na malha grossa Ω2l−1h.
else

Suavize ν1 vezes Alv(l) = f (l) na malha Ω2l−1h.
Calcule e restrinja o residuo: f (l+1) = I2lh

2l−1h(f (l) − Alv(l)).
Resolva no próximo nível: MG-Ciclos-F (l + 1).
Corrija usando interpolação:v(l) ← v(l) + I2l−1h

2lh v(l+1).
Suavize ν2 vezes Alv(l) = f (l) na malha Ω2l−1h.
if l ̸= 1 then

Resolva no próximo nível: MG-µ-ciclo (l) usando o algoritmo 1 e µ = 1.
end if

end if

Sobre os diversos operadores de restrição, de prolongação e suavizadores que
podem ser utilizados, consulte Wesseling (1992), Briggs, Henson e McCormick (2000) e
Trottenberg, Oosterlee e Schüller (2001).

4.3.2 Suavizador Vanka

O suavizador Vanka foi originalmente proposto por Vanka (1986) para resolver
as equações de Navier-Stokes discretizadas pelo Método das Diferenças Finitas. Sua
ideia básica é decompor a malha em pequenos subdomínios e tratar esses subdomínios
separadamente, (WOBKER; TUREK, 2009). Esse método pertence a uma classe
de suavizadores que realizam suavizações por blocos e, consiste em um algoritmo
iterativo na estrutura do método de Gauss-Seidel, no qual um sistema pontual é
empregado para atualizar simultaneamente tanto o valor da pressão quanto todas as
incógnitas dos deslocamentos adjacentes. Em outras palavras, no caso unidimensional,
três incógnitas (pressão pi e deslocamentos ui−1, ui+1) são atualizadas concomitantemente.
Já no cenário bidimensional, são tratadas cinco incógnitas (pressão pi,j e deslocamentos
ui+1,j, ui−1,j, vi,j+1, vi,j−1) ao mesmo tempo, conforme representado na Figura 12.

Para cada ponto na malha, um sistema de equações é solucionado, no qual todas
as incógnitas do sistema são consideradas acopladas. Para cada ponto na malha em que as
incógnitas correspondem aos deslocamentos e à pressão, como ilustrado na Figura 12, o
sistema de equações é resolvido.

 A b
dt c

 xu

xp

 =
 f
f

 , (4.39)

em que A é a matriz que contém os coeficientes referentes aos deslocamentos nas equações
do deslocamento, b o vetor com os coeficientes referentes à pressão nas equações do
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deslocamento, d o vetor que contém os coeficientes referentes aos deslocamentos na
equação referente à pressão e c o vetor com os coeficientes referentes à pressão na
equação da pressão. Os vetores xu e xp são as incógnitas relacionadas ao deslocamento e a
pressão, respectivamente, e f e f os respectivos termos fontes. O sistema linear dado pela
equação (4.39) deve ser resolvido a cada ponto. Como em geral este sistema é de pequeno
porte (3× 3 no caso 1D e 5× 5 no caso 2D), sua solução pode ser feita de forma eficiente
por qualquer método direto (FRANCO, 2017; FRANCO et al., 2018).

Figura 12 – Cinco incógnitas atualizadas simultaneamente com o suavizador Vanka, caso 2D.

ui−1,j ui+1,j

vi,j−1

pi,j

vi,j+1

Fonte: Adaptada de Franco et al. (2018).

Em comparação com os suavizadores Jacobi e Gauss-Seidel padrão (ponto a ponto),
o suavizador Vanka apresenta como vantagem crucial, a capacidade de lidar com blocos
tendendo a zero que aparecem na diagonal da matriz do sistema (em particular, o bloco
formado pelo vetor c, que tende a zero quando a condutividade hidráulica é pequena).
Esses sistemas, chamados sistemas com pontos de sela, são decorrentes da discretização
das equações da poroelasticidade (GASPAR et al., 2004; RODRIGO, 2010; GASPAR;
RODRIGO, 2015) e também pode ocorrer na discretização das equações incompressíveis
de Navier-Stokes (WOBKER; TUREK, 2009).
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5 VARIÁVEIS DE INTERESSE

A utilização da técnica de Múltipla Extrapolação de Richardson (MER) necessita
da geração de soluções numéricas em várias malhas distintas, para uma variável específica
de interesse. Nesse trabalho as variáveis de interesse utilizadas estão divididas em dois
tipos: i) variáveis do tipo 1: são variáveis que apresentam mesma localização nodal, em
todas as malhas, com o refino de Ωh e, essa localização pode ser predefinida. Neste tipo
estão inclusas ainda as variáveis globais, isto é, que representam as médias das variáveis de
interesse sobre o domínio de cálculo; ii) variáveis do tipo 2: são variáveis que apresentam
mudanças em suas coordenadas com o refino de Ωh e, sua localização nodal não pode
ser predefinida. As descrições para estas variáveis são apresentadas nas Seções 5.1 e 5.2.
As Figuras 13 e 14, ilustram os tipos de variáveis adotadas neste trabalho, em que ϕ1

com coordenadas a1, ϕ2 com coordenadas a2 e ϕ3 com coordenadas a3, correspondem,
respectivamente, às soluções numéricas obtidas nas malhas Ωh1 (grossa), Ωh2 (fina) e Ωh3

(superfina), com razão de refino constante (r = h1/h2 = h2/h3).

5.1 Variáveis do tipo 1

São variáveis, cuja a localização da coordenada aj é a mesma para todas as malhas
Ωhj , utilizadas no emprego de MER, e coincide com um ponto nodal. Como exemplo, uma
variável de interesse representada pela solução numérica ϕj e calculada no ponto central
do domínio (Figura 13). Esse tipo de variáveis, também pode ser caracterizado por uma
variável global.

Figura 13 – Variável com localização nodal fixa, sem alteração de coordenadas, ao se considerar
malhas distintas, com o refino de Ωh.

Ωh3

Ωh1
Ωh2

φ2

a1 = a2 = a3

φ1

φ3

Fonte: Adaptada de Marchi et al. (2016).

O emprego de MER para variáveis do tipo 1, ocorre de forma direta, isto é,
utiliza-se apenas a equação (3.36), de acordo com o Algoritmo 3, apresentado a seguir.



Capítulo 5. Variáveis de interesse 62

Algoritmo 3: Aplicação de MER em variáveis do tipo 1
Calcule ϕ, em G malhas distintas: ϕ1, ϕ2, · · · , ϕG .
for i = 1 : G do
ϕ
i,0 = ϕ

i
.

end for
for m = 1 : G− 1 do

for g = m+ 1 : G do
ϕg,m = ϕg,m−1 + ϕg,m−1 − ϕg−1,m−1

r
pm−1 − 1

.
end for

end for

5.2 Variáveis do tipo 2

Para as variáveis do tipo 2, não é possível determinar previamente a coordenada
aj referente à solução ϕj. A localização de aj, depende da malha Ωhj adotada, ou seja, aj
muda com o refino de Ωh (Figura 14). Variáveis com ponto extremo (máximo ou mínimo),
são exemplos de variáveis que podem pertencer ao tipo 2. A utilização direta de MER sobre
as ϕ obtidas em malhas distintas para esse tipo de variáveis, pode ter seu desempenho
comprometido devido a alteração de coordenadas ao se refinar a malha, conforme ilustrado
na seção 1.1.

Figura 14 – Variável com localização indeterminada, apresenta alteração de coordenadas ao se
considerar malhas distintas.

Ωh3

Ωh1
Ωh2

φ2

a1 a3 a2

φ1

φ3

Fonte: Adaptada de Marchi et al. (2016).

O emprego de MER para variáveis do tipo 2 deve ser realizado de forma que os
efeitos causados pela alteração de coordenadas em malhas distintas sejam minimizados. De
acordo com Martins (2013) e Marchi et al. (2016), a combinação de interpolação polinomial
com a aplicação de métodos de otimização tem demonstrado resultados satisfatórios para
esse propósito.

Diante disso, são selecionados os p+ 1 pontos nodais, situados nas proximidades
do ponto discreto de máximo (ou mínimo), ou seja, corresponde ao valor nodal mais alto
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(ou mais baixo) obtido na malha Ωh, e esses pontos são utilizados para calcular ξp (função
polinomial de grau igual ou menor que p). Dado que ξp representa uma função convexa,
a existência e unicidade do ponto máximo (ou mínimo) no intervalo definido por esses
pontos são garantidas. Após a determinação desses pontos de máximo (ou de mínimo)
(ϕexti ), com i = 1, . . . , G, para cada malha Ωh, o emprego de MER é aplicado através da
utilização da equação (3.36), conforme Algoritmo 4.

Algoritmo 4: Aplicação de MER em variáveis com ponto extremo
Calcule ϕ, em G malhas distintas: ϕ1, ϕ2, · · · , ϕG .
Obtenha ξp, aplicando a interpolação polinomial.
Calcule o ponto máximo (ϕexti ) de ξp, para cada malha Ωh, i = 1, . . . , G.
for i = 1 : G do
ϕ
i,0 = ϕexti .

end for
for m = 1 : G− 1 do

for g = m+ 1 : G do
ϕg,m = ϕg,m−1 + ϕg,m−1 − ϕg−1,m−1

r
pm−1 − 1

.
end for

end for

Neste trabalho, para variáveis com ponto extremo, adotou-se interpolação
polinomial de graus 2, 4, 6 e 8, para o cálculo de Epm.
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6 RESULTADOS

Neste capítulo são apresentados os resultados obtidos com a utilização de MER,
metodologia descrita na seção 3.5, a qual foi abordada na concepção de redução e estimativa
do erro de discretização para variáveis com mesma localização nodal em malhas distintas e
para variáveis com ponto extremo (localização variável) no problema de poroelasticidade uni
e bidimensional. As simulações numéricas foram realizadas em linguagem Fortran utilizando
o compilador Intel® Fortran Compiler e Intel® oneAPI HPC Toolkit. O computador utilizado
possui processador Intel® CoreTM i7-9700KF, CPU 3.60 GHz e 16 GB de memória RAM.

6.1 Problemas de poroelasticidade unidimensionais

Nesta seção são expostos os resultados para dois casos, os quais foram obtidos
por meio do problemas de poroelasticidade unidimensional (equação 4.1), com a variação
do módulo de Young (E) e da condutividade hidráulica (K). As soluções numéricas foram
obtidas mediante o emprego do Método das Diferenças Finitas com aproximações espaciais
de segunda ordem e aproximações temporais pelo método de Crank-Nicolson.

Para todas as simulações utilizou-se o método multigrid no intuito de acelerar a
convergência do processo iterativo (esquema CS, ciclo W(1,1), razão de engrossamento
padrão re = 2, operador de restrição por ponderação completa e operador de prolongação
por interpolação linear), suavizador Vanka, precisão quádrupla e critério de parada até se
atingir o nível de acurácia do erro de máquina. A razão de refino entre as malhas é r = 2.

6.1.1 Primeiro problema poroelástico unidimensional

Os parâmetros de entrada para o primeiro problema poroelástico estão listados na
Tabela 4. Esses valores de E e K são valores típicos, usados academicamente para avaliar a
eficácia da metodologia adotada, possibilitando o refinamento em diversos níveis de malha,
porém, sem levar em consideração seus valores físicos realísticos.

Tabela 4 – Parâmetros de entrada para o primeiro problema poroelástico 1D.

Símbolo Quantidade Valor Unidade

Ω domínio espacial
(
0,12
)

m
T tempo final 1,0 s
E modulo de Young 1,0 N/m2

K condutividade hidráulica 1,0 m/s

Fonte: O autor (2023).

Na sequência, são apresentados os resultados obtidos para Eh, Em e suas
estimativas, para as variáveis de interesse pressão e deslocamento.
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6.1.1.1 Variáveis com mesma localização nodal em malhas distintas

Como descrito na seção 5.1 o emprego de MER para variáveis com mesma
localização nodal, ocorre de forma direta, isto é, utiliza-se apenas a equação (3.36). Para
essas variáveis, têm-se como representantes o deslocamento e a pressão no ponto central
do domínio, as quais são denominadas por uc e pc, respectivamente. A malha mais grossa
considerada apresenta N = 9 e a mais refinada N = 8193 pontos nodais, totalizando com
isso G = 11 malhas.

Os resultados obtidos para Eh e Em são apresentados na Figura 15 e Tabela 5,
para as variáveis uc e pc.

Figura 15 – Desempenho de MER sobre Eh, para variáveis uc e pc.

(a) Variável uc.
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(b) Variável pc.
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FONTE: O autor (2023).

Tabela 5 – Erro de discretização Eh e Em, para as variáveis uc e pc.

variável uc variável pc
h |Eh| |Em| |Eh| |Em|

6,25× 10−2 3,53× 10−3 − 7,32× 10−3 −
3,12× 10−2 8,76× 10−4 8,57× 10−6 1,77× 10−3 7,96× 10−5

1,56× 10−2 2,19× 10−4 1,29× 10−6 4,48× 10−4 1,91× 10−5

7,81× 10−3 5,48× 10−5 8,92× 10−8 1,12× 10−4 2,33× 10−6

3,91× 10−3 1,37× 10−5 2,84× 10−9 2,80× 10−5 1,47× 10−7

1,95× 10−3 3,42× 10−6 5,69× 10−11 6,99× 10−6 5,02× 10−9

9,77× 10−4 8,56× 10−7 1,02× 10−12 1,75× 10−6 9,21× 10−11

4,88× 10−4 2,14× 10−7 1,40× 10−14 4,37× 10−7 8,63× 10−13

2,44× 10−4 5,35× 10−8 9,89× 10−17 1,09× 10−7 3,24× 10−15

1,22× 10−4 1,34× 10−8 2,76× 10−19 2,73× 10−8 4,53× 10−18

6,10× 10−5 3,34× 10−9 9,96× 10−24 6,83× 10−9 6,90× 10−20

Fonte: O autor (2023).
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Observa-se na Figura 15 e Tabela 5, que a emprego de MER para variáveis
com mesma localização nodal em malhas distintas apresenta resultados significativos,
corroborando com o descrito na literatura.

Muitas vezes não é possível calcular a solução analítica Φ de um modelo matemático,
logo, o erro da solução numérica E(Φ) para uma determinada variável de interesse não
pode ser calculado. Quando isso ocorre, uma estimativa para esse erro pode ser obtida. A
seguir apresenta-se alguns resultados para essas estimativas.

Estimativas para o erro de discretização Em

As estimativas apresentadas a seguir, são estimativas a posteriori para Em

calculadas com base em soluções numéricas obtidas em malhas Ωh distintas e são usadas
para estimar efetivamente a magnitude do erro de discretização. Ao se calcular uma
estimativa para o erro, objetiva-se que ela seja confiável e acurada. Uma forma de quantificar
essas características, confiabilidade e acurácia, é mediante o cálculo de sua efetividade
θ = U

E
. Se θ ⩾ 1 a estimativa para o erro é confiável. Se θ ≈ 1 a estimativa para o erro é

acurada.
As Tabelas 6 e 7 apresentam os resultados de θ, obtidos para os estimadores

U
∆
, Upmc , Uψ e Uψ∗ , para as variáveis uc e pc.

Tabela 6 – Efetividade dos estimadores U∆, Upmc, Uψ e Uψ∗ , para a variável uc.

h U∆/Em Upmc/Em Uψ/Em Uψ∗/Em

3,12× 10−2 4,127385× 102 1,150334 − 1,150457
1,56× 10−2 7,651851 1,069213 2,126703× 10−2 9,381258× 10−1

7,81× 10−3 1,544825× 101 1,031872 1,893973 9,672636× 10−1

3,91× 10−3 3,237507× 101 1,020018 2,027106 9,888630× 10−1

1,95× 10−3 5,095406× 101 1,017962 1,556339 9,980230× 10−1

9,77× 10−4 5,667449× 101 1,013686 1,110068 9,958733× 10−1

4,88× 10−4 7,406959× 101 1,007066 1,301537 9,935574× 10−1

2,44× 10−4 1,425220× 102 1,002794 1,911767 9,957880× 10−1

1,22× 10−4 3,588580× 102 1,000036 2,507307 9,972570× 10−1

6,10× 10−5 2,773771× 104 − 7,708236× 101 −1,819036× 104

Fonte: O autor (2023).

Observa-se que as estimativas para o erro de discretização mais acuradas, são
estabelecidas pelos estimadores Upmc e Uψ∗ , isto é, Upmc

Em
≈ 1 e Uψ∗

Em
≈ 1. No entanto, dentre

esses dois estimadores o que se apresentou mais confiável foi Upmc, o qual obteve θ ⩾ 1
para todas as malhas analisadas de uc e, para pc não obteve θ ⩾ 1 apenas na malha
h = 2,44× 10−4.

Apresenta-se na Figura 16 os erros de discretização Eh, Em e suas estimativas.
Os estimadores utilizados para a confecção dos gráficos, são os que apresentaram maior
acurácia e confiabilidade (Tabelas 6 e 7).
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Tabela 7 – Efetividade dos estimadores U∆, Upmc, Uψ e Uψ∗ , para a variável pc.

h U∆/Em Upmc/Em Uψ/Em Uψ∗/Em

3,12× 10−2 9,295681× 101 1,240215 − 1,239921
1,56× 10−2 5,162936 1,121653 6,797615× 10−2 9,214641× 10−1

7,81× 10−3 9,220097 1,063303 1,645573 9,533573× 10−1

3,91× 10−3 1,679711× 101 1,034119 1,736820 9,741451× 10−1

1,95× 10−3 3,030952× 101 1,018328 1,757795 9,852268× 10−1

9,77× 10−4 5,556095× 101 1,009374 1,806038 9,913641× 10−1

4,88× 10−4 1,076759× 102 1,003754 1,921242 9,944830× 10−1

2,44× 10−4 2,674163× 102 9,986027× 10−1 2,469828 9,948876× 10−1

1,22× 10−4 7,146842× 102 1,015242 −2,658890 1,016687
6,10× 10−5 6,660659× 101 − −9,475238× 10−2 1,835524× 101

Fonte: O autor (2023).

Figura 16 – Erro de discretização Eh, Em e suas estimativas, variáveis u e p.

(a) Variável u.
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Fonte: O autor (2023).

Ilustra-se na Figura 17 a ordem de acurácia pE para a variável pc, sem MER (pE)
e com MER (pE)g,m . Observa-se que com o refino de malha, pE → 2, o que é compatível
com o método de segunda ordem empregado, também apresenta um aumento progressivo
de (pE)g,m que é uma condição desejada com a aplicação de MER.

Para a última malha analisada (h = 6,1× 10−5), ocorre uma queda no valor de
(pE)g,m , indicando que o erro de arredondamento Eπ torna-se a principal fonte de erro
numérico, prejudicando a eficiência de MER. Uma justificativa pode ser elaborada a partir
da observação da Figura 18, ou seja, uma vez que, embora os cálculos são realizados com
precisão quadrupla, nota-se que para uma malha com N = 8193 pontos nodais, o menor
valor para o resíduo corresponde a grandeza aproximada de 10−25. A interpretação para tal
situação é que os valores que estão sendo usados para calcular uc na malha mais refinada,
encontram-se no limite da precisão estabelecida, e como a resolução do sistema de equações
utilizado para determinar as variáveis u e p é resolvido de forma acoplada, os Eπ presentes
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em uc começam a afetar pc (Figuras 16b e 17).

Figura 17 – Ordem de acurácia associada a variável pc, com e sem MER.
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FONTE: O autor (2023).

Na Figura 18 é representado o resíduo adimensionalizado (Ln/L0), ao longo das
iterações (representado na figura apenas pelo termo resíduo), em que Ln é a norma infinito
do resíduo na iteração n e L0 a norma infinito do resíduo da estimativa inicial.

Figura 18 – Resíduo adimensionalizado ao longo das iterações, para a variável pc com Ωh = 8193.
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FONTE: O autor (2023).

6.1.1.2 Variáveis com ponto extremo

Para as variáveis com ponto extremo, têm-se como representantes o valor máximo
do deslocamento (umax) e o valor máximo da pressão (pmax). As soluções para ϕ = umax e
ϕ = pmax foram obtidas utilizando os mesmos dados apresentados na Seção 6.1.1 (Tabela 4).
Com as ϕ nodais calculadas, aplica-se MER, e ao observar a Figura 19 nota-se que o seu
emprego para esse tipo de variável não apresenta redução significativa de Em com relação
a Eh. Em acordo com a literatura, isso ocorre devido a mudança nas coordenadas de ϕ em
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malhas distintas, ocasionando como consequência, o comportamento não convergente da
sequência de pE e pU com o refino de malha (Tabela 8), prejudicando assim o desempenho
de MER.

Figura 19 – Desempenho de MER sobre Eh, para variáveis umax e pmax.
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FONTE: O autor (2023).

Tabela 8 – Ordens efetiva (pE) e aparente (pU ) para as variáveis umax e pmax, sem interpolação
polinomial.

variável umax variável pmax
h pE pU pE pU

1,56× 10−2 1,9457908 2,1749278 2,1184084 2,6809902
7,81× 10−3 1,8609592 1,9767519 1,9141392 2,1856072
3,91× 10−3 1,8929451 1,8489923 2,0949736 1,8540270
1,95× 10−3 2,1667539 1,8038588 1,8525138 2,1780054
9,77× 10−4 1,6996514 2,3341417 2,3009125 1,7119923
4,88× 10−4 2,4098868 1,4695377 1,4881730 2,6095888
2,44× 10−4 1,9918371 2,5269040 3,6448813 9,7247163× 10−1

1,22× 10−4 1,9678033 1,9999998 −6,3626431× 10−2 7,9957424
6,10× 10−5 1,8779512 1,9999999 2,1368503 −4,1625317

Fonte: O autor (2023).

Uma forma de melhorar o desempenho de MER para esse tipo de variável é
usar o procedimento descrito na seção 5.2, isto é, aplicar interpolação polinomial, em
seguida utilizar métodos de otimização para calcular o máximo de ξp e, então aplicar MER
(Algoritmo 4).

Com os valores de ϕ resultantes do cálculo do valor máximo de ξp, determina-se
Ep de maneira equivalente a Eh então, posteriormente calcula-se Epm com o emprego de
MER, de forma análoga a Em. Os resultados obtidos para Ep, Epm são apresentados na
Figura 20 e suas estimativas na Figura 21.
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Figura 20 – Erro de discretização para interpolação polinomial sem MER (Ep) e com MER (Epm)
para p = 2, 4, 6, 8 versus discretização espacial (h).
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FONTE: O autor (2023).

Figura 21 – Erro de discretização para interpolação polinomial sem MER (Ep), com MER (Epm)
e sua estimativa Upmc versus discretização espacial (h).
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(b) Variável pmax (p = 4).

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

6,1x10−5 2,4x10−4 9,8x10−4 3,9x10−3 1,6x10−2 6,2x10−2

E
rr

o 
de

 d
is

cr
et

iz
aç

ão

Discretização espacial h [m]

Ep
Epm
Upmc

FONTE: O autor (2023).

Nota-se que, com o refino de malha (h → 0), o erro de discretização Epm → 0,
corroborando a afirmação de que a aplicação da interpolação polinomial seguida de um
método de otimização, mostra-se eficaz para o emprego de MER em variáveis com pontos
extremos, ocasionando uma redução significativa de Epm com relação a Ep. Observa-se,
portanto, que existe um limite para o aumento de p. Para a variável umax, esse limite foi
p = 6, já que para p = 8 os resultados são equivalentes (Figura 20a).

Para a variável pmax, esse limite foi p = 4, os resultados para valores de p > 4
são equivalentes (Figura 20b). Esse comportamento também foi avaliado para valores de
p > 8, por exemplo, p = 10 e p = 12, levando às mesmas conclusões. Em outras palavras,
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nestes casos, ao se considerar polinômios interpoladores de ordem mais elevada não há
uma maior influência sobre a redução da magnitude de Epm.

Outro fato que deve ser destacado é que o comportamento não convergente da
sequência de valores de pE e pU quando h→ 0, devido à mudança de coordenadas de ϕ em
malhas distintas, apresentados na Tabela 8, é amenizado com a aplicação de interpolação
polinomial seguida de um método de otimização, gerando um comportamento convergente
para a sequência de valores de pE e pU quando h→ 0 (Tabela 9), acarretando em resultados
promissores ao emprego de MER.

Tabela 9 – Ordens efetiva pE e aparente pU para as variáveis umax e pmax.

variável umax (p = 6) variável pmax (p = 4)
h pE pU pE pU

3,12× 10−2 1,9937449 − 2,1033748 −
1,56× 10−2 2,0038594 1,9903697 1,9784819 2,1434947
7,81× 10−3 1,9999292 2,0051671 1,9997939 1,9713059
3,91× 10−3 2,0000267 1,9998967 1,9996272 1,9998495
1,95× 10−3 2,0000069 2,0000334 1,9999143 1,9995315
9,77× 10−4 2,0000018 2,0000086 1,9999787 1,9998928
4,88× 10−4 2,0000005 2,0000023 1,9999947 1,9999733
2,44× 10−4 2,0000001 2,0000006 1,9999987 1,9999934
1,22× 10−4 2,0000000 2,0000001 1,9999997 1,9999984
6,10× 10−5 2,0000000 2,0000000 1,9999999 1,9999996

Fonte: O autor (2023).

As Tabelas 10 e 11 apresentam os valores da efetividade θ dos estimadores
U∆, Upmc, Uψ e Uψ∗ para as variáveis umax e pmax, respectivamente. Os resultados são
semelhantes aos obtidos para as variáveis com mesma localização nodal em malhas distintas.

Tabela 10 – Efetividade dos estimadores U∆, Upmc, Uψ e Uψ∗ , para Epm, p = 6 e variável umax.

h U∆/Em Upmc/Em Uψ/Em Uψ∗/Em

3,12× 10−2 6,894356× 102 1,319292 − 1,319214
1,56× 10−2 4,131934 1,143042 −7,921954× 10−3 8,953547× 10−1

7,81× 10−3 7,990945 1,070982 1,731569 9,444086× 10−1

3,91× 10−3 1,508798× 101 1,038599 1,783171 9,717099× 10−1

1,95× 10−3 2,690764× 101 1,021519 1,732930 9,841570× 10−1

9,77× 10−4 4,746960× 101 1,012060 1,736219 9,909332× 10−1

4,88× 10−4 8,391856× 101 1,006698 1,751809 9,947648× 10−1

2,44× 10−4 1,502953× 102 1,003803 1,781590 9,971428× 10−1

1,22× 10−4 2,639781× 102 1,002481 1,751378 9,986884× 10−1

6,10× 10−5 4,040575× 102 − 1,528640 −5,325574× 102

Fonte: O autor (2023).
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Tabela 11 – Efetividade dos estimadores U∆, Upmc, Uψ e Uψ∗ , para Epm, p = 4 e variável pmax.

h U∆/Em Upmc/Em Uψ/Em Uψ∗/Em

3,12× 10−2 4,431086× 101 1,200551 − 1,168882
1,56× 10−2 5,986230 1,104250 1,579118× 10−1 9,322780× 10−1

7,81× 10−3 1,059227× 101 1,057907 1,649607 9,618432× 10−1

3,97× 10−3 1,826886× 101 1,036576 1,658924 9,809193× 10−1

1,95× 10−3 2,833973× 101 1,023727 1,521659 9,880366× 10−1

9,77× 10−4 4,314445× 101 1,015686 1,504188 9,923256× 10−1

4,88× 10−4 6,474922× 101 1,010623 1,489236 9,950919× 10−1

2,44× 10−4 9,513034× 101 1,005809 1,462001 9,952860× 10−1

1,22× 10−4 1,731425× 102 9,917696× 10−1 1,811475 9,861210× 10−1

6,10× 10−5 2,628040× 102 − −6,863061× 10−1 1,424667× 102

Fonte: O autor (2023).

Os estimadores mais acurados são Upmc e Uψ∗ , ou seja, o cálculo da efetividade
resultou em Upmc

Ep
≈ 1 e Uψ∗

Ep
≈ 1. O estimador que se apresentou mais confiável foi Upmc ,

o qual resultou em θ > 1 em todas as malhas analisadas para a variável umax e para a
variável pmax não ocorreu θ > 1 apenas para a malha h = 1,22× 10−4.

A Figura 22 ilustra o comportamento das ordens efetivas pE e (pE)g,m para a
variável umax.

Figura 22 – Ordem de acurácia associada a variável umax, com e sem MER.
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FONTE: O autor (2023).

Ao observar a Tabela 9 e a Figura 22, nota-se que quando h→ 0 a ordem efetiva
pE → 2, sendo compatível com o método de segunda ordem utilizado. Também na Figura 22
nota-se um aumento progressivo de (pE)g,m, apresentando com isso a condição desejada
na aplicação de MER.
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6.1.2 Segundo problema poroelástico unidimensional

Na sequência, outro teste realizado para variáveis com ponto extremo é apresentado.
As soluções ϕ = umax e ϕ = pmax foram obtidas a partir do modelo matemático apresentado
na seção 4.1. Os parâmetros de entrada para o segundo problema poroelástico são listados
na Tabela 12.

Tabela 12 – Parâmetros de entrada para o segundo problema poroelástico 1D.

Símbolo Quantidade Valor Unidade

Ω domínio espacial
(
0,12
)

m
T tempo final 1,0 s
E modulo de Young 1,0× 102 N/m2

K condutividade hidráulica 1,0× 10−2 m/s

Fonte: O autor (2023).

O valor para a condutividade hidráulica K = 1,0 × 10−2 m/s, está relacionado
com problemas físicos para solos como: cascalho limpo, misturas de areia e cascalho ou
para rochas de calcário cárstico ou basalto permeável (BEAR, 1972; FREEZE; CHERRY,
1979; KNAPPETT; CRAIG, 2019), portanto, estes são dados de um problema realístico.
A malha mais grossa considerada apresenta N = 9 e a mais refinada N = 8193 pontos
nodais, totalizando assim G = 11 malhas.

A Figura 23 mostra o desempenho de MER sobre Eh, se empregado de forma
direta, para as variáveis umax e pmax.

Figura 23 – Desempenho de MER sobre Eh, para variáveis umax e pmax.
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(b) Variável pmax.
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FONTE: O autor (2023).

Os resultados apresentado na Figura 23 corroboram o expostos anteriormente na
Seção 6.1.1.2, ou seja, a aplicação direta de MER para variáveis que apresentam mudanças
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nas coordenados nodais com o refinamento de malha não apresenta resultados significativos
para a redução do erro de discretização. Considera-se que este fato é uma consequência do
comportamento divergente para a sequência de valores de pE e/ou pU em relação à pL.

A Tabela 13 apresenta os valores de pE e pU para as variáveis umax e pmax, sem
interpolação polinomial.

Tabela 13 – Ordens efetiva pE e aparente pU para as variáveis umax e pmax, sem interpolação
polinomial.

variável umax variável pmax
h pE pU pE pU

3,12× 10−2 −1,3314357 − 2,3179762 −
1,56× 10−2 2,1315617 −3,5694075× 10−1 2,0930330 2,3803719
7,81× 10−3 1,9847287 2,1780047 2,0175457 2,1169555
3,91× 10−3 1,9153148 2,0089724 1,9822581 2,0293099
1,95× 10−3 2,2359338 1,8151592 1,9944983 1,9781339
9,77× 10−4 1,5232191 2,5085359 2,0408104 1,9793089
4,88× 10−4 3,0972413 1,0856383 1,9426228 2,0738056
2,44× 10−4 1,4492220× 10−1 6,3052383 2,0009023 1,9226778
1,22× 10−4 5,5811232 −3,2721739 2,0036215 1,9999978
6,10× 10−5 2,8787534 5,4270379 2,0145815 1,9999987

Fonte: O autor (2023).

Neste caso, aplica-se interpolação polinomial seguida de um método de otimização
com o objetivo de contornar tal impedimento, e, assim, tornar efetivo o emprego de MER
para a redução de Eh. A Figura 24 mostra os valores de pE para umax, sem interpolação e
com interpolação polinomial de grau p = 2, 4 e 6.

Figura 24 – Ordem de efetiva pE , para variável umax, com e sem interpolação polinomial.

−2

−1

0

1

2

3

4

5

6

6,1x10−5 2,4x10−4 9,8x10−4 3,9x10−3 1,6x10−2 6,2x10−2

O
rd

em
 e

fe
ti

va
 (
p E

)

Discretização espacial h [m]

pE (sem interpolação)
pE (p=2)
pE (p=4)
pE (p=6)

FONTE: O autor (2023).
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Observa-se na Figura 24 que a aplicação de interpolação polinomial seguida de
um método de otimização, faz com que os valores de pE → pL, e com isso a aplicação
da MER torna-se mais efetiva. Os resultados obtidos para Ep, Epm após a aplicação de
interpolação polinomial seguida de um método de otimização são ilustrados na Figura 25
para as variáveis umax e pmax.

Figura 25 – Desempenho de MER sobre Eh, para interpolação polinomial seguida de um método
de otimização para as variáveis umax e pmax.
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FONTE: O autor (2023).

Ao analisar a Figura 25 nota-se que os resultados apresentados são semelhantes
aos expostos na Seção 6.1.1.2, isto é, elevando o valor de p a magnitude do Epm é reduzido,
tendo com valor limite p = 6 para umax e p = 4 para pmax.

Os valores da efetividade θ, para os estimadores U∆, Upmc, Uψ e Uψ∗ das variáveis
umax e pmax são apresentados nas Tabelas 14 e 15.

Tabela 14 – Efetividade dos estimadores U∆, Upmc, Uψ e Uψ∗ , para Epm, p = 6 e variável umax.

h U∆/Em Upmc/Em Uψ/Em Uψ∗/Em

3,12× 10−2 2,169207× 101 1,147962 − 1,148161
1,56× 10−2 7,758478 1,073100 3,899486× 10−1 9,427104× 10−1

7,81× 10−3 1,467994× 101 1,039929 1,783718 9,711337× 10−1

3,91× 10−3 2,604447× 101 1,023493 1,722940 9,847923× 10−1

1,95× 10−3 4,356666× 101 1,015203 1,647340 9,920855× 10−1

9,77× 10−4 6,677492× 101 1,010365 1,520576 9,953049× 10−1

4,88× 10−4 9,748064× 101 1,007022 1,452985 9,967252× 10−1

2,44× 10−4 1,434128× 102 1,004702 1,466375 9,977120× 10−1

1,22× 10−4 2,136898× 102 1,003309 1,486624 9,986202× 10−1

6,10× 10−5 3,032126× 102 − 1,416980 −6,161586× 102

Fonte: O autor (2023).
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Tabela 15 – Efetividade dos estimadores U∆, Upmc, Uψ e Uψ∗ , para Epm, p = 4 e variável pmax.

h U∆/Em Upmc/Em Uψ/Em Uψ∗/Em

3,125×10−2 1,556945× 101 1,090047 − 1,114315
1,562×10−2 1,210531× 101 1,011227 7,920624× 10−1 9,332660× 10−1

7,812×10−3 9,006947× 101 8,461112× 10−1 6,943958 8,382368× 10−1

3,906×10−3 5,498198 1,052579 −5,116930× 10−2 1,301796
1,953×10−3 2,001895× 101 1,015181 −4,739841 9,661846× 10−1

9,766×10−4 6,687291× 101 9,977870× 10−1 3,227521 9,831182× 10−1

4,883×10−4 4,508753× 102 1,095627 −6,628451 1,098296
2,441×10−4 1,145733× 101 1,010421 −2,790912× 10−2 9,285337× 10−1

1,221×10−4 9,695968× 101 1,004513 7,857882 9,942130× 10−1

6,104×10−5 2,225761× 102 − 2,282269 −2,962763× 101

Fonte: O autor (2023).

Constata-se que os estimadores mais acurados são Upmc e Uψ∗ , ou seja, Upmc
Ep
≈ 1

e Uψ∗

Ep
≈ 1. Entretanto, ao se analisar a Tabela 14, relacionada à variável umax e grau de

polinômio p = 6, nota-se que dentre os dois estimadores, somente o Upmc se apresentou
confiável, ou seja, Upmc

Em
> 1. Contudo, para a variável pmax e grau de polinômio p = 4

(Tabela 15), nota-se que para as malhas h = 7,81× 10−3 e h = 9,77× 10−4, o estimador
Upmc não se apresentou confiável, ou seja, Upmc

Em
< 1.

Apresenta-se na Figura 26 os erros de discretização Ep, Epm e sua estimativa Upmc.
Os estimadores utilizados para a confecção dos gráficos são os que apresentaram maiores
níveis de acurácia e confiabilidade (Tabelas 14 e 15).

Figura 26 – Erro de discretização para interpolação polinomial sem MER (Ep), com MER (Epm)
e sua estimativa Upmc versus discretização espacial (h).

(a) Variável umax (p = 6).
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(b) Variável pmax (p = 4).
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FONTE: O autor (2023).

Na Figura 27 ilustra-se a ordem de acurácia para a variável umax, sem MER
(pE) e com MER (pE)g,m. Observa-se que, com o refino de malha, pE → 2, que é um
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comportamento compatível com o método de segunda ordem empregado (pL = 2). Observa-
se também um aumento progressivo de (pE)g,m, que é a condição desejada na aplicação de
MER.

Figura 27 – Ordem de acurácia associada à variável umax, com e sem MER.
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FONTE: O autor (2023).

Nesta Seção 6.1, foram apresentados os resultados obtidos com a aplicação de
MER, para variáveis com mesma localização nodal em malhas distintas, e para variáveis
com ponto extremo, para o problema de poroelasticidade unidimensional.

Constatou-se que, para variáveis com localização nodal fixa em malhas distintas,
a aplicação de MER é feita de forma direta, e com isso obtêm-se bons resultados
(comportamento teórico esperado). Ao considerar variáveis que envolvem pontos extremos,
a aplicação direta de MER ocasionou resultados ineficazes sobre a redução de Eh, por
esse motivo, utiliza-se a interpolação polinomial, seguido da aplicação de um método de
otimização. Essa metodologia apresentou-se eficaz para a redução de Eh, apresentando
resultados relevantes. No que se refere às estimativas para o erro de discretização,
considerando soluções obtidas com o emprego de MER, o estimador indicado é Upmc,
o qual destacou-se dos demais pela sua acurácia e confiabilidade.

6.2 Problemas de poroelasticidade bidimensionais

6.2.1 Primeiro problema poroelástico bidimensional

São apresentados os resultados obtidos com a utilização de MER, que foi abordada
na concepção de redução e estimativa de Eh para variáveis com mesma localização nodal
em malhas distintas, aplicada ao problema de poroelasticidade 2D.

Para esse tipo de variáveis, têm-se como representantes a pressão p e os
deslocamentos u e v em determinadas coordenadas do domínio de cálculo. Assim,
consideram-se as soluções numéricas para estas variáveis nos pontos nodais com
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coordenadas:
(

1
4 ,

1
4

)
,
(

3
4 ,

1
4

)
,
(

1
2 ,

1
2

)
,
(

1
4 ,

3
4

)
,
(

3
4 ,

3
4

)
. Por simplicidade de notação, denota-se

u1 ≡ u
(

1
4 ,

1
4

)
, u2 ≡ u

(
3
4 ,

1
4

)
, u3 ≡ u

(
1
2 ,

1
2

)
, u4 ≡ u

(
1
4 ,

3
4

)
e u5 ≡ u

(
3
4 ,

3
4

)
, sendo as mesmas

relações de subíndices válidas para as variáveis v e p, nestas respectivas coordenadas.
As soluções numéricas foram obtidas a partir do modelo matemático apresentado

na seção 4.1 em oito malhas distintas, em que a malha mais grossa considerada apresenta
Nx×Ny = 5×5 e a mais refinada Nx×Ny = 513×513 pontos nodais. As soluções numéricas
foram obtidas mediante o emprego do Método das Diferenças Finitas e aproximações
temporais pelo método de Crank-Nicolson. Em todos os casos, o método multigrid foi
utilizado no intuito de acelerar a convergência do processo iterativo e a razão de refino
entre as malhas foi r = 2. A seguir são apresentados os resultados obtidos para diferentes
casos, obtidos a partir da variação do módulo de Young (E) e condutividade hidráulica
(K).

Os parâmetros de entrada para este primeiro problema poroelástico bidimensional
estão listados na Tabela 16.

Tabela 16 – Parâmetros de entrada para o primeiro problema poroelástico 2D.

Símbolo Quantidade Valor Unidade
Ω domínio espacial (0,1)× (0,1) m2

T tempo final 1,0 s
E modulo de Young 1,0 N/m2

K condutividade hidráulica 1,0 m/s
ν razão de Poisson 2,0× 10−1 −

Fonte: O autor (2023).

Esses valores de E e K são valores típicos, usados academicamente para avaliar a
eficácia da metodologia adotada, possibilitando o refinamento em diversos níveis de malha,
porém, sem levar em consideração seus valores físicos realísticos. Valores para E e K mais
realísticos serão abordados nas seções subsequentes.

6.2.1.1 Erro de discretização com e sem MER, para a variável pressão

As Figuras 28a e 28b ilustram o desempenho de MER sobre Eh, para as variáveis
de interesse p3 e p5, respectivamente. Para as demais variáveis p1, p2 e p4 os resultados
não serão expostos, em razão de apresentarem comportamentos numéricos semelhantes,
p1 ∼= p3, p2 e p4 ∼= p5.

Observa-se na Figura 28 que o emprego de MER resultou em uma redução
significativa de Eh. A Tabela 17 apresenta alguns exemplos que caracterizam o efeito de
MER sobre Eh, os quais foram avaliados mediante o cálculo da razão |Eh|/|Em|. Para isso
levou-se em consideração as três últimas malhas.
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Figura 28 – Desempenho de MER sobre Eh, para variáveis p3 e p5.

(a) Variável p3.

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

3,91x10−3 1,56x10−2 6,25x10−2 2,50x10−1

E
rr

o 
de

 d
is

cr
et

iz
aç

ão

Discretização espacial h [m]

Eh
Em

(b) Variável p5.
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Fonte: O autor (2023).

Tabela 17 – Redução do erro em três malhas distintas, variável p3.

Nx ×Ny 129× 129 257× 257 513× 513
h 7,812× 10−3 3,906× 10−3 1,953× 10−3

m para Em 5 6 7
|Eh| 2,031× 10−5 5,092× 10−6 1,274× 10−6

|Em| 5,259× 10−8 9,654× 10−10 9,172× 10−12

|Eh|/|Em| 3,862× 102 5,274× 103 1,389× 105

Fonte: O autor (2023).

Verifica-se na Tabela 17 que, para a malha Nx×Ny = 129× 129 nós, ao se aplicar
cinco níveis de extrapolação (m = 5), Eh foi reduzido mais de 385 vezes. Ao se aumentar
o número de extrapolações empregando MER, essa redução se torna sucessivamente maior.
Para seis níveis de extrapolação (m = 6) a redução foi mais de cinco mil vezes e para sete
níveis (m = 7) essa redução ultrapassou 138 mil vezes (Tabela 17).

Essa redução significativa de Eh ao empregar-se MER, está em acordo com a
literatura vigente (Marchi et al. (2016)), porém, observa-se na Figura 28b, que no primeiro
e no segundo nível de extrapolação, Em não apresentou redução sobre Eh. Além disso, para
a variável p3 (Figura 28a) no primeiro e no segundo nível de MER, Em não apresentou uma
redução relevante sobre Eh. Martins (2013) relata que o emprego de MER deve ocorrer
a partir de um certo nível de refinamento de Ωh e, essa determinação de Ωh (inicial)
pode ser realizada com base no monitoramento dos valores calculados para pE e/ou pU ,
sendo desejável que a sequência gerada por tais parâmetros apresente um comportamento
convergente e monotônico com a redução de h e, com isso, do ponto de vista prático,
o emprego de MER pode ser realizado sem que haja prejuízo em seu desempenho. Isso
posto, analisa-se o comportamento de pE e pU para verificar se a não redução ou a redução
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não significativa de Em sobre Eh, mencionada anteriormente, está relacionada com o
comportamento de pE e/ou pU .

As Tabelas 18a e 18b apresentam os valores de pE e pU para, respectivamente, as
variáveis p3 e p5 com a redução de h. Observa-se que, para ambos os casos pU apresenta um
comportamento convergente com o refino de malha, porém, o comportamento monotônico
ocorre somente quando h < 3,12× 10−2, para a variável p3, e h < 6,25× 10−2 para p5.

Tabela 18 – Ordens efetiva pE e aparente pU , para variáveis p3 e p5.

(a) Variável p3.

h pE(p3) pU(p3)
1,25× 10−1 0,90764 −
6,25× 10−2 1,97294 0,23314
3,12× 10−2 1,96654 1,97513
1,56× 10−2 1,98466 1,96036
7,81× 10−3 1,99241 1,98205
3,91× 10−3 1,99622 1,99113
1,95× 10−3 1,99812 1,99559

(b) Variável p5.

h pE(p3) pU(p3)
1,25× 10−1 1,41674 −
6,25× 10−2 1,65314 2,42776
3,12× 10−2 1,96656 1,52745
1,56× 10−2 1,97141 1,96490
7,81× 10−3 1,98638 1,96632
3,91× 10−3 1,99326 1,98407
1,95× 10−3 1,99664 1,99213

Fonte: O autor (2023).

Por conseguinte, a fim de determinar qual Ωh (inicial) deve-se utilizar, a malha
mais grosseira foi retirada e empregou-se MER para sete malhas distintas em que a primeira
malha considerada passou a ter Nx ×Ny = 9× 9 pontos nodais. Desta forma, a Figura 29
ilustra o desempenho de MER sobre Eh e a Tabela 19 as ordens pE, pU para variáveis p3 e
p5.

Figura 29 – Desempenho de MER sobre Eh, para variáveis p3 e p5.

(a) Variável p3.
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(b) variável p5.
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Fonte: O autor (2023).

Na Figura 29b, nota-se que o gráfico do Em apresenta o comportamento teórico
esperado com a aplicação de MER, uma redução de Em mediante uma elevação progressiva



Capítulo 6. Resultados 81

Tabela 19 – Ordens efetiva pE e aparente pU , para variáveis p3 e p5.

(a) Variável p3.

h pE(p3) pU(p3)
6,25× 10−2 1,97294 −
3,12× 10−2 1,96654 1,97513
1,56× 10−2 1,98466 1,96036
7,81× 10−3 1,99241 1,98205
3,91× 10−3 1,99622 1,99113
1,95× 10−3 1,99812 1,99559

(b) Variável p5.

h pE(p3) pU(p3)
6,25× 10−2 1,65314 −
3,12× 10−2 1,96656 1,52745
1,56× 10−2 1,97141 1,96490
7,81× 10−3 1,98638 1,96632
3,91× 10−3 1,99326 1,98407
1,95× 10−3 1,99664 1,99213

Fonte: O autor (2023).

da sua ordem de acurácia, isto é, com um aumento da inclinação no gráfico correspondente,
o que não ocorre na Figura 28b (para a mesma variável de interesse e localização nodal).

Ao verificar o último nível de extrapolação, com e sem a malha Nx ×Ny = 5× 5,
nota-se que a magnitude do erro de discretização Em apresentou uma pequena redução ao
retirar-se a malha Nx ×Ny = 5× 5, isto é, para a malha mais refinada, h = 1,95× 10−3,
os valores de Em são 8,15× 10−11 e 6,27× 10−11, respectivamente nas Figuras 28b e 29b.

Para a variável p3 na malha mais refinada, h = 1,95 × 10−3, os valores de Em
são de 9,17× 10−12 e 5,36× 10−12 nas Figuras 28a e 29a, respectivamente. Deste ponto
em diante, todos resultados das simulação numéricas serão realizados com sete malhas
distintas em que a malha mais grossa considerada apresenta Nx ×Ny = 9× 9 e a mais
refinada Nx ×Ny = 513× 513 pontos nodais.

6.2.1.2 Erro de discretização com e sem MER, para a variável deslocamento

Na Figura 30 é apresentado o desempenho de MER sobre Eh para as variáveis
de interesse u1, u2, u3, u4 e u5. Nota-se que Em apresenta uma redução relevante sobre
Eh. Na Tabela 20 estão representados os resultados que caracterizam essa redução com o
cálculo da razão |Eh|/|Em|, considerando-se as três malhas mais refinadas, para a variável
u3. Observa-se na Tabela 20 que, com o aumento dos níveis de MER, a redução do Em
com relação a Eh torna-se gradativamente mais expressiva.

Como exemplo, para Nx ×Ny = 129 × 129, a redução de Eh foi superior a 300
mil vezes, já para Nx × Ny = 257 × 257 e Nx × Ny = 513 × 513 essas reduções foram
superiores a 935 mil e 5,8 milhões de vezes, respectivamente. Para as variáveis v1, v2, v3,
v4 e v5 os resultados numéricos apresentaram valores similares das variáveis u1, u2, u3, u4

e u5. Na Figura 31 ilustra-se o desempenho de MER sobre Eh para as variáveis v3 e v4.
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Tabela 20 – Redução do erro em três malhas distintas, variável u3.

Nx ×Ny 129× 129 257× 257 513× 513
h 7,812× 10−3 3,906× 10−3 1,953× 10−3

m para Em 4 5 6
|Eh| 1,528× 10−5 3,819× 10−6 9,546× 10−7

|Em| 5,091× 10−11 4,083× 10−12 1,626× 10−13

|Eh|/|Em| 3,001× 105 9,352× 105 5,872× 106

Fonte: O autor (2023).

6.2.1.3 Estimativas para o erro de discretização

As estimativas apresentadas a seguir, são do erro a posteriori, calculadas com base
em soluções numéricas obtidas em malhas Ωh distintas. Ao se calcular uma estimativa
para o erro, objetiva-se que ela seja confiável e acurada. Como já dito anteriormente, uma
estimativa para o erro é confiável se a sua magnitude é maior que a magnitude do erro, e
é acurada se a magnitude da incerteza U é aproximadamente igual a do erro. Quanto mais
próximas estão as magnitudes da estimativa e do erro, mais acurado é o estimador.

Variável de interesse: deslocamento

Nas Tabelas 21 e 22, apresentam-se os valores das efetividades dos estimadores
U∆, Upm, Upmc, Uψ e Uψ∗ para as variáveis u3 e u4. Utilizam-se esses estimadores para
estimar o erro de discretização após o emprego de MER, ou seja, para estimar Em.

Tabela 21 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável u3.

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 5,526× 101 1,340× 10−1 1,072 − 1,056
3,12× 10−2 1,306× 101 6,253× 10−2 1,000 2,141× 10−1 9,376× 10−1

1,56× 10−2 2,160× 103 3,035× 10−2 9,713× 10−1 1,447× 102 9,709× 10−1

7,81× 10−3 3,279× 101 1,688× 10−2 1,080 −1,427× 10−2 1,116
3,91× 10−3 1,326× 101 8,124× 10−3 1,040 −4,440× 10−1 9,653× 10−1

1,95× 10−3 2,591× 101 − − 1,872 1,848× 101

Fonte: O autor (2023).

Observa-se que as estimativas de Em mais acuradas, são obtidas pelos estimadores
Upmc e Uψ∗ , ou seja, o cálculo das suas efetividades é θ ≈ 1. Entretanto, outra característica
desejada, além da acurácia, é a confiabilidade dos estimadores. Nas Tabelas 21 e 22,
verifica-se que entre os estimadores que se apresentaram mais acurados, o estimador Upmc
é o mais confiável, isto é, ao calcular efetividade obteve-se θ ⩾ 1 em todas as malhas, para
a variável u4, e não se obteve θ ⩾ 1 apenas na malha h = 1,56× 10−2, para a variável u3.
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Figura 30 – Desempenho de MER sobre Eh, para variáveis u1, u2, u3, u4 e u5.

(a) Variável u1.
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(b) Variável u2.
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(c) Variável u3.
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(d) Variável u4.
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(e) Variável u5.
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Fonte: O autor (2023).

Nas Figuras 32a e 32b apresentam-se os erros de discretização e suas estimativas
para as variáveis u3 e u4, respectivamente. Os estimadores utilizados para a confecção dos
gráficos, são os que apresentaram maior confiabilidade e acurácia (Tabelas 21 e 22).
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Figura 31 – Desempenho de MER sobre Eh, para variáveis v3 e v4.

(a) Variável v3.

10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2

3,91x10−3 1,56x10−2 6,25x10−2

E
rr

o 
de

 d
is

cr
et

iz
aç

ão

Discretização espacial h [m]

Eh
Em

(b) Variável v4.
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Fonte: O autor (2023).

Tabela 22 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável u4.

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 2,185× 102 1,420× 10−1 1,136 − 1,132
3,12× 10−2 7,309 6,683× 10−2 1,069 3,245× 10−2 9,480× 10−1

1,56× 10−2 1,446× 101 3,266× 10−2 1,045 1,750 9,788× 10−1

7,81× 10−3 2,245× 101 1,608× 10−2 1,029 1,471 9,852× 10−1

3,91× 10−3 3,501× 101 7,950× 10−3 1,018 1,512 9,893× 10−1

1,95× 10−3 5,746× 101 − − 1,611 −1,049× 102

Fonte: O autor (2023).

Variável de interesse: pressão

A seguir são apresentados os valores para a efetividade dos estimadores U∆, Upm,
Upmc, Uψ e Uψ∗ , para as variáveis de interesse p3 e p4. Verifica-se nas Tabelas 23 e 24, que
os estimadores Upmc e Uψ∗ se apresentaram mais acurados para estimar Em, ou seja, o
cálculo da efitividade resulta θ ≈ 1.

Tabela 23 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável p3.

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 1,181× 102 9,775× 10−2 7,820× 10−1 − 7,859× 10−1

3,12× 10−2 3,139 6,760× 10−2 1,082 1,791× 10−2 1,548
1,56× 10−2 1,243× 101 3,260× 10−2 1,043 −5,722 9,671× 10−1

7,81× 10−3 2,342× 101 1,598× 10−2 1,023 1,763 9,815× 10−1

3,91× 10−3 4,375× 101 7,889× 10−3 1,010 1,805 9,874× 10−1

1,95× 10−3 1,021× 102 − − 2,287 −1,194× 102

Fonte: O autor (2023).
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Figura 32 – Erro de discretização Eh, Em e suas estimativas, para as variáveis u3 e u4.

(a) Variável u3.
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(b) Variável u4.
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Fonte: O autor (2023).

Tabela 24 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável p4.

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 8,859 1,364× 10−1 1,091 − 1,202
3,12× 10−2 1,048× 101 6,839× 10−2 1,094 −1,219 1,003
1,56× 10−2 1,088× 101 3,299× 10−2 1,056 9,717× 10−1 9,677× 10−1

7,81× 10−3 1,835× 101 1,613× 10−2 1,033 1,579 9,792× 10−1

3,91× 10−3 3,117× 101 7,962× 10−3 1,019 1,637 9,874× 10−1

1,95× 10−3 5,286× 101 − − 1,661 −7,674× 101

Fonte: O autor (2023).

Com relação à confiabilidade dos estimadores, os resultados são semelhantes aos
obtidos para as variáveis u3 e u4. O estimador que se apresenta mais confiável entre Upmc
e Uψ∗ , é o Upmc dado que não se obteve θ ⩾ 1 apenas na malha h = 6,25× 10−2, para p3.
Para p4, obteve-se θ ⩾ 1 para todas as malhas consideradas.

As Figuras 33a e 33b representam os erros de discretização e suas estimativas,
para as variáveis p3 e p4, respectivamente.

Utilizou-se para a confecção dos gráficos os estimadores que apresentaram maiores
níveis de confiabilidade e acurácia. Para os estimadores de Em analisados nessa seção,
conclui-se que o estimador U∆ apresenta-se confiável para todas as malhas consideradas,
porém pouco acurado. Os estimadores mais acurados para se estimar Em são Upmc e Uψ∗

e, entre estes estimadores o que apresenta maior confiabilidade é o Upmc.
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Figura 33 – Erro de discretização Eh, Em e suas estimativas, para as variáveis p3 e p4.

(a) Variável p3.
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(b) Variável p4.
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Fonte: O autor (2023).

6.2.2 Segundo problema poroelástico bidimensional

Os parâmetros de entrada para o segundo problema poroelástico são listados na
Tabela 25.

Tabela 25 – Parâmetros de entrada para o segundo problema poroelástico 2D.

Símbolo Quantidade Valor Unidade
Ω domínio espacial (0,1)× (0,1) m2

T tempo final 1,0 s
E modulo de Young 1,0× 104 N/m2

K condutividade hidráulica 1,0× 10−6 m/s
ν razão de Poisson 2,0× 10−1 −

Fonte: O autor (2023).

O valor para a condutividade hidráulica, K = 1,0×10−6 m/s, está relacionado com
problemas físicos para solos tais como: areia siltosa, silte, loesse, marga, solonetz e turfa
ou para rochas como: ígneas fraturadas, metamórficas e basalto permeável, (BEAR, 1972;
FREEZE; CHERRY, 1979; KNAPPETT; CRAIG, 2019). Uma relação mais abrangente
para valores típicos da condutividade hidráulica encontra-se no Apêndice A.

Nas seções subsequentes, são apresentados os resultados obtidos para Eh, Em e
suas estimativas, para as variáveis de interesse pressão e deslocamento.
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6.2.2.1 Erro de discretização com e sem MER

Variável de interesse: pressão

As Figuras 34a e 34b apresentam o desempenho de MER sobre Eh, para as
variáveis p1 e p3, respectivamente. As variáveis p2, p4 e p5 não são apresentadas, visto que,
possuem comportamentos numéricos semelhantes, p1 ∼= p5 e p2 ∼= p3 ∼= p4.

Figura 34 – Desempenho de MER sobre Eh, para variáveis p1 e p3.

(a) Variável p1.
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(b) Variável p3.
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Fonte: O autor (2023).

Observa-se na Figura 34 que o emprego de MER provocou uma redução significativa
no erro de discretização. A Tabela 26, dimensiona essa redução mediante o cálculo da
razão |Eh|/|Em|.

Tabela 26 – Redução do erro em duas malhas distintas, para as variáveis p1 e p3.

variável p1 variável p3

Nx ×Ny 129× 129 513× 513 129× 129 513× 513
m para Em 4 6 4 6
|Eh| 2,383 1,489× 10−1 3,733× 10−4 2,333× 10−5

|Em| 1,402× 10−4 9,725× 10−10 1,363× 10−7 5,311× 10−12

|Eh|/|Em| 1,701× 104 1,531× 108 2,738× 103 4,392× 106

Fonte: O autor (2023).

Para a variável p1, verifica-se que para a malha Nx ×Ny = 129× 129, ao aplicar
quatro níveis de MER, o erro se reduz em mais de 17 mil vezes e para a malha Nx ×Ny =
513× 513, ao utilizar seis níveis de MER, essa redução é de mais de 1,5× 108 vezes.

Para a variável p3, tem-se que essa redução foi mais de 2,7× 103 e 4,3× 106 vezes
para as malhas Nx ×Ny = 257× 257 e Nx ×Ny = 513× 513, respectivamente.
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Com isso, tem-se que a aplicação de MER para a variável de interesse pressão,
se mostrou eficaz para a redução do erro de discretização. A seguir são apresentados os
resultados obtidos para Eh e Em para a variável de interesse deslocamento.

Variável de interesse: deslocamento

Na Figura 35, representa-se o desempenho de MER sobre Eh, para as variáveis u2

e u3. As variáveis u1, u4 e u5 não são apresentadas, visto que, possuem comportamentos
numéricos semelhantes, u1 ∼= u3 ∼= u5 e u2 ∼= u4. O mesmo ocorre para a variável v, isto é,
v ∼= u.

Figura 35 – Desempenho de MER sobre Eh, para variáveis u2 e u3.

(a) Variável u2.
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(b) Variável u3.
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Fonte: O autor (2023).

Observa-se nas Figuras 35a e 35b que o emprego de MER apresenta uma redução
significativa do Em em relação ao Eh. A Tabela 27 apresenta essa redução tomando a razão
|Eh|/|Em|. Como exemplo, para a variável u3 tem-se que a redução do Em em relação
ao Eh é superior à 7,2 × 104 vezes, para a malha Nx × Ny = 257 × 257. Para a malha
Nx ×Ny = 513× 513 essa redução foi superior à 9,0× 107 vezes.

Tabela 27 – Redução do erro em duas malhas distintas, variáveis u2 e u3.

variável u2 variável u3

Nx ×Ny 129× 129 513× 513 129× 129 513× 513
m para Em 4 6 4 6
|Eh| 3,819× 10−6 2,373× 10−7 1,891× 10−5 1,180× 10−6

|Em| 2,685× 10−9 1,190× 10−13 2,593× 10−10 1,307× 10−14

|Eh|/|Em| 1,422× 103 1,993× 106 7,294× 104 9,033× 107

Fonte: O autor (2023).
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Ao se observar as Figuras 35a, 35b e a Tabela 27, percebe-se que a aplicação de
MER se mostra como uma metodologia promissora para a redução de Eh na resolução
numérica do problema em estudo. A seguir são apresentados os erro de discretização e
suas estimativas.

6.2.2.2 Estimativas para o erro de discretização

Variável de interesse: deslocamento

Apresentam-se nas Tabelas 28 e 29 os valores da efetividade dos estimadores
U∆, Upm, Upmc, Uψ e Uψ∗ para as variáveis u2 e u3. Esses estimadores são utilizados para
estimar o erro de discretização, após o emprego de MER.

Tabela 28 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável u2.

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 6,675 1,398× 10−1 1,118 − 1,279
3,12× 10−2 8,269 6,395× 10−2 1,023 −1,358 9,232× 10−1

1,56× 10−2 4,143× 101 3,166× 10−2 1,013 4,317 9,903× 10−1

7,81× 10−3 7,530× 101 1,558× 10−2 9,971× 10−1 1,742 9,845× 10−1

3,91× 10−3 3,377× 102 7,932× 10−3 1,015 −4,345 1,018
1,95× 10−3 6,604× 101 − − −1,976× 10−1 1,248× 101

Fonte: O autor (2023).

Tabela 29 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável u3.

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 9,742 1,352× 10−1 1,082 − 1,180
3,12× 10−2 1,156× 101 6,255× 10−2 1,001 −1,200 9,303× 10−1

1,56× 10−2 1,257× 103 3,076× 10−2 9,845× 10−1 9,448× 101 9,837× 10−1

7,81× 10−3 6,137× 101 1,536× 10−2 9,830× 10−1 −4,646× 10−2 9,985× 10−1

3,91× 10−3 5,680× 101 7,789× 10−3 9,970× 10−1 9,094× 10−1 1,015
1,95× 10−3 3,344× 102 − − 5,926 −3,303× 103

Fonte: O autor (2023).

Observa-se nestas tabelas que os estimadores que se apresentaram mais acurados,
θ ≈ 1, são Upmc e Uψ∗ . Desses estimadores o que se apresenta mais confiável, θ ⩾ 1, é o
estimador Upmc. Na Figura 36 apresenta-se graficamente Em e sua estimativa. O estimador
utilizado para a confecção dos gráficos é o que apresentou maior nível de confiabilidade e
acurácia.
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Figura 36 – Erro de discretização Eh, Em e suas estimativas, variáveis u2 e u3.

(a) Variável u2.

10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3

3,91x10−3 1,56x10−2 6,25x10−2

E
rr

o 
de

 d
is

cr
et

iz
aç

ão

Discretização espacial h [m]

Eh
Em
Upmc

(b) Variável u3.
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Fonte: O autor (2023).

Variável de interesse: pressão

Nas Tabelas 30 e 31 são apresentados os valores da efetividade dos estimadores
U∆, Upm, Upmc, Uψ e Uψ∗ para as variáveis p2, p3. Constata-se que os estimadores mais
acurados são Upmc e Uψ∗ e, entre eles, o que se apresenta confiável, θ ⩾ 1, é o estimador
Upmc.

Tabela 30 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável p2.

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 5,054× 101 1,422× 10−1 1,138 − 1,157
3,12× 10−2 7,230 6,596× 10−2 1,055 −1,419× 10−1 9,358× 10−1

1,56× 10−2 1,789× 101 3,187× 10−2 1,020 2,161 9,682× 10−1

7,81× 10−3 4,962× 101 1,572× 10−2 1,006 2,599 9,864× 10−1

3,91× 10−3 1,716× 102 7,853× 10−3 1,005 3,357 9,995× 10−1

1,95× 10−3 1,906× 102 − − 1,101 −7,986× 101

Fonte: O autor (2023).

Na Figura 37 apresenta-se graficamente Em e sua estimativa. O estimador utilizado
para a confecção dos gráficos é o que apresentou maior nível confiabilidade e acurácia.

Nesta seção foram apresentados os resultados numéricos referentes à efetividade
dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , em relação às suas acurácias e confiabilidades.
Com isso, concluí-se que: a) O estimador U∆ se apresenta confiável para todos os casos
analisados, porém, não se apresenta acurado, θ >> 1; b) Os estimadores Upm e Uψ, não se
mostraram confiáveis e acurados nos casos analisados; c) Os estimadores mais acurados
são Upmc e Uψ∗ ; d) O estimador que apresentou maior confiabilidade é Upmc.



Capítulo 6. Resultados 91

Tabela 31 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável p3.

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 5,105× 101 1,389× 10−1 1,111 − 1,130
3,12× 10−2 8,733 6,499× 10−2 1,040 −1,657× 10−1 9,417× 10−1

1,56× 10−2 2,449× 101 3,198× 10−2 1,023 2,465 9,847× 10−1

7,81× 10−3 4,252× 101 1,577× 10−2 1,009 1,655 9,865× 10−1

3,91× 10−3 1,085× 102 7,846× 10−3 1,004 2,478 9,952× 10−1

1,95× 10−3 2,341× 102 − − 2,130 −1,548× 102

Fonte: O autor (2023).

Figura 37 – Erro de discretização Eh, Em e suas estimativas, variáveis p2 e p3.

(a) Variável p2.
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(b) Variável p3.
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Fonte: O autor (2023).

6.2.2.3 Variáveis com ponto extremo

Para as variáveis com ponto extremo, têm-se como representantes os valores
máximos para os deslocamentos (umax, vmax) e para a pressão (pmax). As soluções para
ϕ = umax, ϕ = vmax e ϕ = pmax foram obtidas utilizando os mesmos parâmetros de entrada
apresentados na Tabela 16.

Daqui em diante, uma mudança na solução fabricada anteriormente
(equação (4.11)) fez-se necessária. Essa mudança justifica-se ao calcular o valor máximo
para os deslocamentos (umax e vmax) e para a pressão (pmax), utilizando tal equação. Para
ambos os casos, tem-se que as coordenadas desses pontos são x = 1

2 e y = 1
2 . Com isso, o

problema recai no caso anterior, onde as variáveis de interesse são do tipo 1 (apresentam
mesma localização nodal, com o refino de malhas).

Utiliza-se então, outra solução fabricada dada por

u(x,y,t) = v(x,y,t) = p(x,y,t) = sen(πx2) sen(πy2)e−t. (6.1)

Ao se calcular umax, vmax e pmax, utilizando a equação (6.1), tem-se que suas
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coordenadas são x =
√

2
2 e y =

√
2

2 , ou seja, não coincidem com as coordenadas dos pontos
nodais obtidos com a discretização do domino Ωh.

Com as ϕ nodais calculadas, aplica-se MER. Nota-se que a aplicação direta de
MER para esse tipo de variável não apresenta redução significativa de Em em relação a
Eh (Figura 38).

Figura 38 – Desempenho de MER sobre Eh, para variáveis umax e pmax.

(a) Variável umax.
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(b) Variável pmax.
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FONTE: O autor (2023).

Na Tabela 32 são apresentados os valores de pE e pU para as variáveis umax e pmax
sem a aplicação de interpolação polinomial.

Tabela 32 – Ordens efetiva pE e aparente pU para as variáveis umax e pmax, sem interpolação
polinomial.

variável umax variável pmax
h pE pU pE pU

6,25× 10−2 1,3506374 − 1,9391298 −
3,12× 10−2 1,1105419 1,5298274 1,3535374 2,2194888
1,56× 10−2 4,9688677 1,6786605× 10−1 9,3492440 6,3948013× 10−1

7,81× 10−3 −2,4408175 2,3295101 −6,6397309 2,7218407
3,90× 10−3 3,1557683 9,0462448× 10−2 3,3718317 −1,4757878× 10−1

1,95× 10−3 2,0221156 3,7169336 2,0207854 3,9130442

Fonte: O autor (2023).

Busca-se, então, melhorar o desempenho de MER com o procedimento descrito na
seção 5.2, isto é, aplica-se interpolação polinomial e um método de otimização (Gradiente)
previamente ao emprego de MER (Algoritmo 4). Na Figura 39 são apresenta-se os valores
de pE para umax e pmax, sem e com aplicação de interpolação polinomial.

Como já mencionado, para que o emprego de MER seja realizado sem que haja
prejuízo em seu desempenho, é desejável que pE apresente um comportamento convergente
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Figura 39 – Ordem efetiva pE , para as variáveis umax e pmax com e sem interpolação polinomial.

(a) Variável umax.
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FONTE: O autor (2023).

e monotônico com a redução de h. Observa-se na Figura 39, que após a aplicação de
interpolação polinomial esse comportamento desejável ocorre.

Na Figura 40, representa-se o desempenho de MER sobre Eh, para as variáveis umax
e pmax, após a aplicação de interpolação polinomial seguida de um método de otimização.

Figura 40 – Erro de discretização para interpolação polinomial sem MER (Ep) e com MER (Epm).

(a) Variável umax.
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(b) Variável pmax.

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

3,9x10−3 1,6x10−2 6,2x10−2

E
rr

o 
de

 d
is

cr
et

iz
aç

ão

Discretização espacial h [m]

Ep, p=2
Ep, p=4
Ep, p=6
Ep, p=8
Epm, p=2
Epm, p=4
Epm, p=6
Epm, p=8

FONTE: O autor (2023).
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Na Figura 20, para o caso unidimensional, verificou-se que a magnitude de Epm
foi reduzida com a elevação de p, porém, isso só era efetivo até o limite de p = 6, com
resultados equivalentes para valores de p > 6. Ao observar a Figura 40, tem-se que os
resultados são similares para o caso bidimensional.

Estimativas para o erro de discretização

Para se estimar os erros de discretização utilizou-se os estimadores U∆, Upm, Upmc,
Uψ e Uψ∗ . Nas Tabelas 33 e 34, respectivametne para umax e pmax, apresentam-se as
efetividades destes estimadores.

Tabela 33 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável umax (p = 6).

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 3,357× 101 1,344× 10−1 1,075 − 1,050
3,12× 10−2 1,252× 101 6,343× 10−2 1,015 3,356× 10−1 9,477× 10−1

1,56× 10−2 6,382× 101 3,449× 10−2 1,104 4,510 1,086
7,81× 10−3 1,030× 101 1,622× 10−2 1,038 1,697× 10−1 9,457× 10−1

3,91× 10−3 2,693× 101 7,957× 10−3 1,018 2,433 9,819× 10−1

1,95× 10−3 5,476× 101 − − 1,981 −3,404× 101

Fonte: O autor (2023).

Tabela 34 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável pmax (p = 6).

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 1,156× 101 1,489× 10−1 1,191 − 1,105
3,12× 10−2 5,459 6,658× 10−2 1,065 4,476× 10−1 9,099× 10−1

1,56× 10−2 1,531× 101 3,223× 10−2 1,031 2,381 9,701× 10−1

7,81× 10−3 3,183× 101 1,610× 10−2 1,031 1,952 9,992× 10−1

3,91× 10−3 3,316× 101 8,002× 10−3 1,024 1,025 9,941× 10−1

1,95× 10−3 4,180× 101 − − 1,243 −1,328× 103

Fonte: O autor (2023).

Os estimadores que se apresentaram mais acurados (θ ≈ 1), são Upmc e Uψ∗ , porém
o único que se apresenta confiável (θ ⩾ 1), é o estimador Upmc.

Na Figura 41 apresenta-se graficamente Em e sua estimativa. O estimador utilizado
para a confecção dos gráficos é o que apresentou maior nível de confiabilidade e acurácia
(Tabelas 33 e 34).
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Figura 41 – Erro de discretização para interpolação polinomial sem MER (Ep) e com MER (Epm).
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FONTE: O autor (2023).

6.2.3 Terceiro problema poroelástico bidimensional

Os parâmetros de entrada para o terceiro problema poroelástico bidimensional
são listados na Tabela 35.

Tabela 35 – Parâmetros de entrada para o terceiro problema poroelástico 2D.

Símbolo Quantidade Valor Unidade
Ω domínio espacial (0,1)× (0,1) m2

T tempo final 1,0 s
E modulo de Young 1,0× 102 N/m2

K condutividade hidráulica 1,0× 10−2 m/s
ν razão de Poisson 2,0× 10−1 −

Fonte: O autor (2023).

O valor para a condutividade hidráulica K = 1,0 × 10−2 m/s, está relacionado
com problemas físicos para solos como: cascalho limpo, misturas de areia e cascalho ou
para rochas de calcário cárstico ou basalto permeável (BEAR, 1972; FREEZE; CHERRY,
1979; KNAPPETT; CRAIG, 2019).

Na Figura 42 ilustra-se o desempenho do emprego direto de MER sobre Eh, para
as variáveis umax e pmax. Como já discutido anteriormente, verifica-se que a aplicação
direta de MER não ocasiona uma redução significativa de Em com relação a Eh.

Para melhorar o desempenho de MER, aplica-se o procedimento descrito na
Seção 5.2, ou seja, utiliza-se interpolação polinomial seguida de um método de otimização
(Algoritmo 4). Representa-se nas Figuras 43a e 43b o desempenho de MER sobre Ep, após
utilizar interpolação polinomial seguida de um método de otimização, respectivamente
para as variáveis umax e pmax.
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Figura 42 – Desempenho de MER sobre Eh, para variáveis umax e pmax.
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FONTE: O autor (2023).

Figura 43 – Erro de discretização para interpolação polinomial sem MER (Ep) e com MER (Epm).
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FONTE: O autor (2023).

Ao se comparar a Figura 42 com a Figura 43, verifica-se que a aplicação da
interpolação polinomial seguida de um método de otimização faz com que MER apresente
melhores resultados, reduzindo Epm com o aumento de p. Como dito anteriormente, essa
melhora no desempenho é efetiva até o limite de p = 6, para valores de p > 6 os resultados
são semelhantes.

Estimativas para o erro de discretização

Para se estimar os erros de discretização, utilizou-se os estimadores U∆, Upm,
Upmc, Uψ e Uψ∗ . Nas Tabelas 36 e 37 apresentam-se os valores para as efetividades desses
estimadores. Os estimadores mais acurados são Upmc e Uψ∗ , um seja, os valores para θ ≈ 1.
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Tabela 36 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável umax (p = 6).

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

6,25× 10−2 3,933× 101 1,321× 10−1 1,057 − 1,036
3,12× 10−2 1,627× 101 6,158× 10−2 9,852× 10−1 3,674× 10−1 9,357× 10−1

1,56× 10−2 6,261× 101 2,723× 10−2 8,713× 10−1 −3,360 8,828× 10−1

7,81× 10−3 6,558 1,639× 10−2 1,049 8,949× 10−2 1,241
3,91× 10−3 2,120× 101 7,965× 10−3 1,019 −3,948 9,734× 10−1

1,95× 10−3 5,191× 101 − − 2,365 1,225× 101

Fonte: O autor (2023).

Tabela 37 – Efetividade dos estimadores U∆, Upm, Upmc, Uψ e Uψ∗ , para a variável pmax (p = 6).

h U∆/Em Upm/Em Upmc/Em Uψ/Em Uψ∗/Em

3,12× 10−2 2,455× 101 1,382× 10−1 1,106 − 1,144
1,56× 10−2 9,161 6,475× 10−2 1,036 −3,660× 10−1 9,427× 10−1

7,81× 10−3 2,700× 101 3,015× 10−2 9,646× 10−1 2,593 9,334× 10−1

3,91× 10−3 2,643× 101 1,630× 10−2 1,043 −8,843× 10−1 1,085
1,95× 10−3 2,367× 101 − − −9,562× 10−1 1,282× 101

Fonte: O autor (2023).

Com relação a confiabilidade, levando em consideração os estimadores com maior
nível de acurácia, (Upmc e Uψ∗), para a variável umax tem-se que ambos os estimadores
apresentam-se confiáveis para as malhas h = 6,25× 10−2 e h = 7,81× 10−3. Para a variável
pmax, garante-se a confiabilidade para as malhas h = 3,12× 10−2 e h = 3,91× 10−3 com o
estimador Uψ∗ , e não se garante para a malha h = 7,81× 10−3, com o estimador Upmc.

Na Figura 44 apresenta-se graficamente Em e sua estimativa.

Figura 44 – Erro de discretização para interpolação polinomial sem MER (Ep) e com MER (Epm).

(a) Variável umax.
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(b) Variável pmax.
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FONTE: O autor (2023).
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Nesta Seção 6.2.3, foram apresentados os resultados obtidos com a aplicação de
MER, para variáveis com ponto extremo, que apresentam mudança de coordenadas nodais
com o refino da malha, para o problema de poroelasticidade bidimensional.

Constatou-se que a aplicação direta de MER ocasionou resultados não exitosos em
relação à redução de Eh. Utilizou-se, então, interpolação polinomial seguida da aplicação de
um método de otimização previamente ao emprego de MER. Essa metodologia apresentou-
se eficaz para a redução do erro de discretização, apresentando resultados promissores. No
que se refere às estimativas para o erro de discritização, considerando soluções obtidas
com o emprego de MER, com os testes analisados, indica-se Upmc, o qual destacou-se dos
demais pela sua acurácia e confiabilidade.
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7 CONSIDERAÇÕES FINAIS

Neste capítulo apresenta-se um resumo das principais constatações e contribuições
desta tese. Ao final, sugestões de temas para trabalhos futuros são propostas, a fim de
complementar as limitações do estudo ora exposto.

7.1 Escopo do trabalho

Neste trabalho foi realizada a verificação numérica de soluções resultantes do
emprego de MER no problema da consolidação de Biot para um meio poroso saturado,
homogêneo, isotrópico e incompressível (problema de poroelasticidade) para os casos uni e
bidimensional.

Diferentes valores para módulo de Young (E) e condutividade hidráulica (K) foram
utilizados, sendo E = 1,0 N/m2 e K = 1,0 m/s considerado como um problema acadêmico,
a fim de avaliar a eficácia da metodologia adotada, possibilitando o refinamento em diversos
níveis de malha, porém, sem levar em consideração seus valores físicos realísticos. Outros
valores para E e K foram E = 102 N/m2 e K = 10−2 m/s relacionado com valores típicos
para a condutividade hidráulica para solos como: cascalho limpo, misturas de areia e
cascalho ou para rochas de calcário cárstico ou basalto permeável, e E = 104 N/m2 e
K = 10−6 m/s relacionado com valores típicos para a condutividade hidráulica para solos
tais como: areia siltosa, silte, loesse, marga, solonetz e turfa ou para rochas como: ígneas
fraturadas, metamórficas e basalto permeável.

O trabalho teve como objetivo reduzir e estimar Eh. O desempenho de alguns
estimadores disponíveis na literatura foram utilizados como alternativas para a obtenção
de estimativas para os erros de discretização após o emprego de MER. Os estimadores
utilizados foram U∆, Upm, Upmc, Uψ e Uψ∗ .

O problema foi discretizado utilizando o método de diferenças finitas (discretização
espacial) e o método de Crank-Nicolson (discretização temporal). Para calcular as soluções
numéricas utilizou-se o método multigrid no intuito de acelerar a convergência do processo
iterativo (esquema CS, ciclo W(1,1), razão de engrossamento padrão, operador de restrição
por ponderação completa e operador de prolongação por interpolação linear (caso 1D) e
bilinear (caso 2D)), suavizador Vanka, precisão quádrupla e critério de parada até atingir
o erro de máquina.

7.2 Conclusão geral

Avaliou-se a eficácia de MER a fim de se reduzir e estimar o Eh resultante de
soluções numéricas do problema de poroelasticidade uni e bidimensional para dois tipos de
variáveis: 1) variáveis locais (variáveis com coordenada nodal fixa com o refino de malha);
e 2) variáveis com mudança na coordenada nodal com o refino de malha, visando reduzir
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o erro de discretização e aumentar a precisão da solução numérica. A partir dos testes
realizados, conclui-se que:

• o uso de MER mostrou-se promissor na elevação do nível de acurácia das soluções
numéricas para problemas de poroelasticidade;

• para o primeiro tipo de variável estudado, variáveis com localização nodal fixa, o
emprego direto de MER é recomendado, ou seja, ocorreu um redução significante de
Eh;

• para o segundo tipo de variável estudado, variáveis com localização nodal previamente
indeterminada, o emprego direto de MER não é recomendado. Recomenda-se o
emprego prévio de interpolação polinomial seguido de um método de otimização,
para então se aplicar MER.

• a aplicação prévia de interpolação polinomial para variáveis com valores extremos
seguida do uso de um método de otimização resultou em uma redução considerável
de Eh;

• com relação à ordem de acurácia do erro de discretização, MER proporcionou uma
elevação progressiva e significativa.

• no que diz respeito às estimativas para o erro de discretização, considerando as
soluções obtidas com a aplicação de MER, o estimador de Richardson Corrigido
(Upmc) é recomendado por fornecer melhor precisão e confiabilidade do que os outros
analisados neste trabalho.

7.3 Principais contribuições

Mediante os resultados obtidos, considera-se que o objetivo geral da tese foi
alcançado. Com isso, as contribuições podem ser sumarizadas como:

• desenvolvimento de verificação numérica no problema de poroelasticidade uni e
bidimensional;

• estabelecimento de MER como uma alternativa para a redução do erro de discretização
no problema de poroelasticidade uni e bidimensional;

• investigação sobre o comportamento de MER para diferentes casos, obtidos a partir
da variação do módulo de Young (E) e condutividade hidráulica (K);

• análise sobre a realização de procedimentos numéricos prévios ao emprego de MER,
para variáveis que apresentam mudanças de coordenadas nodais com o refino de
malha;
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• estudo sobre estimadores para o erro de discretização resultante da aplicação de
MER no problema de poroelasticidade uni e bidimensional.

7.4 Propostas de trabalhos futuros

Com a finalidade de complementar e expandir os estudos deste trabalho, os
seguintes temas são sugeridos:

• realização de verificação das soluções numéricas do problema de poroelasticidade
tridimensional mediante o emprego de MER;

• verificação das soluções numéricas mediante o emprego de MER, porém, para
escoamento multifásico;

• resolver o problema de poroelasticidade por meio do método de volumes finitos,
empregar MER para redução e estimativa de Eh e comparar os resultados com os
obtidos neste trabalho.
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APÊNDICE A – VALORES TÍPICOS PARA A CONDUTIVIDADE
HIDRÁULICA

Figura 45 – Intervalos de valores de condutividade hidráulica K e de permeabilidade k.
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Fonte: Traduzida de Freeze e Cherry (1979).
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Figura 46 – Valores típicos de condutividade hidráulica K.
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Rochas petroĺıferas Arenito Calcário,
dolomita

Granito

log ·K
[m/s]

−
10

12 13

Fonte: Traduzida e Adaptada de Bear (1972).
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