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RESUMO

A escala de produção agrícola tem se intensificado a cada ano, desta forma se faz ne-
cessário o estudo de novas tecnologias e métodos tanto para a produção quanto para o
pós-colheita. Dessa forma, o principal objetivo deste trabalho é estimar e reduzir o erro
de discretização na simulação feita a partir da modelagem matemática do processo de
aeração da massa de grãos utilizando o modelo proposto por Thorpe. Para a solução
desse modelo, efetuamos a discretização pelo método dos volumes finitos (MVF), com
diferentes malhas e variamos a razão espaço-tempo. Para a discretização do modelo,
utilizamos aproximações de segunda ordem, CDS-CN (Central Difference Scheme -
Crank-Nicolson) e LS (Leith Scheme), usando a viscosidade artificial para controlar as
oscilações não físicas geradas pelos métodos, e as aproximações de primeira ordem
UDS-CN (Upwind Difference Scheme), UDS-Explícito e UDS-Implícito. Inicialmente,
comparamos o MVF com o método das diferenças finitas (MDF) amplamente utilizado
na literatura, verificando-se que o MVF apresenta erro menor do que o MDF, utilizando-
se como base a solução fabricada. Para a ordem de acurácia das aproximações de
primeira ordem, verificamos que a ordem efetiva tende à ordem assintótica e que seus
valores são coerentes, indiferente da razão espaço-tempo. Para as aproximações de
segunda ordem o mesmo não ocorre, devido às oscilações não físicas e, portanto, à
dependência de uma razão espaço-tempo elevada. Assim, utilizando-se viscosidade
artificial, dependente da malha, obtivemos valores para a ordem efetiva satisfatório,
mesmo para as razões espaço-tempo mais baixas. Para a aplicação da MER (Múltipla
Extrapolação de Richardson), o LS teve melhor desempenho. Finalmente, analisamos
cinco estimadores de erro para a MER, sendo eles, Richardson, Richardson corrigido,
∆, Ψ e Ψ∗, dentre todos os estimadores, o estimador ∆ não é acurado nem confiável,
independente do método de discretização e a razão espaço-tempo utilizadas. Com
relação aos estimadores Richardson, Richardson corrigido, Ψ e Ψ∗: para baixas razões
espaço-tempo, o método UDS-Explícito não teve nenhum estimador que fosse acurado
e confiável simultaneamente. Entretanto, os métodos LS, UDS-CN e UDS-Implícito
tiveram os respectivos estimadores Richardson, Ψ e Ψ∗, acurados e confiáveis. Para
altas razões espaço-tempo, todos métodos tiveram estimadores não confiáveis. Entre-
tanto, na busca por estimadores acurados e confiáveis para tais razões espaço-tempo,
podemos usar qualquer um dos métodos (LS, UDS-CN, UDS-Explícito e UDS-Implícito),
mas levando em consideração apenas as malhas mais grossas. Portanto, o modelo do
processo de aeração da massa de grãos proposto por Thorpe é descrito muito bem
pelo MVF, provando que o LS é a melhor aproximação a serem utilizada com e sem a
aplição da MER.

Palavras-chaves: Armazenagem de Grãos. Dinâmica de Fluidos Computacional. Es-
quema de Leith. Método dos Volumes Finitos. Esquema Upwind. Modelo de Thorpe.



ABSTRACT

The scale of agricultural production has been intensifying every year, making it neces-
sary to investigate new technologies and methods for both production and post-harvest
processes. Consequently, the primary goal of this study is to assess and minimize
discretization errors in the simulation based on the mathematical model of grain mass
aeration, utilizing the model proposed by Thorpe. To address this model, we applied
discretization using the finite volume method (FVM) with varying meshes and space-time
ratios. In terms of model discretization, we employed second-order approximations, in-
cluding CDS-CN (Central Difference Scheme - Crank-Nicolson) and LS (Leith Scheme),
while integrating artificial viscosity to manage non-physical oscillations produced by
the methods. We also utilized first-order approximations such as UDS-CN (Upwind
Difference Scheme), UDS-Explicit, and UDS-Implicit. Initially, we compared the results
of the finite volume method (FVM) with the more commonly used finite difference
method (FDM) in the literature. We observed that the FVM demonstrated a lower er-
ror than the FDM, employing a manufactured solution as a reference. Assessing the
order of accuracy for first-order approximations, we established that the effective order
approaches the asymptotic order, maintaining consistency across various space-time
ratios. However, the same consistency does not hold for second-order approximations
due to non-physical oscillations, particularly when reliant on higher space-time ratios.
By incorporating artificial viscosity dependent on the mesh, we achieved favorable
outcomes for the effective order, even at lower space-time ratios. For the application
of RRE (Repeated Richardson Extrapolation), the LS method outperformed the others.
Finally, we evaluated five error estimators for RRE: Richardson, corrected Richardson,
∆, Ψ, and Ψ∗. Among these estimators, the ∆ proved neither accurate nor reliable,
regardless of the discretization method or space-time ratio employed. Regarding the
Richardson, corrected Richardson, Ψ, and Ψ estimators, we observed that for low
space-time ratios, the UDS-Explicit method lacked a consistently accurate and reliable
estimator. However, the LS, UDS-CN, and UDS-Implicit methods exhibited accurate
and reliable Richardson, Ψ, and Ψ∗ estimators respectively. For high space-time ratios,
all methods exhibited unreliable estimators. However, in the search for accurate and
reliable estimators for such high space-time ratios, we can utilize any of the methods (LS,
UDS-CN, UDS-Explicit, and UDS-Implicit), but considering only the coarser meshes.
Therefore, the grain mass aeration process model proposed by Thorpe is well-described
by the FVM, demonstrating that LS is the superior approximation to be employed both
with and without the application of RRE.

Key-words: Grain Storage. Computational Fluid Dynamics. Leith Scheme. Finite Volume
Method. Upwind Scheme. Thorpe’s Model.
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1 INTRODUÇÃO

A agricultura é a principal atividade econômica para a maior parte da popula-
ção dos países em desenvolvimento, respondendo por um quarto do produto interno
bruto, constituindo a maior parte da produção de alimentos com grãos, dominada
principalmente por pequenos agricultores (LOPES et al., 2006).

Segundo Faoro (2018), o produtor rural dedica vários meses ao cultivo com
o intuito de sempre melhorar a qualidade de seus produtos para garantir um melhor
preço. Após, o produto é armazenado e comercializado. Se houver falhas em algumas
dessas fases, o prejuízo poderá ser significativo.

O grão é uma cultura sazonal frequentemente cultivada uma vez por ano,
enquanto a demanda é distribuída uniformemente ao longo do ano; assim, o grão é
armazenado para garantir um abastecimento constante (LOPES et al., 2006). Durante o
armazenamento, os grãos são vulneráveis ao ataque de diversos insetos-praga, sendo
estes a principal causa de perdas pós-colheita e insegurança alimentar. A magnitude
das perdas varia significativamente de cultura para cultura e de região para região. As
perdas anuais de grãos variam de 20% a 50% para os países em desenvolvimento
(SULEIMAN; ROSENTRATER, 2022).

A perda pode resultar da deterioração do produto por causas como podridão,
crescimento de fungos, danos causados por insetos, brotação, perda de germinação
e perda de matéria seca pela respiração. Tal como acontece com outros produtos
agrícolas, a qualidade do grão é mantida por mais tempo em temperaturas mais baixas
(HELLEVANG; CASADA, 2022).

Portanto, a qualidade e a conservação dos grãos dependem diretamente do
sistema de armazenamento. Problemas de armazenamento e ineficiência podem levar
a perdas significativas do produto armazenado e alto gasto de energia e recursos. Para
minimizar essas perdas, é importante um sistema adequado e eficiente, abrangendo
um fluxo de ar uniforme em todo o domínio da massa de grãos (BINELO et al., 2019).
Portanto, o controle da temperatura e teor de água dos grãos é fundamental para
preservar os aspectos econômicos e nutricionais da massa de grãos, desde a colheita
até o consumo (PANIGRAHI et al., 2020a).

Dentre as opções de controle das condições de armazenagem que não incluem
produtos químicos e que podem se adaptar às regiões tropicais e pequenas proprie-
dades rurais, a aeração é a tecnologia mais difundida, sendo uma técnica preventiva
(LOPES, 2006).

A aeração consiste na movimentação forçada de ar ambiente ou refrigerado
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adequado através da massa de grãos, com o objetivo geral de diminuir e uniformizar
a temperatura, propiciando a essa massa, condições favoráveis para conservação da
qualidade durante um período de tempo prolongado (PEREIRA, 1995).

Entre os vários objetivos da utilização da aeração, os principais são: o resfria-
mento e a manutenção da massa de grãos a uma temperatura suficientemente baixa
para assegurar uma boa conservação; e secundariamente, a secagem para prevenir o
aquecimento e o umedecimento da massa de grãos, promover a remoção de odores
na massa de grãos e inibir as atividades de insetos e o desenvolvimento da microflora,
evitando o aparecimento de fungos que deterioram o produto (LOPES, 2006).

Os desenvolvimentos modernos em aeração começaram após a Segunda
Guerra Mundial, em uma época de excedentes de cereais, que comumente resultou
em tempos de armazenamento de mais de 1 ano. No mesmo período, silos maiores e
armazéns planos começaram a ser usados para reduzir os custos de armazenagem,
uma tendência que continua até os dias atuais em diferentes locais de estocagem do
grão (HELLEVANG; CASADA, 2022).

1.1 GENERALIDADES EM DINÂMICA DOS FLUIDOS COMPUTACIONAL

No intuito reduzir os custos de armazenagem, têm sido desenvolvidos modelos
matemáticos para descrever e melhorar o processo de aeração por meio de métodos
numéricos, tais como: Thompson (1972), Muir et al. (1980), Alagusundaram et al.
(1990), Chang et al. (1993, 1994), Jia et al. (2000), Thorpe (2001b), Khatchatourian
e Savicki (2004), Liu et al. (2016) e Novoa–Muñoz (2019). Tais modelos ajudam na
previsão do comportamento dos grãos e auxiliam na redução de perdas por parte de
produtores.

Existem alguns métodos que podem ser usados na discretização de um modelo
matemático contínuo. Os métodos mais utilizados são: Método das Diferenças Finitas
(MDF) (TANNEHILL et al., 1997; FORTUNA, 2000; BURDEN; FAIRES, 2016), Método
dos Elementos Finitos (MEF) (HUGHES, 2000) e o Método dos Volumes Finitos (MVF)
(VERSTEEG; MALALASEKERA, 2007; MALISKA, 2017).

Esses métodos numéricos consistem na substituição dos termos das derivadas
parciais envolvidas na equação diferencial por aproximações numéricas. Com isso,
o problema contínuo é transformado em um problema discreto, em que o domínio
espacial é particionado em um número finito de subdomínios que recebe o nome de
malha computacional, ou simplesmente malha (Ωh), Fig. 1 (SANTIAGO, 2010). Essa
transformação é conhecida como discretização do domínio.
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FIGURA 1 – EXEMPLO DE TRANSFORMAÇÃO DO DOMÍNIO CONTÍNUO EM DOMÍNIO
DISCRETIZADO.

FONTE: Santiago (2010).

O MVF é um método de discretização de equações diferenciais que é baseado
no balanço de certas quantidades físicas em um volume de controle (VC) pertencente
ao domínio, representado pela Fig. 2.

FIGURA 2 – DISCRETIZAÇÃO EM VOLUMES FINITOS.

FONTE: O autor (2023).

No modelo que vamos tratar neste trabalho, teremos mais de uma quantidade
para ser armazenada em um dado volume de controle da malha. Em particular, essas
quantidades serão dadas pela temperatura (T ) e pelo teor de água da massa de grãos
(U ).

De acordo com Maliska (2017), os arranjos colocalizados possuem maior
facilidade de implementação, pois todas as variáveis são armazenadas no mesmo
ponto e, portanto, apenas um tipo de VC pode ser utilizado para todas as integrações
das equações do modelo matemático.

Ao discretizar uma equação diferencial transformamos um domínio contínuo
(Ω) em domínio discreto (Ωh), conforme a Fig. 1. E dependendo da distribuição dos
volumes discretos no domínio, as malhas podem ser classificadas em ortogonais e não-
ortogonais; estruturadas e não-estruturadas; uniformes ou não-uniformes (MALISKA,
2017). A Fig. 3 apresenta, os tipos de malhas ortogonais estruturadas uniforme e não
uniforme.
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FIGURA 3 – TIPOS DE MALHAS ESTRUTURADAS.

(a) Uniforme (b) Uniforme por direção (c) Não uniforme

FONTE: O autor (2023).

Anisotropia é uma característica frequente nos fenômenos naturais e representa
a não homogeneidade direcional de um determinado evento, ou seja, a variabilidade
espacial dos elementos ocorre mais intensamente em uma direção preferencial (OLI-
VEIRA et al., 2015). A anisotropia é classifica em dois tipos: física (também conhecida
como anisotropia de coeficientes) e anisotropia geométrica (também conhecida como
anisotropia de malha). Neste trabalho será abordada a anisotropia geométrica, con-
siderando uma malha ortogonal estruturada uniforme por direção, veja a Fig. 3b. O
parâmetro que mede tal quantidade é chamado de fator de anisotropia, que no caso da
anisotropia geométrica, é conhecido como razão de aspecto.

A Dinâmica dos Fluidos Computacional (CFD-Computational Fluid Dynamics)
pode ser considerada a área que estuda os fenômenos físicos ou físico-químicos em
escoamentos de fluidos, transferência de calor e fenômenos relacionados por meio de
simulações numéricas.

Em CFD, a anisotropia ocorre naturalmente, onde se tem a simulação de
fenômenos físicos de pequena escala (MONTERO et al., 2001).

De modo geral, as soluções numéricas podem ser afetadas por erros numéricos,
cujas fontes são: erros de truncamento, erros de iteração e erros de arredondamento.
Quando as demais fontes são minimizadas ou inexistentes, o erro de truncamento
passa a ser denominado erro de discretização (MARCHI, 2001).

Segundo Roy e Oberkampf (2011), entre as fontes de erro numérico, o erro de
discretização (Eh) é considerado o mais significativo. Tal erro pode ser definido como
a diferença entre a solução analítica e a solução numérica obtida para as equações
discretizadas (ROY; BLOTTNER, 2006).

Na área de CFD, um desafio é o nível de acurácia das soluções numéricas,
causada pelos erros numéricos. Portanto, a utilização de métodos que minimizem tais
erros é de extrema importância.
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Na literatura, a extrapolação de Richardson (ER) é utilizada com o objetivo
de se minimizar o erro de discretização Eh e aumentar a sua ordem de acurácia (pa).
Considerando a aplicação de ER de forma recursiva é possível potencializar a sua
eficácia. Tal procedimento é conhecido por Múltipla Extrapolação de Richardson (MER)
(MARCHI et al., 2013b).

A primeira aplicação de MER foi apresentada no trabalho de Richardson e
Gaunt (1927), os quais consideraram dois níveis de extrapolação e aplicaram essa
técnica a equações na forma integral, como a equação de Volterra; e diferencial, como
as derivadas no Teorema de Leibnitz. Aplicações com apenas dois níveis de ER
resultam em um aumento significativo na ordem de acurácia das soluções numéricas
(RICHARDSON; GAUNT, 1927; ERTUK et al., 2005). O emprego de ER com mais de
dois níveis de extrapolação, são observados em Roy (2005), Martins (2013) e Rodrigues
et al. (2022), os quais tem como objetivo a redução do erro de discretização.

Dessa forma, este trabalho propõe aprofundar o estudo sobre processo de
aeração de massa de grãos, dado pelo modelo de Thorpe (2001b), a fim de aplicar a
MER para estimar e reduzir o erro de discretização com diferentes razões espaço-tempo.
Para isto, discretizaram-se as equações pelo MVF, empregando as aproximações
espaço-tempo LS (Leith scheme), CDS-CN (Central difference scheme-Crank-Nicolson),
UDS-CN (Upwind Difference Scheme-Crank-Nicolson), UDS-Explícito e UDS-Implícito,
utilizou-se viscosidade artificial (VON NEUMANN; RICHTMYER, 1950) para evitar as
oscilações não físicas e uma solução fabricada por Rigoni et al. (2022).

1.2 MOTIVAÇÃO

De acordo com Lopes (2006), nas últimas décadas, tem-se discutido a utilização
de processos e métodos que garantam a qualidade dos produtos armazenados e não
prejudiquem a saúde dos consumidores. Além da preocupação com os danos visíveis
aos grãos, a autora relata que se tem trabalhado no sentido de implementar medidas
que garantam a sua qualidade, evitando-se a degradação nutricional e a contaminação
do produto armazenado.

Assim, a eficiência dos métodos utilizados para descrever os comportamentos
dos fenômenos físicos estão sendo verificados para descrever melhor tais comporta-
mentos e em muitos casos, estes resultados ainda não são satisfatórios comparados
com os elementos naturais ou processos de Engenharia. Dessa forma, é de suma
importância pesquisar novas técnicas para descrever estes fenômenos físicos e mesclar
técnicas existentes para melhorar o desempenho tanto computacional quanto ao erro
gerado.

As técnicas mais frequentemente utilizadas na resolução destes modelos são
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os MDF e o MEF (NAVARRO; NOYES, 2001). No modelo matemático estudado, o
principal método de discretização descrito na literatura é o MDF com aproximação
espacial do tipo UDS (THORPE, 2001a; LOPES et al., 2006; KWIATKOWSKI JR., 2011;
LOPES et al., 2015; RIGONI et al., 2022). Ainda não consta na literatura um estudo
detalhado com outro método numérico para discretizar as equações diferenciais para o
modelo de Thorpe (2001b).

Por outro lado, as soluções numéricas são afetadas por erros numéricos,
em particular, o erro de discretização (Eh), considerado o mais significativo (ROY;
OBERKAMPF, 2011).

As alternativas disponíveis para se reduzir tal erro são: refinamento de ma-
lha, cuja desvantagem é o aumento de memória e tempo computacionais; emprego
de métodos de alta ordem, cuja desvantagem é o aumento da complexidade do mo-
delo numérico; e por último, mas não menos importante, a utilização de técnicas de
extrapolação (MARTINS, 2013).

Neste contexto, a principal motivação deste trabalho consiste no aperfeiçoa-
mento de métodos adotados para reduzir e estimar erros de discretização aplicado ao
modelo proposto. Com esse propósito, faz-se necessária a aplicação de uma técnica
de extrapolação. Neste trabalho adotaremos a MER, analisando seu desempenho para
diferentes razões espaço-tempo a fim de se obter soluções numéricas de alta ordem.

1.3 PROCESSO DE AERAÇÃO DA MASSA DE GRÃOS

O sistema de aeração é composto por elementos que visam a distribuição
uniforme de ar através da massa de grãos (BILOBROVEC, 2005). Os principais com-
ponentes são: i) um ventilador para movimentar o ar através da massa de grãos; ii)
condutos perfurados para conduzir e distribuir o ar através da massa de grãos; iii) tubos
de conexão que ligam o ventilador com os condutos. A Fig. 4 representa a estrutura e
os componentes de um sistema de aeração.

O sistema de aeração deve operar até que a frente de temperatura tenha se
movido completamente através da massa de grãos, garantindo que a camada superior
do produto tenha sido resfriada ou homogeneizada (SILVA et al., 2000).

A aeração é uma das principais técnicas de prevensão usada no gerenciamento
de armazenamento seguro e econômico de grãos armazenados, que pode controlar o
ambiente ecológico dos grãos armazenados para garantir o seu estado (ZESHENG;
LING, 1997).

A aeração é utilizada para resfriar a massa de grãos, homogeneizar a tempe-
ratura, promover a secagem dentro de certos limites, distribuir fumigantes gasosos
(controle de pragas realizado com compostos químicos) através do ar da aeração,
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controlar pragas como insetos e fungos e remover maus odores.

FIGURA 4 – COMPONENTES DE UM SISTEMA DE AERAÇÃO.

FONTE: Adaptado de Panigrahi et al. (2020a).

Para que isto ocorra, emprega-se uma vazão mínima de ar, assim a massa de
grãos alcançará a temperatura desejada dentro de um intervalo de tempo desejado e
conveniente. De acordo com Navarro e Noyes (2001), a vazão específica mínima de
ar requerida depende da espécie de grão armazenado, da espessura da massa de
grãos, do tipo de instalação e do número de estruturas de armazenagem existentes no
sistema.

Segundo Lopes (2006), se este processo demorar muito, os seus objetivos
podem não ser alcançados, e se for muito rápido, será requerida uma vazão muito
alta de ar, que poderá secar ou umidecer os grãos, sendo também economicamente
inviável.

O resfriamento da massa de grãos é utilizado em grãos armazenados secos,
porém com temperaturas elevadas, para serem resfriados no silo através da aeração
após sairem dos secadores de grãos (WEBER, 2005).

A aeração com o objetivo de homogenizar a massa de grãos ocorre em regiões
ou épocas quentes, quando o resfriamento até os níveis indicados como seguro não é
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possível. Assim, buscando manter a massa de grãos com diferença máxima de tempe-
ratura de 3◦C para evitar processos danosos aos grãos (LOPES et al., 2006). Assim,
o ar frio da aeração torna fria e homogênea a temperatura dos grãos armazenados
utilizada para neutralizar o aquecimento espontâneo dos produtos e as correntes de
convecção que se formam devido às diferenças de temperatura na massa de grãos.
Este tipo de aeração é utilizada para armazenagem de grãos secos (KWIATKOWSKI
JR., 2011).

Segundo Navarro e Noyes (2001), manter um baixo gradiente de temperatura
no ambiente de armazenamento possibilita a prevenção da migração do teor de água,
os focos de aquecimento e a condensação de água nos grãos armazenados.

A utilização da aeração pode ser realizada para manter a secagem dentro
de certos limites. Vale ressaltar que a aeração não foi projetada para tal objetivo. As
vazões empregadas na aeração são 15 a 25 vezes maiores que as aplicadas para
o resfriamento, sendo economicamente inviável por atingir uma vazão de ar muito
elevada (SILVA et al., 2000). Assim, quando for aplicada com este objetivo, deve-se ter
cuidado e observar todos os fatores envolvidos neste processo (KWIATKOWSKI JR.,
2011).

No caso da distribuição de fumigantes gasosos, estes devem ser distribuídos,
gerando concentração uniforme e resíduos dentro dos limites aceitáveis no ambiente de
armazenamento (BOND, 1984). De acordo com Navarro e Noyes (2001), a circulação
dos fumigantes, utilizando sistemas de aeração, requer conhecimentos avançados
sobre efeitos e tempos de contato do fumigante com a massa de grãos. O mais comum
é usar a aeração para circular o ar após o processo de fumigação.

O processo de aeração pode inibir a proliferação de insetos e fungos através do
controle de temperatura e o teor de água da massa de grãos. Atualmentre, os fungos
são a maior causa de deterioração na armazenagem de sementes e grãos. Depois dos
insetos, são a maior causa que leva à perda total.

A aeração possibilita a retirada de maus odores da massa de grãos, provenien-
tes do crescimento de fungos e fermentação. A remoção desses odores são facilmente
e totalmente removidos em caso de fermentação, porém, quando o produto está ran-
çoso, os maus odores são dificilmente totalmente eliminados (KWIATKOWSKI JR.,
2011).

A massa de grãos pode ser considerada um sistema ecológico composta por
organismos vivos (componentes biológicos) e o meio ambiente do interior da massa,
onde há componentes que não são organismos vivos (meio abiótico), integrando-se
entre si (PEREIRA, 1995).

Segundo Lopes et al. (2006), a modificação das condições do ambiente de
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armazenamento pode produzir diferentes efeitos, dependendo das características do
ar de aeração e dos grãos armazenados. Estes efeitos são entendidos com mais
facilidade quando o ambiente de armazenamento é considerado como um ecossistema
com fatores bióticos e abióticos.

São fatores abióticos do ecossistema de armazenamento da massa de grãos:
a temperatura e a umidade relativa do ar ambiente, a temperatura dos grãos, o teor de
água dos grãos, a atmosfera do ambiente de armazenamento e os materiais estranhos
existentes na massa de grãos (ANDRADE, 2001).

O principal fator biótico deste ecossistema é o grão, tendo como principais
características a hidroscopia dos grãos, porosidade, condutividade térmica, difusividade
térmica, ângulo de repouso, massa específica, calor específico e latente, entalpia, teor
de água dos grãos, temperatura, danos mecânicos, danos produzidos pelas impurezas,
teor de água de equilíbrio e deterioração dos grãos. De acordo com Fleurat-Lessard
(2002), todas as ações deste ecossistema envolvidas no sistema de armazenamento
são executadas visando a preservação do grão.

O grão é considerado um organismo vivo com atividade fisiológica reduzida,
podendo permanecer assim por longos períodos. Este baixo nível de atividade bio-
lógica dos grãos se deve aos baixos teores de água necessários para se obter uma
armazenagem segura. Altos valores de teor de água no ambiente de armazenamento,
combinados a valores inadequados, podem causar a germinação dos grãos, resultando
em perda do seu valor nutritivo e impedindo o armazenamento seguro (NAVARRO;
NOYES, 2001). De acordo com Pereira (1995), a deterioração dos mesmos resulta da
interação entre variáveis físicas, químicas e biológicas.

Segundo Puzzi (1977), dentre as mais importantes alterações químicas que
se apresentam nos grãos armazenados, são aquelas que envolvem a respiração dos
grãos úmidos. Pois, mesmo depois que os graõs são desligados biologicamente da
planta, eles respiram, ficando sujeitos a pequenas, mas contínuas transformações. Os
principais fatores que afetam o processo respiratório são: a temperatura, o teor de água
dos grãos e os fungos associados à massa.

Quando se observam grãos úmidos associados aos fungos, temos o aqueci-
mento destes grãos ocorrendo quando o teor de água dos grãos está acima do nível
considerado satisfatório para o armazenamento. De acordo com Puzzi (1977), todos
os fatores que envolvem a perda da qualidade dos grãos, causam um aumento de
temperatura.

De acordo com Navarro e Noyes (2001), a aeração tem limitações, sendo a
principal, a não eliminação imediata dos insetos e fungos, mas somente o impedimento
de sua proliferação. Entretanto, suas vantagens são: a não utilização de produtos
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químicos e sua segurança e economica no controle do ambiente de armazenamento
comparada a outras técnicas. De acordo com Sinicio e Muir (1995), o processo de
aeração é inicializado ou finalizado com condições pré-estabelecidas e bem definidas
para cumprir com seu objetivo.

A planta não é oleaginosa, mas o grão. Na verdade a soja é proteica, pois
possui mais proteína em sua composição. O termo oleaginosa aparece com frequência
por serem os lipídeos o segundo componente mais encontrado no grão.

Em nosso caso estudaremos a massa de grãos de soja (Glycine max), que é
uma planta originária da China, com o grão da soja sendo considerado proteico, pois
possui mais proteína em sua composição. O segundo componente mais encontrado no
grão é o termo oleaginosa que são alimentos de origem vegetal que se caracterizam
por serem ricos em gorduras monoinsaturadas. O grão também é rico em vitaminas A
e C, e minerais, como cálcio e fósforo.

Os dois maiores produtores de soja do mundo são o Brasil (com 125,8 milhões
de toneladas métricas) e os Estados Unidos (com 123,6 milhões de toneladas métricas).
Entre os estados brasileiros, a concentração da produção agrícola ocorre no Mato
Grosso, Paraná, Rio Grande do Sul e Goiás, que representam 67% da safra nacional
de grãos (EMBRAPA, 2022; CONAB, 2023).

Na Fig. 5 temos a distribuição da capacidade de armazenagem pelos estados
brasileiros e Distrito Federal. Já a Fig. 6 representa a quantidade da capacidade por
estado.

FIGURA 5 – DISTRIBUIÇÃO DA CAPACIDADE ESTÁTICA DA PRODUÇÃO POR ESTADO.

FONTE: Conab (2023).
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FIGURA 6 – QUANTIDADE DA CAPACIDADE ESTÁTICA DA PRODUÇÃO POR ESTADO.

FONTE: Conab (2023).

1.4 OBJETIVOS

O objetivo geral deste trabalho é efetuar uma análise de erros de discretização
do modelo matemático proposto por Thorpe (2001b) discretizando as equações dife-
renciais com o MVF e aplicar a MER para reduzir e estimar tais erros sob a influência
da razão espaço-tempo.

Dessa forma, são definidos também os seguintes objetivos específicos:

• Utilizar o MVF para resolver numericamente o modelo proposto por Thorpe
(2001b), empregando diferentes formulações espaciais e temporais;

• Efetuar uma análise das ordens efetiva (pE) com cada formulação empregada;

• Aplicar a MER para reduzir e estimar o erro de discretização e posteriormente
analisando sua ordem de acurácia;

• Analisar a influência da razão espaço-tempo na resolução numérica do processo
de aeração;

• Comparar o tempo de CPU de cada aproximação utilizada.
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1.5 DELINEAMENTO DO TEXTO

Desse modo, o trabalho se divide primeiramente na revisão da literatura com
trabalhos utilizando o modelo proposto por Thorpe e outros modelos para descrever
o comportamento da aeração, além de vários trabalhos aplicando a ER e a MER
com diferentes técnicas e modelos. No Capítulo 3, abordaremos a fundamentação
teórica na seguinte ordem, erro numérico, MVF e o tratamento das condições de
contorno, juntamente com o solver a ser utilizado na resolução. Posteriormente, no
capítulo 4 apresentaremos a MER e os principais estimadores. Seguindo no Capítulo 5,
mostraremos o modelo matemático proposto por Thorpe (2001b), condições iniciais e
de contorno. No Capítulo 6, são dadas as discretizações do modelo matemático com
o MVF e suas aproximações espaciais e temporais. Na sequência apresentaremos
os resultados e discussões, por meio de gráficos e análises da ordem efetiva (pE),
erro de discretização e tempo computacional no Capítulo 7. Finalmente, no Capítulo 8,
descreveremos as conclusões.
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2 REVISÃO BIBLIOGRÁFICA

Nesta seção, é apresentada uma revisão bibliográfica sobre os trabalhos re-
lacionados a aeração com e sem o modelo de Thorpe e posteriormente uma revisão
com trabalhos relacionados a Extrapolação de Richardson e a Múltipla Extrapolação
de Richardson (MER), tendo como principal objetivo mostrar a importância tanto do
modelo estudado quanto da aplicação da MER.

2.1 AERAÇÃO E O MODELO PROPOSTO

A aeração é uma das ferramentas mais poderosas disponíveis para o setor de
armazenamento de grãos. Independentemente da temperatura inicial e do teor de água
dos grãos, há fenômenos biológicos e químicos que ocorrem nos grãos armazenados
que são significativamente influenciados pela temperatura de bulbo úmido do ar que
entra no grão (THORPE, 2022).

Segundo Zesheng e Ling (1997), projetar e implementar um modelo matemático
de eficiência para simular o processo de aeração tem sido um problema bastante
complexo principalmente no manejo econômico e seguro dos grãos armazenados.
A modelagem do fenômeno de transferência de calor e massa no domínio de grãos
armazenados é datada desde a década de 1970 (PANIGRAHI et al., 2020a).

Thompson (1972) desenvolveu um modelo para prever as mudanças na tempe-
ratura e teor de água do grão durante o processo de aeração em grãos de milho, sendo
a simulação realizada assumindo uma série de finas camadas de grãos posicionadas
perpendicularmente ao fluxo de ar dentro do silo de armazenamento. Tal modelo foi
construído a partir de modificações do modelo de Thompson et al. (1968), desenvolvido
para simular o processo de secagem.

Em Thorpe e Hunter (1977) foram apresentadas expressões analíticas explíci-
tas para distribuições de pressão e vazão em silos e galpões aerados equipados com
dutos de aeração circulares e lineares, colocados simetricamente em relação ao centro.
Uma solução da equação de Laplace por diferenças finitas e que explora a forma de
banda da matriz dos coeficientes também é apresentada. Neste caso, resolve-se o
sistema gerado nesta discretização com um método direto, em vez de iterativo.

Muir et al. (1980) desenvolveram um modelo para simular a transferência de
calor através do fenômeno de condução na direção vertical e radial em uma caixa
cilíndrica e utilizaram o MDF para solucionar numericamente o modelo matemático. A
temperatura inicial do grão, a temperatura ambiente diária e as velocidades do ar foram
usadas como parâmetros de entrada para prever a mudança de temperatura em toda a
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massa de grãos.

Thorpe e Elder (1982) apresentaram um modelo matemático dos processos de
transferência de calor, teor de água do grão e decomposição de pesticidas em grãos
aerados. Tal modelo foi discretizado usando o Método das Diferenças Finitas e validado
por evidências experimentais. A aeração reduz a taxa de degradação dos pesticidas
aplicados aos grãos armazenados e torna a taxa de decomposição relativamente
insensível às condições iniciais dos grãos.

Thorpe et al. (1982) propuseram um modelo matemático de fenômenos de
transferência de calor e teor de água do grão que ocorrem em granéis de grãos aerados,
e é combinado com um modelo populacional de Sitophilus oryzae. O modelo prevê que
insuflar o ar frio da noite através de granéis de grãos reduz severamente o crescimento
populacional de gorgulhos (pequenos besouros, carunchos).

Alagusundaram et al. (1990) desenvolveram um modelo para prever a dis-
tribuição de temperatura devido ao fenômeno de condução dentro de um recipiente
contendo colza e utilizaram o MDF para solucionar numericamente o modelo matemá-
tico. A equação de equilíbrio para calcular a transferência de calor transiente dentro
de cada elemento espacial foi definida igualando a taxa de fluxo total de calor para o
elemento e a taxa de mudança ocorrida na acumulação de calor dentro do elemento.

Thorpe et al. (1990) apresentaram expressões analíticas para os calores inte-
grais de molhamento que são derivadas da equação isóstera de Hunter. Um algoritmo
numérico para avaliar a integral também foi apresentado. Quando a velocidade compu-
tacional é essencial, os calores integrais de umedecimento de nove tipos de sementes
e grãos são expressos como polinômios de quarta ordem.

Thorpe et al. (1991a) desenvolveram uma equação que descreve a transferên-
cia de massa por difusão em grãos armazenados a granel. A equação é expressa em
termos de uma concentração média espacial ponderada de equilíbrio e uma tempe-
ratura média de volume, juntamente com desvios espaciais locais da concentração
média. Thorpe et al. (1991b) montaram e resolveram o problema de valor de contorno
para esses desvios locais e isso levou a expressões para a difusividade efetiva do teor
de água em grãos armazenados.

Thorpe (1997) desenvolveu um modelo de equilíbrio, pelas equações diferen-
ciais que governam as distribuições de velocidade, teor de água e temperatura em
silos de fundo cônico para armazenamento de grãos. As equações são resolvidas
transformando a forma do silo em um cilindro reto. Utilizando uma malha ortogonal
e discretizando as equações pelo Método das Diferenças Finitas. As temperaturas
na superfície externa do silo são calculadas usando a radiação solar e outros dados
climáticos. O modelo matemático incorpora fenômenos biológicos como a respiração



Revisão Bibliográfica 41

do grão, a dinâmica populacional de três espécies de insetos e um total de quatro
linhagens de coleópteros de produtos armazenados e a perda da viabilidade dos grãos
são considerados. Expressões que se relacionam com a taxa de decomposição de
pesticidas químicos também são incorporadas ao modelo de ecossistema. Os resul-
tados da pesquisa mostram que a aeração com ar ambiente em silos pequenos para
armazenamento na fazenda resulta em melhores condições de armazenamento em
comparação com as obtidas em silos não aerados.

Como podemos observar, vários modelos foram sendo desenvolvidos para
avaliar o processo de aeração, até que em 2001, Thorpe (2001b) apresentou deta-
lhadamente o modelo que é baseado nas equações de balanço de massa e energia
formulado por Thorpe (1997). Este será o modelo adotado nesta tese.

Vários trabalhos foram baseados na simulação numérica do processo de aera-
ção utilizando o modelo matemático proposto por Thorpe (2001b), modelo abordado
nesse estudo: Lopes (2006), Radtke (2009), Kwiatkowski Jr. (2011), Lopes et al. (2014,
2015), Rigoni e Kwiatkowski Jr. (2020) e Rigoni et al. (2022).

Lopes et al. (2006) validaram o modelo proposto por Thorpe (2001b), efetuando
algumas simplificações nas equações originais do modelo matemático com a finalidade
de reduzir o tempo computacional, sem diminuir a acurácia. Para resolver numerica-
mente tal modelo, as equações foram discretizadas pelo MDF, utilizando aproximação
espacial Upwind Difference Scheme (UDS) e formulação temporal explícita. A máxima
diferença observada entre as temperaturas experimentais e numéricas foi de 3,2◦C.
Para os testes, o grão utilizado foi o milho.

Radtke (2009) utilizou o modelo proposto por Thorpe (2001b) com as simplifica-
ções e metodologia numérica sugeridas por Lopes et al. (2006). O autor relatou que o
modelo apresentou resultados satisfatórios quando comparado a dados experimentais,
para o grão de soja.

Kwiatkowski Jr. (2011) comparou os dados experimentais fornecidos por Oli-
veira et al. (2007) com a simulação numérica do modelo proposto por Thorpe (2001b) e
simplificações sugeridas por Lopes et al. (2006), discretizando pelo MDF, com apro-
ximação espacial UDS e com a formulação temporal explícita e implícita, para um
sistema com e sem controlador ON/OFF. Os resultados se mostraram eficazes tendo
uma pequena vantagem para a aproximação temporal implícita, dado que a solução
numérica foi sempre convergente.

Lopes et al. (2014) compararam o modelo logarítmico (ou Hukill) e o modelo
de equilíbrio (ou Thorpe) com dados experimentais encontrados na literatura. Os dois
modelos também foram analisados em relação às temperaturas previstas e teor de água
dos grãos e tempos de secagem. Os resultados mostraram que ambos os modelos
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apresentaram bom desempenho de previsão, com leve preferência para o modelo
Thorpe.

Lopes et al. (2015) compararam os modelos propostos por Thorpe (2001b)
e Thompson (1972) com dados experimentais. Os resultados mostraram que ambos
os modelos tiveram boa concordância com os dados experimentais e os modelos
apresentaram um desempenho muito semelhante. Os autores comentam que os dois
modelos avaliados podem ser facilmente implementados, contribuindo para melhorias
no controle desse processo e garantindo o gerenciamento da qualidade dos grãos
durante o período de armazenamento.

No trabalho de Rigoni et al. (2022) foram apresentadas várias outras técnicas
de discretização, tanto temporal quanto espacial, todas utilizando MDF para o modelo
matemático proposto por Thorpe (2001b) e suas simplificações (LOPES et al., 2006),
além de apresentarem uma solução fabricada (solução analitica). Foi realizada uma
análise do erro de discretização por meio da ordem efetiva de tal erro. Os resultados
obtidos numericamente foram comparados com a solução analítica e os tempos de
CPU em diferentes níveis de refinamento.

De acordo com Rigoni et al. (2022), LS e CDS-CN são as melhores aproxi-
mações de segunda ordem para o modelo estudado. Para evitar as oscilações não
físicas nos métodos de segunda ordem, os autores aplicaram a viscosidade artificial
(VON NEUMANN; RICHTMYER, 1950) no modelo proposto. Já os métodos de pri-
meira ordem UDS-Explícito, UDS-Implícito e UDS-CN também foram utilizados para
comparação pelo fato do UDS-Explícito ser a aproximação numérica mais utilizada na
literatura.

Dessa forma, podemos notar que o modelo proposto por Thorpe (2001b), e sua
simplificação feita por Lopes et al. (2006), tem sido amplamente discutido na literatura
e comparado com dados experimentais. Outro fato comum encontrado na literatura
é que todos os autores aplicaram MDF. Dessa forma, torna-se interessante estudar
o desempenho de outros métodos numéricos para a discretização do modelo; neste
trabalho optamos por utilizar o MVF. Ainda, os autores que estudadaram o modelo de
Thorpe (2001b) optaram pela formulação UDS-Explícita, com exceção de Kwiatkowski
Jr. (2011), que aplicou a formulação UDS-Explícita e UDS-Implícita e Rigoni et al. (2021,
2022), que aplicaram outras técnicas de aproximação numérica.

2.2 ANISOTROPIA E MEIOS POROSOS

O trabalho de Rice et al. (1970) é um dos mais citados em relação à anisotropia
física (anisotropia relacionada aos coeficientes da equação) nesta área de estudo. Os
autores abordaram métodos de medição de permeabilidade anisotrópica em meios
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porosos consolidados e não consolidados. A anisotropia é geralmente o resultado da
orientação e forma dos grãos assimétricos que compõem a camada porosa. A extensão
da anisotropia pode ser aproximadamente prevista por medições de resistividade em
diferentes direções. Também são catalogados diversos métodos para prever as funções
de fluxo e potencial em meios porosos anisotrópicos.

Hood e Thorpe (1992) estudaram os efeitos da resistência anisotrópica ao fluxo
de ar no projeto de sistemas de aeração para grãos de linhaça e arroz com casca
armazenados a granel. Relataram que a linhaça exibe o maior grau de anisotropia, com
a resistência vertical ao fluxo de ar sendo cerca do dobro da resistência ao fluxo de
ar na direção horizontal. As quatro variedades de arroz com casca estudadas tiveram
resistência ao fluxo de ar na direção vertical entre 30 a 50 % maiores do que na direção
horizontal.

Khatchatourian et al. (2009) mostraram que o fator de anisotropia física de-
pende da forma do grão, apresentando maiores desvios à medida que o grão difere
do formato esférico. O fator de anisotropia aumenta com a velocidade do ar, e essa
influência da velocidade varia de muito fraca para sementes com forma próxima a
esférica (ervilha, soja) até significativa para grãos bem menos esféricos (lentilha, arroz).
Simulações numéricas de armazéns de grãos aerados reais e hipotéticos foram utili-
zadas para detectar a influência da anisotropia nas áreas de risco operacional. Essa
diferença depende do tipo de grão (valor do fator de anisotropia), variação da área
da seção transversal do silo de armazenamento (taxa de expansão) e localização da
entrada de ar.

Knob (2010) relacionou a anisotropia com posições mais prováveis dos grãos
na massa de grãos ocupadas no armazém. Durante o enchimento do armazém, os
grãos ocupam uma posição para qual a energia potencial do sistema seja mínima, isto
é, o centro de gravidade do grão fique o mais baixo possível. Aplicando o processa-
mento de imagens digitais foram obtidas as características geométricas dos vários
tipos de grãos (soja, trigo, aveia, milho, arroz, lentilha, linhaça e ervilha). Utilizando a
relação entre a área de projeção horizontal e a área mais provável de projeção vertical,
foram generalizados os dados experimentais sobre o escoamento do ar nas direções
horizontal e vertical, com variação de velocidade. Constatou-se que, com o aumento
da excentricidade dos grãos, a razão entre as permeabilidades na direção horizontal e
vertical (fator de anisotropia) aumenta.

Tozinni (2010) desenvolveu um modelo matemático para calcular a pressão
estática, aerodinâmica e a distribuição de velocidade do fluxo do ar na massa de
grãos, considerando os casos bi e tridimensionais sob condições não homogêneas e
anisotrópicas. Com os experimentos foram obtidos os fatores de anisotropia para vários
tipos de grãos (soja, milho, trigo, aveia e arroz). Tozinni (2010) constatou também,
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assim como em Khatchatourian et al. (2009) que o fator de anisotropia cresce com o
aumento da velocidade do ar. Essa influência é muito pequena para grãos com a forma
próxima do esférico (ervilhas e soja) e muito maior para grãos da forma não esférico
(lentilhas e arroz).

Vasconcellos (2012) propôs um estudo aprofundado sobre a distribuição do
fluxo do ar em armazéns sob o efeito da não homogeneidade e da anisotropia em
grãos de arroz, aveia, soja, milho e trigo. A anisotropia foi relacionada ao ângulo mais
provável que os grãos podem ocupar no silo, bem como a relação com o grau de
esfericidade das sementes. As simulações mostraram que há uma diferença entre o
fluxo de ar dentro do armazém para o meio isotrópico e para o meio anisotrópico. Esta
diferença depende do tipo de grão (fator anisotrópico) e do local de entrada do ar.

Como podemos observar, existem diversos estudos sobre a anisotropia física
e geométrica. Entretanto, em relação a conservação do grão, até o presente momento
encotramos somente estudos voltados à anisotropia física. Assim se faz necessário um
aprofundamento na anisotropia geométrica e quais suas consequências na simulação
do processo de aeração.

2.3 EXTRAPOLAÇÃO DE RICHARDSON

A técnica denominada extrapolação de Richardson (ER) (RICHARDSON, 1910)
e sua aplicação recursiva (Múltipla Extrapolação de Richardson - MER), foram con-
cebidas com o objetivo aumentar a ordem de acurácia de aproximações numéricas
envolvidas na resolução de equações diferenciais através de diversos métodos de dis-
cretização (MDF, MVF, etc). As necessidades da época, em Engenharia, demandavam
métodos rápidos, fáceis de serem entendidos e aplicáveis às equações estudadas
(MARTINS, 2013). Assim, são apresentados alguns trabalhos relacionados à Extrapola-
ção de Richardson (ER) e à Múltipla Extrapolação de Richardson (MER), em diferentes
modelos matemáticos.

Richardson e Gaunt (1927) aplicaram a ER, com dois níveis de extrapolação,
na equação integral de Volterra e nas derivadas no Teorema de Leibnitz, melhorando a
acurácia.

Lima (1994) mostrou que a ER pode ser aplicada com sucesso ao problema de
valor de contorno modelados por equações diferenciais lineares ordinárias de segunda
ordem discretizadas com MDF, apresentando resultados numéricos que confirmam tal
fato.

Han e Wang (2002) estudaram a solução numérica da equação integral de
Fredholm bidimensional pelo método de Galerkin. A aplicação da ER melhorou rapida-
mente a taxa original da convergência.
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Natividad e Stynes (2003) consideraram um problema de valor de contorno de
convecção-difusão em uma malha uniforme por partes. Eles mostraram que, quando o
Upwind simples é usado, uma versão da ER melhora a precisão da solução calculada.

Ertuk et al. (2005) utilizaram três malhas distintas no problema de escoamento
permanente bidimensional de fluido incompressível em uma cavidade com tampa móvel
e conseguiram obter sexta ordem de acurácia para a solução numérica, aplicando
apenas dois níveis de ER.

Rahul e Bhattacharyya (2006) investigaram a ordem de acurácia de aproxima-
ções numéricas unilaterais empregadas quando as condições de contorno envolvem
o cálculo de derivadas. Empregaram MER com três malhas distintas e dois níveis de
extrapolação e atingiram a ordem quatro.

Marchi e Germer (2013) verificaram o desempenho da MER na redução do erro
de discretização quando associado a dez tipos de esquemas numéricos de CFD de
primeira, segunda e terceira ordens de precisão para resolver a equação unidimensional
de advecção-difusão. Utilizaram como variáveis de interesse a temperatura no centro do
domínio, média do campo de temperatura e taxa de transferência de calor. Os autores
relataram que a MER é extremamente eficaz na redução do erro de discretização para
todas as variáveis e esquemas numéricos.

Marchi et al. (2013a) verificaram a eficiência da MER para reduzir o erro de
discretização em uma malha triangular e uma malha quadrada para a equação de
Laplace bidimensional. Para isso utilizaram o MVF, malhas uniformes, aproximações
de segunda ordem e condições de contorno de Dirichlet. Verificaram que a MER é
eficiente para tal equação reduzindo o erro de discretização em ambas as malhas,
mas com o erro menor para uma malha quadrada do que para uma malha triangular.
Verificaram que a redução do erro numérico dependia da variável de interesse, além da
geometria do domínio.

Marchi et al. (2013b) aplicaram a MER para a equação de Laplace bidimensi-
onal, com MDF, malhas uniformes, aproximações de segunda ordem e condições de
contorno de Dirichlet. Os autores relataram que a MER reduziu significativamente o erro
de discretização e que o estimador de erro de Richardson funcionou bem. Concluíram
também que, para um dado nível de erro de discretização, um valor muito menor de
tempo de CPU e memória RAM são necessários com o uso da MER.

Martins (2013) analisou o desempenho da MER, utilizando as equações de
Poisson, advecção-difusão e de Burgers, discretizadas com o MDF e o MVF, propondo
um conjunto de procedimentos numéricos que permitiram reduzir o erro de discre-
tização. Foram empregadas funções de interpolação polinomial em domínios uni e
bidimensionais e técnicas de otimização. Com relação às estimativas para o erro de
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discretização, foram analisados os desempenhos de alguns estimadores disponíveis na
literatura, e uma nova proposta de estimador para MER foi apresentada. Tal abordagem
mostrou-se acurada e confiável. Esses resultados de Martins (2013) estão compilados
em Marchi et al. (2016).

Da Silva et al. (2020) apresentaram um procedimento completo da MER para
um tipo mais genérico de malha em escoamentos de fluidos compressíveis. Três testes
são realizados para equações de Euler unidimensionais e quase unidimensionais:
escoamento de Rayleigh, escoamento isentrópico e escoamento adiabático através de
um bocal, todos resolvidos com o MDF. O procedimento proposto aumentou a acurácia
obtida em todos os três testes. O melhor desempenho foi obtido para o escoamento de
Rayleigh.

Da Silva et al. (2022) usaram a MER para melhorar a acurácia das soluções
numéricas de variáveis locais e globais obtidas usando o método de hidrodinâmica de
partículas suavizadas (SPH). A investigação se concentrou nos problemas unidimen-
sionais de condução de calor em regime permanente e transiente com condições de
contorno de Dirichlet. Os autores relataram que a MER é robusta na determinação até
a décima sexta ordem de acurácia para o domínio espacial.

Como observamos nesta seção, os trabalhos relataram a efeciência da MER
nos mais diversos modelos matemáticos, mas não encontramos até o presente mo-
mento, estudos aplicando a MER a modelos relacionados à aeração da massa de
grãos, tampouco para o modelo proposto por Thorpe (2001b). Portanto, pretendemos
fazer uso desta ferramenta para reduzir e estimar o erro de discretização aplicado na
simulação do processo de aeração da massa de grãos.
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3 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo apresentaremos a fundamentação teórica, fornecendo o em-
basamento para o trabalho. Inicialmente, mostraremos o erro númerico, as ordens
efetiva e aparente, o MVF e o tratamento das condições de contorno. Na sequência
abordaremos a viscosidade artificial, o método para solução dos sistemas lineares.
Finalmente, a anisotropia geométrica.

3.1 ERRO NUMÉRICO

Segundo Ferziger e Peric (2002), o erro numérico E é definido como a diferença
entre a solução analítica exata Φ de uma variável de interesse e a sua solução numérica
ϕ, ou seja, E = Φ − ϕ. Neste trabalho não dispomos de solução analítica, então
utilizaremos aproximação numérica ou solução fabricada.

De acordo com Marchi (2001), o erro numérico possui quatro fontes princi-
pais: erros de truncamento, erros de iteração, erros de arredondamento e erros de
programação.

• O erro de iteração tem como causas: o emprego de métodos iterativos para resolu-
ção do sistema de equações algébricas resultantes do processo de discretização;
a resolução de problemas não lineares em que a matriz dos coeficientes é função
da variável dependente do problema; e o tratamento de modelos matemáticos
constituídos por mais de uma equação, sendo cada uma resolvida separadamente
(MARTINS, 2013).

• Os erros de arredondamento ocorrem devido à representação finita dos números
reais nas computações. Eles dependem do compilador (software) usado para
gerar o código computacional e do computador (hardware) empregado em sua
execução (MARTINS, 2013). Quanto maior é a precisão utilizada para representar
as variáveis, menores são os erros; entretanto, maior é a memória computacional
necessária para o armazenamento dessas variáveis (MARCHI, 2001).

• Os erros de programação são resultantes do uso incorreto de um modelo numérico
na aproximação de um modelo matemático; os erros gerados na implementação
do modelo numérico em um programa computacional; os erros cometidos no uso
do programa computacional durante a obtenção da solução numérica; e qualquer
outra eventual fonte de erro, como por exemplo: usar uma solução analítica com
precisão inferior à da solução numérica (ROACHE, 1998).
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O erro que ocorre ao se truncar uma sequência infinita é chamado erro de
truncamento, ou seja, é proveniente do fato de se aproximar um modelo matemático
contínuo por um modelo numérico discreto (ROACHE, 1998). Tais erros estão asso-
ciados às aproximações numéricas utilizadas para as variáveis e suas derivadas no
processo de discretização.

O erro numérico é denominado de erro de discretização quando sua única
fonte são os erros de truncamento, ou seja, quando os erros de arredondamento, de
iteração e de programação podem ser desprezados (FERZIGER; PERIC, 2002). Deste
modo, representamos o erro de discretização da seguinte forma,

Eh(ϕ) = C1h
p1 + C2h

p2 + C3h
p3 + . . . , (3.1)

sendo h o tamanho representativo da malha, Ci os coeficientes que não dependem
da malha, mas sim da variável em questão, e pi são as ordens verdadeiras, com
pi < pi+1 < pi+2 < . . ., onde i = 1,2,3, . . .. A primeira ordem verdadeira também é
conhecida como ordem assintótica pL, ou seja, pL = p1. A ordem assintótica do Eh da
equação diferencial discretizada pode ser obtida por meio da chamada estimativa a
priori, isto é, quando h→ 0 teremos uma simplificação na Eq. (3.1), representada por,

Eh(ϕ) = C1h
pL . (3.2)

Portanto, antes de se obter a solução numérica podemos prever o comporta-
mento assintótico do Eh. Desta equação podemos ver ainda que, quanto maior a pL
mais rápido decai o Eh quando h→ 0.

Uma estimativa do Eh também pode ser feita a posteriori das soluções numéri-
cas. Com essa estimativa, podemos verificar se a ordem assintótica do Eh, calculada
a priori, é obtida pelo modelo numérico desenvolvido. Se a solução analítica do pro-
blema é conhecida, podemos utilizar a ordem efetiva (pE) do erro de discretização para
estimar a ordem assintótica. Sabendo-se que Φ representa a solução analítica, ao se
empregar as soluções numéricas ϕ1 e ϕ2, para as malhas grossa (Ωh1) e fina (Ωh2),
respectivamente, definimos a ordem efetiva como (MARCHI, 2001),

pE =

log

(
Φ− ϕ1

Φ− ϕ2

)
log(r)

, (3.3)

onde r = h2/h1, com h1 e h2 sendo os tamanhos representativos das malhas grossa
Ωh1 e fina Ωh2, respectivamente.

Em inúmeras situações, não se dispõe da solução analítica, então podemos
fazer uso da ordem aparente (pU ) para estimar a ordem assintótica. Para isto, utilizamos
três soluções numéricas: ϕ1, ϕ2 e ϕ3 correspondentes às soluções numéricas nas
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malhas super grossa (Ωh1), grossa (Ωh2) e fina (Ωh3), respectivamente. Dessa forma, a
ordem aparente (pU ) é definida por

pU =

log

(
ϕ2 − ϕ1

ϕ3 − ϕ2

)
log(r)

, (3.4)

onde r = h2/h1 = h3/h2, com h1, h2 e h3 sendo os tamanhos representativos das
malhas utilizadas.

As ordens efetiva e aparente tendem à ordem assintótica com o refinamento
da malha, ou seja, pE −→ pL e pU −→ pL quando h −→ 0 (MARCHI, 2001).

3.2 MÉTODO DOS VOLUMES FINITOS E CONDIÇÕES DE CONTORNO

O Método dos Volumes Finitos (MVF) foi introduzido na área de CFD no início
da década de 1970 (MCDONALD, 1971; MACCORMACK; PAULLAY, 1972). Segundo
Kolditz (2002), o MVF tem duas vantagens principais: primeiro, impõe a conservação
de quantidades em nível discreto, isto é, massa, momento e energia permanecem
conservados também em escala local. E com isso, os fluxos entre volumes de controle
adjacentes são balanceados diretamente. Em segundo lugar, os esquemas de volu-
mes finitos aproveitam ao máximo as malhas arbitrárias para aproximar geometrias
complexas.

No MVF, cada ponto (ou nó) da malha computacional é envolto por um volume
de controle (VC), como da Fig. 7. Tal figura mostra a discretização no tempo e no
espaço, utilizando os pontos cardeais S (sul) e N (norte) como identificadores da
posição dos volumes para a direção espacial e j − 1, j e j + 1 como identificadores da
direção temporal. O domínio representado na Fig. 7 pode ser considerado como um
subdomínio do domínio discreto original e sobre o qual as equações governantes são
integradas e representadas por meio de balanços dos fluxos das propriedades através
de suas faces.

A seta (↑) indica o sentido do fluxo de ar de sul para norte e n e s correspondem
às faces norte e sul do volume de controle P , respectivamente, com P = i, N = i+ 1 e
S = i−1 representando o centro do volume e seus vizinhos norte e sul. O espaçamento
espacial é dado por ∆y, os subíndices representados por letras minúscula ou maiúscula,
são respectivamente, a distância entre os pontos centrais dos volumes adjacentes
e a distância entre as faces adjacentes. Como estamos trabalhando com malhas
igualmente espaçadas por direção, os ∆y são todos iguais, sendo definido por

∆y =
L

Ny

, (3.5)
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FIGURA 7 – VOLUME DE CONTROLE GENÉRICO, DE NÓ CENTRAL P , E SEUS VIZINHOS.

(a) Discretização do domínio. (b) Esquema de aeração simplificado no modelo.

FONTE: Adaptado de Khatchatourian et al. (2017).

onde L representa a altura da massa de grãos (m) e Ny é o número de volumes físicos
(volumes reais) na direção y desconsiderando os volumes fictícios (mais adiante há
detalhes sobre este tipo de volume).

A diferença entre o tempo atual (j) de simulação e o tempo anterior (j − 1) é
dada por,

∆t =
tf
Nt

, (3.6)

sendo tf o tempo final de simulação e Nt corresponde ao número de passos no tempo.
Por outro lado, a quantidade de volumes no domínio discretizado (N ) e o número total
de volumes considerando os volumes fictícios (Nf ), são dados respectivamente por

N = Nt ×Ny (3.7)

e
Nf = (Nt + 1)× (Ny + 2). (3.8)

Existem duas maneiras de se obter as equações aproximadas no método dos
volumes finitos. A primeira é a realização de balanços da propriedade nos volumes
elementares; e a segunda é a integração sobre o volume elementar, levando-se em
consideração tanto o espaço quanto o tempo. As equações na forma conservativa
é aquela em que na equação diferencial os fluxos estão dentro do sinal da derivada
e, na primeira integração, aparecem nas fronteiras do volume elementar, equivalente
portanto, ao balanço (MALISKA, 2017).
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Neste trabalho utilizaremos a segunda maneira de obter as equações aproxi-
madas no MVF, ou seja, integrando as equações na forma conservativa sobre o volume
elementar. A título de ilustração da aplicação do MVF, consideremos a equação que
expressa a advecção de uma determinada variável Λ (variável arbitrária), dada

∂ρΛ

∂t
+
∂ρvΛ

∂y
= S, (3.9)

sendo ρ - massa específica do fluido (kg/m3), y - coordenada na direção vertical (m), t
- coordenada temporal (s), v - componente de velocidade do ar na direção y (m/s) e o
S - termo fonte.

Assim, com a definição de um VC representativo do domínio (contínuo), as
propriedades do fluido são integradas sobre esse VC através do teorema da divergência
de Gauss (GREENBERG, 1998).

Desse modo, integrando a Eq. (3.9) e aplicando as respectivas aproximações
na derivada temporal (Euler implícito)(

∂Λ

∂t

)j+1

P

≈ Λj+1
P − ΛjP
∆t

(3.10)

e espacial (UDS) (
∂Λ

∂y

)
P

≈ Λn − Λs
∆y

, (3.11)

obteremos

ρ
(
Λj+1
P − ΛjP

)
∆x∆y∆z + ρ

(
vnΛ

j+1
n − vsΛj+1

s

)
∆x∆z∆t = SP∆x∆y∆z∆t, (3.12)

em que j + 1 representa o passo de tempo atual.

Considerando ρ constante, ∆x∆z = Axz e dividindo toda a Eq. (3.12) por ∆t,
teremos

mP

∆t

(
Λj+1
P − ΛjP

)
+ ṁnΛ

j+1
n − ṁsΛ

j+1
s = SPAxz∆y, (3.13)

onde mp - massa de volume de controle P, ṁn - fluxo de massa na face norte e ṁs -
fluxo de massa na face sul, dadas respectivamente por

mp = ρAxz∆y, (3.14)

ṁn = ρAxzvn (3.15)

e
ṁs = ρAxzvs. (3.16)

Aproximando os fluxos advectivos nas faces, Λj+1
n e Λj+1

s , por UDS (MALISKA,
2017), temos

Λj+1
n =

(
1

2
+ αn

)
Λj+1
P +

(
1

2
− αn

)
Λj+1
N (3.17)
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e
Λj+1
s =

(
1

2
+ αs

)
Λj+1
S +

(
1

2
− αs

)
Λj+1
P , (3.18)

onde αf = (1/2)sign(vf), f = n e s. A função sign(Λ) fornece o sinal matemático da
variável Λ.

Substituindo as Eqs. (3.17) e (3.18) na Eq. (3.13), após algumas manipulações
algébricas e rearranjando os termos, obtemos

aPΛ
j+1
P = aNΛ

j+1
N + aSΛ

j+1
S + bP . (3.19)

Com aP , aS e aN representando os coeficientes após a aplicação das funções
de interpolação e bP representando o termo fonte, dados por,

aN = −ṁn

(
1

2
− αn

)
, (3.20)

aS = ṁs

(
1

2
+ αs

)
, (3.21)

aP = an + as +
mp

∆t
(3.22)

e
bP =

mp

∆t
ΛjPAxz∆y. (3.23)

Todas as técnicas apresentadas são para os volumes internos, pois, estes
possuem equações aproximadas idênticas para todos os volumes. No entanto, para
se obter as equações discretas completas, deve-se avaliar também os volumes nas
fronteiras do domínio.

3.2.1 Condições de contorno

Existem várias técnicas para obter as equações nos volumes nas fronteiras
do domínio. Dentre as técnicas possíveis, neste trabalho serão aplicados os volumes
fictícios (MALISKA, 2017).

A principal vantagem desta técnica é sua facilidade de implementação, pois
as expressões algébricas dos volumes fictícios ficam com as mesmas expressões
algébricas dos volumes físicos. Por outro lado, sua desvantagem é a quantidade de
variáveis adicionais que o problema ganhará, afetando o tempo computacional de
simulação.

A técnica dos volumes fictícios consiste em adicionar volumes de controle
ao redor do domínio físico, de modo que o balanço entre as propriedades nos volu-
mes fictícios e seus vizinhos reais satisfaçam as condições de contorno originais do
problema.
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Por exemplo, para a condição de contorno de Dirichlet, a propriedade Λ no
contorno é conhecida, Λc (GONÇALVES, 2013). A Fig. 8 representa o esquema para o
volume de controle na fronteira sul com os seus respectivos volumes fictícios.

Neste caso, os coeficientes dos volumes fictícios para o volume P , na fronteira
sul, será determinado pela média aritmética,

Λc =
ΛP + ΛN

2
(3.24)

ou ainda,
ΛP = −ΛN + 2Λc. (3.25)

FIGURA 8 – REPRESENTAÇÃO DO VOLUME FICTÍCIO NA FRONTEIRA SUL.

FONTE: O autor (2023).

Logo, comparando Eq. (3.25) com a Eq. (3.19), teremos os coeficientes e
termos fonte no volume fictício em questão, dados por

aP = 1; aN = −1; aS = 0; bP = 2Λc. (3.26)

De forma análoga obtemos a condição de contorno na fronteira norte.

3.3 VISCOSIDADE ARTIFICIAL

A viscosidade artificial, proposta por Von Neumann e Richtmyer (1950), é uma
técnica que controla as oscilações não físicas nas soluções numéricas. Foi utilizada
pela primeira vez para o modelo proposto por Thorpe (2001b) por Rigoni et al. (2022)
para eliminar os problemas de oscilações não físicas excessivas nas aproximações de
segunda ordem (CDS-CN, LS e RWS (Roberts e Weiss Scheme)).
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A seguir vamos fazer um estudo para se obter uma expressão para a viscosi-
dade artificial (TRYGGVASON, 2017). Sejam dadas as equações

∂f

∂t
+
∂Y

∂y
= 0, (3.27)

Y ′ = Y − δ∂f
∂y

(3.28)

e
δ = λ(∆y)2

∣∣∣∂f
∂y

∣∣∣, (3.29)

onde f = f(y,t) e Y = Y (y,t) são funções diferenciáveis adequadas a esta dedução e
λ (fator de viscosidade artificial) uma constante adimensional ajustável (CAMPBELL;
VIGNJEVIC, 2009).

Substituindo Y por Y ′ na Eq. (3.27), temos

∂f

∂t
+
∂Y

∂y
= − ∂

∂y

[
− δ∂f

∂y

]
= VA, (3.30)

onde

VA =
∂

∂y

[
λ(∆y)2

∣∣∣∂f
∂y

∣∣∣∂f
∂y

]
(3.31)

representa a viscosidade artificial.

Desta forma, quando ∆y −→ 0, VA −→ 0 e assim, a Eq. (3.30) −→ Eq. (3.27).

Assim, adicionamos Eq. (3.31) na Eq. (3.9) e obtemos

∂ρΛ

∂t
+
∂ρvΛ

∂y
+

∂

∂y

[
λ(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
= S. (3.32)

Efetuando a discretização da viscosidade artificial pelo método de Lax e Wen-
droff (1960) (TRYGGVASON, 2017; RIGONI et al., 2022), temos

∂

∂y

[
λ(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
≈ 1

∆y

([
λ(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
P+ 1

2

−

[
λ(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
P− 1

2

)
, (3.33)

sendo, [
λ(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
P+ 1

2

≈ λ
∣∣∣ΛnN − ΛnP

∣∣∣(ΛnN − ΛnP
)

(3.34)

e [
λ(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
P− 1

2

≈ λ
∣∣∣ΛnP − ΛnS

∣∣∣(ΛnP − ΛnS
)
. (3.35)

Empregando as aproximações dadas pelas Eqs. (3.34) e (3.35) na Eq. (3.33),
temos

∂

∂y

[
λ(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
≈ λ

(∆y)

[∣∣∣ΛnN − ΛnP

∣∣∣(ΛnN − ΛnP
)
−
∣∣∣ΛnP − ΛnS

∣∣∣(ΛnP − ΛnS
)]
, (3.36)
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que é o termo discretizado da viscosidade artificial, que será utilizado no decaimento
das oscilações.

3.4 MÉTODO PARA SOLUÇÃO DOS SISTEMAS LINEARES

Após o processo de discretização (espacial e temporal), a avaliação das propri-
edades (ou variáveis dependentes) das equações em cada volume interno da malha
computacional se dá em função de seus volumes vizinhos. Esse processo dá origem a
um sistema de equações, que pode ser linear ou não, de acordo com as respectivas
equações. Todavia, no caso de equações não lineares, uma sequência de sistemas
lineares quase sempre podem ser obtidos através do emprego de técnicas de lineariza-
ção (OLIVEIRA, 2020). Em nosso estudo, são gerados sistemas lineares. Observamos
que a Eq. (3.19) contém apenas os coeficientes das variáveis vizinhas ao volume
atual P . Desse modo, a matriz tem a maioria dos elementos nulos e os elementos não
nulos concentram-se em torno da diagonal principal, que é chamada de matriz banda
(CUNHA, 2000).

Desse modo, a Eq. (3.19) pode ser reescrita como

Aϕ = b, (3.37)

onde A representa a matriz dos coeficientes, que nessa caso é uma matriz banda
tridiagonal, com as três diagonais relacionadas aos coeficientes aP , aS e aN (Fig. 9); b
é o termo independente do sistema, composto pelos elementos de bp e ϕ é a incógnita.

FIGURA 9 – ESTRUTURA DE UMA MATRIZ TRIDIAGONAL.

FONTE: O autor (2023).

Assim, faz-se necessário um método de solução eficiente para matrizes do
tipo banda. Utilizaremos o método TDMA (TriDiagonal Matrix Algorithm), proposto por
(THOMAS, 1949), para resolver de forma direta os sistemas de equações algébricas.
Tal método é baseado na decomposição LU da matriz tridiagonal.
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3.5 ANISOTROPIA E RAZÃO DE ASPECTO

Anisotropia é uma característica frequente nos fenômenos naturais e repre-
senta a não homogeneidade direcional de um determinado evento, ou seja, a variabili-
dade espacial dos elementos ocorre mais intensamente em uma direção preferencial
(OLIVEIRA et al., 2015).

No capítulo (1) desta tese, comentamos que a anisotropia pode ser física ou
geométrica e que em nosso estudo vamos abordar a geométrica (ou anisotropia de
malha). Para tanto, temos que definir o fator de anisotropia τxy como a relação entre os
comprimentos adotados nas diversas direções. Devemos frisar que, no caso específico
de anisotropia geométrica, tal fator também é chamado de razão de aspecto.

Na Fig. 10 podemos ver um tipo de anisotropia geométrica. Ela está caracteri-
zada pelo tamanho da malha (∆x, ∆y ), comprimento do domínio de cálculo (Cx, Cy) e
número de volumes (Nx, Ny) nas direções x e y, respectivamente.

FIGURA 10 – ANISOTROPIA GEOMÉTRICA.

FONTE: O autor (2023).

Dessa maneira, temos as seguintes características ∆x ̸= ∆y, Nx ̸= Ny e
Cx ̸= Cy onde Cx = xf − x0, com Cx representando o comprimento total na direção x,
dado pela diferença entre o ponto final (xf) e inicial (x0) na direção x, e Cy = yf − y0
sendo Cy o comprimento total na direção y, dado pela diferença entre o ponto final (yf )
e inicial (y0) na direção y. Matematicamente, definimos fator de anisotropia da malha
(ou razão de aspecto) por (OLIVEIRA, 2010),

τxy =
∆x

∆y
. (3.38)

Quando τxy = 1, a malha é chamada isotrópica, caso contrario (τxy ≠ 1),
anisotrópica (BRIGGS et al., 2000).

Neste trabalho generalizamos os conceitos apresentados por Oliveira (2010),
que apresentou anisotropia geométrica puramente espacial, adaptando-os para o nosso
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estudo em relação às variáveis temporal e espacial. Dessa forma por analogia e com
abuso de liguagem e notação vamos definir a anisotropia temporal espacial, dada por

τty =
∆t

∆y
. (3.39)

Vamos efetuar uma análise diferente da convencional utilizando uma relação
entre o número de volumes na direção temporal (t) e espacial (y), visto que o tamanho
dos domínios são diferentes. Neste caso, vamos considerar o tempo final (tf ) de
3600 s e o comprimento espacial em y de 1 m. Dessa forma, representando a razão
espaço-tempo (τ) pelo número de volumes na direção temporal (Nt) sobre o número
de volumes na direção espacial (Ny), temos

τ =
Nt

Ny

. (3.40)

Por exemplo, quando τ = 2, significa que o número de volumes na direção
temporal (Nt) é o dobro do número de volumes na direção espacial (Ny), ou ainda,
quando τ = 4, Nt = 4Ny, e assim de forma análoga para τ = 8, 16, 32 e 64, valores que
serão analisados na tese.
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4 MÚLTIPLA EXTRAPOLAÇÃO DE RICHARDSON E ESTIMADORES

Neste capítulo abordaremos a MER e o tipo da variável que trataremos neste
trabalho. Na sequência veremos os estimadores ∆, Richardson, Richardson corrigido,
Ψ e Ψ∗, posteriormente a efetividade dos estimadores.

4.1 MÚLTIPLA EXTRAPOLAÇÃO DE RICHARDSON

Extrapolação é o processo de construção de novos pontos que se encontram
fora dos limites dos pontos conhecidos. De acordo com Brezinski e Zaglia (2009), um
método de extrapolação pode ser entendido como qualquer transformação aplicada a
uma sequência de escalares ou vetores.

Segundo Sidi (2003), um bom método de extrapolação geralmente leva em con-
sideração o comportamento assintótico de uma sequência convergente. Dentre esses
métodos, a extrapolação de Richardson (ER) é um dos mais conhecidos (MARTINS,
2013) e é utilizada para gerar resultados de alta precisão usando fórmulas de ordem
inferior (RICHARDSON; GAUNT, 1927).

Segundo Burden e Faires (2016), a metodologia pode ser empregada sempre
que se saiba que uma técnica de aproximação tenha um termo indicativo de erro de
forma previsível, isto é, uma forma que dependa de um parâmetro real.

A ER é representada por

ϕ∞ = ϕ(h) +
ϕ(h)− ϕ(rh)
rpL − 1

, (4.1)

onde ϕ∞ é a solução analítica estimada, r é a razão de refino e pL é a ordem verdadeira.

De acodo com Martins (2013), além da obtenção de ϕ∞, a ER pode ser abor-
dada na perspectiva de estimador do Eh envolvido no cálculo de ϕ(h).

Dessa forma, podemos obter a estimativa de Eh inerente a ϕ(h), por meio de

Uh = ϕ∞ − ϕ(h) =
ϕ(h)− ϕ(rh)
rpL − 1

. (4.2)

Quando consideramos pL, p2, p3, . . . e r = hg/hg+1, valores gerais, a ER é
conhecida como ER generalizada, onde as soluções ϕ(h) são obtidas em diferen-
tes malhas e os subíndices g e g + 1 representam a malha grossa e a malha fina,
respectivamente.

Dessa forma a expressão para a ER generalizada é dada por

ϕ∞ = ϕg+1 +
ϕg+1 − ϕg
rpi − 1

. (4.3)
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Aplicando recursivamente a ER, é possível potencializar a sua eficácia. Como
já comentado, esse processo é denominado Múltipla Extrapolação de Richardson
(MER).

Tanto a ER como a MER podem ser entendidas como um pós-processamento
sendo aplicável a resultados já existentes. Basta ter à disposição soluções numéricas
em malhas distintas, estabelecidas por um processo de refinamento. Com MER, mesmo
considerando-se a aplicação de esquemas numéricos de baixa ordem, é possível obter
soluções numéricas de alta ordem (MARTINS, 2013).

Assim, a partir da Eq. (4.1), temos a MER

ϕ0(hg) = ϕ(hg) (4.4)

e
ϕ1(hg+1) = ϕ0(hg+1) +

ϕ0(hg+1)− ϕ0(hg)

rpi − 1
, (4.5)

com g = 1,2,3, . . . .

Embora a expressão apresentada na Eq. (4.5) seja apropriada para o estudo
das propriedades de MER, ao se considerar o seu emprego em aplicações computacio-
nais, a notação adotada por Marchi et al. (2008) torna-se mais adequada. Assim, a Eq.
(4.5) passa a ser representada por

ϕg,m = ϕg,m−1 +
ϕg,m−1 − ϕg−1,m−1

rpi−1 − 1
, (4.6)

sendo válida para g = 2,...,G e m = 1,...,g − 1, onde g representa o nível da malha
Ωhg e m o número de aplicações da ER. A solução numérica sem o emprego de ER é
representado pelo termo ϕg,0.

Teoricamente, quanto maior o valor de m mais próximo ϕg,m estará de Φ e
maior é o nível de acurácia. A Eq. (4.6), pode ser repetida infinitamente, mas para
aplicações práticas considera-se um valor limite para g = G, onde G é um número
inteiro positivo que corresponde ao número de malhas adotadas. A Tab. 1 representa o
esquema para o emprego da MER.

De acordo com Marchi et al. (2008), o comportamento teórico de Eh pode ser
verificado a posteriori quando se emprega a MER. Para isso, consideramos o valor
de pE, quando a solução analítica (Φ) é conhecida, e pU quando não é conhecida. As
expressões de pE e pU podem ser generalizadas para MER, e serão representadas por

(pE)(g,m) =

log

[
Eh(g−1,m)

Eh(g,m)

]
log(r)

=

log

[
Φ− ϕ(g−1,m)

Φ− ϕ(g,m)

]
log(r)

(4.7)

e

(pU)(g,m) =

log

[
ϕ(g−1,m) − ϕ(g−2,m)

ϕ(g,m) − ϕ(g−1,m)

]
log(r)

, (4.8)
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com g = 2, . . . , G e m = 1, . . . ,g − 1 para a Eq. (4.7) e com g = 3, . . . , G e m =

1, . . . ,Int((g − 3)/2) para a Eq. (4.8), onde Int(σ) é a representação da parte inteira de
um número real σ.

TABELA 1 – REPRESENTAÇÃO ESQUEMÁTICA DO EMPREGO DE MER.

m = 0 m = 1 m = 2 · · · m = G− 2 m = G− 1

ϕ1,0 = ϕ1

↘

ϕ2,0 = ϕ2 →
ϕ2,1

↘

ϕ3,0 = ϕ3 ϕ3,1 →
ϕ3,2

...
...

... . . .

ϕ
G−1,0

= ϕ
G−1

ϕ
G−1,1

ϕ
G−1,2

· · ·
ϕ

G−1,G−2

↘

ϕ
G,0

= ϕ
G

ϕ
G,1

ϕ
G,2

· · · ϕ
G,G−2

→
ϕ

G,G−1

FONTE: O autor (2023).

De acordo com Martins (2013), o emprego de MER requer a obtenção de
soluções numéricas para determinada variável de interesse, em uma coleção de
malhas distintas. Neste sentido, apresentamos na Fig. 11, o tipo de variável que será
tratada neste trabalho com sua localização (uma classificação completa com outros
tipos de variáveis e as adaptações da MER podem ser vistas em Martins (2013) e
Marchi et al. (2016)).

FIGURA 11 – TIPO DE VARIÁVEL.

FONTE: Adaptado de Martins (2013)
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Note que este é um tipo de variável local, cuja localização coordenada (a) é
mantida em todas as malhas (Ωh) consideradas e coincide com um ponto nodal.

Nesse caso, segundo Martins (2013), o emprego da MER ocorre diretamente.
Tem-se assim o Algoritmo I:

ALGORITMO 1 APLICAÇÃO DA MER
Entrada: Soluções numéricas para a variável de interesse ϕ em G malhas distintas:
ϕ1, ϕ2, ϕ3, · · · , ϕG, obtidas pelo Algoritmo 2.
Fazer: ϕ1,0 = ϕ1, ϕ2,0 = ϕ2, ϕ3,0 = ϕ3, · · · , ϕG,0 = ϕG
for m = 1 : G− 1 do

for g = m+ 1 : G−G do

ϕg,m = ϕg,m−1 +
ϕg,m−1 − ϕg−1,m−1

rpm−1 − 1
end for

end for

4.2 ESTIMADORES

Neste seção apresentaremos a obtenção de estimativa para o erro de discretiza-
ção, considerando o emprego de MER. Dessa forma, abordaremos cinco estimadores,
sendo eles ∆, Richardson, Richardson corrigido, Ψ e Ψ∗.

4.2.1 Estimador ∆

O estimador U∆, utilizado por Demirdzic et al. (1992), é dado pela expressão

U∆ = |ϕg − ϕg−1| (4.9)

e efetua a estimativa de Eh correspondente à ϕg, considerando duas soluções numé-
ricas ϕg e ϕg−1, respectivamente, das malhas fina Ωhg e grossa Ωhg−1. Tal estimador
não leva em consideração a razão de refino nem a ordem assintótica do método de
discretização.

Considerando as soluções numéricas com a MER em um conjunto de malhas
(G) distintas, Marchi et al. (2009) propuseram a estimativa na malha mais fina adotada
(ΩhG) que fornece uma estimativa para Em associado à ϕG,m. Tal estimativa é dada por
(veja Tab. 2)

U∆(ϕG,m) = |ϕG,m−1 − ϕG−1,m−1| , (4.10)

com m = G− 1 sendo o último nível de extrapolação considerado.
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TABELA 2 – REPRESENTAÇÃO ESQUEMÁTICA DO EMPREGO DE U∆(ϕG,m).

Malha m− 1 m
ϕG−1,m−1ΩhG−1

↘

ΩhG ϕG,m−1 →
U∆(ϕG,m) = |ϕG,m−1 − ϕG−1,m−1|

FONTE: O autor (2023).

4.2.2 Estimadores de Richardson e Richardson Corrigido

O estimador de Richardson é denotado por URi, sendo dado por

URi (ϕg,m) =
ϕg − ϕg−1

rp1 − 1
. (4.11)

De acordo com Marchi (2001), além da magnitude da estimativa de Eh, URi
fornece o seu sinal podendo ser empregado em diversos níveis de malha, isto é,
Ωhg com g = 2, . . . , G. Assim, considerando soluções numéricas empregando a MER,
Marchi et al. (2008) propuseram

Upm (ϕg,m) =
ϕg,m − ϕg−1,m

rpm − 1
, (4.12)

com m = [0,G− 2] e g = [m+ 2,G].

A simbologia Upm, adotada por Martins (2013), indica a aplicação do estimador
de Richardson, com base em pV = {pm,m = 1,2, . . .}, assim denominando o estimador
pm. A Tab. 3 representa o esquema para estimar Em usando o estimador pm, para um
nível m de extrapolação qualquer.

TABELA 3 – REPRESENTAÇÃO ESQUEMÁTICA DO EMPREGO DE Upm(ϕg,m).

Malha m
ϕg−1,mΩhg−1

↘

Ωhg ϕg,m →
Upm (ϕg,m) =

ϕg,m − ϕg−1,m

rpm − 1

FONTE: O autor (2023).

Finalmente, aplicando um fator de correção (rpm), teremos o estimar de Ri-
chardson corrigido (MARTINS, 2013), representado por

Upmc (ϕg,m) = rpmUpm (ϕg+1,m) , (4.13)
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com m = g − 1.

4.2.3 Estimadores Ψ e Ψ∗

Fazendo uso da série de Richardson, uma outra abordagem para ER é consi-
derada por Marchi e Silva (2002), denotada por R∞ e representada por

R∞ =
1

Ψ
+

1

Ψ2
+

1

Ψ3
+

1

Ψ4
+ . . . , (4.14)

onde Ψ ∈ R, é a razão de convergência da série.

Para |Ψ| > 1 temos uma série geométrica, dada por

R∞ =
1

Ψ− 1
. (4.15)

Ou ainda, admitindo r e P ∈ R∗
+, define-se |Ψ| = rP , em que

R∞ =


1

rP − 1
, se Ψ > 1

− 1

rP + 1
, se Ψ < 1

.

Dessa forma, reescrevendo a Eq. (4.1) e considerando P = pL, teremos

ϕ∞ = ϕg +R∞ (ϕg − ϕg−1) , (4.16)

lembrando que ϕg−1 e ϕg são as soluções obtidas, respectivamente, para as malhas
grossa (Ωhg−1) e fina (Ωhg ).

De forma análoga à Eq. (4.2) e admitindo a existência de um estimador baseado
no valor de Ψ, podemos escrever a Eq. (4.16) da seguinte maneira,

UΨ (ϕg) =
ϕg − ϕg−1

Ψ− 1
. (4.17)

Assim, considerando a razão de convergência de ϕM para estimar Em, teremos

UΨ (ϕg,m) =
ϕg,m − ϕg−1,m−1

Ψ− 1
, (4.18)

onde Ψ = (ΨM)g, dada por

(ΨM)g =
ϕg−1,m−1 − ϕg−2,m−2

ϕg,m − ϕg−1,m−1

, (4.19)

com g = 3, . . . ,G.

A Tab. 4, é a representação esquemática do emprego de UΨ para Em, quando
m = g − 1 malhas.
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TABELA 4 – REPRESENTAÇÃO ESQUEMÁTICA DO EMPREGO DE UΨ.

Malha m− 2 m− 1 m
ϕg−2,m−2Ωhg−2

↘
Ωhg−1 ϕg−1,m−2 → ϕg−1,m−1

↘ ↘
Ωhg ϕg,m−2 → ϕg,m−1 → ϕg,m →

UΨ (ϕg,m) =
ϕg,m − ϕg−1,m−1

Ψ− 1

FONTE: O autor (2023).

Agora, considerando as Eqs. (4.18) e (4.19), ψ = (ψ
M
)g corresponde à ordem

aparente dada à estimativa de Em na malha Ω
hg . Devido a seu cálculo envolver três

malhas distintas, é natural admitir que o seu valor corresponda a uma inclinação média
para o gráfico da estimativa de Em (MARTINS, 2013).

A Eq. (4.20) calcula a correção para o estimador ψ em que a razão de conver-
gência de ϕ

M
é atribuída à malha intermediária do trio Ω

hg−1 , Ωhg e Ω
hg+1 , ou seja

ψ∗ =


ϕg,m − ϕg−1,m−1

ϕg+1,m+1 − ϕg,m

, g = 2,3, . . . , G− 1

(ϕg−1,m−1 − ϕg−2,m−2)
2

(ϕg,m − ϕg−1,m−1)(ϕg−2,m−2 − ϕg−3,m−3)
, g = G

, (4.20)

em que ψ∗ representa a correção para o estimador ψ, para g = 2,3, . . . , G − 1, que é
obtido para valores de ϕ em Ω

hg−1 , Ωhg e Ω
hg+1 e o resultado atribuído a Ω

hg . Para g = G

a malha Ω
hg+1 não está disponível para o calculo de ψ∗, com isso, estabeleceremos

uma relação entre os valores obtidos para ψ e ψ∗, considerando a obtenção de ψ∗

através da razão entre o quadrado de ψ para g = G e o seu valor para g = G− 1, nas
Eqs. (4.18) e (4.19) (MARTINS, 2013).

Dessa forma, o cálculo da estimativa do erro numérico associado a ϕ
M

(Eq.
(4.20)), após a determinação de ψ∗ por analogia a Uψ, Eqs. (4.18) e (4.19), é dada por

Uψ∗(ϕg,m) =
ϕg,m − ϕg−1,m−1

ψ∗ − 1
. (4.21)

4.2.4 Efetividade de uma estimativa de erro

De acordo com Zhu e Zienkiewicz (1990), a efetividade Γ(UE) pode ser avaliada
através da razão entre a estimativa (UE) e o erro numérico (E)

Γ(UE) =
UE
E
, (4.22)
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em que UE depende da escolha do estimador.

Segundo Marchi (2001), a estimativa de erro ideal é aquela em que Γ(UE) = 1,
isto é, quando UE = E. Ademais, UE é considerada confiável quando Γ(UE) ≥ 1 ⇒
UE ≥ E; e acurada quando Γ(UE) ≈ 1⇒ UE ≈ E.
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5 MODELO MATEMÁTICO

O modelo matemático é um conjunto de equações, juntamente com as condi-
ções de contorno que descrevem adequadamente um fenômeno físico que pode ser
analisado (TOZINNI, 2010), a demostração do modelo esta disponível no Anexo (A.1).
Desta forma, apresentaremos neste capítulo o modelo de aeração da massa de grãos
com suas simplificações e condições iniciais e de contorno.

5.1 MODELO DE THORPE

O modelo de aeração que descreve a temperatura e o teor de água da massa
de grãos que será utilizado neste trabalho, foi apresentado de forma detalhada por
Thorpe (2001b). Simplificações deste modelo foram sugeridas por Lopes et al. (2006) e
utilizadas por outros autores, tais como Radtke (2009), Kwiatkowski Jr. (2011), Rigoni
et al. (2022), entre outros.

O modelo proposto representa as equações da temperatura (T ) e do teor de
água da massa de grãos (U ) e é dado por

∂T

∂t

{
ρσ[cσ + cWU ] + ερa

[
ca +R

(
cW +

∂hφ
∂T

)]}
=

ρσhs
∂U

∂t
− uaρa

[
ca +R

(
cW +

∂hφ
∂T

)]
∂T

∂y
+ ρσ

dm

dt
(Qr − 0,6hφ) (5.1)

e
ρσ
∂U

∂t
= −uaρa

∂R

∂y
+
dm

dt
(0,6 + U), (5.2)

onde: ca - calor específico do ar (Jkg−1 ◦C−1), cW - calor específico da água (Jkg−1

◦C−1), cσ - calor específico dos grãos (Jkg−1 ◦C−1), dm
dt

- derivada da perda de matéria
seca em relação ao tempo (kgs−1), hφ - entalpia específica de vaporização da água
(Jkg−1), hs- entalpia diferencial de sorção (Jkg−1), Qr - calor de oxidação dos grãos
(Js−1m−3), R - razão de mistura de vapor de água por ar seco (g (vapor da água) g−1

(ar seco)), T - temperatura dos grãos (◦C), t - tempo (s), U - teor de água da massa
de grãos (kg (água) kg−1 (grão seco)) (%), ua - velocidade do ar de aeração (ms−1), y -
eixo na direção vertical (orientado de baixo para cima) (m), ε - porosidade da massa de
grãos (decimal), ρa - massa específica do ar intergranular (kgm−3), ρσ- densidade dos
grãos (kgm−3).

Consideramos a massa de grãos na direção vertical, ou seja: y ∈ [0, L], onde L
representa a altura da massa de grãos, conforme a Fig. 12. Portanto, consideramos
uma simplificação unidimensional do modelo.
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FIGURA 12 – DOMÍNIO DE CÁLCULO.

FONTE: Adaptado de Panigrahi et al. (2020b).

De acordo com Brooker et al. (1992), o calor específico do ar (ca) e o calor
específico da água (cW ), são respectivamente, iguais a 1000 JKg−1 ◦ C−1 e 4186
JKg−1 ◦ C−1. Segundo Navarro e Noyes (2001), o calor específico dos grãos (cσ)

influencia os processos de transferência de calor e de massa durante a aeração,
utilizaremos os dados apresentados por Jayas e Cenkowski (2006) (cσ = 1637 JKg−1 ◦

C−1). Segundo Fleurat-Lessard (2002), o calor de oxidação dos grãos (Qr) é igual a
15778 (Js−1m−3).

O modelo para calcular a derivada da perda de matéria seca foi apresentado
por Thompson (1972), dado por:

dm

dt
= 8,83× 10−4

{
exp

[
1,667× 10−6 t

MUMT

]
− 1

}
+ 2,833× 10−9 t

MUMT

. (5.3)

em que, t representa o tempo (s), U é o teor de água na base úmida (b.u.) e T é a
temperatura (◦C).

Os termos MU e MT são parâmetros utilizados para ajustar o tempo de aeração
de acordo com o teor de água e a temperatura dos grãos. O valor de MU é obtido por

MU = 0,103

(
exp

[
455

(100U)1,53

]
− 0,845U + 1,558

)
(5.4)

e MT é obtido de acordo com a faixa de temperatura e o teor de água (b.u.):

MT =MS, se T ≤ 15 ou U ≤ 19, (5.5a)

MT =MS +
100U
U+1
− 19

100
exp

[
0,0183T − 0,2847

]
, se T > 15 e 19 < U < 28, (5.5b)

MT =MS + 0,09 exp
[
0,0183T − 0,2847

]
, se T > 15 e U ≥ 28, (5.5c)
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sendo
MS = 32,2 exp [−0,1044T − 1,856] . (5.6)

A entalpia diferencial de sorção é a energia total requerida para remover uma
unidade de massa de água da massa de grãos. Este valor é igual a diferença entre
o calor latente de vaporização e a entalpia diferencial de umedecimento (NAVARRO;
NOYES, 2001).

De acordo com Lopes et al. (2006), a entalpia diferencial de sorção (hs) e
a entalpia específica de vaporização da água (hφ), são propriedades importantes,
consideradas na simulação do processo de aeração, pois interferem nas transferências
de calor de massa dentro do ambiente de armazenamento. Respectivamente, são
dadas por

hs = hφ

1 + Ae−BU(T + 273,15)

(T + C)2 − 5 +
6800

T + 273,15

 (5.7)

e
hφ = 2501,33− 2,363T, (5.8)

onde A, B e C, são constantes que variam de acordo com o tipo de grão, conforme
(PFOST et al., 1976), para o caso do grão de soja, são dados respectivamente por
138,45, 14,967 e 24,576.

Segundo Thorpe (2001a), a razão de mistura (R) é a razão entre a massa de
vapor de água e a massa de ar seco em um dado volume de mistura. Esse parâmetro
é utilizado nas modelagens do comportamento da massa de grãos durante o processo
de aeração, possibilitando a estimativa do teor de água do produto armazenado e
auxiliando na previsão dos efeitos da aeração no ambiente de armazenamento e é
dada por

R = 0,622
rups

Patm − rups
, (5.9)

em que ru é o teor de água de equilíbrio (%), Patm corresponde à pressão atmosférica
(kPa) e ps a pressão de vapor de saturação (kPa), calculada conforme Hunter (1987),

ps =
6× 1025

(T + 273,15)5
exp

[
− 6800

T + 273,15

]
, (5.10)

e o teor de água de equilíbrio (ru) pode ser obtida conforme Chung e Pfost (1967),

ru = 100 exp

[
− A

T + C
exp (−BU)

]
. (5.11)

A velocidade do ar de aeração (ua) consiste na velocidade na qual o ar flui
através da massa de grãos armazenada. Como a solução fabricada proposta por
Rigoni (2022) e Rigoni et al. (2022) é baseada a nível de comparação com os dados
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experimentais de Oliveira et al. (2007). Portanto, consideramos a velocidade do ar de
aeração constante igual a 0,23 m/s. a mesma utilizada por Oliveira et al. (2007), Radtke
(2009), Kwiatkowski Jr. (2011), Rigoni (2022) e Rigoni et al. (2022).

A massa porosa é constituída pelos grãos e pelo espaço vazio entre os grãos.
Assim a porosidade é a relação entre o volume ocupado pelo ar existente na massa de
grãos e o volume total ocupado por esta massa, tendo grande influência sobre pressão
de fluxo de ar que atravessa a massa de grãos (KWIATKOWSKI JR., 2011).

Considerando a porosidade (ε) da massa de grãos constante, pois a porosidade
da maioria dos grãos está entre 35 e 55% (BROOKER et al., 1992), usando 0,361
conforme Brooker et al. (1974).

Visando corrigir os possíveis efeitos da altitude a massa especifica do ar (ρa)
foi apresentada por Alé (2001) como sendo

ρa =
258,8Patm

101,325(T + 273,15)
. (5.12)

A densidade dos grãos (ρσ) determina o volume necessário para armazenar
uma determinada quantidade de um produto e influencia diretamente a taxa de fluxo
de ar necessária para aeração e o calor e a massa do processo de transferência no
ambiente de armazenamento (LOPES et al., 2006). Neste trabalho vamos considerar
ρσ = 737 (kgm−3) (THORPE, 2001a).

Vale ressaltar que todos os parâmetros citados ao longo do texto é para o grão
de soja. Para outros grãos devemos observar os valores apresentados na Tab. 5.

TABELA 5 – CONSTANTES DE ACORDO COM O TIPO DO GRÃO.

Tipo de Grão A B C ε(%) ρσ ( kg
m3 ) cσ(Jkg−1 ◦C−1)

Arroz 594,65 21,733 35,703 0,584 576 1197,0
Aveia - - - 0,555 480 1277,0

Cevada 761,74 19,889 91,323 - - -
Milho 312,31 16,958 30,205 0,435 640 1534,8
Soja 138,45 14,967 24,576 0,361 737 1637,0

Sorgo 1099,68 19,644 102,849 - - -
Trigo 725,59 23,607 35,662 0,453 762 1184,0

FONTE: Pfost et al. (1976), Brooker et al. (1992), Thorpe (2001b), Jayas e
Cenkowski (2006).
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5.2 CONDIÇÕES INICIAIS E DE CONTORNO

Antes do armazenamento no silo, os grãos passam pelo processo de secagem. A
secagem tem o objetivo de retirar água do produto até um valor seguro para o armazenamento,
após a secagem a temperatura dos grãos é sempre alta e desfavorável ao armazenamento
seguro, por isso, a necessidade do processo de aeração. Assim, a condição inicial em toda a
massa de grãos (todo o domínio) é igual a essa temperatura inicial (TI ). Isto é,

T (y, 0) = TI . (5.13)

O teor de água inicial (UI ) é obtida segundo Thorpe (2001b), onde a Eq. (5.14)
converte um teor de água em bu. para bs (base seca). O teor de água inicial dos grãos é aquele
obtido durante a secagem, devendo ser estipulado com base em critérios relacionados ao
armazenamento seguro.

U(y, 0) =
Up

100− Up
= UI , (5.14)

onde Up é o teor de água inicial da massa de grãos, em porcentagem (% bu).

As condições de contorno correspondem à superfície da massa de grãos e o piso
do silo (NAVARRO; NOYES, 2001). Dessa forma, supondo que o ventilador e os dutos para
aeração estejam localizados na parte inferior do silo (piso do silo), a condição de contorno do
tipo de Dirichlet para a temperatura em y = 0 é dada por

T (0, t) = TB, (5.15)

onde TB é a temperatura do ar de aeração (◦C).

E para o teor de água, é dada por

U(0, t) = − 1

B
ln

[
ln
(
− ra
100

)(
−TB + C

A

)]
= UB, (5.16)

que é uma adaptação de Chung-Pfost (Eq. (5.11)), sendo UB o teor de água para y = 0 e ra é a
umidade relativa do ar de aeração (%), calculada por

ra =
urK1e

K2−K4

K3
, (5.17)

com ur representando a umidade relativa do ar ambiente (%) e Ki com i = 1,2,3 e 4, represen-
tando equações auxiliares para calcular ra, dadas repectivamente por

K1 =
6× 1025

(Tamb + 273,15)5
, (5.18)

K2 = −
6800

Tamb + 273,15
, (5.19)

K3 =
6× 1025

(TB + 273,15)5
(5.20)

e
K4 = −

6800

TB + 273,15
, (5.21)
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em que Tamb é a temperatura ambiente (◦C).

Na superfície da massa de grãos (y = L), temos a condição de Neumann, tanto para
temperatura quanto para o teor de água,(

∂T

∂y

)
y=L

=

(
∂U

∂y

)
y=L

= 0. (5.22)

5.3 SOLUÇÃO FABRICADA

A solução fabricada (Eq. (5.23)) que por conveniência chamaremos nesta tese de
solução analítica, proposta por Rigoni et al. (2022) é baseada, comparada e validada com os
dados experimentais de um mini-silo realizada por Oliveira et al. (2007).

Segundo Rigoni et al. (2022), para determinar a solução fabricada da Eq. (5.1) proposta
neste trabalho foram efetuadas modificações por meio de uma solução apresentado por Van
Genuchten et al. (1982), dada por

T̂ (y, t) = TI +
1

2

(
TB −TI

)[
erfc

(y − 2,2× 10−4t√
8× 10−6t

)
+ exp

(2,2× 10−4y

8× 10−6

)
erfc

(y + 2,2× 10−4t√
8× 10−6t

)]
,

(5.23)
onde erfc representa a função erro complementar (VAN GENUCHTEN et al., 1982), definida por

erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x
e−t

2
dt. (5.24)

De acordo com Rigoni et al. (2022), para a função definida anteriormente ser conside-
rada solução analítica da Eq. (5.1), um termo fonte (SP ) é adicionado à equação governante,
como segue,

∂T

∂t

{
ρσ[cg + cWU ] + ερa[ca +R(cW +

∂hφ
∂T

)]

}
=

ρσhs
∂U

∂t
− uaρa

[
ca +R(cW +

∂hφ
∂T

)

]
∂T

∂y
+ ρσ

dm

dt
(Qr − 0,6hφ) + SP , (5.25)

com o termo fonte (SP ), dado por

SP =
∂T̂

∂t

{
ρσ[cg + cWU ] + ερa[ca +R(cW +

∂hφ
∂T

)]

}
−ρσhs

∂U

∂t
+ uaρa

[
ca +R(cW +

∂hφ
∂T

)

]
∂T̂

∂y
− ρσ

dm

dt
(Qr − 0,6hφ). (5.26)

Sendo as derivadas ∂T̂
∂t e ∂T̂

∂y , dadas respectivamente por

∂T̂

∂t
=

1

2
(TB − TI)

[
−

2 exp
[−125000(y−2,2×104t)

2

t

](
− 176,777(y−2,2×10−4t)

t
3
2

− 0,0777817√
t

)
√
π

−
2 exp

[
27,5y − 125000(2,2×104t+y)

2

t

](0,0777817√
t
− 176,777(2,2×10−4t+y)

t
3
2

)
√
π

]
. (5.27)
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e

∂T̂

∂y
=

1

2
(TB − TI)

[
27,5 exp

[
27,5y

]
erfc

(353,553(2,2× 10−4t+ y)√
t

)

−
398,942 exp

[
−125000(y−2,2×10−4t)2

t

]
√
t

−
398,942 exp

[
27,5y − 125000(2,2×10−4t+y)2

t

]
√
t

]
. (5.28)

Assim, obtemos o termo fonte, substituindo as Eqs. (5.27) e (5.28) na Eq. (5.26),

SP =

{
1

2
(TB − TI)

[
−

2 exp
[−125000(y−2,2×104t)

2

t

](
− 176,777(y−2,2×10−4t)

t
3
2

− 0,0777817√
t

)
√
π

−
2 exp

[
27,5y − 125000(2,2×104t+y)

2

t

](0,0777817√
t
− 176,777(2,2×10−4t+y)

t
3
2

)
√
π

]}{
ρσ[cg + cWU ]

+ ερa[ca +R(cW +
∂hφ
∂T

)]

}
− ρσhs

∂U

∂t
+ uaρa

[
ca +R(cW +

∂hφ
∂T

)

]
{
1

2
(TB − TI)

[
27,5 exp

[
27,5y

]
erfc

(353,553(2,2× 10−4t+ y)√
t

)

−
398,942 exp

[
−125000(y−2,2×10−4t)2

t

]
√
t

−
398,942 exp

[
27,5y − 125000(2,2×10−4t+y)2

t

]
√
t

]}

−ρσ
dm

dt
(Qr − 0,6hφ), (5.29)

ou ainda, de forma simplificada, dada por

SP =
1

2
(TB − TI)

{
A
[
C − D√

π

]
+ B

[
E − 398,942

(
F√
t

)]}
, (5.30)

sendo
A = ρσ[cg + cWU ] + ερa

[
ca +R

(
cW +

∂hφ
∂T

)]
, (5.31)

B = uaρa

[
ca +R

(
cW +

∂hφ
∂T

)]
, (5.32)

C = 2 exp

[
−125000

t
(y − 2,2× 104t)2

](
176,777√

t3
(y − 2,2× 10−4t) +

0,0777817√
t

)
, (5.33)

D = 2 exp

[
27,5y − 125000

t
(y + 2,2× 104t)2

](
0,0777817√

t
− 176,777√

t3
(y + 2,2× 10−4t)

)
,

(5.34)

E = 27,5 exp (27,5y) erfc

(
353,553(y + 2,2× 10−4t)√

t

)
(5.35)
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F = exp

[
−125000

t
(y − 2,2× 104t)2

]
+ exp

[
27,5y − 125000

t
(y + 2,2× 10−4t)2

]
. (5.36)

Dessa forma, efetuando algumas simplificações, a equação que descreve a tempera-
tura (T ) da massa de grão, é dada por

A∂T

∂t
+ B∂T

∂y
= SP . (5.37)
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6 MODELO NUMÉRICO

Notamos que podemos ter mais de uma quantidade para ser armazenada em um
dado volume de controle (VC) da malha. Quando todas as propriedades são armazenadas no
centro de tal volume, dizemos que é um arranjo colocalizado e quando isto não ocorre dizemos
que é um arranjo desencontrado (MALISKA, 2017). Nesta tese trabalharemos com o arranjo
colocalizado, pois, possuem maior facilidade de implementação e dessa forma, apenas um tipo
de VC pode ser utilizado para todas as integrações das equações do modelo matemático.

O MVF utiliza como ponto de partida a forma integral da equação da conservação. O
domínio de solução (Fig. 12) é dividido em um número finito de VCs contíguos e a equação
da conservação é aplicada a cada VC (Fig. 13). No centroide de cada VC localiza-se um nó
computacional, no qual são calculados os valores das variáveis. Os valores das variáveis nas
faces dos VCs são obtidos por interpolação em função dos valores nodais (MALISKA, 2017).

FIGURA 13 – DOMÍNIO DISCRETIZADO.

FONTE: O autor (2023).

Como podemos observar na Fig. 13, NC representa o volume no contorno, e como
já visto, ∆y = L/Ny é o distanciamento entre os centros dos volumes consecutivos e Ny é o
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número destes volumes na direção espacial. Como trata-se de um problema transiente, temos
também ∆t = tf/Nt, com tf sendo o tempo final e Nt o número de passos no tempo. A seguir,
apresentamos as discretizações.

6.1 ESQUEMA UPWIND (UDS)

Para a aproximação espacial de T e R por UDS e a temporal de T utilizando a
formulação θ na Eq. (5.1) e inserindo um termo fonte SθP para adequar-se à solução analítica
proposta em Rigoni (2022) e Rigoni et al. (2022), obteremos:

AθPT
j+1
P = AθPT

j
P − B

θ
P

∆t

∆y

(
T θP − T θS

)
+ SθP∆t, (6.1)

onde:

AθP = ρσ

[
cσ + cWU θ

P

]
+ ερa

[
ca +Rθ

P

(
cW +

∂hφ
∂T

)]
, (6.2)

BθP = uaρa

[
ca +Rθ

P

(
cW +

∂hφ
∂T

)]
(6.3)

e

SθP =
1

2
(TB − TI)

{
AθP

[
C − D√

π

]
+ BθP

[
E − 398,942

(
F√
t

)]}
, (6.4)

com A, B, C, D, E e F , dados respectivamente, pelas Eqs. (6.2), (6.3), (5.33), (5.34), (5.35) e
(5.36).

Aproximando a derivada espacial de R por UDS e a derivada temporal em relação a
variável U na Eq. (5.2), teremos:

U j+1
P = U j

P − α
(
Rθ
P −Rθ

S

)
+

∆tdmdt
ρσ

(
0,6 + U θ

P

)
, (6.5)

onde
α =

uaρa∆t

ρσ∆y
. (6.6)

Nas Eqs. (6.1) a (6.4) e na Eq. (6.5), θ representa as formulações explícita (θ = 0),
implícita (θ = 1) ou Crank-Nicolson (θ = 0,5) (MALISKA, 2017).

Todas as equações apresentadas são para os volumes internos, portanto para se obter
as equações algébricas completas é necessário obter as equações nos volumes nas fronteiras
do domínio. Como já mencionado, neste estudo vamos aplicar a técnica dos volumes fictícios.
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Como sabemos, o balanço entre as propriedades nos volumes fictícios e seus vizinhos
reais devem satisfazer as condições de contorno originais do problema. Portanto, em y = L,
para a temperatura T e teor de água U , respectivamente, temos

T j+1
NC = T jNC−1 (6.7)

e
U j+1
NC = U j

NC−1. (6.8)

A seguir apresentaremos as três formulações temporais: explícita, implícita e Crank-
Nicolson.

6.1.1 Formulação Explícita

Para o caso θ = 0, a Eq. (6.1) pode ser reescrita como

AjPT
j+1
P = AjPT

j
P − B

j
P

∆t

∆y

(
T jP − T jS

)
+ SjP∆t, (6.9)

onde

AjP = ρσ

[
cσ + cWU j

P

]
+ ερa

[
ca +Rj

P

(
cW +

∂hφ
∂T

)]
, (6.10)

BjP = uaρa

[
ca +Rj

P

(
cW +

∂hφ
∂T

)]
(6.11)

e

SjP =
1

2
(TB − TI)

{
AjP

[
C − D√

π

]
+ BjP

[
E − 398,942

(
F√
t

)]}
. (6.12)

Escrevendo a Eq. (6.9) no formato da Eq. (3.19), temos

aN = 0, (6.13)

aS = 0, (6.14)

aP = AjP (6.15)

e
bP = AjPT

j
P − B

j
P

∆t

∆y

(
T jP − T jS

)
+ SjP∆t. (6.16)

No caso da Eq. (6.5), obtemos

U j+1
P =

(
1 +

∆tdmdt
ρσ

)
U j
P − α

(
Rj
P −Rj

S

)
+ 0,6

∆tdmdt
ρσ

. (6.17)
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6.1.2 Formulação Implícita

Para o caso θ = 1, a Eq. (6.1) pode ser reescrita como(
Aj+1
P + Bj+1

P

∆t

∆y

)
T j+1
P = Aj+1

P T jP + Bj+1
P

∆t

∆y
T j+1
S + Sj+1

P ∆t, (6.18)

onde

Aj+1
P = ρσ

[
cσ + cWU j+1

P

]
+ ερa

[
ca +Rj+1

P

(
cW +

∂hφ
∂T

)]
, (6.19)

Bj+1
P = uaρa

[
ca +Rj+1

P

(
cW +

∂hφ
∂T

)]
(6.20)

e

Sj+1
P =

1

2
(TB − TI)

{
Aj+1
P

[
C − D√

π

]
+ Bj+1

P

[
E − 398,942

(
F√
t

)]}
. (6.21)

Com os coeficientes de acordo com o formato da Eq. (3.19), dados por

aN = 0, (6.22)

aS = Bj+1
P

∆t

∆y
, (6.23)

aP = Aj+1
P + Bj+1

P

∆t

∆y
(6.24)

e
bP = Aj+1

P T jP + Sj+1
P ∆t. (6.25)

No caso da Eq. (6.5), obtemos(
1−

∆tdmdt
ρσ

)
U j+1
P = U j

P − α
(
Rj+1
P −Rj+1

S

)
+ 0,6

∆tdmdt
ρσ

. (6.26)

6.1.3 Formulação Crack-Nicolson (CN)

Para o caso θ = 0,5, a Eq. (6.1) pode ser reescrita como(
ACNP +

BCNP
2

∆t

∆y

)
T j+1
P =

(
ACNP −

BCNP
2

∆t

∆y

)
T jP +

BCNP
2

∆t

∆y

(
T j+1
S + T jS

)
+ SCNP ∆t, (6.27)

onde

ACNP = ρσ

[
cσ +

cW
2

(
U j+1
P + U j

P

)]
+ ερa

[
ca +

Rj+1
P +Rj

P

2

(
cW +

∂hφ
∂T

)]
, (6.28)
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BCNP = uaρa

[
ca +

Rj+1
P +Rj

P

2

(
cW +

∂hφ
∂T

)]
(6.29)

e

SCNP =
1

2
(TB − TI)

{
ACNP

[
C − D√

π

]
+ BCNP

[
E − 398,942

(
F√
t

)]}
. (6.30)

Com os coeficientes de acordo com o formato da Eq. (3.19), dados por

aN = 0, (6.31)

aS =
BCNP
2

∆t

∆y
, (6.32)

aP = ACNP +
BCNP
2

∆t

∆y
(6.33)

e

bP =

(
ACNP −

BCNP
2

∆t

∆y

)
T jP +

BCNP
2

∆t

∆y
T jS + SCNP ∆t. (6.34)

No caso da Eq. (6.5), obtemos(
1−

∆tdmdt
2ρσ

)
U j+1
P =

(
1 +

∆tdmdt
2ρσ

)
U j
P − α

(
Rj+1
P −Rj+1

S +Rj
P −Rj

S

2

)
+ 0,6

∆tdmdt
ρσ

. (6.35)

6.2 ESQUEMA DE LEITH (LS)

O esquema de Leith (LEITH, 1965) considera as aproximações temporal e espacial
para T , dadas respectivamente, por(

∂T

∂t

)j+1

P

≈
T j+1
P − T jP

∆t
(6.36)

e (
∂T

∂y

)j+1

P

≈ β

(
T jP − T jS

∆y

)
+ (1− β)

(
T jN − T jS
2∆y

)
, (6.37)

com

β =
BjP
AjP

∆t

∆y
, (6.38)

onde as Eqs. (6.2) e (6.3) representam, respectivamente, A e B que são explícitas, por isso o
uso da notação j no lugar de θ no superíndice.

Portanto, discretizando as Eqs. (5.1) e (5.2) utilizando este esquema e inserindo um
termo fonte SθP para adequar-se à solução analítica proposta em Rigoni et al. (2022), obtemos,
respectivamente

T j+1
P =

(
1

∆y
− β2

)
T jP +

1

2∆y

(
β2 + β

)
T jS +

1

2∆y

(
β2 − β

)
T jN + SjP

∆t

AjP
(6.39)
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e

U j+1
P =

2ρσ +
dm

dt
∆t

2ρσ −
dm

dt
∆t

U j
P + γ

−α2Rj
P +

1

2

(
α2 + α

)
Rj
N +

1

2

(
α2 − α

)
Rj
S +

0,6∆t
dm

dt
ρσ

 ,

(6.40)

sendo SjP dado pela Eq. (6.4), o parâmetro α determinado pela Eq. (6.6), e γ dado por

γ =
2ρσ

2ρσ −
dm

dt
∆t

. (6.41)

Reescrevendo a Eq. (6.39) no formato da Eq. (3.19), temos

aN = 0, (6.42)

aS = 0, (6.43)

aP = 1 (6.44)

e
bP =

(
1

∆y
− β2

)
T jP +

1

2∆y

(
β2 + β

)
T jS +

1

2∆y

(
β2 − β

)
T jN + SjP

∆t

AjP
. (6.45)

É sabido que o esquema de Leith é um esquema de segunda ordem (LEITH, 1965).
Nas aproximações de segunda ordem, utilizamos a viscosidade artificial para controlar as
oscilações não físicas, acrescentando na Eq. (6.45) o termo η, dado por

η = λ
∆t

∆y

[
| T jN − T jP |

(
T jN − T jP

)
− | T jP − T jS |

(
T jP − T jS

) ]
, (6.46)

em que λ é o fator de viscosidade, ajustável e adimensional.

Para as condições de contorno utilizaremos as condições dadas pelas Eqs. (6.53) e
(6.54) apresentadas na Seção 6.3.

6.3 ESQUEMA DE DIFERENÇA CENTRAL (CDS)

Aproximando a derivada espacial de T utilizando CDS e a derivada temporal de T

usando a formulação θ = 0,5 (CN) e inserindo um termo fonte SθP para adequar-se à solução
analítica proposta em Rigoni et al. (2022), a forma discreta da Eq. (5.1) é dada por

T j+1
P = T jP −

β

4

(
T j+1
N + T jN

)
+

β

4

(
T j+1
S + T jS

)
+
SCN∆t

ACNP
, (6.47)

onde ACNP , SCNP e β são definidas, respectivamente, pelas Eqs. (6.2), (6.4) e (6.38).

Os coeficientes obtidos são
aN = −β

4
, (6.48)

aS =
β

4
, (6.49)
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aP = 1 (6.50)

e

bP = T jP +
β

4

(
T jS − T jN

)
+
SCN∆t

ACNP
. (6.51)

Como CDS-CN é uma aproximação de segunda ordem, podemos utilizar de forma
análoga a Eq. (6.46) para controlar as oscilações não físicas da solução numérica.

Utilizando a aproximação para R, discretizando a Eq. (5.2), temos,

U j+1
P =

2ρσ +
dm

dt
∆t

2ρσ −
dm

dt
∆t

U j
P +

γ

4

α(Rj+1
S +Rj

S −Rj+1
N −Rj

N

)
+

2,4∆t
dm

dt
ρσ

 , (6.52)

com α e γ, dados pelas Eqs. (6.6) e (6.41).

As condições de contorno de Neumann podem ser aproximadas usando CDS combi-
nado com a técnica dos volumes fictícios (TANNEHILL et al., 1997), assim a temperatura T e o
teor de água da massa de grãos U em y = L podem ser calculadas, respectivamente, por

T j+1
NC = T jNC + SjP

∆t

AjP
(6.53)

e

U j+1
NC = U j

NC +
∆t

dm

dt
ρσ

U j
NC + 0,6

∆t
dm

dt
ρσ

. (6.54)

6.4 ALGORITMO DO PROCESSO DE AERAÇÃO

Apresentaremos nesta seção, o algoritmo para calcular a temperatura (T ) e teor de
água da massa de grãos (U ). Neste caso, usamos o método LS; o algoritmo para as demais
formulações possui estrutura análoga.
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ALGORITMO 2 CÁLCULO DA TEMPERATURA E DO TEOR DE ÁGUA DA MASSA
DE GRÃOS COM O MÉTODO LS

Entrada: ua, cW , ca, Qr, ε, ρσ, cσ, A, B, C, ur, Ui, Patm, TB, TI , L, tf , Ny, Nt

Calcular: ∆y (Eq. (3.5)) e ∆t (Eq. (3.6))
Inicializar: T (1 : Ny, 1 : Nt), U(1 : Ny, 1 : Nt)), R(1 : Ny, 1 : Nt) e j ← 1
for i = 1 : Ny do
T (i, j) = TI (Eq. (5.13)) e U(i, j) = UI (Eq. (5.14))

end for
for i = 1 : Ny do

Calcular: a pressão de vapor de saturação (ps) (Eq. (5.10))
Calcular: o teor de água de equilíbrio (ru) (Eq. (5.11))
Calcular: a razão de mistura inicial R(i, j) (Eq. (5.9))

end for
for j = 2 : Nt do

for i = 1 : Ny do
if (i = 1) then

Calcular: a densidade do ar (ρa) (Eq. (5.12))
Calcular: a umidade relativa do ar de aeração (ra) (Eq. (5.17))
Calcular: a pressão de vapor de saturação (psa) (Eq. (5.10))
Calcular: a razão de mistura em y = 0 (R(1, j)) (Eq. (5.9))
Calcular: o teor de água em y = 0 (U(1, j))) (Eq. (5.16))
Calcular: a temperatura em y = 0 (T (1, j)) (Eq. (5.15))

end if
for i = 2 : Ny − 1 do

Calcular: a derivada da perda de matéria seca em relação ao tempo (dm
dt

) (Eq.
(5.3))
Calcular: a pressão de vapor de saturação (ps) (Eq. (5.10))
Calcular: o teor de água de equilíbrio (ru) (Eq. (5.11))
Calcular: a razão de mistura (R(i, j)) (Eq. (5.9))
Calcular: o teor de água (U(i, j)) (Eq. (6.40))
Calcular: a derivada da perda de matéria seca em relação ao tempo (dm

dt
) (Eq.

(5.3))
Calcular: entalpia específica de vaporização da água (hφ) (Eq. (5.8))
Calcular: a derivada da entalpia de vaporização da água em relação a tempe-
ratura (∂hφ

∂T
) (Eq. (5.8))

Calcular: a entalpia diferencial de sorção hs (Eq. (5.7))
Calcular: a temperatura (T (i, j)) (Eq. (6.39))

end for
if (i = Ny) then

Calcular: a pressão de vapor de saturação em y = L (ps) (Eq. (5.10))
Calcular: o teor de água de equilíbrio em y = L (ru) (Eq. (5.11))
Calcular: a razão de mistura em y = L (R(Ny, j)) (Eq. (5.9))
Calcular: o teor de água em y = L (U(Ny, j)) (Eq. (6.54))
Calcular: a derivada da perda de matéria seca em relação ao tempo em y = L
(dm
dt

) (Eq. (5.3))
Calcular: entalpia específica de vaporização da água em y = L (hφ) (Eq.
(5.8))
Calcular: entalpia diferencial de sorção em y = L hs (Eq. (5.7))
Calcular: a temperatura em y = L (T (Ny, j)) (Eq. (6.53))

end if
end for

end for
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7 RESULTADOS

Neste capítulo apresentaremos os resultados desta tese. Inicialmente, na
Seção 7.1, mostraremos os resultados numéricos com a solução analítica fabricada. Na
Seção 7.2 faremos uma comparação entre o MDF e MVF. Posteriormente, na Seção 7.3,
seguimos com uma verificação do código usando as ordens efetivas. A seguir, teremos
a influência da razão espaço-tempo no modelo com seus respectivos resultados na
Seção 7.4. Na Seção 7.5, mostraremos o esforço computacional dos códigos utilizados.
Finalmente, nas Seções 7.6 e 7.7, apresentaremos, respectivamente, os resultados
com a Múltipla Extrapolação de Richardson (MER) e a efetividade dos estimadores.

7.1 RESULTADOS NUMÉRICOS COM SOLUÇÃO ANALÍTICA FABRICADA

Os resultados foram obitidos utilizando um computador com processador Intel
Core i7-2670QM com 12 GB de memória RAM (1344 MHz) e uma placa de vídeo
Gt540m de 2GB. Para a compilação, utilizamos a IDE (integrated development environ-
ment) Microsoft Visual Studio Code v 1.76.1, programando os algoritmos em Fortran
90. Para a geração gráfica, o Python com a mesma IDE foi utilizado.

A princípio, as simulações foram realizadas para as temperaturas Ty com
y = 0,25, 0,50 e 0,75 correspondendo às alturas do silo em metros, com tf = 3600s.
Os resultados das simulações foram comparadas com a solução analítica fabricada
(RIGONI et al., 2022) para o modelo proposto por Thorpe (2001a), apresentada na
Seção 5.3, dada por

T̂ (y, t) = TI+
1

2

(
TB−TI

)[
erfc

(y − 2,2× 10−4t√
8× 10−6t

)
+exp

(2,2× 10−4y

8× 10−6

)
erfc

(y + 2,2× 10−4t√
8× 10−6t

)]
,

(7.1)
onde erfc representa a função erro complementar (VAN GENUCHTEN et al., 1982),
definida por

erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x

e−t
2

dt. (7.2)

As Figs. 14 e 15, representam uma comparação da solução fabricada (analítica)
com sua simulação numérica aplicando, respectivamente as aproximações de segunda
ordem CDS-CN e LS sem usar o fator de viscosidade artificial para Ny = 128 e Nt = 512

discretizada pelo MVF.

Como podemos notar, as aproximações de segunda ordem apresentam oscila-
ções não físicas comparadas com a solução analítica. Para evitar tais oscilações foi
aplicada a viscosidade artificial, conforme Rigoni et al. (2022).
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FIGURA 14 – REPRESENTAÇÃO DO PROCESSO DE AERAÇÃO SEM O FATOR DE VISCO-
SIDADE ARTIFICIAL PARA CDS-CN.

FONTE: O autor (2023).

FIGURA 15 – REPRESENTAÇÃO DO PROCESSO DE AERAÇÃO SEM O FATOR DE VISCO-
SIDADE ARTIFICIAL PARA LS.

FONTE: O autor (2023).

Utilizar a viscosidade artificial significa acrescentar o termo dado pela Eq. (6.46)
nos termos independentes bp para ambas as aproximações de segunda ordem (CDS-
CN e LS), ajustando o parâmetro adimensional λ para reduzir ao máximo os efeitos
das oscilações não físicas nas simulações numéricas.

As Figs. 16 e 17 representam o mesmo processo de aeração anterior quando
utilizamos a viscosidade artificial, respectivamente para CDS-CN e LS com λ = 6,3E−5

e λ = 1,7E − 5. Neste caso, utilizamos MVF e malha Ny = 128 e Nt = 512.
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FIGURA 16 – REPRESENTAÇÃO DO PROCESSO DE AERAÇÃO COM O FATOR DE VISCO-
SIDADE ARTIFICIAL PARA CDS-CN.

FONTE: O autor (2023).

FIGURA 17 – REPRESENTAÇÃO DO PROCESSO DE AERAÇÃO COM O FATOR DE VISCO-
SIDADE ARTIFICIAL PARA LS.

FONTE: O autor (2023).

Assim como para o MDF em Rigoni et al. (2022), verificamos que para o
MVF, o uso da viscosidade artificial reduz consideravelmente as oscilações para as
aproximações de segunda ordem estudadas. Vale ressaltar que os valores do fator de
viscosidade (λ) são diferentes para cada aproximação de segunda ordem, e determiná-
los é trabalhoso. Normalmente para reduzir o tempo de simulação na busca do melhor
do fator de viscosidade, utilizamos malhas mais grossas.
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7.2 COMPARAÇÃO ENTRE MDF E MVF

Nesta seção mostraremos os resultados da simulação numérica discretizada
pelo MVF e MDF comparando com os dados com a solução analítica. A discretização
do MVF foi apresentada na Seção 3.2. Para verificar a forma discretizada pelo MDF,
consulte as referências Lopes et al. (2006), Radtke (2009), Kwiatkowski Jr. (2011) e
Rigoni et al. (2021, 2022).

As figuras a seguir farão uso do erro no eixo das abscissas. Tal valor é calculado
fazendo-se uso da norma infinito do erro (|| E ||∞) para ambos os métodos (MVF e
MDF) e para todas as possíveis combinações de discretização. Esse erro é a diferença
entre a solução analítica e numérica, ou seja, | E |=| Φ− ϕ |.

As Figs. 18 a 27 mostram as soluções fabricadas (analítica), as soluções
numéricas e seus erros para os métodos CDS-CN, LS (métodos de segunda ordem),
UDS-CN, UDS-Explícito e UDS-Implícito (métodos de primeira ordem), apresentadas
para a malha Ny = 128 e Nt = 256 (desconsiderando os volumes fictícios). Note que
esta malha tem a razão espaço-tempo τ = 2. A malha adotada para este experimento
é considerada uma malha intermediária do ponto de vista de número total de volumes,
dado que para outros experimentos (mais adiante), com a mesma razão espaço-tempo,
as malhas utilizadas foram de Ny = 8 e Nt = 16 a Ny = 4096 e Nt = 8192.

A Fig. 18 apresenta o processo de aeração para diferentes alturas (ou ca-
madas): y = 0,25m, y = 0,50m e y = 0,75m, discretizado com MVF e MDF e com
CDS-CN.

FIGURA 18 – REPRESENTAÇÃO DO PROCESSO DE AERAÇÃO PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM CDS-CN PELO MVF E MDF.

FONTE: O autor (2023).
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A Fig. 19 evidencia o erro absoluto entre a solução numérica e analítica e
o MVF e MDF. Verificamos que, o erro máximo para a aproximação CDS-CN, está
abaixo de 1,60◦C para y = 0,25m, abixo de 1,30◦C para y = 0,50m e abaixo de 0,80◦C

para y = 0,75m. Notamos que, como o processo de aeração atinge o tempo de 3600s,
a última camada analisada não está completamente resfriada. Isto não se deve à
velocidade do ar de aeração, mas sim pelo fato de que se está adotando uma solução
analítica proposta (RIGONI et al., 2021, 2022), que é baseada e comparada com os
dados experimentais de um mini-silo (OLIVEIRA et al., 2007).

FIGURA 19 – ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM CDS-CN PELO
MVF E MDF.

FONTE: O autor (2023).

A Fig. 20 apresenta as comparações para a aproximação de segunda ordem
LS pelo MVF e MDF nas alturas estudadas. A Fig. 21 representa o erro absoluto entre
a solução analítica e a solução numérica para os dois métodos estudados, ou seja, o
MVF e o MDF.

Na Fig. 21, o valor máximo do erro está abaixo de 1,10◦C para y = 0,25m em
dois pontos de simulação, um pouco abaixo de 1,00◦C para y = 0,50m e está próximo
de 0,8◦C para y = 0,75m.

Comparando os erros das aproximações CDS-CN (Fig. 19) e LS (Fig. 21),
eles são relativamente menores para o LS em ambas as camadas, y = 0,25m e
y = 0,50m tanto para o MVF quanto para o MDF. Porém, para y = 0,75m o ar de
aeração não resfriou totalmente a massa de grãos, portanto não podemos garantir
diferenças de temperaturas menores para o LS. No que diz respeito ao MDF, estes
resultados confirmam os resultados apresentados por Rigoni et al. (2022).
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FIGURA 20 – REPRESENTAÇÃO DO PROCESSO DE AERAÇÃO PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM LS PELO MVF E MDF.

FONTE: O autor (2023).

FIGURA 21 – ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM LS PELO MVF E
MDF.

FONTE: O autor (2023).

A Fig. 22 mostra a primeira comparação entre o MVF e o MDF para uma
aproximação de primeira ordem. A Fig. 23 apresenta o erro absoluto para ambos os
métodos com relação à solução analítica. Obtendo um erro máximo próximo de 1,90◦C

para y = 0,25m, aproximadamente 1,85◦C para y = 0,50m e de 1,17◦C para a altura
y = 0,75m. Notamos, que os erros absolutos apresentados tanto para o MVF quanto
para o MDF na aproximação UDS-CN, apresentaram erros máximos maiores que os
apresentados nas aproximações de segunda ordem.
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FIGURA 22 – REPRESENTAÇÃO DO PROCESSO DE AERAÇÃO PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM UDS-CN PELO MVF E MDF.

FONTE: O autor (2023).

FIGURA 23 – ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM UDS-CN PELO
MVF E MDF.

FONTE: O autor (2023).

A Fig. 24 representa o processo de aeração com os MVF e MDF, para as três
camadas (y = 0,25m, y = 0,50m e y = 0,75m), utilizando a aproximação UDS-Explícito.

Na Fig. 25 temos os erros absolutos para ambos os métodos nas diferentes
alturas estudadas. O UDS-Explícito é a aproximação mais utilizada na literatura para a
simulação do processo de aeração da massa de grãos através do modelo proposto por
Thorpe (2001b) discretizado com o MDF. Observamos na Fig. 25, que o erro máximo é
1,63◦C para y = 0,25m, acima de 1,53◦C em y = 0,50m e para y = 0,75m, o erro máximo
está próximo de 1,09◦C.
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FIGURA 24 – REPRESENTAÇÃO DO PROCESSO DE AERAÇÃO PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM UDS-EXPLÍCITO PELO MVF E MDF.

FONTE: O autor (2023).

FIGURA 25 – ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM UDS-EXPLÍCITO
PELO MVF E MDF.

FONTE: O autor (2023).

Comparando o valor máximo dos erros para a aproximação UDS-Explícito dado
pela Fig. 25 com a aproximação UDS-CN representado pela Fig. 23, ambos de primeira
ordem, verificamos que o UDS-Explícito é melhor que o UDS-CN e também melhor
que o UDS-Implicito (também método de primeira ordem) que pode ser visto na Fig.
27. Contudo, o UDS-Explícito não se sobressai em relação aos métodos de segunda
ordem CDS-CN (Fig. 19) e LS (Fig. 21), já confirmado para o MDF (RIGONI et al.,
2022) e agora comprovado para o MVF.
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Na Fig. 26 representamos o processo de aeração para diferentes alturas
(camadas), discretizado com a aproximação UDS-Implícito pelo MVF e MDF; e na Fig.
27, o erro absoluto para tais aproximações.

FIGURA 26 – REPRESENTAÇÃO DO PROCESSO DE AERAÇÃO PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM UDS-IMPLÍCITO PELO MVF E MDF.

FONTE: O autor (2023).

FIGURA 27 – ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM UDS-IMPLÍCITO
PELO MVF E MDF.

FONTE: O autor (2023).

Observamos na Fig. 27 que os valores máximos dos erros são próximos de
2,12◦C, 2,09◦C e 2,07◦C, respectivamente, para as alturas y = 0,25m, y = 0,50m e
y = 0,75m. Portanto, para a malha em análise e para as demais malhas o UDS-Explícito
é a melhor aproximação de primeira ordem.
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Entre o UDS-Explícito (melhor método de primeira ordem) e o LS (melhor
método de segunda ordem), o LS apresentou o menor erro tanto para o MVF como
para o MDF. Tal fato já tinha sido relatado por Rigoni et al. (2022) para o MDF, e agora,
comprovando para o MVF.

A seguir realizamos simulações variando o número de volumes (N ) para as
aproximações utilizadas conforme Tab. 6.

TABELA 6 – NÚMERO DE INCÓGNITAS E VALORES DE REFINO ESPACIAL PARA τ = 2.

Ny Nt N h = 1
Ny

8 16 128 0,12500E+00
16 32 512 0,62500E-01
32 64 2048 0,31250E-01
64 128 8192 0,15625E-01
128 256 32768 0,78125E-02
256 512 131072 0,39062E-02
512 1024 524288 0,19531E-02

1024 2048 2097152 0,97656E-03
2048 4096 8388608 0,48828E-03
4096 8192 33554432 0,24414E-03

FONTE: O autor (2023).

As Figs. 28 e 29 apresentam o decaimento do erro, respectivamente pelo MDF
e MVF, versus o refino da malha, utilizando uma malha temporal duas vezes a malha
espacial, ou seja, τ = 2, no ponto T (t,y) com t = 1800s e y = 0,50m, para todas as
aproximações.

Podemos observar nas Figs. 28 e 29, que na malha mais grosseira, Ny = 8

e Nt = 16, a aproximação LS tem um desempenho inferior às demais aproximações
utilizadas para discretização tanto para o MDF como para o MVF. Observamos que o
MVF apresentou um erro inferior ao MDF. O método CDS-CN na malha grossa também
é melhor para o MVF em relação ao MDF, mas com uma diferença reduzida. Em relação
aos métodos de primera ordem, o UDS-Explícito apresenta um desempenho melhor na
malha mais grossa comparado ao UDS-CN e ao UDS-Implícito, tanto no MDF quanto
no MVF. Assim como os métodos de segunda ordem, os de primeira ordem também
apresentam erros menores na malha grossa para MVF.

Vale destacar que o ponto escolhido T (t,y) com t = 1800s e y = 0,50m, será
utilizado em todo nosso trabalho. Isso se deve ao fato do ponto estar localizado no
centro espacial da massa de grãos, portanto, não recebe uma quantidade elevada de
ar de aeração para os grãos da base do silo e não tão pouco se comparado aos grãos
do topo do silo, onde o ar que proporciona a aeração é baixo com o passar do tempo.
Um raciocínio análogo pode ser feito com relação ao ponto de análise estar no centro
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temporal do processo de aeração. Assim, poderemos efetuar uma análise apropriada
no tempo e no espaço.

FIGURA 28 – DECAIMENTO DO ERRO ABSOLUTO VERSUS O REFINO DA MALHA NAS
APROXIMAÇÕES ESTUDADAS DISCRETIZADAS PELO MDF COM τ = 2,
t = 1800s E y = 0,50m.

FONTE: O autor (2023).

FIGURA 29 – DECAIMENTO DO ERRO ABSOLUTO VERSUS O REFINO DA MALHA NAS
APROXIMAÇÕES ESTUDADAS DISCRETIZADAS PELO MVF COM τ = 2,
t = 1800s E y = 0,50m.

FONTE: O autor (2023).

A Fig. 30 representa o decaimento do erro versus o número de variáveis para as
aproximações estudadas no ponto analisado. Observando na Fig. 30 que aumentando
o número de incógnitas, ou seja, refinando a malha, o desempenho do MVF é melhor
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do que o MDF. Notamos ainda que as aproximações menos eficazes são UDS-Implícito
e UDS-CN. Já CDS-CN divergiu para malhas muito refinadas.

FIGURA 30 – DECAIMENTO DO ERRO ABSOLUTO VERSUS NÚMERO DE VARIÁVEIS
PARA TODAS AS APROXIMAÇÕES ESTUDADOS DISCRETIZADAS PELOS
MDF E MVF COM τ = 2, t = 1800s E y = 0,50m

FONTE: O autor (2023).

Apresentamos na Tab. 7, os resultados da ||E||2 para todas as aproximações
utilizadas nas discretizações em todas as malhas com τ = 2, t = 1800s e y = 0,50m.

TABELA 7 – NORMA 2 DO ERRO PARA MDF E MVF.

Método MDF MVF
CDS-CN 5,498E+00 2,708E-01

LS 1,235E+01 6,188E+00
UDS-CN 9,450E+00 6,128E+00

UDS-Explícito 7,319E+00 4,516E+00
UDS-Implícito 1,113E+01 7,383E+00

FONTE: O autor (2023).

Como podemos notar, o MVF obteve valores menores de ||E||2, tendo como
menor valor para CDS-CN. Entretanto, tal valor deve ser desconsiderado em compa-
ração com os demais métodos, pois este método tem quantidade de discretizações
menor que os demais devido a algumas malhas terem divergido, e isto afeta o resul-
tado final da norma. Dessa forma, a menor norma está com UDS-Explícito. Portanto,
expusemos nesta seção que o MVF apresentou melhor desempenho do que o MDF,
logo abordaremos deste ponto adiante somente o MVF em nosso trabalho.
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7.3 VERIFICAÇÃO DAS ORDENS EFETIVAS

Na Seção 3.1 apresentamos as formulações e teoria sobre a ordem efetiva do
erro de discretização, que se trata de um teste a posteriori, para estimarmos a ordem
assintótica do método, quando temos uma solução analítica conhecida do modelo.

Com base nestas informações aplicamos a verificação da ordem efetiva para
os métodos de primeira ordem (UDS-CN, UDS-Explícito e UDS-Implícito) e para os
métodos de segunda ordem (CDS-CN e LS), efetuando a verificação para as diferentes
razões espaço-tempo τ = 2, 4, 8, 16, 32 e 64, para t = 1800s e y = 0,50m, conforme as
Figs. 31 a 36.

Nas Figs. 31 a 36 foram aplicados os fatores da viscosidade artificial fixos,
λ = 6,3E−5 e λ = 1,7E−5, respectivamente para CDS-CN e LS em todas as malhas. Os
valores adimensionais dos fatores da viscosidade (λ) são escolhidos por verificações,
substituindo o valor escolhido e posteriormente verificando se as oscilações foram
suavizadas. Estes testes são efetuados normalmente em malhas grossas e fixado para
todas as malhas, visto que o tempo computacional para malhas refinadas é elevado.

As Figs. 31 a 32 apresentam respectivamente, o comportamento das ordens
efetivas para a razão espaço-tempo τ = 2 e τ = 4.

FIGURA 31 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM τ = 2.

FONTE: O autor (2023).

Como podemos notar na Fig. 31, quando τ = 2, as ordens efetivas relacionadas
a cada método de aproximação numérica tende à ordem assintótica pL = 1, tanto para
os métodos de primeira ordem quanto para os de segunda ordem com o refino da
malha. As aproximações de segunda ordem teoricamente deveriam tender para pL = 2.
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Contudo, observamos que na Fig. 32, quando τ = 4, as ordens efetivas para CDS-CN
e LS estão se distanciando de pL = 1.

FIGURA 32 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM τ = 4.

FONTE: O autor (2023).

A Fig. 33 mostra o comportamento das ordens efetivas para a razão espaço-
tempo τ = 8, na Fig. 34 apresentamos o comportamento das ordens efetivas para
τ = 16.

FIGURA 33 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM τ = 8.

FONTE: O autor (2023).
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FIGURA 34 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM τ = 16.

FONTE: O autor (2023).

O distanciamento das ordens efetivas de pL = 1 para as aproximações de
segunda ordem é notado também quando τ = 8 (Fig. 33), ficando ainda mais evidente
na Fig. 34, quando τ = 16. As ordens efetivas para τ = 32 são observadas na Fig. 35 e
finalmente representamos as ordens efetivas para τ = 64 na Fig. 36.

FIGURA 35 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM τ = 32.

FONTE: O autor (2023).
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FIGURA 36 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM τ = 64.

FONTE: O autor (2023).

Também observamos que à medida que aumenta a razão espaço-tempo, as
ordens efetivas dos métodos tendem às suas ordens assintóticas, ou seja, pL = 1 para
os métodos de primeira ordem (UDS-CN, UDS-Implícito e UDS-Explícito) e pL = 2

para os métodos de segunda ordem (CDS-CN e LS). Tal fato ocorre somente para as
aproximações de segunda ordem, pois é onde se aplica a viscosidade artificial.

Para auxiliar na determinação da ordem efetiva, melhorar a convergência e
não depender de um valor elevado para a razão espaço-tempo, em vez de manter fixo
os valores do fator de viscosidade artificial para todas as malhas com a mesma razão
espaço-tempo, variamos este fator de acordo com a relação 1/4 do erro começando na
malha mais grossa com λ = 5,0E − 5 e λ = 1,8E − 5, respectivamente para CDS-CN
e LS, assim, variando o fator de viscosidade para os métodos de segunda ordem.
Devemos ressaltar que tal processo é empírico, portanto, trabalhoso e tem relação
direta com o ponto estudado, t = 1800s e y = 0,50m.

A Fig. 37, apresenta o comportamento das ordens efetivas das aproximações
de primeira e segunda ordens, onde houve uma variação do fator de viscosidade
artificial em relação ao refino da malha para os métodos de segunda ordem. Este teste
foi realizado utilizando a razão espaço-tempo τ = 2.

Observamos na Fig. 37 que o LS tendem à ordem assintótica em malhas
não tão refinadas se comparado à Fig. 36, onde o fator de viscosidade artificial foi
considerado fixo. Por outro lado, não podemos afirmar nada sobre o CDS-CN, devido ao
problema de valores incoerentes já comentados. Mas, na última malha discretizada para
o método CDS-CN, notamos que o valor de pE está se aproximando de pL. Portanto,



Resultados 98

outros estudos são necessários para verificar tais fatos com relação ao CDS-CN.

FIGURA 37 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM τ = 2 E VARIANDO O FATOR DE VISCOSIDADE λ.

FONTE: O autor (2023).

7.4 INFLUÊNCIA DA RAZÃO ESPAÇO-TEMPO

Na presente seção mostraremos a influência da razão espaço-tempo no mo-
delo proposto para todas as aproximações estudadas, comparando inicialmente os
métodos com o mesmo fator anisotrópico em relação ao decaimento do erro, e posteri-
ormente, evidenciando o erro em relação ao número de variáveis para diversos fatores
anisotrópicos.

Para efetuar as verificações, usaremos as normas ||E||2 e ||E||∞ e o erro E.

A seguir a Tab. 8 mostra em sua primeira coluna, o número de volumes na
direção vertical (Ny) e nas demais colunas colunas, o número de volumes na direção
temporal (Nt), para os diversos fatores anisotrópicos τ = 2, 4, 8, 16, 32 e 64, onde por
exemplo τ = 2 significa que o número de volumes da malha temporal (Nt) é duas vezes
o número de volumes da malha espacial (Ny) e número de variáveis reais (sem contar
volumes fictícios) é de N = Ny ×Nt.
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TABELA 8 – NÚMERO DE VARIÁVEIS NAS MALHAS EM RELAÇÃO A RAZÃO ESPAÇO-
TEMPO (τ ).

Ny
Nt = τNy

τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 64
8 16 32 64 128 256 512
16 32 64 128 256 512 1024
32 64 128 256 512 1024 2048
64 128 256 512 1024 2048 4096

128 256 512 1024 2048 4096 8192
256 512 1024 2048 4096 8192 16384
512 1024 2048 4096 8192 16384 32768
1024 2048 4096 8192 16384 32768 65536
2048 4096 8192 16384 32768 65536 131072
4096 8192 16384 32768 65536 131072 -
8192 16384 32768 65536 - - -

16384 32768 - - - - -

FONTE: O autor (2023).

7.4.1 Comparação entre os métodos empregando a mesma razão espaço-tempo

A seguir mostraremos as comprações entre o erro versus o número de variáveis
para diferentes razões espaço-tempo (τ ). Nas Fig. 38 e Fig. 39, apresentamos o
decaimento do erro em relação ao número de variáveis, respectivamente para a razão
espaço-tempo τ = 2 e 4.

FIGURA 38 – DECAIMENTO DO ERRO VERSUS NÚMERO DE VARIÁVEIS PARA TODAS
AS APROXIMAÇÕES DISCRETIZADAS PELO MVF COM τ = 2.

FONTE: O autor (2023).
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FIGURA 39 – DECAIMENTO DO ERRO VERSUS NÚMERO DE VARIÁVEIS PARA TODAS
AS APROXIMAÇÕES DISCRETIZADAS PELO MVF COM τ = 4.

FONTE: O autor (2023).

Nesse sentido, observamos que inicialmente nas malhas mais grossas, o
menor erro é do UDS-CN, tendo o maior erro a aproximação LS e o UDS-Explícito
para τ = 2 (Fig. 38). Para τ = 4 o menor erro é para o UDS-Explícito e o maior
continua sendo o erro do LS (Fig. 39). Entretanto, à medida que as malhas são
refinadas, as aproximações de segunda ordem têm significativa vantagem com relação
ao decaimento do erro sobre as aproximações de primeira ordem. Destacamos as
aproximações de segunda ordem o LS e nos de primeira ordem o UDS-Explícito.

Além disso, apresentamos na Tab. 9, os valores de máximo e mínimo do erro,
para cada aproximação abordada, para τ = 2 e τ = 4, corroborando respectivamente,
com as Figs. 38 e 39.

TABELA 9 – NORMA INFINITA DO ERRO E O MENOR ERRO PARA AS APROXIMAÇÕES
COM τ = 2 E τ = 4.

τ = 2 τ = 4
Método Max Min Max Min

LS 5,176E+00 9,829E-05 4,736E+00 1,208E-04
UDS-CN 4,167E+00 7,970E-03 4,047E+00 1,533E-02

UDS-Explícito 3,307E+00 4,548E-03 3,609E+00 1,188E-02
UDS-Implícito 4,831E+00 1,140E-02 4,436E+00 1,878E-02

FONTE: O autor (2023).

A Fig. 40 representa o decaimento do erro em relação ao número de variáveis,
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com a razão espaço-tempo τ = 8 e a Fig. 41 representa o decaimento do erro em
relação ao número de variáveis para τ = 16.

FIGURA 40 – DECAIMENTO DO ERRO VERSUS NÚMERO DE VARIÁVEIS PARA TODAS
AS APROXIMAÇÕES DISCRETIZADAS PELO MVF COM τ = 8.

FONTE: O autor (2023).

FIGURA 41 – DECAIMENTO DO ERRO VERSUS NÚMERO DE VARIÁVEIS PARA TODAS
AS APROXIMAÇÕES DISCRETIZADAS PELO MVF COM τ = 16.

FONTE: O autor (2023).

Notamos, nas Figs. 40 e 41, que o comportamento na malha mais grossa,
novamente o menor erro é do UDS-Explícito e o maior erro é do LS em ambas as
razões espaço-tempo. Outra observação importante, é que à medida que elevamos a
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razão espaço-tempo, neste caso, τ = 8 e τ = 16, respectivamente, para as Figs. 40 a
41, os erros dos métodos de primeira ordem ficam mais próximos, indiferente da malha
observada. Para os de segunda ordem, os erros são próximos apenas nas malhas
mais grossas.

A Tab. 10 mostra os valores máximo e mínimo do erro. Observamos, assim,
que o comportamento do decaimento do erro segue os padrões apresentados nas Figs.
40 e 41, isto é, o menor erro, na malha mais refinada é do LS, conforme a Tab. 10.

TABELA 10 – NORMA INFINITA DO ERRO E O MENOR ERRO PARA AS APROXIMAÇÕES
COM τ = 8 E τ = 16.

τ = 8 τ = 16
Método Max Min Max Min

LS 4,683E+00 7,791E-05 4,653E+00 1,681E-04
UDS-CN 4,119E+00 1,500E-02 4,150E+00 2,989E-02

UDS-Explícito 3,910E+00 1,327E-02 4,051E+00 2,814E-02
UDS-Implícito 4,313E+00 1,672E-02 4,245E+00 3,164E-02

FONTE: O autor (2023).

As Figs. 42 e 43, representam o decaimento do erro versus o número de
incógnitas, respectivamente, com as razões espaço-tempo τ = 32 e τ = 64.

FIGURA 42 – DECAIMENTO DO ERRO VERSUS NÚMERO DE VARIÁVEIS PARA TODAS
AS APROXIMAÇÕES DISCRETIZADAS PELO MVF COM τ = 32.

FONTE: O autor (2023).
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FIGURA 43 – DECAIMENTO DO ERRO VERSUS NÚMERO DE VARIÁVEIS PARA TODAS
AS APROXIMAÇÕES DISCRETIZADAS PELO MVF COM τ = 64.

FONTE: O autor (2023).

Consequentemente, as Figs. 42 e 43 representam comportamentos semelhan-
tes às Figs. 38 a 41, como podemos também verificar na Tab. 11, ressaltando que
quanto maior a razão espaço-tempo, menor é a diferença entre os métodos de primeira
ordem, UDS-CN, UDS-Explícito e UDS-Implícito.

Com relação aos métodos de segunda ordem CDS-CN e LS, o comportamento
é semelhante, nas malhas grossas e nas intermediárias. Observamos na Fig. 43 que
há pouca diferença no erro dos métodos. Nas malhas muito refinadas, em virtude da
divergência do CDS-CN, não poderemos efetuar a análise.

TABELA 11 – NORMA INFINITO DO ERRO E O MENOR ERRO PARA AS APROXIMAÇÕES
COM τ = 32 E τ = 64.

τ = 32 τ = 64
Método Max Min Max Min

LS 4,633E+00 1,466E-04 4,622E+00 5,091E-04
UDS-CN 4,156E+00 2,972E-02 4,157E+00 6,019E-02

UDS-Explícito 4,108E+00 2,884E-02 4,134E+00 5,930E-02
UDS-Implícito 4,203E+00 3,059E-02 4,181E+00 6,109E-02

FONTE: O autor (2023).

Portanto, concluímos que, indiferente da razão espaço-tempo, a aproximação
LS é a que apresenta melhor decaimento do erro em relação às outras aproximações
estudadas, com um adendo que, entre as aproximações de primeira ordem, destaca-
se a aproximação UDS-Explícito. Por fim, verificamos que com o aumento do fator
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anisotrópico, o erro diminui entre as aproximações de mesma ordem.

7.4.2 Comparação entre os métodos para cada razão espaço-tempo

Esta seção apresenta o comportamento dos erros versus o número de incógni-
tas, para cada razão espaço-tempo, para todas as aproximações abordadas. As Figs.
44 e 45 apresentam, respectivamente, os erros para o CDS-CN e LS.

FIGURA 44 – COMPARAÇÃO DO ERRO VERSUS O NÚMERO DE VARIÁVEIS PARA O CDS-
CN DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE τ .

FONTE: O autor (2023).

FIGURA 45 – COMPARAÇÃO DO ERRO VERSUS O NÚMERO DE VARIÁVEIS PARA O LS
DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE τ .

FONTE: O autor (2023).
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Observamos nas Figs. 44 e 45 que o erro decai com o refino da malha. Mais do
que isso, notamos que para as razões espaço-tempo maiores (τ = 64, 32 e 16) o erro é
maior se comparado às razões espaço-tempo menores (τ = 2, 4 e 8) e que para as
malhas mais refinadas e baixas razões espaço-tempo, ocorre uma pequena curvatura,
desacelerando o decaimento do erro.

Nas Figs. 46, 47 e 48 apresentamos respectivamente, a comparação do erro
versus o número de incógnitas, pelos métodos UDS-CN, UDS-Explícito e UDS-Explícito.

FIGURA 46 – COMPARAÇÃO DO ERRO VERSUS O NÚMERO DE VARIÁVEIS PARA O UDS-
CN DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE τ .

FONTE: O autor (2023).

FIGURA 47 – COMPARAÇÃO DO ERRO VERSUS O NÚMERO DE VARIÁVEIS PARA O UDS-
EXPLÍCITO DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE τ .

FONTE: O autor (2023).
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FIGURA 48 – COMPARAÇÃO DO ERRO VERSUS O NÚMERO DE VARIÁVEIS PARA O UDS-
IMPLÍCITO DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE τ .

FONTE: O autor (2023).

Notamos que o método UDS-CN (Fig. 46) expõem melhor resultado em relação
ao número de variáveis na malha mais refinada para τ = 2. Ainda, observamos que
no método UDS-Explícito (Fig. 47), τ = 2 é a que tem melhor resultado em relação
ao decaimento versus o número de variáveis. Além disso, o UDS-Explícito é o melhor
método entre os de primeira ordem. Do mesmo modo, para UDS-Implícito (Fig. 48) a
razão espaço-tempo τ = 2, é a que melhor representa o erro com relação ao número
de variáveis.

Neste sentido, a Tab. 12 apresenta a norma 2, para as quatro aproximações
estudadas. O CDS-CN não foi comparado, pois, para a norma analisada, tal método
pode dar resultados incoerentes se comparado aos demais, pela quantidade de malhas
abordadas.

TABELA 12 – NORMA 2 DO ERRO PARA AS APROXIMAÇÃO PARA DIVERSOS VALORES
DE τ .

Método τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 64
LS 6,188 5,727 5,646 5,616 5,597 5,585

UDS-CN 6,128 6,114 6,087 6,088 6,088 6,087
UDS-Explícito 4,516 5,311 5,696 5,899 5,995 6,041
UDS-Implícito 7,383 6,828 6,454 6,271 6,179 6,132

FONTE: O autor (2023).
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Assim, o melhor valor apresentado para a ||E||2 é o método UDS-Explícito,
tendo o UDS-Implícito como pior caso, seguido do LS com τ = 2. Isto não significa que
LS seja a pior aproximação a ser utilizada, muito pelo contrário, como os resultados
vêm mostrando, LS é o melhor método dos analisados com o refino da malha.

Contudo, o fato do LS ter o maior valor para a norma 2, está relacionado ao
elevado erro numérico desse método nas malhas grossas, contaminando assim, os
bons resultados apresentados para o LS. Ainda, observando a Tab. 12 notamos que
com o aumento das razões espaço-tempo, o erro decai e temos o melhor caso para a
aproximação LS seguido do UDS-Explícito, para τ = 64. Outro fato importante, é que a
medida que aumentamos a razão espaço-tempo, temos valores mais elevados para o
UDS-Explícito.

7.5 O ESFORÇO COMPUTACIONAL

Uma das formas de se avaliar o esforço computacional de um método numérico
é através da análise do comportamento dos tempos de execução (t, em segundos), ou
tempo de CPU , em função do número de VC de cada malha (GONÇALVES, 2013), ou
seja, analisar o efeito do número de incógnitas (N ) sobre o tempo de CPU.

Segundo Pinto (2006), entende-se por tempo de CPU (tCPU ) o tempo gasto para
realizar a geração de malhas, atribuição da estimativa inicial, cálculo dos coeficientes
e resolução do sistema até atingir o critério de convergência (critério de parada). Os
valores do tempo de CPU das simulações desta seção, são encontrados em formato
de tabelas no Apêndice (A.1).

De acordo com Burden e Faires (2016), para determinarmos a complexidade
do método (ou algoritmo) que é dado pelo efeito do número de incógnitas em relação
tCPU , fazemos um ajuste não linear do tipo

tCPU(N) = c (N)p, (7.3)

onde c é o coeficiente do método, p representa a ordem de complexidade e N é o
número total de incógnitas do problema. Com p representando a ordem do algoritmo,
isto é, a inclinação da curva em escala bilogarítmica, e c é uma constante que depende
do método. É importante notar que na nova escala bilogarítmica, uma reta é obtida com
o ajuste não linear, onde c é o coeficiente linear de tal reta e representa o valor inicial
da relação entre tempo e N , enquanto p é o coeficiente angular e indica a tendência de
crescimento.

As Figs. 49 e 50 retratam o tempo de CPU versus N para todas as aproxima-
ções consideradas, nesta ordem, para τ = 2 e 4.
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FIGURA 49 – EFEITO DO NÚMERO DE INCÓGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAÇÃO UTILIZADA COM τ = 2.

FONTE: O autor (2023).

FIGURA 50 – EFEITO DO NÚMERO DE INCÓGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAÇÃO UTILIZADA COM τ = 4.

FONTE: O autor (2023).

A princípio, o LS tem o tempo de CPU menor em relação aos demais métodos,
seguido do CDS-CN e UDS-CN, com os piores tempos para o UDS-Explícito e UDS-
Implícito. Entretanto, elevando o número de variáveis, isto é, refinando a malha, o
CDS-CN não pode ser avaliado, seguindo com o melhor tempo o LS, seguido do UDS-
CN, UDS-Explícito e UDS-Implícito nas últimas duas malhas analisadas. Note que esta
análise é válida para ambas as razões espaço-tempo, conforme as Figs. 49 e 50.
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Nas Figs. 51 e 52 temos o tempo em relação ao refino da malha com as razões
espaço-tempo τ = 8 e 16, respectivamente.

FIGURA 51 – EFEITO DO NÚMERO DE INCÓGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAÇÃO UTILIZADA COM τ = 8.

FONTE: O autor (2023).

FIGURA 52 – EFEITO DO NÚMERO DE INCÓGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAÇÃO UTILIZADA COM τ = 16.

FONTE: O autor (2023).

As Figs. 51 e 52 apresentaram comportamento semelhante aos das Figs. 49
e 50, ou seja, inicialmente o LS apresentou o tempo de CPU menor, seguido das
aproximações CDS-CN e UDS-CN, tendo os piores tempos as aproximações UDS-
Explícito e UDS-Implícito. Por outro lado, a razão espaço-tempo τ = 16, ilustrado
pela Fig. 52, mostra-nos que os menores tempos são para as aproximações LS,
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UDS-Explícito e UDS-Implícito, sendo as piores aproximações CDS-CN e UDS-CN,
indiferente do número de incógnitas.

As Figs. 53 e 54 apresentam, respectivamente para τ = 32 e τ = 64, o
comportamento para o tempo de CPU versus número de variáveis, confirmando um
comportamento semelhante ao apresentado pela Fig. 52, onde os menores tempos de
CPU são dados pelos métodos LS, UDS-Explícito e UDS-Implícito.

FIGURA 53 – EFEITO DO NÚMERO DE INCÓGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAÇÃO UTILIZADA COM τ = 32.

FONTE: O autor (2023).

FIGURA 54 – EFEITO DO NÚMERO DE INCÓGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAÇÃO UTILIZADA COM τ = 64.

FONTE: O autor (2023).
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As Tabs. 13 e 14 foram criadas a partir dos dados apresentados nas Figs. 49 a
54 para analisar os valores de c e p gerados pelo ajuste dado pela Eq. (7.3). Notamos
dessas tabelas que, enquanto as inclinações (representadas por p) são semelhantes,
os valores de c são bem distintos (por uma ou duas ordens).
TABELA 13 – PARÂMETROS DO AJUSTE GEOMÉTRICO PARA OS MÉTODOS DE PRI-

MEIRA ORDEM.

τ
UDS-CN UDS-Explícito UDS-Implícito

p c p c p c
2 0,970 1,676E-02 0,981 2,088E-02 0,993 1,929E-02
4 0,991 1,466E-02 0,981 2,070E-02 0,976 2,147E-02
8 1,017 1,229E-02 0,990 1,955E-02 0,979 2,125E-02
16 0,993 1,953E-02 1,012 1,031E-02 1,048 8,066E-03
32 0,999 1,884E-02 1,004 1,080E-02 1,007 1,063E-02
64 0,979 2,170E-02 1,001 1,110E-02 0,999 1,133E-02

FONTE: O autor (2023).

TABELA 14 – PARÂMETROS DO AJUSTE GEOMÉTRICO PARA OS MÉTODOS DE SE-
GUNDA ORDEM.

τ
CDS-CN LS

p c p c
2 0,965 1,718E-2 0,998 1,135E-2
4 0,993 1,431E-2 0,961 1,456E-2
8 0,999 1,555E-2 0,999 1,137E-2
16 0,980 2,309E-2 0,989 1,218E-2
32 0,981 2,092E-2 1,012 1,039E-2
64 0,960 2,397E-2 0,997 1,154E-2

FONTE: O autor (2023).

Ao comparar os valores de p para τ = 2, para as aproximações de primeira
ordem, os valores mais próximos da unidade é para o UDS-Implícito (sexta coluna da
Tab. 13). Para a mesma razão espaço-tempo τ = 2, nas aproximações de segunda
ordem, o mais próximo à unidade é o LS (quarta coluna da Tab. 14), com relação, a
uma razão espaço-tempo elevada, por exemplo, τ = 64, os valores de p mais próximos
a unidade são UDS-Explícito e UDS-Implícito (quarta e sexta colunas da Tab. 13
respectivamente) e LS (quarta coluna da Tab. 14), respectivamente, para os métodos
de primeira e segunda ordens.
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7.6 MÚLTIPLA EXTRAPOLAÇÃO DE RICHARDSON (MER)

A princípio, mostraremos nesta seção o uso de Múltiplas Extrapolações de
Richardson (MER) para reduzir o erro de discretização na simulação do modelo do
processo de aeração da massa de grãos, assim, comparando tais erros com e sem a
aplicação da MER, respectivamente denotados por Em e Eh. Posteriormente, apresen-
taremos o uso de estimadores de erros baseados em MER, mostrando que é possível
obter soluções com alta ordem de acurácia e de forma confiável.

Roache (1994) enfatiza a necessidade de convergência de malha com refina-
mentos elevados para obter boa estimativa da ordem de acurácia. Consequentemente,
descartaremos as malhas mais grossas para o estudo da MER, visto que, nas malhas
mais finas a ordem efetiva (pE) tende para a ordem assíntotica (pL).

A Fig. 55 representa o erro com a aplicação da MER (Em) e sem sua utilização
(Eh).

FIGURA 55 – ERRO NUMÉRICO COM E SEM MER PARA TODAS AS APROXIMAÇÕES
COM τ = 2.

FONTE: O autor (2023).

Observamos que a aplicação da MER reduz drasticamente os erros Eh para
todos os métodos utilizados, dando destaque ao LS que teve a maior redução (note
que o método LS foi afetado pelo erro de arredondamento na malha mais refinada).
Essa redução drástica do erro pode ser confirmada pela seguinte análise.

A Tab. 15 mostra a razão entre Eh e Em (Eh/Em) para os métodos analisados
nas diversas malhas. Portanto, quanto maior tal razão, maior a redução de Em com
relação a Eh, ou seja, maior o efeito da MER na redução do erro.
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TABELA 15 – Eh/Em COM τ = 2 PARA OS MÉTODOS ESTUDADOS.

Ny ×Nt LS UDS-CN UDS-Explícito UDS-Implícito
128 × 256 1.214E+04 6.003E+01 4.445E+01 7.230E+01
256 × 512 1.940E+06 8.008E+02 5.352E+02 9.985E+02

512 × 1024 6.324E+08 1.706E+04 9.930E+03 2.274E+04
1024 × 2048 4.121E+11 6.197E+05 3.183E+05 8.950E+05
2048 × 4096 1.498E+15 3.793E+07 1.832E+07 5.878E+07
4096 × 8192 2.743E+19 4.363E+09 2.160E+09 6.817E+09

8192 × 16384 2.275E+24 1.046E+12 5.309E+11 1.601E+12
16384 × 32768 - 5.188E+14 2.664E+14 7.849E+14

FONTE: O autor (2023).

Observamos que a aplicação da MER reduz significativamente o erro de discre-
tização. Este fato pode ser evidenciado pela razão Eh/Em na Tab. 15. Note a tendência
dessas razões aumentarem com o refino de malha, o que já era esperada devido
ao aspecto das curvas da Fig. 55, ou seja, tais curvas vão se distanciando à me-
dida que refinamos a malha. As aproximações pelo método LS obteve os maiores
valores para as razões comparando com as outras aproximações, em todas as ma-
lhas. Isso significa, por exemplo, que ao aplicar a MER para o método de Leith na
malha Ny × Nt = 8192 × 16384 com 8 níveis de extrapolação, obtemos uma solução
aproximadamente 2,275× 1024 vezes mais acurada, caso não aplicássemos a MER.

Por sua vez a Tab. 16 apresenta a razão entre Eh e Em para os métodos
analisados nas diversas malhas.

TABELA 16 – Eh/Em COM τ = 4 PARA OS MÉTODOS ESTUDADOS.

Ny ×Nt LS UDS-CN UDS-Explícito UDS-Implícito
128 × 512 7.440E+03 5.913E+01 5.046E+01 6.635E+01

256 × 1024 6.593E+05 6.433E+02 5.170E+02 7.507E+02
512 × 2048 1.119E+08 1.114E+04 8.369E+03 1.370E+04
1024 × 4096 9.375E+10 3.311E+05 2.406E+05 4.221E+05
2048 × 8192 3.956E+14 1.896E+07 1.392E+07 2.412E+07

4096 × 16384 7.375E+18 2.274E+09 1.690E+09 2.862E+09
8192 × 32768 - 5.641E+11 4.215E+11 7.056E+11

FONTE: O autor (2023).

Verificamos na Tab. 16 que os valores da razão Eh/Em no geral são menores
que os valores apresentado para τ = 2. Novamente o LS apresentou o maior valor em
todas as malhas.
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Na Fig. 56, apresentamos o erro numérico com (Em) e sem (Eh) a aplicação
da MER, para os métodos avaliados utilizando razão espaço-tempo τ = 4.

FIGURA 56 – ERRO NUMÉRICO COM E SEM MER PARA TODAS AS APROXIMAÇÕES
COM τ = 4.

FONTE: O autor (2023).

Notamos na Fig. 56 que os métodos de primeira ordem reduzem de forma
menos acentuada o erro de discretição com a MER (Em) e sem (Eh), já o de segunda
ordem foi o melhor em ambos os casos. Outro fator importante, é o refino da malha:
mesmo com a razão espaço-tempo maior, o decaimento da MER não foi significativo.

A Tab. 17 apresenta a razão Eh/Em, para τ = 8, para todos os métodos
analisados.

TABELA 17 – Eh/Em COM τ = 8 PARA OS MÉTODOS ESTUDADOS.

Ny ×Nt LS UDS-CN UDS-Explícito UDS-Implícito
128 × 1024 7.342E+03 5.190E+01 4.818E+01 5.544E+01
256 × 2048 6.735E+05 5.694E+02 5.153E+02 6.211E+02
512 × 4096 1.171E+08 9.973E+03 8.731E+03 1.119E+04
1024 × 8192 9.301E+10 2.898E+05 2.494E+05 3.314E+05

2048 × 16384 3.753E+14 1.650E+07 1.428E+07 1.881E+07
4096 × 32768 6.545E+18 1.979E+09 1.722E+09 2.242E+09
8192 × 65536 - 4.907E+11 4.283E+11 5.544E+11

FONTE: O autor (2023).

A Fig. 57 mostra a comparação do erro com e sem a MER, para τ = 8, para
todos os métodos avaliados nas diversas malhas.
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FIGURA 57 – ERRO NUMÉRICO COM E SEM MER PARA TODAS AS APROXIMAÇÕES
COM τ = 8.

FONTE: O autor (2023).

Constatamos na Fig. 57 que o comportamento continua padrão, destacando-se
o método LS em relação às Figs. 55 a 56. Com relação à Tab. 17, os valores para a
razão entre Eh e Em foram maiores para LS, repetindo o comportamento quando τ = 2

e 4.

Na Tab. 18, apresentamos a razão Eh/Em para os diversos métodos e malhas
e a Fig. 58 apresenta o comportamento do erro numérico com e sem MER para a
razão espaço-tempo τ = 16. Como podemos notar na Tab. 18 que os maiores valores
evidenciados para a razão Eh/Em são para o LS em todas as malhas também para
τ = 16. Podemos observar na Fig. 58, o comportamento do erro com (Em) e sem (Eh)
a MER continua satisfatório.

TABELA 18 – Eh/Em COM τ = 16 PARA OS MÉTODOS ESTUDADOS.

Ny ×Nt LS UDS-CN UDS-Explícito UDS-Implícito
128 × 2048 1.012E+03 3.523E+01 3.351E+01 3.693E+01
256 × 4096 4.473E+04 3.100E+02 2.900E+02 3.300E+02
512 × 8192 8.724E+06 4.516E+03 4.185E+03 4.854E+03

1024 × 16384 8.594E+09 1.280E+05 1.189E+05 1.372E+05
2048 × 32768 3.604E+13 7.666E+06 7.143E+06 8.198E+06
4096 × 65536 6.383E+17 9.500E+08 8.865E+08 1.014E+09

FONTE: O autor (2023).
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FIGURA 58 – ERRO NUMÉRICO COM E SEM MER PARA TODAS AS APROXIMAÇÕES
COM τ = 16.

FONTE: O autor (2023).

Finalmente, na Fig. 59, apresentamos o comportamento do erro numérico para
a razão espaço-tempo τ = 32 com (Em) e sem (Eh) a plicação da MER e a Tab. 19
apresenta a razão Eh/Em para os diversos métodos e malhas.

FIGURA 59 – ERRO NUMÉRICO COM E SEM MER PARA TODAS AS APROXIMAÇÕES
COM τ = 32.

FONTE: O autor (2023).

O comportamento apresentado na Fig. 59 para razão espaço-tempo τ = 32

é semelhante ao apresentado para as demais razões espaço-tempo (τ = 2, 4, 8 e
16), destacando-se o LS tanto com (Em) como sem (Eh) a aplicação da MER. Os
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resultados apresentados na Tab. 19 mostram que para a razão Eh/Em o comporta-
mento é semelhante as Tabs. 15, 16, 17 e 18, destacando-se o LS como evidenciado
graficamente.

TABELA 19 – Eh/Em COM τ = 32 PARA OS MÉTODOS ESTUDADOS.

Ny ×Nt LS UDS-CN UDS-Explícito UDS-Implícito
128 × 4096 1.024E+03 3.520E+01 3.433E+01 3.606E+01
256 × 8192 4.505E+04 3.063E+02 2.963E+02 3.162E+02
512 × 16384 8.734E+06 4.486E+03 4.319E+03 4.654E+03

1024 × 32768 8.498E+09 1.272E+05 1.226E+05 1.319E+05
2048 × 65536 3.490E+13 7.621E+06 7.357E+06 7.888E+06
4096 × 131072 5.955E+17 9.445E+08 9.123E+08 9.768E+08

FONTE: O autor (2023).

Portanto, com os erros numéricos com MER (Em) e sem sua aplicação (Eh),
utilizando diferentes razões espaço-tempo (τ = 2, 4, 8, 16 e 32) dados pelas Figs. 55 a
59; e as razões Eh/Em dadas pelas Tabs. 15 a 19, podemos observar que os melhores
resultados foram atingidos com o uso do método de Leith para as menores razões
espaço-tempo e para malhas mais refinadas, mas mesmo assim, excelentes resultados
foram alcançados para todos os métodos, razões espaço-tempo e malhas.

7.7 ANÁLISE DOS ESTIMADORES PARA A MER

Nesta seção apresentaremos os resultados dos estimadores U∆, Upm, Upmc, UΨ

e UΨ∗ (estimadores apresentados na Seção 4.2), além de suas efetividades Γ (dada
pela Eq. (4.22)) para os erros numéricos após a aplicação de MER (Em). Inicialmente
apresentando para a razão espaço-tempo τ = 2 e em seguida, para τ = 32. Para as
demais razões, as figuras encontram-se no Apêndice (B.1).

A Tab. 20 apresenta a efetividade Γ dos cinco estimadores analisados para o
método LS e τ = 2. Devemos lembrar que a estimativa é considerada acurada se Γ ≈ 1

e confiável se Γ ≥ 1 (MARCHI, 2001).

Notamos na Tab. 20 que Γ ≈ 1,449 para o estimador de Richardson (Upmc) e
que os demais estimadores não atendem a condição Γ ≈ 1. A efetividade do estimador
∆ cresce com o refino da malha, ou seja, ele não é um bom estimador para Em (é
confiável mas não é acurado). Os demais estimadores tendem a um valor, mas não
próximos da unidade. Podemos notar também que, mesmo o estimador Upmc sendo um
pouco acurado devido ao valor Γ ≈ 1,449 quando deveria ser Γ ≥ 1, ainda assim, ele é
confiável, pois Γ > 1 em todas as malhas.
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TABELA 20 – EFETIVIDADE DOS ESTIMADORES PARA τ = 2 COM O MÉTODO LS.

Ny ×Nt Γ(U∆) Γ(Upm) Γ(Upmc) Γ(UΨ) Γ(UΨ∗)
128×256 2,896E+03 1,951E+00 1,458E+00 9,038E+01 1,974E+00
256×512 2,986E+05 1,938E+00 1,451E+00 7,380E+01 1,943E+00
512×1024 2,787E+08 1,934E+00 1,450E+00 7,054E+01 1,936E+00

1024×2048 2,237E+11 1,933E+00 1,449E+00 6,977E+01 1,934E+00
2048×4096 2,125E+15 1,933E+00 1,449E+00 6,958E+01 1,933E+00
4096×8192 9,511E+20 1,933E+00 1,449E+00 6,953E+01 1,933E+00
8192×16384 2,385E+26 1,933E+00 1,449E+00 6,952E+01 1,933E+00

FONTE: O autor (2023).

A Fig. 60 mostra o erro numérico com a aplicação de MER (Em) e sem sua
utilização (Eh), além da estimativa de Richardson (Upm), para o método LS e τ = 2.
Nesta seção estamos optando por esboçar sempre as figuras com o estimador Upm
para a visualização dos erros e suas estimativas apenas por questões didáticas, pois,
como veremos, este não será sempre o melhor estimador.

FIGURA 60 – COMPARAÇÃO ENTRE O ERRO Em E SUA ESTIMATIVA Upm PARA τ = 2
COM O MÉTODO LS.

FONTE: O autor (2023).

Verificamos que a estimativa para o erro (Upm) está em grande conformidade
com o erro numérico após a aplicação de MER (Em), apesar de estar visualmente um
pouco acima, conforme Fig. 60.

Apresentamos na Fig. 61, uma comparação do erro numérico com a aplicação
de MER (Em) e sem sua utilização (Eh), além da estimativa de Richardson (Upm), para
o método UDS-CN e τ = 2. Verificamos que a estimativa e o erro estão em grande
conformidade, porém com a estimativa tendo valores levemente inferiores.
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FIGURA 61 – COMPARAÇÃO ENTRE O ERRO (Em) E SUA ESTIMATIVA Upm PARA τ = 2
COM O MÉTODO UDS-CN.

FONTE: O autor (2023).

A Tab. 21 apresenta a efetividade Γ dos cinco estimadores analisados para o
método UDS-CN e τ = 2.

TABELA 21 – EFETIVIDADE DOS ESTIMADORES PARA τ = 2 COM O MÉTODO UDS-CN.

Ny ×Nt Γ(U∆) Γ(Upm) Γ(Upmc) Γ(UΨ) Γ(UΨ∗)
128×256 4,251E+00 6,980E-01 3,368E-01 2,349E+00 7,543E-01
256×512 6,039E+01 6,922E-01 3,182E-01 1,484E+00 7,169E-01

512×1024 1,901E+03 6,897E-01 3,095E-01 1,238E+00 7,013E-01
1024×2048 5,600E+04 6,886E-01 3,053E-01 1,140E+00 6,942E-01
2048×4096 4,786E+06 6,880E-01 3,033E-01 1,097E+00 6,908E-01
4096×8192 7,971E+08 6,878E-01 3,023E-01 1,076E+00 6,891E-01

8192×16384 1,908E+11 6,876E-01 3,017E-01 1,066E+00 6,883E-01

FONTE: O autor (2023).

Observando os valores da efetividade (Γ), apresentados nesta tabela, verifica-
mos que entre os estimadores com Γ ≈ 1, temos o estimador Upm, o estimador UΨ∗ e o
estimador UΨ, apresentando respectivamente, as efetividades Γ ≈ 0,688, 0,688 e 1,066,
ou seja, Γ está mais próxima da unidade do que o LS.

Note que as efetividades dos estimadores U∆ e Upmc, além de não atenderem
a condição Γ ≈ 1, tais efetividades tende a crescer (no caso de U∆) ou tende a uma
constante não próxima da unidade (no caso de Upm), com com o refino da malha, ou
seja, não são bons estimadores. Neste caso temos que os estimadores Upm e UΨ∗ são
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pouco acurados e não confiáveis, enquanto que, o estimador UΨ é acurado e confiável,
para o método analisado.

Na Fig. 62 apresentamos o erro numérico com a aplicação de MER (Em), sem
sua aplicação (Eh) e a estimativa de Richardson (Upm), para o método UDS-Explícito
e τ = 2. Verificamos que há grande concordância entre Upm e Em, apesar de estar
visualmente um pouco abaixo.

FIGURA 62 – COMPARAÇÃO ENTRE O ERRO (Em) E SUA ESTIMATIVA Upm PARA τ = 2
COM O MÉTODO UDS-Explícito.

FONTE: O autor (2023).

A Tab. 22 apresenta a efetividade Γ dos cinco estimadores analisados para o
método UDS-Explícito e τ = 2.

TABELA 22 – EFETIVIDADE DOS ESTIMADORES PARA τ = 2 COM O MÉTODO UDS-
EXPLÍCITO.

Ny ×Nt Γ(U∆) Γ(Upm) Γ(Upmc) Γ(UΨ) Γ(UΨ∗)
128×256 3,360E+00 7,383E-01 3,267E-01 1,911E+00 7,996E-01
256×512 2,746E+01 7,261E-01 3,085E-01 1,286E+00 7,523E-01

512×1024 6,276E+02 7,206E-01 2,999E-01 1,097E+00 7,326E-01
1024×2048 2,471E+04 7,179E-01 2,958E-01 1,020E+00 7,237E-01
2048×4096 5,543E+05 7,166E-01 2,938E-01 9,850E-01 7,195E-01
4096×8192 4,770E+07 7,160E-01 2,928E-01 9,684E-01 7,174E-01

8192×16384 9,675E+10 7,157E-01 2,923E-01 9,602E-01 7,174E-01

FONTE: O autor (2023).
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Notamos que para UDS-Explítico, temos Γ ≈ 0,716, 0,717 e Γ ≈ 1, respectiva-
mente para Upm, UΨ∗ e UΨ. Novamente os outros estimadores não são bons, pois suas
efetividades tendem a crescer ou tendem a uma constante não próxima da unidade
com o refino da malha. E o estimadores Upm e UΨ∗ são um pouco mais acurados que
os demais, porém não confiáveis. O estimador UΨ é acurado e confiável em malhas
mais grosseiras, mas não confiável em malhas mais refinadas.

Para o método UDS-Implícito e τ = 2, a Fig. 63 apresenta Em, Eh e Upm

e a Tab. 23 apresenta a efetividade Γ dos cinco estimadores analisados. Tivemos
resultados análogos aos obtidos com o método UDS-Explícito exceto para UΨ que além
de confiável é acurado.

FIGURA 63 – COMPARAÇÃO ENTRE O ERRO (Em) E SUA ESTIMATIVA Upm PARA τ = 2
COM O MÉTODO UDS-IMPLÍCITO.

FONTE: O autor (2023).

TABELA 23 – EFETIVIDADE DOS ESTIMADORES PARA τ = 2 COM O MÉTODO UDS-
IMPLÍCITO.

Ny ×Nt Γ(U∆) Γ(Upm) Γ(Upmc) Γ(UΨ) Γ(UΨ∗)
128×256 3,772E+00 7,041E-01 3,382E-01 2,419E+00 7,606E-01
256×512 4,395E+01 7,015E-01 3,195E-01 1,489E+00 7,266E-01

512×1024 1,375E+03 7,004E-01 3,108E-01 1,233E+00 7,120E-01
1024×2048 6,577E+04 7,000E-01 3,065E-01 1,132E+00 7,056E-01
2048×4096 5,632E+06 6,997E-01 3,045E-01 1,088E+00 7,025E-01
4096×8192 1,323E+09 6,996E-01 3,034E-01 1,066E+00 7,010E-01

8192×16384 4,419E+11 6,996E-01 3,029E-01 1,056E+00 7,003E-01

FONTE: O autor (2023).
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Agora apresentaremos os resultados das efetividades Γ dos estimadores U∆,
Upm, Upmc, UΨ e UΨ∗, para os erros numéricos após a aplicação de MER (Em) con-
siderando a razão espaço-tempo τ = 32. As Tabs. 24, 25, 26 e 27 apresentam Γ,
respectivamente para os métodos LS, UDS-CN, UDS-Explícito e UDS-Implícito.

TABELA 24 – EFETIVIDADE DOS ESTIMADORES PARA τ = 32 COM O MÉTODO LS.

N Γ(U∆) Γ(Upm) Γ(Upmc) Γ(UΨ) Γ(UΨ∗)
128×4096 8,699E+02 7,311E-01 5,213E-01 1,296E+01 7,397E-01
256×8192 1,173E+05 7,274E-01 5,191E-01 5,975E-01 7,296E-01
512×16384 5,940E+07 7,267E-01 5,186E-01 2,656E-01 7,271E-01

1024×32768 6,918E+10 7,264E-01 5,185E-01 1,245E-01 7,265E-01
2048×65536 3,914E+06 7,263E-01 5,185E-01 6,036E-02 7,263E-01

FONTE: O autor (2023).

TABELA 25 – EFETIVIDADE DOS ESTIMADORES PARA τ = 32 COM O MÉTODO UDS-CN.

N Γ(U∆) Γ(Upm) Γ(Upmc) Γ(UΨ) Γ(UΨ∗)
128×4096 2,101E+01 7,311E-01 3,208E-01 2,091E+01 7,909E-01
256×8192 2,564E+00 7,285E-01 2,991E-01 1,267E+01 7,547E-01
512×16384 1,278E+00 7,277E-01 2,888E-01 1,031E+01 7,400E-01

1024×32768 8,319E+02 7,275E-01 2,839E-01 9,380E-01 7,334E-01
2048×65536 3,566E+04 7,274E-01 2,815E-01 8,960E-01 7,303E-01

FONTE: O autor (2023).

TABELA 26 – EFETIVIDADE DOS ESTIMADORES PARA τ = 32 COM O MÉTODO UDS-
EXPLÍCITO.

N Γ(U∆) Γ(Upm) Γ(Upmc) Γ(UΨ) Γ(UΨ∗)
128×4096 2,585E+00 7,326E-01 3,211E-01 2,082E+01 7,927E-01
256×8192 3,102E+00 7,297E-01 2,993E-01 1,266E+01 7,560E-01
512×16384 6,488E+02 7,288E-01 2,892E-01 1,031E+01 7,411E-01

1024×32768 2,106E+04 7,286E-01 2,843E-01 9,386E-01 7,345E-01
2048×65536 1,531E+06 7,284E-01 2,819E-01 8,968E-01 7,313E-01

FONTE: O autor (2023).

Dessa forma, observamos em todas as tabelas (Tabs. 24, 25, 26 e 27), que os
valores dos estimadores Upm e UΨ∗ para τ = 32, tem respectivamente Γ ≈ 0,726 e 0,730,
indiferente do método aplicado para a discretização. Neste caso os estimadores Upm
e UΨ∗ são um pouco acurados e não confiáveis (Γ < 1). O estimador U∆ é confiável
mas não acurado, o estimador Upmc não é nem confiável e nem acurado. Por sua vez
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TABELA 27 – EFETIVIDADE DOS ESTIMADORES PARA τ = 32 COM O MÉTODO UDS-
IMPLÍCITO.

N Γ(U∆) Γ(Upm) Γ(Upmc) Γ(UΨ) Γ(UΨ∗)
128×4096 2,096E+01 7,297E-01 3,206E-01 2,100E+01 7,894E-01
256×8192 3,215E+00 7,273E-01 2,988E-01 1,2683E+01 7,536E-01

512×16384 1,831E+00 7,268E-01 2,886E-01 9,373E-01 7,390E-01
1024×32768 4,017E+01 7,266E-01 2,836E-01 8,951E-01 7,325E-01
2048×65536 1,515E+01 7,266E-01 2,812E-01 8,751E-01 7,294E-01

FONTE: O autor (2023).

o estimador UΨ é pouco acurado e não confiável para os métodos UDS-CN, UDS-
Explícito e UDS-Implícito, e não sendo nem acurado e nem confiável para o método
LS.

Portanto, com os erros numéricos e suas estimativas para τ = 2, dadas pelas
Figs. 60 a 63; e as efetividades dos estimadores para τ = 2 e 32, dadas pelas Tabs. 20 a
27, podemos observar que, dentre todos os estimadores, o estimador U∆ não é acurado
mas é confiável, independente do método de discretização e da razão espaço-tempo
utilizados. Portanto, nossa análise a seguir irá desconsiderar tal estimador.

Para baixas razões espaço-tempo, o método UDS-Explícito não teve nenhum
estimador que fosse acurado e confiável simultaneamente. Entretanto, o método LS
para Upm e UΨ∗ são confiáveis e não acurados, Upmc é confiável e pouco acurado e UΨ é
acurado mas não confiável. Para os métodos UDS-CN e UDS-Implícito os estimadores
Upm e UΨ∗ são acurados e não confiáveis, Upmc não é confiável e nem acurado e UΨ é
acurado e confiável.

Para altas razões espaço-tempo, todos métodos tiveram estimadores não
confiáveis, pois Γ < 1 para todos eles exceto para U∆, o que na prática significa que
os erros são superiores às suas estimativas, causando um pouco de insegurança
ao admitir tais estimativas. Entretanto, pelas Figs. 60 a 63, vimos que, apesar das
estimativas serem não confiáveis, elas são precisas, podendo ser usadas com cautela.
Para isso, vemos que todos os métodos tiveram estimadores acurados, exceto o
estimador Upmc que não foi acurado para nenhum dos métodos.

Uma ressalva deve-se fazer: na busca por estimadores acurados e confiáveis
para altas razões espaço-tempo, podemos usar qualquer um dos métodos, mas levando
em consideração apenas as malhas mais grossas.

Uma possível explicação para não termos estimadores acurados e confiáveis
para qualquer método, qualquer razão espaço-tempo ou qualquer grau de refino de
malha, pode ser pelo fato da análise de erros (MER e estimativas) ser feita a partir
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de uma solução analítica fabricada a partir de dados experimentais, ou seja, não é
uma solução analítica do modelo teórico de Thorpe e que não tem solução analítica
conhecida. Outra possível explicação, pode ser por conta das ordens verdadeiras
teóricas utilizadas na aplicação da MER. A partir da segunda ordem verdadeira não
conseguimos definir com precisão seus valores no modelo, dado que o mesmo possui
muitos parâmetros que influenciam diretamente esses valores.

Assim, se faz necessário mais estudos para se obter um estimador acurado
e confiável para nossos modelos numéricos, independente da razão espaço-tempo.
Apesar disso, conseguimos encontrar estimadores acurados e em alguns casos também
confiáveis para as baixas razões espaço-tempo.
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8 CONCLUSÃO

Nesta seção apresentamos as conclusões gerais obtidas ao longo do trabalho,
bem como as principais contribuições e finalmente as propostas para trabalhos futuros.

8.1 OBSERVAÇÕES GERAIS

Inicialmente, propomos a comparação entre as soluções numéricas pelos
MDF e MVF com diferentes esquemas de aproximações numéricas para o problema
de aeração da massa de grãos dado pelo modelo de Thorpe. Tais esquemas de
aproximação são: UDS-CN, UDS-Explícito e UDS-Implícito (métodos de primeira ordem)
e CDS-CN e LS (métodos de segunda ordem). No caso dos métodos de segunda
ordem, aplicamos a viscosidade artificial para evitar oscilações. Usando a variável de
interesse do tipo da Fig. 11 e razão espaço-tempo τ = 2, foram efetuadas análises do
erro de discretização (Eh) para diferentes malhas (Ωh) utilizando a solução fabricada.
Neste caso, o MVF destacou-se por apresentar o menor erro se comparado com o
MDF (método comumente usado na literatura para este tipo de problema). Portanto,
decidimos utilizar tal método na análises posteriores.

Dando sequência, fizemos um estudo das ordens efetiva (pE) do erro de
discretização para o MVF, para as aproximações abordadas, com diferentes razões
espaço-tempo (τ = 2, 4, 8, 16, 32 e 64). Mostramos que, para um coeficiente de
viscosidade artificial (λ) fixo, pE tende à ordem assintótica (pL) nas aproximações de
segunda ordem (CDS-CN e LS), somente para razões espaço-tempo elevadas, por
exemplo, τ = 64.

Assim, para obter uma convergência adequada de pE para pL = 2, indepen-
dente de τ , foi estabelecida uma relação para a variação λ, onde a razão dos erros
entre as malhas fina e grossa é levada em consideração.

Posteriormente, analisamos a influência da razão espaço-tempo no modelo.
Para isso, efetuamos verificações através do decaimento da norma do erro e constata-
mos que τ = 2 é a melhor razão espaço-tempo. Verificamos também que os métodos
de segunda ordem apresentaram decaimento do erro mais rápido do que os de pri-
meira ordem, conforme esperado. Devemos frisar que o método LS destaca-se entre
os métodos de segunda ordem, enquanto que o método UDS-Explícito entre os de
primeira ordem.

No passo seguinte, foram efetuadas análises das ordens de complexidade de
todos os métodos, usando para isto, o efeito do número de incógnitas (N ) sobre o
tempo de CPU (tCPU ), para diferentes razões espaço-tempo. O método LS apresentou
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melhor tempo de CPU que os demais e foi seguido pelo UDS-Explícito.

Na sequência, aplicamos MER para obtermos uma redução dos erros de
discretização em todos os métodos, exceto CDS-CN por apresentar problemas de
convergência em malhas refinadas. Novamente o LS se sobressaiu entre os métodos.
Efetuamos a análise da MER para diferentes razões espaço-tempo e mais uma vez o
τ = 2 apresentou os melhores resultados.

Finalmente, efetuando o teste de efetividade para os diversos métodos estuda-
dos, verificamos que o estimador U∆ não é acurado nem confiável, independente do
método de discretização e razões espaço-tempo utilizadas. Com relação aos estimado-
res Upm, Upmc, UΨ e UΨ∗ : para baixas razões espaço-tempo, o método UDS-Explícito não
teve nenhum estimador que fosse acurado e confiável simultaneamente exceto o U∆

que é confiável mas não acurado. Entretanto, os métodos LS, UDS-CN e UDS-Implícito
tiveram resultados variando de acordo com o estimador.

Ainda, para baixas abnisotropias o método de segunda ordem LS para os
estimadores Upm e UΨ∗ são confiáveis e não acurados, Upmc é confiável e pouco
acurado e UΨ é acurado mas não confiável. Os métodos de primeira ordem UDS-CN e
UDS-Implícito os estimadores Upm e UΨ∗ são acurados e não confiáveis, Upmc não é
confiável e nem acurado e UΨ é acurado e confiável.

Para altas razões espaço-tempo, todos os métodos tiveram estimadores não
confiáveis, exceto para o estimador U∆ que é confiável mas não acurado. Portanto, na
busca por estimadores acurados e confiáveis para tais razões espaço-tempo, podemos
usar qualquer um dos métodos (LS, UDS-CN, UDS-Implícito e UDS-Explícito), mas
levando em cosideração o estimador mais adequado.

Portanto, o modelo do processo de aeração da massa de grãos proposto
por Thorpe (2001b) é descrito muito bem pelo MVF, provando que o LS é a melhor
aproximação a serem utilizada com e sem a aplição da MER. O método também foi
eficiente em relação à razão espaço-tempo, pois em diversas simulações, a menor
razões espaço-tempo (τ = 2) obteve melhores resultados.

8.2 PRINCIPAIS CONTRIBUIÇÕES

• Propomos uma solução numérica para o modelo de Thorpe pelo MVF, mostramos
sua concordância e melhor acurácia se comparada ao MDF (método comumente
utilizado na literatura).

• Propomos uma relação na escolha do fator de viscosidade artificial para garantir
a ordem adequada do erro de discretização em métodos de segunda ordem,
mesmo para razões espaço-tempo baixas.
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• Analisamos a influência dos diferentes razões espaço-tempo nos diferentes méto-
dos numéricos propostos.

• Reduzimos radicalmente o erro de discretização com a aplicação da Múltipla
Extrapolacao de Richardson (MER) para diferentes razões espaço-tempo.

• Mostramos o comportamento de diversos estimadores de erros e elegemos o
estimador de Richardson para o modelo proposto.

8.3 PROPOSTAS DE TRABALHOS FUTUROS

• Analisar os estimadores para outras sequências de ordens verdadeiras.

• Utilizar outras aproximações de segunda ordem, ou ordens mais elevadas, que
possam minimar ou eliminar as oscilações.

• Desenvolver o MVF utilizando arranjo desencontrado para as variáveis.

• Analisar a influência da anisotropia física.

• Usar outras técnicas para discretizar os volumes no contorno, como por exemplo,
a técnica de balanços para os volumes de fronteira.

• Utilizar outros tipos de grãos verificando a ingfluência das constantes do grão no
modelo proposto.

• Implementar o modelo matemático em 2D e fazer uma análise de erros similar ao
que foi feita.

• Resolver os sistemas gerados pelos problemas 2D com outros solvers e acelera-
dores de convergência.

• Discretizar o modelo em outros tipos de malhas.

• Aplicar paralelismo para otimizar o tempo de simulação, quando possível.

• Verificar a melhor técnica ou das melhores combinações de técnicas para sistemas
em escala comercial.

• Efetuar simulações de sistemas de controle em que a tomada de decisões é
baseada na simulação do processo.
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APÊNDICE A –

A.1 TEMPO DE CPU EM RELAÇÃO AS RAZÕES ESPAÇO-TEMPO τ = 2, 4, 8, 16,
32 E 64

TABELA 28 – TEMPO DE CPU EM RELAÇÃO À τ PARA O MÉTODO CDS-CN.

Ny τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 64
8 1,562E-02 1,562E-02 4,688E-02 1,406E-01 2,500E-01 5,625E-01

16 3,125E-02 4,688E-02 9,375E-02 5,625E-01 9,375E-01 2,172E+00
32 1,094E-01 2,188E-01 4,062E-01 1,906E+00 3,547E+00 7,453E+00
64 4,062E-01 8,594E-01 1,609E+00 7,359E+00 1,391E+01 2,759E+01
128 1,766E+00 3,453E+00 6,922E+00 2,792E+01 5,397E+01 1,078E+02
256 6,781E+00 1,386E+01 2,767E+01 1,065E+02 2,120E+02 4,245E+02
512 2,745E+01 5,500E+01 1,101E+02 4,386E+02 8,446E+02 1,696E+03

1024 1,111E+02 2,197E+02 4,383E+02 1,688E+03 3,370E+03 -
2048 4,498E+02 7,985E+02 1,755E+03 - - -
4096 1,821E+03 - - - - -

FONTE: O autor (2023).

TABELA 29 – TEMPO DE CPU EM RELAÇÃO À τ PARA O MÉTODO LS.

Ny τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 64
8 7,812E-03 3,125E-02 1,562E-02 4,688E-02 6,250E-02 1,719E-01
16 1,562E-02 3,125E-02 7,812E-02 1,406E-01 2,500E-01 4,688E-01
32 3,125E-02 1,562E-01 2,656E-01 5,156E-01 8,594E-01 1,922E+00
64 2,656E-01 4,219E-01 1,078E+00 1,969E+00 4,266E+00 8,719E+00

128 1,078E+00 1,906E+00 4,250E+00 8,656E+00 1,742E+01 3,544E+01
256 4,469E+00 8,609E+00 1,780E+01 3,492E+01 7,036E+01 1,413E+02
512 1,772E+01 3,450E+01 7,089E+01 1,398E+02 2,806E+02 5,607E+02
1024 7,044E+01 1,408E+02 2,826E+02 5,595E+02 1,119E+03 2,237E+03
2048 2,553E+02 5,630E+02 1,119E+03 2,245E+03 4,487E+03 8,848E+03
4096 1,122E+03 2,217E+03 4,479E+03 8,932E+03 1,785E+04 -
8192 4,433E+03 8,855E+03 1,758E+04 - - -

16384 1,756E+04 - - - - -

FONTE: O autor (2023).
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TABELA 30 – TEMPO DE CPU EM RELAÇÃO À τ PARA O MÉTODO UDS-CN.

Ny τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 64
8 1,562E-02 1,562E-02 1,562E-02 1,250E-01 2,188E-01 6,094E-01
16 3,125E-02 6,250E-02 1,094E-01 4,375E-01 9,375E-01 1,938E+00
32 1,094E-01 2,031E-01 4,219E-01 1,797E+00 3,438E+00 7,297E+00
64 4,375E-01 8,750E-01 1,750E+00 6,734E+00 1,356E+01 2,695E+01

128 1,734E+00 3,375E+00 6,797E+00 2,650E+01 5,289E+01 1,062E+02
256 6,750E+00 1,361E+01 2,742E+01 1,054E+02 2,102E+02 4,203E+02
512 2,616E+01 5,462E+01 1,077E+02 4,196E+02 8,380E+02 1,680E+03
1024 1,082E+02 2,171E+02 4,301E+02 1,677E+03 3,353E+03 7,127E+03
2048 4,242E+02 8,668E+02 1,733E+03 7,201E+03 1,480E+04 2,957E+04
4096 1,709E+03 3,467E+03 6,984E+03 2,901E+04 5,974E+04 -
8192 6,883E+03 1,386E+04 2,814E+04 - - -

16384 2,772E+04 - - - - -

FONTE: O autor (2023).

TABELA 31 – TEMPO DE CPU EM RELAÇÃO À τ PARA O MÉTODO UDS-EXPLÍCITO.

Ny τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 64
8 1,562E-02 3,125E-02 4,688E-02 3,125E-02 6,250E-02 1,406E-01
16 7,813E-02 1,406E-01 2,656E-01 9,375E-02 2,969E-01 4,844E-01
32 2,187E-01 4,375E-01 9,844E-01 5,312E-01 8,281E-01 2,031E+00
64 9,219E-01 1,703E+00 3,312E+00 2,109E+00 3,984E+00 8,359E+00

128 3,344E+00 6,609E+00 1,319E+01 8,609E+00 1,686E+01 3,391E+01
256 1,308E+01 2,606E+01 5,198E+01 3,406E+01 6,748E+01 1,358E+02
512 5,183E+01 1,034E+02 2,066E+02 1,368E+02 2,692E+02 5,415E+02
1024 2,069E+02 4,131E+02 8,241E+02 5,281E+02 1,076E+03 2,162E+03
2048 8,282E+02 1,648E+03 3,304E+03 2,159E+03 4,340E+03 8,594E+03
4096 3,311E+03 6,573E+03 1,318E+04 8,549E+03 1,716E+04 -
8192 1,324E+04 2,621E+04 5,258E+04 - - -

16384 5,281E+04 - - - - -

FONTE: O autor (2023).



Apêndice B 142

TABELA 32 – TEMPO DE CPU EM RELAÇÃO À τ PARA O MÉTODO UDS-IMPLÍCITO.

Ny τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 64
8 1,562E-02 4,688E-02 7,812E-02 1,562E-02 6,250E-02 1,562E-01
16 4,688E-02 1,094E-01 2,344E-01 7,812E-02 2,969E-01 5,000E-01
32 2,344E-01 4,062E-01 9,375E-01 5,000E-01 7,969E-01 1,859E+00
64 8,750E-01 1,781E+00 3,391E+00 2,062E+00 3,906E+00 8,516E+00

128 3,422E+00 6,922E+00 1,322E+01 8,672E+00 1,638E+01 3,480E+01
256 1,316E+01 2,634E+01 5,227E+01 3,480E+01 6,850E+01 1,381E+02
512 5,223E+01 1,045E+02 2,082E+02 1,384E+02 2,739E+02 5,512E+02
1024 2,087E+02 4,165E+02 8,335E+02 5,515E+02 1,064E+03 2,199E+03
2048 8,345E+02 1,664E+03 3,335E+03 2,186E+03 4,400E+03 8,786E+03
4096 3,345E+03 6,649E+03 1,334E+04 8,630E+03 1,743E+04 -
8192 1,341E+04 2,656E+04 5,336E+04 - - -

16384 5,374E+04 - - - - -

FONTE: O autor (2023).
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B.1 COMPARAÇÃO ENTRE MER E A ESTIMATIVA DE RICHARDSON Upm PARA AS
RAZÕES ESPAÇO-TEMPO τ = 4, 8, 16 E 32 COM OS DIVERSOS MÉTODOS

FIGURA 64 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 4 COM LS.

FONTE: O autor (2023).

FIGURA 65 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 4 COM UDS-CN.

FONTE: O autor (2023).
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FIGURA 66 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 4 COM UDS-
EXPLÍCITO.

FONTE: O autor (2023).

FIGURA 67 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 4 COM UDS-
IMPLÍCITO.

FONTE: O autor (2023).
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FIGURA 68 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 8 COM LS.

FONTE: O autor (2023).

FIGURA 69 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 8 COM UDS-CN.

FONTE: O autor (2023).
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FIGURA 70 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 8 COM UDS-
EXPLÍCITO.

FONTE: O autor (2023).

FIGURA 71 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 8 COM UDS-
IMPLÍCITO.

FONTE: O autor (2023).
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FIGURA 72 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 16 COM LS.

FONTE: O autor (2023).

FIGURA 73 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 16 COM UDS-
CN.

FONTE: O autor (2023).
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FIGURA 74 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 16 COM UDS-
EXPLÍCITO.

FONTE: O autor (2023).

FIGURA 75 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 16 COM UDS-
IMPLÍCITO.

FONTE: O autor (2023).
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FIGURA 76 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 32 COM LS.

FONTE: O autor (2023).

FIGURA 77 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 32 COM UDS-
CN.

FONTE: O autor (2023).
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FIGURA 78 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 32 COM UDS-
EXPLÍCITO.

FONTE: O autor (2023).

FIGURA 79 – COMPARAÇÃO ENTRE MER E A ESTIMATIVA Upm PARA τ = 32 COM UDS-
IMPLÍCITO.

FONTE: O autor (2023).
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ANEXO A –

A.1 DETALHES DO MODELO MATEMÁTICO

Neste capítulo, é apresentado com detalhes o modelo matemático desenvolvido
por Thorpe (2001a), utilizando a descrição apresentada por Kwiatkowski Jr. (2011).

O modelo considera as relações psicrométricas nas equações de balanço
de massa e energia. Assim, considerando um volume da camada de grãos, a lei de
conservação da massa de grãos implica que não há criação nem destruição da massa
neste volume de controle. Sendo que a taxa na qual o ar seco entra na massa de
grãos está sendo expresso por ρaua, onde o último termo é a velocidade do ar, e
considerando um deslocamento ∆y, após este deslocamento a densidade do ar e a
velocidade mudam respectivamente para ρa + ∂ρa

∂y
∆y e ua + ∂ua

∂y
∆y.

Sendo a taxa de massa acumulada no volume da massa de grãos igual à taxa
de massa que entra neste volume menos a taxa que sai, e considerando ε a porosidade,
o volume de ar no domínio (dado por ε.1.∆y) e a taxa de mudança de densidade do ar
no domínio (dada por ∂ρa

∂t
), temos:

ε
∂ρa
∂t

∆y = ρaua −

(
ua +

∂ua
∂y

∆y

)(
ρa +

∂ρa
∂y

∆y

)
, (A.1)

onde: ua - velocidade do ar seco (ms−1), ρa - massa específica do ar intergranular
(kgm−3), ε - porosidade da massa de grãos (decimal), t - tempo (s) e ∆y - altura da
camada (m).

Efetuando as operações elementares na Eq. (A.1) e fazendo ∆y tender a zero,
obtemos assim a equação de conservação da massa de ar seco fluindo em um meio
poroso unidimensional, dada por

ε
∂ρa
∂t

+
∂(ρaua)

∂y
= 0. (A.2)

Considerando a porosidade (ε) da massa de grãos e a densidade dos grãos
(ρσ) constantes, o balanço da massa de conservação de massa de água (a umidade
acumulada na massa de grãos) é dada por ρσ(1 − ε)∂U

∂t
. O balanço de massa de

umidade ocorre de forma análoga ao balanço do ar seco, portanto,

ε
∂ρφ
∂t

+ uφ
∂ρφ
∂y

+ ρφ
∂uφ
∂y

+ ρσ(1− ε)
∂U

∂t
= 0, (A.3)

onde: uφ - velocidade de Darcy do vapor da água (ms−1), ρφ - densidade do vapor da
umidade do ar intersticial (kgm−3) e ρσ - densidade dos grãos, (kgm−3).
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Sempre que a primeira lei da termodinâmica é aplicada a processos que
envolvem fluxo, mudanças na energia potencial e cinética do ar podem, frequentemente,
ser ignoradas. Considerando um sistema fechado como a aeração, e dado que nenhum
trabalho é realizado pelo sistema, o balanço de energia se reduz ao balanço de
entalpia (THORPE, 2001a), pois a primeira lei da termodinâmica diz que a energia total
transferida para um sistema é igual à variação da sua energia interna, isto é:

Energia interna = calor + trabalho + radiação.

Quando esta variação forma um sistema fechado como da aeração da massa
de grãos onde depende unicamente de dois estados o inicial e o final esta variação é
dada por:

Energia interna = calor - trabalho.

A quantidade de radiação é nula pois, em sistema fechado, não se verificam
absorções nem emissões de radiação. A energia interna é definida como a soma das
energias cinéticas e de interação de seus constituintes. Este princípio enuncia, então, a
conservação de energia.

Logo, o balanço de entalpia é expresso por:

ε
∂ρaha
∂t

∆y + ε
∂ρφhϑ
∂t

∆y + (1− ε)ρσ
∂H

∂t
∆y =

(
ρauaha + ρφuφhϑ − keff

∂T

∂y

)
+

−

(
ρauaha +

∂ρauaha
∂y

∆y + ρφuφhϑ +
∂ρφuφhϑ

∂y
∆y − keff

(
∂T

∂y
+

∂

∂y

(
∂T

∂y

)))
∆y.

(A.4)

Aplicando a regra do produto da diferenciação na Eq. (A.4) temos,

(1− ε)ρσ
∂H

∂t
+ ε

∂(haρa)

∂t
+ ε

∂(hϑρφ)

∂t
ha +

∂(ρaua)

∂y
+

+ρaua
∂ha
∂y

+ hϑ
∂(ρφuφ)

∂y
+ ρφuφ

∂hϑ
∂y

= keff
∂2T

∂y2
,

(A.5)

onde: ua - velocidade de Darcy do ar seco (ms−1), uφ - velocidade de Darcy do vapor da
água (ms−1), ρa - densidade do ar seco (kgm−3), ρφ - densidade do vapor da umidade
do ar intersticial (kg m−3), ρσ - densidade dos grãos (kgm−3), ha - entalpia específica do
ar seco (Jkg−1), hϑ - entalpia específica da umidade (Jkg−1), H - entalpia específica
dos grãos úmidos (Jkg−1), T - temperatura dos grãos (◦C), keff - condutividade térmica
da massa de grãos (Wm−1s−1), ε - porosidade da massa de grãos (decimal), t - tempo
(s) e ∆y - altura da camada (m).
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Multiplicando a entalpia do ar seco (ha) pela Eq. (A.2) do balanço da massa de
ar seco, e fazendo o produto entre a Eq. (A.3) do balanço de massa da umidade pela
entalpia da umidade (hϑ), temos, respectivamente as Eqs. (A.6) e (A.7):

εha
∂ρa
∂t

+ ha
∂(ρaua)

∂y
= 0 (A.6)

e
εhϑ

∂ρφ
∂t

+ hϑuφ
∂ρφ
∂y

+ hϑρφ
∂uφ
∂y

= −hϑρσ(1− ε)
∂U

∂t
. (A.7)

Substituindo as Eqs. (A.6) e (A.7) na Eq. (A.5) de balanço de entalpia, obtere-
mos:

ρσ(1−ε)
∂H

∂t
+ερa

∂ha
∂t

+ερφ
∂hϑ
∂t

+ρaua
∂ha
∂y

+ρφuφ
∂hϑ
∂y
−ρσhϑ(1−ε)

∂U

∂t
= keff

∂2T

∂y2
. (A.8)

Segundo Thorpe (2001a), a entalpia específica dos grãos úmidos, é dada por

H = hoσ + cσ(T − T o) + U
[
hoϑ + cW (T − T o)

]
+HW , (A.9)

onde: H - entalpia específica dos grãos úmidos (Jkg−1), HW - calor de umedecimento
dos grãos (Jkg−1), U - teor de água da massa de grãos (b.s.), T - temperatura dos
grãos ◦C; T o - temperatura de referência (0◦C), hoσ - entalpia específica dos grãos na
temperatura de referência (Jkg−1), hoϑ - entalpia específica da umidade na temperatura
de referência, (Jkg−1), cσ - calor específico dos grãos (Jkg−1◦C) e cW - calor específico
do vapor da água (Jkg−1◦C).

Diferenciando a Eq. (A.9) obtemos o calor de umedecimento dos grãos e logo
após, aplicando as propriedades de integração no intervalo [0,U ] e substituindo na Eq.
(A.9), temos:

∂H

∂U
= hoϑ + cW (T − T o) + hW , (A.10)

sendo: hW - entalpia específica do vapor de água (Jkg−1◦C).

Diferenciando a Eq. (A.9) em relação à temperatura, obtemos:

∂H

∂T
= cσ + cWU +

∂HW

∂T
. (A.11)

Utilizando as Eqs. (A.10) e (A.11)) em

∂H

∂t
=
∂H

∂U

∂U

∂t
+
∂H

∂T

∂T

∂t
, (A.12)

temos,

∂H

∂t
=
(
hoϑ + cW (T − T o) + hW

)∂U
∂t

+

(
cσ + cWU +

∂HW

∂T

)
∂T

∂t
. (A.13)
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Em substâncias como o ar, que não há mudança de fase indiferente da tempe-
ratura em condições atmosféricas normais, a entalpia específica por unidade de massa
é,

ha = ho + ca(T − T o), (A.14)

onde: ha - entalpia específica do ar (Jkg−1), T - temperatura dos grãos (◦C), T o -
temperatura de referência (0◦C), ho - entalpia específica do ar na temperatura de
referência (Jkg−1) e ca - calor específico do ar (Jkg−1)◦C.

Assumindo que o calor específico do ar e do vapor de água são constantes,
diferenciando a Eq. (A.14), obtemos,

∂ha
∂t

= ca
∂T

∂t
(A.15)

e
∂ha
∂y

= ca
∂T

∂y
. (A.16)

A equação que define a entalpia específica do vapor de água, é dada por

hW = hoW + cW (T − T oW ) + hφ, (A.17)

onde: hW - entalpia específica do vapor da água (Jkg−1), T - temperatura dos grãos
(◦C), T oW - temperatura de referência (0◦C) com relação ao vapor de água nos grãos
(◦C), hoW - entalpia específica da água na temperatura de referência T oW (Jkg−1), cW -
calor específico da água, (Jkg−1◦C) e hφ - entalpia específica de vaporização da água
(Jkg−1).

Aplicando a regra da cadeia da derivação na Eq. (A.17), mas para isto dei-
xaremos claro que a entalpia específica de vaporização da água é uma função que
depende somente da temperatura, logo podemos aplicar tal regra. Assim, teremos

∂hϑ
∂t

= cW
∂T

∂t
+
∂hφ
∂T

∂T

∂t
(A.18)

e
∂hϑ
∂y

= cW
∂T

∂y
+
∂hφ
∂T

∂T

∂y
. (A.19)

Substituindo as Eqs. (A.13), (A.15), (A.16), (A.18) e (A.19) na Eq. (A.8), temos

ρσ(1− ε)

[(
hoϑ + cW (T − T o) + hW

)
∂U

∂t
+

(
cσ + cWU +

∂HW

∂T

)
∂T

∂t

]
+

+ερaca
∂T

∂t
+ ερφ

(
cW

∂T

∂t
+
∂hφ
∂T

∂T

∂t

)
+ ρauaca

∂T

∂y
+ ρφuφ

(
cW

∂T

∂y
+
∂hφ
∂T

∂T

∂y

)
+

−ρσhϑ(1− ε)
∂U

∂t
= keff

∂2T

∂y2
. (A.20)
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Assim reescrevendo a Eq. (A.8) do balanço de entalpia, teremos a expressão

ρσ(1− ε)
[
hoϑ + cW (T − T o) + hW

]∂U
∂t

+ ρσ(1− ε)
[
cσ + cWU +

∂HW

∂T

]∂T
∂t

+

+ε
[
ρaca + ρφcW + ρφ

∂hφ
∂T

]∂T
∂t

+
[
ρauaca + ρφuφcW + ρφuφ

∂hφ
∂T

]∂T
∂y

+

−ρσ(1− ε)
[
hoϑ + cW (T − T o) + hφ

]∂U
∂t

= keff
∂2T

∂y2
.

(A.21)

Considerando as velocidades do vapor da água (uφ) e do ar seco (ua) iguais.
Já a umidade do ar (R) nos poros intergranulares, pode ser aproximada por

R =
ρφ
ρa
. (A.22)

Reescrevendo a Eq. (A.21) por meio das Eqs. (A.6) e (A.7) e substituindo uaρa
por fa, obteremos

ρσ(1− ε)
[
cσ + cWU +

∂HW

∂T

]∂T
∂t

+ ερσ

[
ca +R

(
cW +

∂hφ
∂T

)]∂T
∂t

+

−ρσ(1− ε)hs
∂U

∂t
+ fa

[
cσ + cWU +

∂HW

∂T

]∂T
∂t

= keff
∂2T

∂y2
.

(A.23)

A fim de considerarmos a deteriorização dos grãos, incluímos o termo fonte

(1− ε)ρσ
dm

dt
(Qr − 0,6hφ), (A.24)

em que, ε - porosidade da massa de grãos (decimal), ρσ - densidade dos grãos (kgm−3),
dm
dt

- derivada da perda de materia seca em relação ao tempo (kgs−1), Qr - calor de
oxidação dos grãos (Js−1m−3) e hφ - entalpia específica de vaporização da água
(Jkg−1).

Expressando em termos de fa a Eq. (A.3), utilizando a Eq. (A.22) e logo após
usando a Eq. (A.2), teremos

(1− ε)ρσ
∂U

∂t
+ fa

∂R

∂y
= 0. (A.25)

Levando em conta a deteriorização dos grãos, obtemos o termo fonte,

dm

dt
(0,6 + U). (A.26)
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Logo, a equação de balanco de massa e energia, é dada por{
ρσ(1− ε)

[
cσ + cWU +

∂HW

∂T

]
+ ερa

[
ca +R

(
cW +

∂hφ
∂T

)]}∂T
∂t

=

= ρσ(1− ε)hs
∂U

∂t
− fa

[
cσ +R

(
cW +

∂hφ
∂T

)]∂T
∂y

+

+keff
∂2T

∂y2
+ (1− ε)ρσ

dm

dt
(Qr − 0,6hφ)

(A.27)

e
(1− ε)ρσ

∂U

∂t
= −fa

∂R

∂y
+
dm

dt
(0,6 + U). (A.28)

Segundo Muir e Jayas (2003), a condutividade térmica (keff) pode ser des-
considerada, pois a massa de grãos apresenta baixa condutividade térmica tendo
maior influência nos grãos próximos a parede do silo. Como o modelo apresentado
é unidimensional, o termo keff

∂2T
∂y2

não apresentou grande importância durante as
simulações.

De acordo com Navarro e Noyes (2001) o termo ∂HW

∂T
pode resultar em valores

incoerentes, pois ele depende de valores empíricos. Os autores negligenciarão este
termo durante o processo de aeração sem afetar os dados.
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