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RESUMO

A escala de producao agricola tem se intensificado a cada ano, desta forma se faz ne-
cessario o estudo de novas tecnologias e métodos tanto para a produgédo quanto para o
pbs-colheita. Dessa forma, o principal objetivo deste trabalho é estimar e reduzir o erro
de discretizacao na simulacgéao feita a partir da modelagem matematica do processo de
aeragao da massa de graos utilizando o modelo proposto por Thorpe. Para a solugéo
desse modelo, efetuamos a discretizagéo pelo método dos volumes finitos (MVF), com
diferentes malhas e variamos a razdo espaco-tempo. Para a discretizagao do modelo,
utilizamos aproximagodes de segunda ordem, CDS-CN (Central Difference Scheme -
Crank-Nicolson) e LS (Leith Scheme), usando a viscosidade artificial para controlar as
oscilagdes nao fisicas geradas pelos métodos, e as aproximacdes de primeira ordem
UDS-CN (Upwind Difference Scheme), UDS-Explicito e UDS-Implicito. Inicialmente,
comparamos o MVF com o método das diferengas finitas (MDF) amplamente utilizado
na literatura, verificando-se que o MVF apresenta erro menor do que o MDF, utilizando-
se como base a solucao fabricada. Para a ordem de acuracia das aproximagdes de
primeira ordem, verificamos que a ordem efetiva tende a ordem assintética e que seus
valores sao coerentes, indiferente da razao espaco-tempo. Para as aproximacdes de
segunda ordem o0 mesmo nao ocorre, devido as oscilagdes nao fisicas e, portanto, a
dependéncia de uma razao espacgo-tempo elevada. Assim, utilizando-se viscosidade
artificial, dependente da malha, obtivemos valores para a ordem efetiva satisfatério,
mesmo para as razdes espaco-tempo mais baixas. Para a aplicacao da MER (Mdltipla
Extrapolacéo de Richardson), o LS teve melhor desempenho. Finalmente, analisamos
cinco estimadores de erro para a MER, sendo eles, Richardson, Richardson corrigido,
A, U e U* dentre todos os estimadores, o estimador A ndo é acurado nem confiavel,
independente do método de discretizagdo e a razdo espaco-tempo utilizadas. Com
relagéo aos estimadores Richardson, Richardson corrigido, ¥ e U*: para baixas razées
espaco-tempo, o método UDS-Explicito ndo teve nenhum estimador que fosse acurado
e confiavel simultaneamente. Entretanto, os métodos LS, UDS-CN e UDS-Implicito
tiveram os respectivos estimadores Richardson, ¥ e U*, acurados e confidveis. Para
altas razdes espaco-tempo, todos métodos tiveram estimadores ndo confiaveis. Entre-
tanto, na busca por estimadores acurados e confiaveis para tais razdes espaco-tempo,
podemos usar qualquer um dos métodos (LS, UDS-CN, UDS-Explicito e UDS-Implicito),
mas levando em consideragdo apenas as malhas mais grossas. Portanto, 0 modelo do
processo de aeracao da massa de graos proposto por Thorpe é descrito muito bem
pelo MVF, provando que o LS € a melhor aproximagao a serem utilizada com e sem a
aplicao da MER.

Palavras-chaves: Armazenagem de Graos. Dinamica de Fluidos Computacional. Es-
quema de Leith. Método dos Volumes Finitos. Esquema Upwind. Modelo de Thorpe.



ABSTRACT

The scale of agricultural production has been intensifying every year, making it neces-
sary to investigate new technologies and methods for both production and post-harvest
processes. Consequently, the primary goal of this study is to assess and minimize
discretization errors in the simulation based on the mathematical model of grain mass
aeration, utilizing the model proposed by Thorpe. To address this model, we applied
discretization using the finite volume method (FVM) with varying meshes and space-time
ratios. In terms of model discretization, we employed second-order approximations, in-
cluding CDS-CN (Central Difference Scheme - Crank-Nicolson) and LS (Leith Scheme),
while integrating artificial viscosity to manage non-physical oscillations produced by
the methods. We also utilized first-order approximations such as UDS-CN (Upwind
Difference Scheme), UDS-Explicit, and UDS-Implicit. Initially, we compared the results
of the finite volume method (FVM) with the more commonly used finite difference
method (FDM) in the literature. We observed that the FVM demonstrated a lower er-
ror than the FDM, employing a manufactured solution as a reference. Assessing the
order of accuracy for first-order approximations, we established that the effective order
approaches the asymptotic order, maintaining consistency across various space-time
ratios. However, the same consistency does not hold for second-order approximations
due to non-physical oscillations, particularly when reliant on higher space-time ratios.
By incorporating artificial viscosity dependent on the mesh, we achieved favorable
outcomes for the effective order, even at lower space-time ratios. For the application
of RRE (Repeated Richardson Extrapolation), the LS method outperformed the others.
Finally, we evaluated five error estimators for RRE: Richardson, corrected Richardson,
A, U, and ¥*. Among these estimators, the A proved neither accurate nor reliable,
regardless of the discretization method or space-time ratio employed. Regarding the
Richardson, corrected Richardson, ¥, and ¥ estimators, we observed that for low
space-time ratios, the UDS-Explicit method lacked a consistently accurate and reliable
estimator. However, the LS, UDS-CN, and UDS-Implicit methods exhibited accurate
and reliable Richardson, ¥, and W* estimators respectively. For high space-time ratios,
all methods exhibited unreliable estimators. However, in the search for accurate and
reliable estimators for such high space-time ratios, we can utilize any of the methods (LS,
UDS-CN, UDS-Explicit, and UDS-Implicit), but considering only the coarser meshes.
Therefore, the grain mass aeration process model proposed by Thorpe is well-described
by the FVM, demonstrating that LS is the superior approximation to be employed both
with and without the application of RRE.

Key-words: Grain Storage. Computational Fluid Dynamics. Leith Scheme. Finite Volume
Method. Upwind Scheme. Thorpe’s Model.
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1 INTRODUGAO

A agricultura é a principal atividade econémica para a maior parte da popula-
cao dos paises em desenvolvimento, respondendo por um quarto do produto interno
bruto, constituindo a maior parte da produgédo de alimentos com graos, dominada
principalmente por pequenos agricultores (LOPES et al., 2006).

Segundo Faoro (2018), o produtor rural dedica varios meses ao cultivo com
o intuito de sempre melhorar a qualidade de seus produtos para garantir um melhor
preco. Apéds, o produto € armazenado e comercializado. Se houver falhas em algumas
dessas fases, o prejuizo podera ser significativo.

O grao € uma cultura sazonal frequentemente cultivada uma vez por ano,
enquanto a demanda é distribuida uniformemente ao longo do ano; assim, o grao é
armazenado para garantir um abastecimento constante (LOPES et al., 2006). Durante o
armazenamento, 0s graos sao vulneraveis ao ataque de diversos insetos-praga, sendo
estes a principal causa de perdas pds-colheita e insegurancga alimentar. A magnitude
das perdas varia significativamente de cultura para cultura e de regido para regido. As
perdas anuais de graos variam de 20% a 50% para os paises em desenvolvimento
(SULEIMAN; ROSENTRATER, 2022).

A perda pode resultar da deterioracdo do produto por causas como podridao,
crescimento de fungos, danos causados por insetos, brotagao, perda de germinagao
e perda de matéria seca pela respiracdo. Tal como acontece com outros produtos
agricolas, a qualidade do grao é mantida por mais tempo em temperaturas mais baixas
(HELLEVANG; CASADA, 2022).

Portanto, a qualidade e a conservacgéo dos gréaos dependem diretamente do
sistema de armazenamento. Problemas de armazenamento e ineficiéncia podem levar
a perdas significativas do produto armazenado e alto gasto de energia e recursos. Para
minimizar essas perdas, € importante um sistema adequado e eficiente, abrangendo
um fluxo de ar uniforme em todo o dominio da massa de grdaos (BINELO et al., 2019).
Portanto, o controle da temperatura e teor de dgua dos graos é fundamental para
preservar os aspectos econémicos e nutricionais da massa de gréos, desde a colheita
até o consumo (PANIGRAHI et al., 2020a).

Dentre as opgdes de controle das condi¢ées de armazenagem que ndo incluem
produtos quimicos e que podem se adaptar as regides tropicais e pequenas proprie-
dades rurais, a aeracao é a tecnologia mais difundida, sendo uma técnica preventiva
(LOPES, 2006).

A aeracao consiste na movimentacao forcada de ar ambiente ou refrigerado
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adequado através da massa de graos, com o objetivo geral de diminuir e uniformizar
a temperatura, propiciando a essa massa, condi¢des favoraveis para conservacao da
qualidade durante um periodo de tempo prolongado (PEREIRA, 1995).

Entre os varios objetivos da utilizacao da aeracao, os principais sédo: o resfria-
mento e a manutencdo da massa de graos a uma temperatura suficientemente baixa
para assegurar uma boa conservacao; e secundariamente, a secagem para prevenir o
aquecimento e o umedecimento da massa de graos, promover a remog¢ao de odores
na massa de graos e inibir as atividades de insetos e o desenvolvimento da microflora,
evitando o aparecimento de fungos que deterioram o produto (LOPES, 2006).

Os desenvolvimentos modernos em aeragdo comegaram apos a Segunda
Guerra Mundial, em uma época de excedentes de cereais, que comumente resultou
em tempos de armazenamento de mais de 1 ano. No mesmo periodo, silos maiores e
armazéns planos comegaram a ser usados para reduzir 0os custos de armazenagem,
uma tendéncia que continua até os dias atuais em diferentes locais de estocagem do
grao (HELLEVANG; CASADA, 2022).

1.1 GENERALIDADES EM DINAMICA DOS FLUIDOS COMPUTACIONAL

No intuito reduzir os custos de armazenagem, tém sido desenvolvidos modelos
matematicos para descrever e melhorar o processo de aeragdo por meio de métodos
numeéricos, tais como: Thompson (1972), Muir et al. (1980), Alagusundaram et al.
(1990), Chang et al. (1993, 1994), Jia et al. (2000), Thorpe (2001b), Khatchatourian
e Savicki (2004), Liu et al. (2016) e Novoa—Mufioz (2019). Tais modelos ajudam na
previsdo do comportamento dos graos e auxiliam na reducao de perdas por parte de
produtores.

Existem alguns métodos que podem ser usados na discretizagao de um modelo
matematico continuo. Os métodos mais utilizados sao: Método das Diferencgas Finitas
(MDF) (TANNEHILL et al., 1997; FORTUNA, 2000; BURDEN; FAIRES, 2016), Método
dos Elementos Finitos (MEF) (HUGHES, 2000) e o Método dos Volumes Finitos (MVF)
(VERSTEEG; MALALASEKERA, 2007; MALISKA, 2017).

Esses métodos numéricos consistem na substituicdo dos termos das derivadas
parciais envolvidas na equacao diferencial por aproximacées numéricas. Com isso,
o problema continuo é transformado em um problema discreto, em que o dominio
espacial é particionado em um nuamero finito de subdominios que recebe 0 nome de
malha computacional, ou simplesmente malha ("), Fig. 1 (SANTIAGO, 2010). Essa
transformagéo € conhecida como discretizagdo do dominio.
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FIGURA 1—-EXEMPLO DE TRANSFORMACAO DO DOMINIO CONTINUO EM DOMINIO
DISCRETIZADO.

FONTE: Santiago (2010).

O MVF € um método de discretizagdo de equagdes diferenciais que € baseado
no balango de certas quantidades fisicas em um volume de controle (VC) pertencente
ao dominio, representado pela Fig. 2.

FIGURA 2 - DISCRETIZACAO EM VOLUMES FINITOS.

FONTE: O autor (2023).

No modelo que vamos tratar neste trabalho, teremos mais de uma quantidade
para ser armazenada em um dado volume de controle da malha. Em particular, essas
quantidades serao dadas pela temperatura (7') e pelo teor de agua da massa de graos
(0).

De acordo com Maliska (2017), os arranjos colocalizados possuem maior
facilidade de implementacéao, pois todas as variaveis sdo armazenadas no mesmo
ponto e, portanto, apenas um tipo de VC pode ser utilizado para todas as integracoes
das equacdes do modelo matematico.

Ao discretizar uma equacao diferencial transformamos um dominio continuo
(€2) em dominio discreto (Q2"), conforme a Fig. 1. E dependendo da distribuicdo dos
volumes discretos no dominio, as malhas podem ser classificadas em ortogonais e nao-
ortogonais; estruturadas e ndo-estruturadas; uniformes ou nao-uniformes (MALISKA,
2017). A Fig. 3 apresenta, os tipos de malhas ortogonais estruturadas uniforme e néo
uniforme.
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FIGURA 3 - TIPOS DE MALHAS ESTRUTURADAS.

Y y v
t t t

(a) Uniforme (b) Uniforme por diregéao (c) Nao uniforme

FONTE: O autor (2023).

Anisotropia é uma caracteristica frequente nos fendmenos naturais e representa
a nao homogeneidade direcional de um determinado evento, ou seja, a variabilidade
espacial dos elementos ocorre mais intensamente em uma diregao preferencial (OLI-
VEIRA et al., 2015). A anisotropia é classifica em dois tipos: fisica (também conhecida
como anisotropia de coeficientes) e anisotropia geométrica (também conhecida como
anisotropia de malha). Neste trabalho sera abordada a anisotropia geométrica, con-
siderando uma malha ortogonal estruturada uniforme por direcao, veja a Fig. 3b. O
parametro que mede tal quantidade é chamado de fator de anisotropia, que no caso da
anisotropia geométrica, & conhecido como razéo de aspecto.

A Dinémica dos Fluidos Computacional (CFD-Computational Fluid Dynamics)
pode ser considerada a area que estuda os fendémenos fisicos ou fisico-quimicos em
escoamentos de fluidos, transferéncia de calor e fendmenos relacionados por meio de
simulagées numéricas.

Em CFD, a anisotropia ocorre naturalmente, onde se tem a simulacéo de
fendmenos fisicos de pequena escala (MONTERO et al., 2001).

De modo geral, as solu¢cdes numéricas podem ser afetadas por erros numéricos,
cujas fontes sao: erros de truncamento, erros de iteracao e erros de arredondamento.
Quando as demais fontes s&o minimizadas ou inexistentes, o erro de truncamento
passa a ser denominado erro de discretizacdo (MARCHI, 2001).

Segundo Roy e Oberkampf (2011), entre as fontes de erro numérico, o erro de
discretizacao (F)) é considerado o mais significativo. Tal erro pode ser definido como
a diferenca entre a solucao analitica e a solugao numérica obtida para as equacdes
discretizadas (ROY; BLOTTNER, 2006).

Na area de CFD, um desafio é o nivel de acuracia das solugdes numéricas,
causada pelos erros numericos. Portanto, a utilizagdo de métodos que minimizem tais
erros é de extrema importancia.
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Na literatura, a extrapolacéo de Richardson (ER) é utilizada com o objetivo
de se minimizar o erro de discretizacdo Fj, e aumentar a sua ordem de acuracia (p,).
Considerando a aplicagao de ER de forma recursiva € possivel potencializar a sua
eficacia. Tal procedimento é conhecido por Multipla Extrapolacdo de Richardson (MER)
(MARCHI et al., 2013b).

A primeira aplicacédo de MER foi apresentada no trabalho de Richardson e
Gaunt (1927), os quais consideraram dois niveis de extrapolacao e aplicaram essa
técnica a equagdes na forma integral, como a equagéo de Volterra; e diferencial, como
as derivadas no Teorema de Leibnitz. Aplicacbes com apenas dois niveis de ER
resultam em um aumento significativo na ordem de acuracia das solugdes numéricas
(RICHARDSON; GAUNT, 1927; ERTUK et al., 2005). O emprego de ER com mais de
dois niveis de extrapolagdo, sao observados em Roy (2005), Martins (2013) e Rodrigues
et al. (2022), os quais tem como objetivo a reducéo do erro de discretizacao.

Dessa forma, este trabalho propde aprofundar o estudo sobre processo de
aeracao de massa de graos, dado pelo modelo de Thorpe (2001b), a fim de aplicar a
MER para estimar e reduzir o erro de discretizacdo com diferentes razées espago-tempo.
Para isto, discretizaram-se as equacgdes pelo MVF, empregando as aproximacdes
espaco-tempo LS (Leith scheme), CDS-CN (Central difference scheme-Crank-Nicolson),
UDS-CN (Upwind Difference Scheme-Crank-Nicolson), UDS-Explicito e UDS-Implicito,
utilizou-se viscosidade artificial (VON NEUMANN; RICHTMYER, 1950) para evitar as
oscilagbes nao fisicas e uma solugéo fabricada por Rigoni et al. (2022).

1.2 MOTIVACAO

De acordo com Lopes (2006), nas ultimas décadas, tem-se discutido a utilizagao
de processos e métodos que garantam a qualidade dos produtos armazenados € nao
prejudiquem a saude dos consumidores. Além da preocupac¢ao com os danos visiveis
aos graos, a autora relata que se tem trabalhado no sentido de implementar medidas
que garantam a sua qualidade, evitando-se a degradacéao nutricional e a contaminagao
do produto armazenado.

Assim, a eficiéncia dos métodos utilizados para descrever os comportamentos
dos fenémenos fisicos estao sendo verificados para descrever melhor tais comporta-
mentos e em muitos casos, estes resultados ainda ndo sao satisfatérios comparados
com os elementos naturais ou processos de Engenharia. Dessa forma, é de suma
importéncia pesquisar novas técnicas para descrever estes fendmenos fisicos e mesclar
técnicas existentes para melhorar o desempenho tanto computacional quanto ao erro
gerado.

As técnicas mais frequentemente utilizadas na resolucéo destes modelos sao
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os MDF e o MEF (NAVARRO; NOYES, 2001). No modelo matematico estudado, o
principal método de discretizacdo descrito na literatura € o MDF com aproximacao
espacial do tipo UDS (THORPE, 2001a; LOPES et al., 2006; KWIATKOWSKI JR., 2011;
LOPES et al., 2015; RIGONI et al., 2022). Ainda nao consta na literatura um estudo
detalhado com outro método numérico para discretizar as equacgdes diferenciais para o
modelo de Thorpe (2001b).

Por outro lado, as solugbes numéricas sao afetadas por erros numéricos,
em particular, o erro de discretizacéo (£}), considerado o mais significativo (ROY;
OBERKAMPF, 2011).

As alternativas disponiveis para se reduzir tal erro sdo: refinamento de ma-
Iha, cuja desvantagem é o aumento de meméria e tempo computacionais; emprego
de métodos de alta ordem, cuja desvantagem € o aumento da complexidade do mo-
delo numérico; e por ultimo, mas ndo menos importante, a utilizagdo de técnicas de
extrapolacdao (MARTINS, 2013).

Neste contexto, a principal motivacao deste trabalho consiste no aperfeicoa-
mento de métodos adotados para reduzir e estimar erros de discretizacdo aplicado ao
modelo proposto. Com esse propésito, faz-se necessaria a aplicacdo de uma técnica
de extrapolagéo. Neste trabalho adotaremos a MER, analisando seu desempenho para
diferentes razdes espaco-tempo a fim de se obter solucbes numéricas de alta ordem.

1.3 PROCESSO DE AERACAO DA MASSA DE GRAOS

O sistema de aeracao é composto por elementos que visam a distribuicao
uniforme de ar através da massa de graos (BILOBROVEC, 2005). Os principais com-
ponentes sdo: i) um ventilador para movimentar o ar através da massa de graos; ii)
condutos perfurados para conduzir e distribuir o0 ar através da massa de graos; iii) tubos
de conexao que ligam o ventilador com os condutos. A Fig. 4 representa a estrutura e
os componentes de um sistema de aeragéao.

O sistema de aeracao deve operar até que a frente de temperatura tenha se
movido completamente através da massa de graos, garantindo que a camada superior
do produto tenha sido resfriada ou homogeneizada (SILVA et al., 2000).

A aeragao é uma das principais técnicas de prevensao usada no gerenciamento
de armazenamento seguro e econdmico de grados armazenados, que pode controlar o
ambiente ecoldgico dos graos armazenados para garantir o seu estado (ZESHENG;
LING, 1997).

A aeracao é utilizada para resfriar a massa de graos, homogeneizar a tempe-
ratura, promover a secagem dentro de certos limites, distribuir fumigantes gasosos
(controle de pragas realizado com compostos quimicos) através do ar da aeragao,
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controlar pragas como insetos e fungos e remover maus odores.

FIGURA 4 — COMPONENTES DE UM SISTEMA DE AERAGAO.
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FONTE: Adaptado de Panigrahi et al. (2020a).

Para que isto ocorra, emprega-se uma vazdo minima de ar, assim a massa de
graos alcancara a temperatura desejada dentro de um intervalo de tempo desejado e
conveniente. De acordo com Navarro e Noyes (2001), a vazao especifica minima de
ar requerida depende da espécie de grao armazenado, da espessura da massa de
graos, do tipo de instalacao e do numero de estruturas de armazenagem existentes no
sistema.

Segundo Lopes (2006), se este processo demorar muito, 0s seus objetivos
podem nao ser alcancados, e se for muito rapido, sera requerida uma vazao muito
alta de ar, que podera secar ou umidecer os graos, sendo também economicamente
inviavel.

O resfriamento da massa de graos € utilizado em grédos armazenados secos,
porém com temperaturas elevadas, para serem resfriados no silo através da aeragéao
apds sairem dos secadores de graos (WEBER, 2005).

A aeragao com o objetivo de homogenizar a massa de graos ocorre em regides
ou épocas quentes, quando o resfriamento até os niveis indicados como seguro nao é
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possivel. Assim, buscando manter a massa de graos com diferenca maxima de tempe-
ratura de 3°C para evitar processos danosos aos graos (LOPES et al., 2006). Assim,
o ar frio da aeracao torna fria e homogénea a temperatura dos graos armazenados
utilizada para neutralizar o aquecimento espontaneo dos produtos e as correntes de
conveccao que se formam devido as diferencas de temperatura na massa de graos.
Este tipo de aeracéo € utilizada para armazenagem de graos secos (KWIATKOWSKI
JR., 2011).

Segundo Navarro e Noyes (2001), manter um baixo gradiente de temperatura
no ambiente de armazenamento possibilita a prevengao da migracao do teor de agua,
os focos de aquecimento e a condensacgao de agua nos graos armazenados.

A utilizacdo da aeracao pode ser realizada para manter a secagem dentro
de certos limites. Vale ressaltar que a aeragéo nao foi projetada para tal objetivo. As
vazdes empregadas na aeracao sao 15 a 25 vezes maiores que as aplicadas para
o resfriamento, sendo economicamente invidvel por atingir uma vazao de ar muito
elevada (SILVA et al., 2000). Assim, quando for aplicada com este objetivo, deve-se ter
cuidado e observar todos os fatores envolvidos neste processo (KWIATKOWSKI JR.,
2011).

No caso da distribuicdo de fumigantes gasosos, estes devem ser distribuidos,
gerando concentragao uniforme e residuos dentro dos limites aceitaveis no ambiente de
armazenamento (BOND, 1984). De acordo com Navarro e Noyes (2001), a circulagao
dos fumigantes, utilizando sistemas de aeracao, requer conhecimentos avancados
sobre efeitos e tempos de contato do fumigante com a massa de graos. O mais comum
€ usar a aeracao para circular o ar apds o processo de fumigacao.

O processo de aeracao pode inibir a proliferacao de insetos e fungos através do
controle de temperatura e o teor de agua da massa de graos. Atualmentre, os fungos
S80 a maior causa de deterioracdao na armazenagem de sementes e graos. Depois dos
insetos, sdo a maior causa que leva a perda total.

A aeracao possibilita a retirada de maus odores da massa de graos, provenien-
tes do crescimento de fungos e fermentagédo. A remocao desses odores sao facilmente
e totalmente removidos em caso de fermentacao, porém, quando o produto esta ran-
¢0so0, 0s maus odores sao dificilmente totalmente eliminados (KWIATKOWSKI JR.,
2011).

A massa de graos pode ser considerada um sistema ecolégico composta por
organismos vivos (componentes bioldgicos) e o meio ambiente do interior da massa,
onde ha componentes que ndo sdo organismos vivos (meio abidtico), integrando-se
entre si (PEREIRA, 1995).

Segundo Lopes et al. (2006), a modificacdo das condigdes do ambiente de
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armazenamento pode produzir diferentes efeitos, dependendo das caracteristicas do
ar de aeracao e dos graos armazenados. Estes efeitos sdo entendidos com mais
facilidade quando o ambiente de armazenamento é considerado como um ecossistema
com fatores bibticos e abidticos.

Sao fatores abidticos do ecossistema de armazenamento da massa de graos:
a temperatura e a umidade relativa do ar ambiente, a temperatura dos graos, o teor de
agua dos graos, a atmosfera do ambiente de armazenamento e os materiais estranhos
existentes na massa de grados (ANDRADE, 2001).

O principal fator biético deste ecossistema é o grao, tendo como principais
caracteristicas a hidroscopia dos gréos, porosidade, condutividade térmica, difusividade
térmica, angulo de repouso, massa especifica, calor especifico e latente, entalpia, teor
de agua dos graos, temperatura, danos mecanicos, danos produzidos pelas impurezas,
teor de agua de equilibrio e deterioragao dos graos. De acordo com Fleurat-Lessard
(2002), todas as acdes deste ecossistema envolvidas no sistema de armazenamento
sao executadas visando a preservagao do grao.

O grao é considerado um organismo vivo com atividade fisioldgica reduzida,
podendo permanecer assim por longos periodos. Este baixo nivel de atividade bio-
l6gica dos gréos se deve aos baixos teores de agua necessarios para se obter uma
armazenagem segura. Altos valores de teor de agua no ambiente de armazenamento,
combinados a valores inadequados, podem causar a germinagao dos graos, resultando
em perda do seu valor nutritivo e impedindo o armazenamento seguro (NAVARRO;
NOYES, 2001). De acordo com Pereira (1995), a deterioracdo dos mesmos resulta da
interacdo entre variaveis fisicas, quimicas e biolégicas.

Segundo Puzzi (1977), dentre as mais importantes alteracées quimicas que
se apresentam nos graos armazenados, sdo aquelas que envolvem a respiracédo dos
graos umidos. Pois, mesmo depois que os grads sao desligados biologicamente da
planta, eles respiram, ficando sujeitos a pequenas, mas continuas transformacées. Os
principais fatores que afetam o processo respiratério sdo: a temperatura, o teor de agua
dos graos e os fungos associados a massa.

Quando se observam graos umidos associados aos fungos, temos o aqueci-
mento destes graos ocorrendo quando o teor de agua dos graos esta acima do nivel
considerado satisfatorio para o armazenamento. De acordo com Puzzi (1977), todos
os fatores que envolvem a perda da qualidade dos grdaos, causam um aumento de
temperatura.

De acordo com Navarro e Noyes (2001), a aeracao tem limitagdes, sendo a
principal, a ndo eliminacao imediata dos insetos e fungos, mas somente o impedimento
de sua proliferacdo. Entretanto, suas vantagens sao: a ndo utilizacdo de produtos
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quimicos e sua seguranca e economica no controle do ambiente de armazenamento
comparada a outras técnicas. De acordo com Sinicio e Muir (1995), o processo de
aeracao € inicializado ou finalizado com condicdes pré-estabelecidas e bem definidas
para cumprir com seu objetivo.

A planta ndo é oleaginosa, mas o grdo. Na verdade a soja € proteica, pois
possui mais proteina em sua composi¢ao. O termo oleaginosa aparece com frequéncia
por serem os lipideos o segundo componente mais encontrado no grao.

Em nosso caso estudaremos a massa de graos de soja (Glycine max), que é
uma planta originaria da China, com o gréo da soja sendo considerado proteico, pois
possui mais proteina em sua composi¢do. O segundo componente mais encontrado no
grao € o termo oleaginosa que sao alimentos de origem vegetal que se caracterizam
por serem ricos em gorduras monoinsaturadas. O grdo também é rico em vitaminas A
e C, e minerais, como célcio e fésforo.

Os dois maiores produtores de soja do mundo sdo o Brasil (com 125,8 milhdes
de toneladas métricas) e os Estados Unidos (com 123,6 milhdes de toneladas métricas).
Entre os estados brasileiros, a concentracdo da producdo agricola ocorre no Mato
Grosso, Parana, Rio Grande do Sul e Goias, que representam 67% da safra nacional
de graos (EMBRAPA, 2022; CONAB, 2023).

Na Fig. 5 temos a distribuicdo da capacidade de armazenagem pelos estados
brasileiros e Distrito Federal. Ja a Fig. 6 representa a quantidade da capacidade por
estado.

FIGURA 5 — DISTRIBUICAO DA CAPACIDADE ESTATICA DA PRODUCAO POR ESTADO.
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FONTE: Conab (2023).
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FIGURA 6 — QUANTIDADE DA CAPACIDADE ESTATICA DA PRODUGAO POR ESTADO.
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1.4 OBJETIVOS

O objetivo geral deste trabalho é efetuar uma analise de erros de discretizacao
do modelo matematico proposto por Thorpe (2001b) discretizando as equacdes dife-
renciais com o MVF e aplicar a MER para reduzir e estimar tais erros sob a influéncia
da raz&o espaco-tempo.

Dessa forma, sdo definidos também os seguintes objetivos especificos:

« Utilizar o MVF para resolver numericamente o modelo proposto por Thorpe
(2001b), empregando diferentes formulagdes espaciais e temporais;

» Efetuar uma analise das ordens efetiva (pr) com cada formulacdo empregada;

 Aplicar a MER para reduzir e estimar o erro de discretizacao e posteriormente
analisando sua ordem de acuracia;

* Analisar a influéncia da razao espaco-tempo na resolugdo numérica do processo
de aeracéo;

« Comparar o tempo de CPU de cada aproximagao utilizada.



Introdugéo 38

1.5 DELINEAMENTO DO TEXTO

Desse modo, o trabalho se divide primeiramente na revisdo da literatura com
trabalhos utilizando o modelo proposto por Thorpe e outros modelos para descrever
0 comportamento da aeracdo, além de varios trabalhos aplicando a ER e a MER
com diferentes técnicas e modelos. No Capitulo 3, abordaremos a fundamentacao
tedrica na seguinte ordem, erro numérico, MVF e o tratamento das condi¢coes de
contorno, juntamente com o solver a ser utilizado na resolugédo. Posteriormente, no
capitulo 4 apresentaremos a MER e os principais estimadores. Seguindo no Capitulo 5,
mostraremos o0 modelo matematico proposto por Thorpe (2001b), condi¢des iniciais e
de contorno. No Capitulo 6, sdo dadas as discretizacbes do modelo matematico com
o MVF e suas aproximacoes espaciais e temporais. Na sequéncia apresentaremos
os resultados e discussdes, por meio de graficos e analises da ordem efetiva (pg),
erro de discretizacdo e tempo computacional no Capitulo 7. Finalmente, no Capitulo 8,
descreveremos as conclusdes.
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2 REVISAO BIBLIOGRAFICA

Nesta secao, € apresentada uma revisdo bibliografica sobre os trabalhos re-
lacionados a aeragcdo com e sem 0 modelo de Thorpe e posteriormente uma revisao
com trabalhos relacionados a Extrapolacédo de Richardson e a Multipla Extrapolacéo
de Richardson (MER), tendo como principal objetivo mostrar a importancia tanto do
modelo estudado quanto da aplicacdo da MER.

2.1 AERACAO E O MODELO PROPOSTO

A aeracao é uma das ferramentas mais poderosas disponiveis para o setor de
armazenamento de graos. Independentemente da temperatura inicial e do teor de agua
dos graos, ha fenbmenos bioldgicos e quimicos que ocorrem nos graos armazenados
que sao significativamente influenciados pela temperatura de bulbo umido do ar que
entra no gréao (THORPE, 2022).

Segundo Zesheng e Ling (1997), projetar e implementar um modelo matematico
de eficiéncia para simular o processo de aeracao tem sido um problema bastante
complexo principalmente no manejo econémico e seguro dos graos armazenados.
A modelagem do fen6meno de transferéncia de calor e massa no dominio de graos
armazenados é datada desde a década de 1970 (PANIGRAHI et al., 2020a).

Thompson (1972) desenvolveu um modelo para prever as mudancas na tempe-
ratura e teor de dgua do grao durante o processo de aeragdao em graos de milho, sendo
a simulacao realizada assumindo uma série de finas camadas de graos posicionadas
perpendicularmente ao fluxo de ar dentro do silo de armazenamento. Tal modelo foi
construido a partir de modificacdes do modelo de Thompson et al. (1968), desenvolvido
para simular o processo de secagem.

Em Thorpe e Hunter (1977) foram apresentadas expressdes analiticas explici-
tas para distribuigcdes de pressao e vazao em silos e galpdes aerados equipados com
dutos de aeracao circulares e lineares, colocados simetricamente em relagéo ao centro.
Uma solucao da equacéao de Laplace por diferencas finitas e que explora a forma de
banda da matriz dos coeficientes também é apresentada. Neste caso, resolve-se 0
sistema gerado nesta discretizacdo com um método direto, em vez de iterativo.

Muir et al. (1980) desenvolveram um modelo para simular a transferéncia de
calor através do fenbmeno de condugao na direcéo vertical e radial em uma caixa
cilindrica e utilizaram o MDF para solucionar numericamente o modelo matematico. A
temperatura inicial do grao, a temperatura ambiente diaria e as velocidades do ar foram
usadas como parametros de entrada para prever a mudanga de temperatura em toda a
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massa de graos.

Thorpe e Elder (1982) apresentaram um modelo mateméatico dos processos de
transferéncia de calor, teor de agua do grao e decomposicao de pesticidas em graos
aerados. Tal modelo foi discretizado usando o Método das Diferencas Finitas e validado
por evidéncias experimentais. A aeracéo reduz a taxa de degradacao dos pesticidas
aplicados aos grados armazenados e torna a taxa de decomposicao relativamente
insensivel as condicdes iniciais dos graos.

Thorpe et al. (1982) propuseram um modelo matematico de fendmenos de
transferéncia de calor e teor de agua do gréo que ocorrem em granéis de graos aerados,
e é combinado com um modelo populacional de Sitophilus oryzae. O modelo prevé que
insuflar o ar frio da noite através de granéis de gréos reduz severamente o crescimento
populacional de gorgulhos (pequenos besouros, carunchos).

Alagusundaram et al. (1990) desenvolveram um modelo para prever a dis-
tribuicdo de temperatura devido ao fenémeno de conducao dentro de um recipiente
contendo colza e utilizaram o MDF para solucionar numericamente o modelo matema-
tico. A equacao de equilibrio para calcular a transferéncia de calor transiente dentro
de cada elemento espacial foi definida igualando a taxa de fluxo total de calor para o
elemento e a taxa de mudanca ocorrida na acumulagéo de calor dentro do elemento.

Thorpe et al. (1990) apresentaram expressdes analiticas para os calores inte-
grais de molhamento que sdo derivadas da equacao iséstera de Hunter. Um algoritmo
numerico para avaliar a integral também foi apresentado. Quando a velocidade compu-
tacional é essencial, os calores integrais de umedecimento de nove tipos de sementes
e graos sao expressos como polinémios de quarta ordem.

Thorpe et al. (1991a) desenvolveram uma equacao que descreve a transferén-
cia de massa por difusdo em graos armazenados a granel. A equacao € expressa em
termos de uma concentragdo média espacial ponderada de equilibrio e uma tempe-
ratura média de volume, juntamente com desvios espaciais locais da concentracao
média. Thorpe et al. (1991b) montaram e resolveram o problema de valor de contorno
para esses desvios locais e isso levou a expressdes para a difusividade efetiva do teor
de agua em graos armazenados.

Thorpe (1997) desenvolveu um modelo de equilibrio, pelas equagdes diferen-
ciais que governam as distribuicdes de velocidade, teor de agua e temperatura em
silos de fundo cbnico para armazenamento de graos. As equagdes sao resolvidas
transformando a forma do silo em um cilindro reto. Utilizando uma malha ortogonal
e discretizando as equacdes pelo Método das Diferencas Finitas. As temperaturas
na superficie externa do silo sdo calculadas usando a radiagdo solar e outros dados
climaticos. O modelo matemético incorpora fenémenos biol6gicos como a respiracao
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do grao, a dindmica populacional de trés espécies de insetos e um total de quatro
linhagens de coledpteros de produtos armazenados e a perda da viabilidade dos graos
sdo considerados. Expressdes que se relacionam com a taxa de decomposi¢ao de
pesticidas quimicos também sao incorporadas ao modelo de ecossistema. Os resul-
tados da pesquisa mostram que a aeragao com ar ambiente em silos pequenos para
armazenamento na fazenda resulta em melhores condi¢gdes de armazenamento em
comparagao com as obtidas em silos nao aerados.

Como podemos observar, varios modelos foram sendo desenvolvidos para
avaliar o processo de aeracao, até que em 2001, Thorpe (2001b) apresentou deta-
Ihadamente o modelo que é baseado nas equacodes de balango de massa e energia
formulado por Thorpe (1997). Este sera o modelo adotado nesta tese.

Varios trabalhos foram baseados na simulagdo numérica do processo de aera-
céao utilizando o modelo matematico proposto por Thorpe (2001b), modelo abordado
nesse estudo: Lopes (2006), Radtke (2009), Kwiatkowski Jr. (2011), Lopes et al. (2014,
2015), Rigoni e Kwiatkowski Jr. (2020) e Rigoni et al. (2022).

Lopes et al. (2006) validaram o modelo proposto por Thorpe (2001b), efetuando
algumas simplificacdes nas equagdes originais do modelo matematico com a finalidade
de reduzir o tempo computacional, sem diminuir a acuracia. Para resolver numerica-
mente tal modelo, as equacgdes foram discretizadas pelo MDF, utilizando aproximacgao
espacial Upwind Difference Scheme (UDS) e formulagcao temporal explicita. A maxima
diferenca observada entre as temperaturas experimentais e numéricas foi de 3,2°C.
Para os testes, o gréo utilizado foi o milho.

Radtke (2009) utilizou o modelo proposto por Thorpe (2001b) com as simplifica-
¢cbes e metodologia numérica sugeridas por Lopes et al. (2006). O autor relatou que o
modelo apresentou resultados satisfatérios quando comparado a dados experimentais,
para o grao de soja.

Kwiatkowski Jr. (2011) comparou os dados experimentais fornecidos por Oli-
veira et al. (2007) com a simulagédo numérica do modelo proposto por Thorpe (2001b) e
simplificac6es sugeridas por Lopes et al. (2006), discretizando pelo MDF, com apro-
ximacao espacial UDS e com a formulacédo temporal explicita e implicita, para um
sistema com e sem controlador ON/OFF. Os resultados se mostraram eficazes tendo
uma pequena vantagem para a aproximacao temporal implicita, dado que a solucéo
numeérica foi sempre convergente.

Lopes et al. (2014) compararam o modelo logaritmico (ou Hukill) e 0 modelo
de equilibrio (ou Thorpe) com dados experimentais encontrados na literatura. Os dois
modelos também foram analisados em relacdo as temperaturas previstas e teor de agua
dos graos e tempos de secagem. Os resultados mostraram que ambos os modelos
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apresentaram bom desempenho de previsdo, com leve preferéncia para o modelo
Thorpe.

Lopes et al. (2015) compararam os modelos propostos por Thorpe (2001b)
e Thompson (1972) com dados experimentais. Os resultados mostraram que ambos
os modelos tiveram boa concordancia com os dados experimentais e os modelos
apresentaram um desempenho muito semelhante. Os autores comentam que os dois
modelos avaliados podem ser facilmente implementados, contribuindo para melhorias
no controle desse processo e garantindo o gerenciamento da qualidade dos graos
durante o periodo de armazenamento.

No trabalho de Rigoni et al. (2022) foram apresentadas varias outras técnicas
de discretizacdo, tanto temporal quanto espacial, todas utilizando MDF para o modelo
matematico proposto por Thorpe (2001b) e suas simplificacées (LOPES et al., 2006),
além de apresentarem uma solugao fabricada (solugdo analitica). Foi realizada uma
analise do erro de discretizagdo por meio da ordem efetiva de tal erro. Os resultados
obtidos numericamente foram comparados com a solugao analitica e os tempos de
CPU em diferentes niveis de refinamento.

De acordo com Rigoni et al. (2022), LS e CDS-CN sao as melhores aproxi-
macodes de segunda ordem para o modelo estudado. Para evitar as oscilacbes nao
fisicas nos métodos de segunda ordem, os autores aplicaram a viscosidade artificial
(VON NEUMANN; RICHTMYER, 1950) no modelo proposto. Ja os métodos de pri-
meira ordem UDS-Explicito, UDS-Implicito e UDS-CN também foram utilizados para
comparagao pelo fato do UDS-Explicito ser a aproximagao numérica mais utilizada na
literatura.

Dessa forma, podemos notar que 0 modelo proposto por Thorpe (2001b), e sua
simplificacao feita por Lopes et al. (2006), tem sido amplamente discutido na literatura
e comparado com dados experimentais. Outro fato comum encontrado na literatura
€ que todos os autores aplicaram MDF. Dessa forma, torna-se interessante estudar
o desempenho de outros métodos numéricos para a discretizagdo do modelo; neste
trabalho optamos por utilizar o MVF. Ainda, os autores que estudadaram o modelo de
Thorpe (2001b) optaram pela formulagdo UDS-Explicita, com exceg¢do de Kwiatkowski
Jr. (2011), que aplicou a formulacdo UDS-Explicita e UDS-Implicita e Rigoni et al. (2021,
2022), que aplicaram outras técnicas de aproximagao numérica.

2.2 ANISOTROPIA E MEIOS POROSOS

O trabalho de Rice et al. (1970) é um dos mais citados em relagéo a anisotropia
fisica (anisotropia relacionada aos coeficientes da equagéo) nesta area de estudo. Os
autores abordaram métodos de medicdo de permeabilidade anisotrépica em meios



Revisdo Bibliografica 43

porosos consolidados e ndo consolidados. A anisotropia é geralmente o resultado da
orientacdo e forma dos graos assimétricos que compdéem a camada porosa. A extensao
da anisotropia pode ser aproximadamente prevista por medi¢cdes de resistividade em
diferentes direcées. Também sao catalogados diversos métodos para prever as funcoes
de fluxo e potencial em meios porosos anisotrépicos.

Hood e Thorpe (1992) estudaram os efeitos da resisténcia anisotropica ao fluxo
de ar no projeto de sistemas de aeracgao para graos de linhaca e arroz com casca
armazenados a granel. Relataram que a linhaga exibe o maior grau de anisotropia, com
a resisténcia vertical ao fluxo de ar sendo cerca do dobro da resisténcia ao fluxo de
ar na diregao horizontal. As quatro variedades de arroz com casca estudadas tiveram
resisténcia ao fluxo de ar na diregao vertical entre 30 a 50 % maiores do que na dire¢ao
horizontal.

Khatchatourian et al. (2009) mostraram que o fator de anisotropia fisica de-
pende da forma do gréo, apresentando maiores desvios a medida que o grao difere
do formato esférico. O fator de anisotropia aumenta com a velocidade do ar, e essa
influéncia da velocidade varia de muito fraca para sementes com forma préxima a
esférica (ervilha, soja) até significativa para graos bem menos esféricos (lentilha, arroz).
Simulacdes numéricas de armazéns de graos aerados reais € hipotéticos foram utili-
zadas para detectar a influéncia da anisotropia nas areas de risco operacional. Essa
diferenca depende do tipo de gréao (valor do fator de anisotropia), variagdo da area
da secédo transversal do silo de armazenamento (taxa de expanséo) e localizacdo da
entrada de ar.

Knob (2010) relacionou a anisotropia com posi¢cdes mais provaveis dos graos
na massa de gréos ocupadas no armazém. Durante o enchimento do armazém, os
gréos ocupam uma posicao para qual a energia potencial do sistema seja minima, isto
€, 0 centro de gravidade do grao fique o mais baixo possivel. Aplicando o processa-
mento de imagens digitais foram obtidas as caracteristicas geométricas dos varios
tipos de gréaos (soja, trigo, aveia, milho, arroz, lentilha, linhaga e ervilha). Utilizando a
relacdo entre a area de projecao horizontal e a &rea mais provavel de projecao vertical,
foram generalizados os dados experimentais sobre 0 escoamento do ar nas diregdes
horizontal e vertical, com variacdo de velocidade. Constatou-se que, com 0 aumento
da excentricidade dos graos, a razéo entre as permeabilidades na diregdo horizontal e
vertical (fator de anisotropia) aumenta.

Tozinni (2010) desenvolveu um modelo matematico para calcular a pressao
estéatica, aerodinamica e a distribuicao de velocidade do fluxo do ar na massa de
graos, considerando os casos bi e tridimensionais sob condicdes ndo homogéneas e
anisotropicas. Com os experimentos foram obtidos os fatores de anisotropia para varios
tipos de graos (soja, milho, trigo, aveia e arroz). Tozinni (2010) constatou também,
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assim como em Khatchatourian et al. (2009) que o fator de anisotropia cresce com o
aumento da velocidade do ar. Essa influéncia € muito pequena para graos com a forma
préxima do esférico (ervilhas e soja) e muito maior para graos da forma nao esférico
(lentilhas e arroz).

Vasconcellos (2012) propés um estudo aprofundado sobre a distribuicdo do
fluxo do ar em armazéns sob o efeito da ndo homogeneidade e da anisotropia em
graos de arroz, aveia, soja, milho e trigo. A anisotropia foi relacionada ao angulo mais
provavel que os graos podem ocupar no silo, bem como a relagcdo com o grau de
esfericidade das sementes. As simulacdes mostraram que ha uma diferenca entre o
fluxo de ar dentro do armazém para o meio isotrdpico e para 0 meio anisotropico. Esta
diferenca depende do tipo de grao (fator anisotropico) e do local de entrada do ar.

Como podemos observar, existem diversos estudos sobre a anisotropia fisica
e geométrica. Entretanto, em relacao a conservacao do gréao, até o presente momento
encotramos somente estudos voltados a anisotropia fisica. Assim se faz necessario um
aprofundamento na anisotropia geométrica e quais suas consequéncias na simulacao
do processo de aeragao.

2.3 EXTRAPOLAGAO DE RICHARDSON

A técnica denominada extrapolagéo de Richardson (ER) (RICHARDSON, 1910)
e sua aplicacao recursiva (Multipla Extrapolacao de Richardson - MER), foram con-
cebidas com o objetivo aumentar a ordem de acuracia de aproximagcdes numéricas
envolvidas na resolugédo de equacgdes diferenciais através de diversos métodos de dis-
cretizacao (MDF, MVF, etc). As necessidades da época, em Engenharia, demandavam
métodos rapidos, faceis de serem entendidos e aplicaveis as equacgdes estudadas
(MARTINS, 2013). Assim, sdo apresentados alguns trabalhos relacionados a Extrapola-
¢éo de Richardson (ER) e a Multipla Extrapolacdo de Richardson (MER), em diferentes
modelos matematicos.

Richardson e Gaunt (1927) aplicaram a ER, com dois niveis de extrapolacéo,
na equacao integral de Volterra e nas derivadas no Teorema de Leibnitz, melhorando a
acuracia.

Lima (1994) mostrou que a ER pode ser aplicada com sucesso ao problema de
valor de contorno modelados por equacgdes diferenciais lineares ordinarias de segunda
ordem discretizadas com MDF, apresentando resultados numéricos que confirmam tal
fato.

Han e Wang (2002) estudaram a solugdo numérica da equacéao integral de
Fredholm bidimensional pelo método de Galerkin. A aplicacdo da ER melhorou rapida-
mente a taxa original da convergéncia.
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Natividad e Stynes (2003) consideraram um problema de valor de contorno de
convecgao-difusdo em uma malha uniforme por partes. Eles mostraram que, quando o
Upwind simples € usado, uma versao da ER melhora a precisédo da solugéo calculada.

Ertuk et al. (2005) utilizaram trés malhas distintas no problema de escoamento
permanente bidimensional de fluido incompressivel em uma cavidade com tampa mével
e conseguiram obter sexta ordem de acuracia para a solucao numérica, aplicando
apenas dois niveis de ER.

Rahul e Bhattacharyya (2006) investigaram a ordem de acuracia de aproxima-
cbes numéricas unilaterais empregadas quando as condicdes de contorno envolvem
o célculo de derivadas. Empregaram MER com trés malhas distintas e dois niveis de
extrapolacao e atingiram a ordem quatro.

Marchi e Germer (2013) verificaram o desempenho da MER na redugao do erro
de discretizacdo quando associado a dez tipos de esquemas numéricos de CFD de
primeira, segunda e terceira ordens de precisao para resolver a equacgao unidimensional
de adveccao-difusdo. Utilizaram como variaveis de interesse a temperatura no centro do
dominio, média do campo de temperatura e taxa de transferéncia de calor. Os autores
relataram que a MER é extremamente eficaz na reducao do erro de discretizacao para
todas as variaveis e esquemas numericos.

Marchi et al. (2013a) verificaram a eficiéncia da MER para reduzir o erro de
discretizacdo em uma malha triangular e uma malha quadrada para a equacao de
Laplace bidimensional. Para isso utilizaram o MVF, malhas uniformes, aproximacgoes
de segunda ordem e condi¢des de contorno de Dirichlet. Verificaram que a MER é
eficiente para tal equacéo reduzindo o erro de discretizacdo em ambas as malhas,
mas com o erro menor para uma malha quadrada do que para uma malha triangular.
Verificaram que a redugao do erro numérico dependia da variavel de interesse, além da
geometria do dominio.

Marchi et al. (2013b) aplicaram a MER para a equacgao de Laplace bidimensi-
onal, com MDF, malhas uniformes, aproximacdes de segunda ordem e condi¢des de
contorno de Dirichlet. Os autores relataram que a MER reduziu significativamente o erro
de discretizacao e que o estimador de erro de Richardson funcionou bem. Concluiram
também que, para um dado nivel de erro de discretizacao, um valor muito menor de
tempo de CPU e memdria RAM sédo necessarios com o uso da MER.

Martins (2013) analisou o desempenho da MER, utilizando as equacodes de
Poisson, adveccao-difusdo e de Burgers, discretizadas com o MDF e o MVF, propondo
um conjunto de procedimentos numéricos que permitiram reduzir o erro de discre-
tizacdo. Foram empregadas funcdes de interpolacédo polinomial em dominios uni e
bidimensionais e técnicas de otimizacao. Com relacéo as estimativas para o erro de
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discretizacao, foram analisados os desempenhos de alguns estimadores disponiveis na
literatura, e uma nova proposta de estimador para MER foi apresentada. Tal abordagem
mostrou-se acurada e confiavel. Esses resultados de Martins (2013) estdo compilados
em Marchi et al. (2016).

Da Silva et al. (2020) apresentaram um procedimento completo da MER para
um tipo mais genérico de malha em escoamentos de fluidos compressiveis. Trés testes
sao realizados para equacdes de Euler unidimensionais e quase unidimensionais:
escoamento de Rayleigh, escoamento isentrépico e escoamento adiabatico através de
um bocal, todos resolvidos com o MDF. O procedimento proposto aumentou a acuracia
obtida em todos os trés testes. O melhor desempenho foi obtido para o escoamento de
Rayleigh.

Da Silva et al. (2022) usaram a MER para melhorar a acuracia das solugdes
numeéricas de variaveis locais e globais obtidas usando 0 método de hidrodinadmica de
particulas suavizadas (SPH). A investigacdo se concentrou nos problemas unidimen-
sionais de conducédo de calor em regime permanente e transiente com condi¢des de
contorno de Dirichlet. Os autores relataram que a MER é robusta na determinagéo até
a décima sexta ordem de acuracia para o dominio espacial.

Como observamos nesta sec¢ao, os trabalhos relataram a efeciéncia da MER
nos mais diversos modelos matematicos, mas ndo encontramos até o presente mo-
mento, estudos aplicando a MER a modelos relacionados a aeracao da massa de
graos, tampouco para o modelo proposto por Thorpe (2001b). Portanto, pretendemos
fazer uso desta ferramenta para reduzir e estimar o erro de discretiza¢ao aplicado na
simulagao do processo de aeracdo da massa de graos.
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3 FUNDAMENTAGCAO TEORICA

Neste capitulo apresentaremos a fundamentacao teédrica, fornecendo o em-
basamento para o trabalho. Inicialmente, mostraremos o erro numerico, as ordens
efetiva e aparente, o MVF e o tratamento das condi¢des de contorno. Na sequéncia
abordaremos a viscosidade artificial, 0 método para solugédo dos sistemas lineares.
Finalmente, a anisotropia geométrica.

3.1 ERRO NUMERICO

Segundo Ferziger e Peric (2002), o erro numérico £ é definido como a diferencga
entre a solugao analitica exata ® de uma variavel de interesse e a sua solugdo numérica
¢, ou seja, E = & — ¢. Neste trabalho n&do dispomos de solucdo analitica, entdo
utilizaremos aproximagao numeérica ou solugéao fabricada.

De acordo com Marchi (2001), o erro numérico possui quatro fontes princi-
pais: erros de truncamento, erros de iteracao, erros de arredondamento e erros de
programagcao.

e O erro de iteragdo tem como causas: 0 emprego de métodos iterativos para resolu-
cao do sistema de equacdes algébricas resultantes do processo de discretizacao;
a resolugéo de problemas néo lineares em que a matriz dos coeficientes é funcao
da variavel dependente do problema; e o tratamento de modelos matematicos
constituidos por mais de uma equacao, sendo cada uma resolvida separadamente
(MARTINS, 2013).

e Os erros de arredondamento ocorrem devido a representacéo finita dos numeros
reais nas computacoes. Eles dependem do compilador (software) usado para
gerar o cddigo computacional e do computador (hardware) empregado em sua
execucado (MARTINS, 2013). Quanto maior € a precisdo utilizada para representar
as variaveis, menores sao os erros; entretanto, maior é a memaéria computacional
necessaria para o armazenamento dessas variaveis (MARCHI, 2001).

e Os erros de programacao sao resultantes do uso incorreto de um modelo numérico
na aproximacao de um modelo mateméatico; os erros gerados na implementagao
do modelo numérico em um programa computacional; os erros cometidos no uso
do programa computacional durante a obteng¢édo da solugdo numérica; e qualquer
outra eventual fonte de erro, como por exemplo: usar uma solug¢ao analitica com
precisdo inferior a da solugdo numérica (ROACHE, 1998).
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O erro que ocorre ao se truncar uma sequéncia infinita € chamado erro de
truncamento, ou seja, é proveniente do fato de se aproximar um modelo matematico
continuo por um modelo numérico discreto (ROACHE, 1998). Tais erros estdo asso-
ciados as aproximacdes numéricas utilizadas para as variaveis e suas derivadas no
processo de discretizagao.

O erro numérico € denominado de erro de discretizacdo quando sua Unica
fonte sédo os erros de truncamento, ou seja, quando os erros de arredondamento, de
iteracdo e de programagéo podem ser desprezados (FERZIGER; PERIC, 2002). Deste
modo, representamos o erro de discretizacdo da seguinte forma,

Ep(¢) = C1hPr + CohP2 + CshPs + . . ., (3.1)

sendo ~ 0 tamanho representativo da malha, C; os coeficientes que nao dependem
da malha, mas sim da variavel em questao, e p; sdo as ordens verdadeiras, com
pi < Pir1 < Pix2 < ...,onde i = 1,23,.... A primeira ordem verdadeira também é
conhecida como ordem assintética p;,, ou seja, p;, = p;. A ordem assintética do Ej, da
equacao diferencial discretizada pode ser obtida por meio da chamada estimativa a
priori, isto €, quando h — 0 teremos uma simplificagdo na Eq. (3.1), representada por,

En(¢) = CihP-. (3.2)

Portanto, antes de se obter a solucdo numérica podemos prever o comporta-
mento assintético do E),. Desta equagao podemos ver ainda que, quanto maior a py,
mais rapido decai o £} quando h — 0.

Uma estimativa do E) também pode ser feita a posteriori das solugdes numéri-
cas. Com essa estimativa, podemos verificar se a ordem assintética do Ej,, calculada
a priori, € obtida pelo modelo numérico desenvolvido. Se a solugéo analitica do pro-
blema é conhecida, podemos utilizar a ordem efetiva (pz) do erro de discretizacao para
estimar a ordem assintética. Sabendo-se que ® representa a solugédo analitica, ao se
empregar as solugdes numéricas ¢, e ¢,, para as malhas grossa (") e fina (22),
respectivamente, definimos a ordem efetiva como (MARCHI, 2001),

log ((I) — (bl)
=02/ (3.3)

log(r)

PE =

onde r = hy/hy, cOM hy € hy sendo os tamanhos representativos das malhas grossa
QM e fina Q"2 respectivamente.

Em inUmeras situagdes, ndo se dispde da solugcado analitica, entdo podemos
fazer uso da ordem aparente (py/) para estimar a ordem assintética. Para isto, utilizamos
trés solugcdes numéricas: ¢, ¢, € ¢3 correspondentes as solugdées numéricas nas
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malhas super grossa (1), grossa (Q2"2) e fina (€"3), respectivamente. Dessa forma, a
ordem aparente (py) € definida por

log (¢2 — ¢1>
- l¢3 — ¢ , (3.4)
og(r)

onde r = hy/hy = hs/hs, cOm hy, hy € hy sendo os tamanhos representativos das
malhas utilizadas.

As ordens efetiva e aparente tendem a ordem assintética com o refinamento
da malha, ou seja, pr — pr € pv — pr quando h — 0 (MARCHI, 2001).

3.2 METODO DOS VOLUMES FINITOS E CONDIGOES DE CONTORNO

O Método dos Volumes Finitos (MVF) foi introduzido na area de CFD no inicio
da década de 1970 (MCDONALD, 1971; MACCORMACK; PAULLAY, 1972). Segundo
Kolditz (2002), o MVF tem duas vantagens principais: primeiro, impde a conservacao
de quantidades em nivel discreto, isto €, massa, momento e energia permanecem
conservados também em escala local. E com isso, os fluxos entre volumes de controle
adjacentes sado balanceados diretamente. Em segundo lugar, os esquemas de volu-
mes finitos aproveitam ao maximo as malhas arbitrarias para aproximar geometrias
complexas.

No MVF, cada ponto (ou né) da malha computacional é envolto por um volume
de controle (VC), como da Fig. 7. Tal figura mostra a discretizagdo no tempo e no
espaco, utilizando os pontos cardeais S (sul) e N (norte) como identificadores da
posicao dos volumes para a direcédo espacial e j — 1, j e j + 1 como identificadores da
direcao temporal. O dominio representado na Fig. 7 pode ser considerado como um
subdominio do dominio discreto original e sobre o qual as equagdes governantes sao
integradas e representadas por meio de balangos dos fluxos das propriedades através
de suas faces.

A seta (1) indica o sentido do fluxo de ar de sul para norte e n e s correspondem
as faces norte e sul do volume de controle P, respectivamente,com P =i, N =i+ 1e
S =i—1 representando o centro do volume e seus vizinhos norte e sul. O espagamento
espacial é dado por Ay, os subindices representados por letras mindscula ou maiuscula,
sao respectivamente, a distancia entre os pontos centrais dos volumes adjacentes
e a distancia entre as faces adjacentes. Como estamos trabalhando com malhas
igualmente espacadas por direcao, os Ay sao todos iguais, sendo definido por

Ay = — (3.5)
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FIGURA 7 — VOLUME DE CONTROLE GENERICO, DE NO CENTRAL P, E SEUS VIZINHOS.
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(a) Discretizacdo do dominio. (b) Esquema de aeracgéo simplificado no modelo.

FONTE: Adaptado de Khatchatourian et al. (2017).

onde L representa a altura da massa de gréos (m) e N, € o numero de volumes fisicos
(volumes reais) na direcao y desconsiderando os volumes ficticios (mais adiante ha
detalhes sobre este tipo de volume).

A diferencga entre o tempo atual (j) de simulacéo e o tempo anterior (j — 1) €
dada por,
ty
At = — 3.6
A (36)
sendo ¢, o tempo final de simulagdo e N, corresponde ao numero de passos no tempo.
Por outro lado, a quantidade de volumes no dominio discretizado (N) e o numero total

de volumes considerando os volumes ficticios (/V;), s&o dados respectivamente por

N =N, x N, (3.7)

Np = (N, +1) x (N, +2). (3.8)

Existem duas maneiras de se obter as equacdes aproximadas no método dos
volumes finitos. A primeira € a realizagdo de balancos da propriedade nos volumes
elementares; e a segunda € a integracao sobre o volume elementar, levando-se em
consideracao tanto o espagco quanto o tempo. As equagdes na forma conservativa
€ aquela em que na equacéo diferencial os fluxos estdo dentro do sinal da derivada
e, na primeira integracdo, aparecem nas fronteiras do volume elementar, equivalente
portanto, ao balanco (MALISKA, 2017).
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Neste trabalho utilizaremos a segunda maneira de obter as equagdes aproxi-
madas no MVF, ou seja, integrando as equagdes na forma conservativa sobre o volume
elementar. A titulo de ilustragdo da aplicacao do MVF, consideremos a equacéo que
expressa a advecgao de uma determinada variavel A (variavel arbitraria), dada

opA  OpvA
5 + ay =5, (3.9)

sendo p - massa especifica do fluido (kg/m?), v - coordenada na diregéo vertical (m), ¢
- coordenada temporal (s), v - componente de velocidade do ar na diregao y (m/s) e 0
S - termo fonte.

Assim, com a definicdo de um VC representativo do dominio (continuo), as
propriedades do fluido s&o integradas sobre esse VC através do teorema da divergéncia
de Gauss (GREENBERG, 1998).

Desse modo, integrando a Eq. (3.9) e aplicando as respectivas aproximacdoes
na derivada temporal (Euler implicito)

7 RAR VAR UA
— AT A
( ot )P At (3.10)
e espacial (UDS)
oA A, — A
) an : 3.11
()= "5 G110

obteremos
p (AL = AL) AxAyAz + p (v, AT — v, AT AzAzAL = SpAzAyAzAL,  (3.12)

em que j + 1 representa o passo de tempo atual.

Considerando p constante, AxAz = A,, e dividindo toda a Eq. (3.12) por At,

teremos
mp

At
onde m, - massa de volume de controle P, 11, - fluxo de massa na face norte e ; -

fluxo de massa na face sul, dadas respectivamente por

(AL = AL + 1 AT — i AT = SpA,. Ay, (3.13)

my, = pAg. Ay, (3.14)

My = pAs.Un (3.15)
e

ms = pAg,vs. (3.16)

Aproximando os fluxos advectivos nas faces, A7™! e A7™!, por UDS (MALISKA,
2017), temos

. . 1 .
VAR (é + an) JVARIE (5 — an) A (3.17)
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, A 1 .
NI = (% + ozs) J\VARE <§ — as) A (3.18)
onde oy = (1/2)sign(vy), f = n e s. A fungéo sign(A) fornece o sinal matemético da
variavel A.

Substituindo as Egs. (3.17) e (3.18) na Eq. (3.13), apds algumas manipulacdes
algébricas e rearranjando os termos, obtemos

apNT = an N 4 agAST + bp. (3.19)

Com ap, as € ay representando os coeficientes apds a aplicacdo das fungdes
de interpolagéo e bp representando o termo fonte, dados por,

an = —my, (% — ozn) , (3.20)

. 1
ag = M (5 + ozs> , (3.21)

_ Mp
ap = a, + as + At (3.22)
e

bp = “PAT AL Ay. (3.23)

At T

Todas as técnicas apresentadas sdo para os volumes internos, pois, estes
possuem equacdes aproximadas idénticas para todos os volumes. No entanto, para
se obter as equacoes discretas completas, deve-se avaliar também os volumes nas
fronteiras do dominio.

3.2.1 Condigdes de contorno

Existem varias técnicas para obter as equacdes nos volumes nas fronteiras
do dominio. Dentre as técnicas possiveis, neste trabalho ser&o aplicados os volumes
ficticios (MALISKA, 2017).

A principal vantagem desta técnica é sua facilidade de implementacao, pois
as expressoes algébricas dos volumes ficticios ficam com as mesmas expressdes
algébricas dos volumes fisicos. Por outro lado, sua desvantagem é a quantidade de
variaveis adicionais que o problema ganhara, afetando o tempo computacional de
simulacao.

A técnica dos volumes ficticios consiste em adicionar volumes de controle
ao redor do dominio fisico, de modo que o balango entre as propriedades nos volu-
mes ficticios e seus vizinhos reais satisfagam as condigdes de contorno originais do
problema.
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Por exemplo, para a condigcao de contorno de Dirichlet, a propriedade A no
contorno é conhecida, A. (GONGALVES, 2013). A Fig. 8 representa o esquema para o
volume de controle na fronteira sul com os seus respectivos volumes ficticios.

Neste caso, os coeficientes dos volumes ficticios para o volume P, na fronteira
sul, sera determinado pela média aritmética,

_Ap—{—AN

A
2

(3.24)

ou ainda,
Ap = —Ay + 2A.. (3.25)

FIGURA 8 — REPRESENTAGAO DO VOLUME FICTICIO NA FRONTEIRA SUL.

Ay Contorno Sul

I -
1 1
I 1
1 (] |
: ‘\'\ Volume ficticio
1

FONTE: O autor (2023).
Logo, comparando Eq. (3.25) com a Eq. (3.19), teremos os coeficientes e
termos fonte no volume ficticio em questao, dados por

ap=1; ay = —1; ag =0; bp = 2A.. (3.26)
De forma analoga obtemos a condi¢do de contorno na fronteira norte.

3.3 VISCOSIDADE ARTIFICIAL

A viscosidade artificial, proposta por Von Neumann e Richtmyer (1950), é uma
técnica que controla as oscilacées nao fisicas nas solucées numéricas. Foi utilizada
pela primeira vez para o0 modelo proposto por Thorpe (2001b) por Rigoni et al. (2022)
para eliminar os problemas de oscilagdes nao fisicas excessivas nas aproximagdes de
segunda ordem (CDS-CN, LS e RWS (Roberts e Weiss Scheme)).
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A seguir vamos fazer um estudo para se obter uma expressao para a viscosi-
dade artificial (TRYGGVASON, 2017). Sejam dadas as equagdes

o5 oV _

T 27
y =y -2 (3.28)
Jy
e of
= AMAv)?| =L 2
5= 2975 | (3.29)

onde f = f(y,t) e Y = Y(y,t) sdo fungdes diferencidveis adequadas a esta dedugéo e
A (fator de viscosidade artificial) uma constante adimensional ajustavel (CAMPBELL;

VIGNJEVIC, 2009).
Substituindo Y por Y’ na Eq. (3.27), temos
of oy 0 of71
5Ty = @{%ﬁ_m, (3.30)

onde
0 2
Vi=—|MAy)

of |Of
N 8_y] (3.31)

representa a viscosidade artificial.
Desta forma, quando Ay — 0, V4 — 0 e assim, a Eq. (3.30) — Eq. (3.27).

Assim, adicionamos Eq. (3.31) na Eqg. (3.9) e obtemos

A A AOA
9pA | Opoh O [A(A 12|24 a_] ~ 5. (3.32)

ot + oy + 8_y Jy | dy
Efetuando a discretizagéo da viscosidade artificial pelo método de Lax e Wen-
droff (1960) (TRYGGVASON, 2017; RIGONI et al., 2022), temos

0 2| ON | OA 1 2| ON | OA 2| ON | OA
— [ MAY) | =—|=— | = — | [MAy)"|=—|—=— — [ MAY) | —|— 3.33
83/[( Y) kD Ay( (Ay) o ay]P+1 [( Y) oy | 0y p_1>’ (3.33)
sendo, i i
AOA
AAy)? oA oA ~ A% — AB[(A% — AD) (3.34)
dy 8y_ prl
e _ -
AMAy)? on 0A ~ AAR — AL (AR — AZ). (3.35)
I dy (91/_ b1
Empregando as aproximacdes dadas pelas Egs. (3.34) e (3.35) na Eq. (3.33),
temos
0 9| ON|OA A
— | AMAY) == | & ——||A} — AB| (AN — AL) — |[AD — AS|(AD — A% :
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que € o termo discretizado da viscosidade artificial, que sera utilizado no decaimento
das oscilacoes.

3.4 METODO PARA SOLUGAO DOS SISTEMAS LINEARES

Apds o processo de discretizacao (espacial e temporal), a avaliacao das propri-
edades (ou variaveis dependentes) das equacdes em cada volume interno da malha
computacional se da em funcao de seus volumes vizinhos. Esse processo da origem a
um sistema de equacdes, que pode ser linear ou ndo, de acordo com as respectivas
equacdes. Todavia, no caso de equagdes nao lineares, uma sequéncia de sistemas
lineares quase sempre podem ser obtidos através do emprego de técnicas de lineariza-
cao (OLIVEIRA, 2020). Em nosso estudo, sdo gerados sistemas lineares. Observamos
que a Eq. (8.19) contém apenas os coeficientes das variaveis vizinhas ao volume
atual P. Desse modo, a matriz tem a maioria dos elementos nulos e os elementos nao
nulos concentram-se em torno da diagonal principal, que é chamada de matriz banda
(CUNHA, 2000).

Desse modo, a Eq. (3.19) pode ser reescrita como
Ao =Db, (3.37)

onde A representa a matriz dos coeficientes, que nessa caso € uma matriz banda
tridiagonal, com as trés diagonais relacionadas aos coeficientes ap, ag € ay (Fig. 9); b
é o termo independente do sistema, composto pelos elementos de b, e ¢ € a incognita.

FIGURA 9 - ESTRUTURA DE UMA MATRIZ TRIDIAGONAL.

FONTE: O autor (2023).

Assim, faz-se necessario um método de solucao eficiente para matrizes do
tipo banda. Utilizaremos o método TDMA (TriDiagonal Matrix Algorithm), proposto por
(THOMAS, 1949), para resolver de forma direta os sistemas de equacgdes algébricas.
Tal método é baseado na decomposicao LU da matriz tridiagonal.
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3.5 ANISOTROPIA E RAZAO DE ASPECTO

Anisotropia € uma caracteristica frequente nos fendmenos naturais e repre-
senta a ndo homogeneidade direcional de um determinado evento, ou seja, a variabili-
dade espacial dos elementos ocorre mais intensamente em uma direcao preferencial
(OLIVEIRA et al., 2015).

No capitulo (1) desta tese, comentamos que a anisotropia pode ser fisica ou
geométrica e que em nosso estudo vamos abordar a geométrica (ou anisotropia de
malha). Para tanto, temos que definir o fator de anisotropia 7,,, como a rela¢édo entre os
comprimentos adotados nas diversas diregées. Devemos frisar que, no caso especifico
de anisotropia geométrica, tal fator também é chamado de razao de aspecto.

Na Fig. 10 podemos ver um tipo de anisotropia geométrica. Ela esta caracteri-
zada pelo tamanho da malha (Az, Ay ), comprimento do dominio de calculo (C,, C,) e
numero de volumes (N, N,) nas direcées = e y, respectivamente.

FIGURA 10 — ANISOTROPIA GEOMETRICA.

Az
4+—>

-~
e

F 3
v

Cy

FONTE: O autor (2023).

Dessa maneira, temos as seguintes caracteristicas Az # Ay, N, # N, e

C; # C, onde C, = xy — xy, com C, representando o comprimento total na dire¢ao z,

dado pela diferenga entre o ponto final (z) e inicial (z) na dire¢éo z, e Cy, =y — yo

sendo C, o comprimento total na dire¢éo y, dado pela diferenga entre o ponto final (yy)

e inicial (yo) na direcao y. Matematicamente, definimos fator de anisotropia da malha
(ou razéo de aspecto) por (OLIVEIRA, 2010),

Ax

=5, (3.38)

Quando 7,, = 1, a malha é chamada isotrépica, caso contrario (7, # 1),
anisotropica (BRIGGS et al., 2000).

Neste trabalho generalizamos os conceitos apresentados por Oliveira (2010),
que apresentou anisotropia geométrica puramente espacial, adaptando-os para 0 nosso
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estudo em relacao as variaveis temporal e espacial. Dessa forma por analogia e com
abuso de liguagem e notacao vamos definir a anisotropia temporal espacial, dada por

At

Tty = A_y (339)

Vamos efetuar uma analise diferente da convencional utilizando uma relacéo
entre 0 numero de volumes na diregao temporal () e espacial (y), visto que o tamanho
dos dominios s&o diferentes. Neste caso, vamos considerar o tempo final (¢;) de
3600 s e o comprimento espacial em y de 1 m. Dessa forma, representando a razédo
espacgo-tempo (7) pelo nimero de volumes na dire¢cao temporal (N;) sobre 0 numero
de volumes na diregcdo espacial (V,), temos

=t (3.40)

Por exemplo, quando 7 = 2, significa que o nimero de volumes na direcao
temporal (/V;) € o dobro do numero de volumes na dire¢gdo espacial (V,), ou ainda,
quando 7 =4, N; = 4N,, e assim de forma analoga para 7 = 8, 16, 32 e 64, valores que
serdo analisados na tese.
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4 MULTIPLA EXTRAPOLACAO DE RICHARDSON E ESTIMADORES

Neste capitulo abordaremos a MER e o tipo da variavel que trataremos neste
trabalho. Na sequéncia veremos os estimadores A, Richardson, Richardson corrigido,
U e U*, posteriormente a efetividade dos estimadores.

4.1 MULTIPLA EXTRAPOLAGAO DE RICHARDSON

Extrapolacao é o processo de construgdo de novos pontos que se encontram
fora dos limites dos pontos conhecidos. De acordo com Brezinski e Zaglia (2009), um
método de extrapolacao pode ser entendido como qualquer transformacao aplicada a
uma sequéncia de escalares ou vetores.

Segundo Sidi (2003), um bom método de extrapolagao geralmente leva em con-
sideragdo o comportamento assintotico de uma sequéncia convergente. Dentre esses
métodos, a extrapolacao de Richardson (ER) é um dos mais conhecidos (MARTINS,
2013) e é utilizada para gerar resultados de alta precisao usando férmulas de ordem
inferior (RICHARDSON; GAUNT, 1927).

Segundo Burden e Faires (2016), a metodologia pode ser empregada sempre
que se saiba que uma técnica de aproximagao tenha um termo indicativo de erro de
forma previsivel, isto é, uma forma que dependa de um parametro real.

A ER é representada por

¢(h) — ¢(rh)

rPr — 1

Poo = H(h) + ; (4.1)
onde ¢, € a solucao analitica estimada, r é a razao de refino e p;, é a ordem verdadeira.

De acodo com Martins (2013), além da obtencao de ¢.., a ER pode ser abor-
dada na perspectiva de estimador do £}, envolvido no calculo de ¢(h).

Dessa forma, podemos obter a estimativa de Ej, inerente a ¢(h), por meio de

_ _ ¢(h) — ¢(rh)
Un = ¢ = ¢(h) = — (4.2)
Quando consideramos py,, ps, ps, ... € r = hy/hy41, valores gerais, a ER €

conhecida como ER generalizada, onde as solugbes ¢(h) sdo obtidas em diferen-
tes malhas e os subindices g € g + 1 representam a malha grossa e a malha fina,
respectivamente.

Dessa forma a expressao para a ER generalizada € dada por

Poo = Pgi1 + o1 = &g (4.3)

rPi — 1
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Aplicando recursivamente a ER, é possivel potencializar a sua eficacia. Como
ja comentado, esse processo € denominado Multipla Extrapolacdo de Richardson
(MER).

Tanto a ER como a MER podem ser entendidas como um pds-processamento
sendo aplicavel a resultados ja existentes. Basta ter a disposi¢ao solucbes numéricas
em malhas distintas, estabelecidas por um processo de refinamento. Com MER, mesmo
considerando-se a aplicagéo de esquemas numeéricos de baixa ordem, é possivel obter
solu¢des numéricas de alta ordem (MARTINS, 2013).

Assim, a partir da Eq. (4.1), temos a MER
¢0(h9) = Qb(hg) (4-4)

Go(hg+1) — dolhy) (4.5)

rpi — 1 ’

¢1(hg+1) = CbO(hg—i-l) +

comg=123,....

Embora a expressao apresentada na Eq. (4.5) seja apropriada para o estudo
das propriedades de MER, ao se considerar 0 seu emprego em aplicagées computacio-
nais, a notacdo adotada por Marchi et al. (2008) torna-se mais adequada. Assim, a Eq.
(4.5) passa a ser representada por
o) m—1 — o) —1,m—1

g o _9 N , (4.6)
sendo valida para g = 2,....G e m = 1,....,g — 1, onde g representa o nivel da malha
0" e m o nimero de aplicagdes da ER. A solugdo numérica sem o emprego de ER é
representado pelo termo ¢, .

¢g,m = ¢g,m71 +

Teoricamente, quanto maior o valor de m mais proximo ¢, ,,, estara de ¢ e
maior é o nivel de acuracia. A Eq. (4.6), pode ser repetida infinitamente, mas para
aplicagdes praticas considera-se um valor limite para ¢ = G, onde G € um namero
inteiro positivo que corresponde ao nimero de malhas adotadas. A Tab. 1 representa o
esquema para o emprego da MER.

De acordo com Marchi et al. (2008), o comportamento teérico de E; pode ser
verificado a posteriori quando se emprega a MER. Para isso, consideramos o valor
de pg, quando a solucéo analitica (®) é conhecida, e p;; quando n&o é conhecida. As
expressoes de pg € py podem ser generalizadas para MER, e serdo representadas por

E —1.m (D_ —1m
log[ h(g—1, )] log{ Prg—1, )]
Ehg,m) D — P(g,m)

_ _ 47
PEam) = Tog(r) log(7) &1
e
lOg |:¢(g—1,m) - ¢(g—2,m):|
P(g,m) = Plg—1,m)

, (4.8)

20 = log(r)
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comg=2,....Gem=1,....g—1paraa Eq. (47)ecomg =3,....Gem =
1,...,Int((g — 3)/2) para a Eq. (4.8), onde Int(c) € a representacdo da parte inteira de
um numero real o.

TABELA 1 - REPRESENTAGCAO ESQUEMATICA DO EMPREGO DE MER.

m=0 m=1 m=2 --- m=G -2 m=G -1
¢1,0:¢1
N\
-¢21
¢2,0:¢2 - ’
N\

¢3,0 = ¢3 ¢3,1 —

¢Gfl,0 = ¢G71 ¢G71,1 ¢G71,2

¢G,0 = ¢G ¢G,1 ¢G,2 T ¢G,G—2 -

FONTE: O autor (2023).

De acordo com Martins (2013), o emprego de MER requer a obtencao de
solugdes numéricas para determinada variavel de interesse, em uma colegédo de
malhas distintas. Neste sentido, apresentamos na Fig. 11, o tipo de variavel que sera
tratada neste trabalho com sua localizagédo (uma classificagdao completa com outros
tipos de variaveis e as adapta¢des da MER podem ser vistas em Martins (2013) e

Marchi et al. (2016)).

FIGURA 11 —TIPO DE VARIAVEL.

&
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FONTE: Adaptado de Martins (2013)
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Note que este € um tipo de variavel local, cuja localizacao coordenada (a) é
mantida em todas as malhas (£2") consideradas e coincide com um ponto nodal.

Nesse caso, segundo Martins (2013), o emprego da MER ocorre diretamente.
Tem-se assim o Algoritmo I:

ALGORITMO 1 APLICACAO DA MER
Entrada: Solu¢cdes numéricas para a variavel de interesse ¢ em G malhas distintas:
o1, ¢2, G3, -+ -, O, Obtidas pelo Algoritmo 2.
Fazer: ¢,y = ¢1, P20 = @2, $30 = @3, -+, Pa0 = Pc
form=1:G—-1do
forg=m+1:G—-Gdo

_ ¢g,m—l - ¢g—1,m—l
¢g,m - ¢g,m—1 + rPm—1 — 1
end for
end for

4.2 ESTIMADORES

Neste se¢ao apresentaremos a obtencdo de estimativa para o erro de discretiza-
cao, considerando o emprego de MER. Dessa forma, abordaremos cinco estimadores,
sendo eles A, Richardson, Richardson corrigido, ¥ e U*.

4.2.1 Estimador A

O estimador U,, utilizado por Demirdzic et al. (1992), é dado pela expressao

Un = |pg — g1 (4.9)

e efetua a estimativa de E), correspondente a ¢,, considerando duas solu¢gdes nume-
ricas ¢, € ¢,_1, respectivamente, das malhas fina Q" e grossa Q"+-. Tal estimador
nao leva em consideracéo a razao de refino nem a ordem assintética do método de
discretizacao.

Considerando as solugdées numéricas com a MER em um conjunto de malhas

(@) distintas, Marchi et al. (2009) propuseram a estimativa na malha mais fina adotada

(Qh<) que fornece uma estimativa para E,, associado a ¢¢,,. Tal estimativa é dada por
(veja Tab. 2)

Ua(¢G,m) = |0cm-1 — Pa—1,m-1], (4.10)

com m = G — 1 sendo o ultimo nivel de extrapolacao considerado.
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TABELA 2 — REPRESENTACAO ESQUEMATICA DO EMPREGO DE Ua (¢G.m)-

Malha m -1 m
Ohe-1 PG—1,m—1

N\
UA(¢G,m) - ’¢G,m—1 - ¢G—1,m—1|

th ¢G,m71 —

FONTE: O autor (2023).

4.2.2 Estimadores de Richardson e Richardson Corrigido

O estimador de Richardson é denotado por Ug;, sendo dado por

Ups (dgum) = 22— P01, (4.11)

P —1

De acordo com Marchi (2001), além da magnitude da estimativa de £}, Ug;
fornece o seu sinal podendo ser empregado em diversos niveis de malha, isto &,
Q" com g = 2,...,G. Assim, considerando solugdes numéricas empregando a MER,
Marchi et al. (2008) propuseram

925 mo (b —1m
T e

comm = [0,G — 2] e g=[m+2,G].

, (4.12)

A simbologia U,,,, adotada por Martins (2013), indica a aplicacdo do estimador
de Richardson, com base em py = {p,,, m = 1,2,...}, assim denominando o estimador
pm. A Tab. 3 representa o esquema para estimar E,, usando o estimador pm, para um
nivel m de extrapolagao qualquer.

TABELA 3 — REPRESENTACAO ESQUEMATICA DO EMPREGO DE U, (¢g.m)-

Malha m
th—l ¢g—1,m
N\
Qho g —

FONTE: O autor (2023).

Finalmente, aplicando um fator de correcao (r?), teremos o estimar de Ri-
chardson corrigido (MARTINS, 2013), representado por

Ume ((bg,m) = 'r'pm Upm (¢g+1,m) ? (41 3)



Multipla extrapolagdo de Richardson e estimadores 63

comm =g — 1.

423 Estimadores ¥ e U*

Fazendo uso da série de Richardson, uma outra abordagem para ER é consi-
derada por Marchi e Silva (2002), denotada por R, e representada por

11 1 1
=— 4+ —+-—+—F... 4.14
Rs=gt@Etemtat (4.14)

onde ¥ € R, é a razao de convergéncia da série.
Para |V| > 1 temos uma série geométrica, dada por

1
- 4.1
R = o (4.15)

Ou ainda, admitindo e P € R*, define-se |¥| = r”, em que
1

_ rP —1’
Ro = 1

rP+1

se U>1

, se U<l

Dessa forma, reescrevendo a Eq. (4.1) e considerando P = p, teremos

Qboo - ¢g+Roo (ng _¢g—1)7 (416)
lembrando que ¢,_; e ¢, s&o as solu¢des obtidas, respectivamente, para as malhas
grossa (Qs-1) e fina (Q"9).

De forma analoga a Eq. (4.2) e admitindo a existéncia de um estimador baseado
no valor de ¥, podemos escrever a Eq. (4.16) da seguinte maneira,

Us (9) = 20t 4.17)

Assim, considerando a razao de convergéncia de ¢, para estimar E,,, teremos

onde ¥ = (\IIM)g, dada por
(bgfl m—1 ¢g72 m—2
) = ’ = 4.19
( M)g ¢g,m - ¢gfl,m71 ( )

comg=3,....,G.

A Tab. 4, é a representacao esquematica do emprego de Uy para E,,, quando
m = g — 1 malhas.
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TABELA 4 — REPRESENTACAO ESQUEMATICA DO EMPREGO DE Uy.

Malha m —2 m— 1 m
th—2 ¢g—2,m—2
¢
Qo= Gg—1m—2 — Pg1m-1
¢ ¢
th ¢g,m—2 — ¢g,m—1 — ¢g,m —

FONTE: O autor (2023).

Agora, considerando as Egs. (4.18) e (4.19), ¢ = (v,,), corresponde a ordem
aparente dada a estimativa de £,, na malha 0" . Devido a seu calculo envolver trés
malhas distintas, é natural admitir que o seu valor corresponda a uma inclinagdo média
para o grafico da estimativa de £,, (MARTINS, 2013).

A Eq. (4.20) calcula a corregao para o estimador ¢» em que a razao de conver-
géncia de ¢,, é atribuida & malha intermediaria do trio "', Q" e Q""" ou seja
Oum ~Orans o931
¢g+1,m+1 - ¢g,m

e By s = Gy o)’ | .
g—1,m—1 g—2,m—2 -G
(¢g,7n - ¢g—1,m—1)(¢g—2,m—2 - ¢g—3,m—3)’ g

em que * representa a corregao para o estimador ¢, parag = 2,3,...,G — 1, que é
obtido para valores de ¢ em 0", Q" e Q" e o resultado atribuido a Q. Para g=0G
a malha Q"' ndo esta disponivel para o calculo de ¥*, com isso, estabeleceremos
uma relacdo entre os valores obtidos para ¢ e ¢*, considerando a obtencao de *
através da razao entre o quadrado de ¢ para g = GG e 0 seu valor para g = G — 1, nas
Egs. (4.18) e (4.19) (MARTINS, 2013).

Dessa forma, o calculo da estimativa do erro numeérico associado a ¢,, (Eq.
(4.20)), apds a determinagéo de ¢* por analogia a Uy, Egs. (4.18) e (4.19), é dada por

¢g,m - ¢g—1,m—1

Uw* (¢gml> - 1/}* —1

(4.21)

4.2.4 Efetividade de uma estimativa de erro

De acordo com Zhu e Zienkiewicz (1990), a efetividade I'(Ur) pode ser avaliada
através da razao entre a estimativa (Ug) e 0 erro numérico (E)

Ug

['(Ug) = 7

(4.22)
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em que Ug depende da escolha do estimador.

Segundo Marchi (2001), a estimativa de erro ideal é aquela em que I'(Ug) = 1,
isto é, quando Ur = E. Ademais, Ug € considerada confiavel quando I'(Ug) > 1 =
Ug > E;eacuradaquando I'(Ug) =~ 1 = Ug =~ F.
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5 MODELO MATEMATICO

O modelo matematico € um conjunto de equacdes, juntamente com as condi-
cbes de contorno que descrevem adequadamente um fenémeno fisico que pode ser
analisado (TOZINNI, 2010), a demostragdo do modelo esta disponivel no Anexo (A.1).
Desta forma, apresentaremos neste capitulo o modelo de aeragdo da massa de gréos
com suas simplificagdes e condi¢des iniciais e de contorno.

5.1 MODELO DE THORPE

O modelo de aeracao que descreve a temperatura € o teor de agua da massa
de graos que sera utilizado neste trabalho, foi apresentado de forma detalhada por
Thorpe (2001b). Simplificagbes deste modelo foram sugeridas por Lopes et al. (2006) e
utilizadas por outros autores, tais como Radtke (2009), Kwiatkowski Jr. (2011), Rigoni
et al. (2022), entre outros.

O modelo proposto representa as equacdes da temperatura (7') e do teor de
agua da massa de graos (U) e é dado por

oT oh,\1\
g {p(,[c(7 + ewU] + €pq [ca + R (cw + a—T)} } =

oU oh,\1 0T =~ dm
pghsﬁ — UgPq |:Ca —+ R (CW + 8—T)} a—y + poE(QT — O,6h<p) (51)
e
oU OR dm
pga = —Uapaa_y + E(O’G + U)7 (52)

onde: ¢, - calor especifico do ar (Jkg—! °C~!), ¢y - calor especifico da agua (Jkg!
°C~1), ¢, - calor especifico dos gréos (Jkg~—' °C~'), £ - derivada da perda de matéria
seca em relagdo ao tempo (kgs™'), h, - entalpia especifica de vaporizagéo da agua
(Jkg™'), h,- entalpia diferencial de sorcéo (Jkg=!), Q, - calor de oxidagdo dos graos
(Js~'m™3), R - razdo de mistura de vapor de agua por ar seco (g (vapor da agua) ¢!
(ar seco)), T' - temperatura dos graos (°C), t - tempo (s), U - teor de agua da massa
de graos (kg (4gua) kg (gréo seco)) (%), u, - velocidade do ar de aeragéo (ms=1'), y -
eixo na direcao vertical (orientado de baixo para cima) (m), ¢ - porosidade da massa de
graos (decimal), p, - massa especifica do ar intergranular (kgm=3), p,- densidade dos

gréaos (kgm=3).

Consideramos a massa de graos na dire¢ao vertical, ou seja: y € [0, L], onde L
representa a altura da massa de gréaos, conforme a Fig. 12. Portanto, consideramos
uma simplificagdo unidimensional do modelo.
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FIGURA 12 — DOMINIO DE CALCULO.

FONTE: Adaptado de Panigrahi et al. (2020b).

De acordo com Brooker et al. (1992), o calor especifico do ar (¢,) € o calor
especifico da agua (c), sdo respectivamente, iguais a 1000 JKg~' °© C~! e 4186
JKg=' ° C~1. Segundo Navarro e Noyes (2001), o calor especifico dos grdos (c,)
influencia os processos de transferéncia de calor e de massa durante a aeracéo,
utilizaremos os dados apresentados por Jayas e Cenkowski (2006) (¢, = 1637 JKg~'°
C~1). Segundo Fleurat-Lessard (2002), o calor de oxidacédo dos graos (Q,) é igual a
15778 (Js~tm™3).

O modelo para calcular a derivada da perda de matéria seca foi apresentado
por Thompson (1972), dado por:

t
MyMry’

dm

— =883 x 1074 {exp [1,667 x 107

(5.3)

dt

—1 2 107?
MUMT} }+ 833 x 10

em que, ¢ representa o tempo (s), U é o teor de dgua na base umida (b.u.) e T é a
temperatura (°C').

Os termos My e My sdo parametros utilizados para ajustar o tempo de aeracao
de acordo com o teor de agua e a temperatura dos graos. O valor de M;; é obtido por

455

MU = 0,103 (eXp [W

} —0,845U + 1,558) (5.4)

e My é obtido de acordo com a faixa de temperatura e o teor de agua (b.u.):

My = Mg, seT <150u U <19, (5.5a)
100U _

My = Mg+ P exp [0,0183T . 0,2847], seT>15e19 < U <28, (5.5b)

My = Mg + 0,09 exp [0,0183T . 0,2847], seT>15eU > 28, (5.5¢)
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sendo
Mg = 32,2 exp [—0,1044T — 1,856] . (5.6)

A entalpia diferencial de sorcao € a energia total requerida para remover uma
unidade de massa de agua da massa de graos. Este valor é igual a diferenca entre
o calor latente de vaporizacao e a entalpia diferencial de umedecimento (NAVARRO;
NOYES, 2001).

De acordo com Lopes et al. (2006), a entalpia diferencial de sorcéo (h,) e
a entalpia especifica de vaporizagéo da agua (h,), sdo propriedades importantes,
consideradas na simulagéo do processo de aeragao, pois interferem nas transferéncias
de calor de massa dentro do ambiente de armazenamento. Respectivamente, sao
dadas por

Ae BU(T + 273,15)

6300
T 2 _ -
(T+C) St T omss

hy=h, |1+ (5.7)

h, = 2501,33 — 2,3637, (5.8)

onde A, B e (', sao constantes que variam de acordo com o tipo de grao, conforme
(PFOST et al., 1976), para o caso do gréo de soja, sdo dados respectivamente por
138,45, 14,967 e 24,576.

Segundo Thorpe (2001a), a razao de mistura (R) € a razao entre a massa de
vapor de agua e a massa de ar seco em um dado volume de mistura. Esse parametro
é utilizado nas modelagens do comportamento da massa de graos durante o processo
de aeracéo, possibilitando a estimativa do teor de agua do produto armazenado e
auxiliando na previsao dos efeitos da aeragdo no ambiente de armazenamento e é
dada por

R=0622—""Ps (5.9)
Patm - rups

em que r, € o teor de agua de equilibrio (%), Py, corresponde a pressao atmosférica
(kPa) e p, a pressao de vapor de saturacao (kPa), calculada conforme Hunter (1987),

25
ps:( 6 x 10 [ 6800 ]7 (5.10)

T 1273150 P | T 121315

e o teor de agua de equilibrio (r,) pode ser obtida conforme Chung e Pfost (1967),

. = 100 exp {— exp (—BU>} : (5.11)

A
T+C
A velocidade do ar de aeracao (u,) consiste na velocidade na qual o ar flui
através da massa de grédos armazenada. Como a solucéo fabricada proposta por
Rigoni (2022) e Rigoni et al. (2022) é baseada a nivel de compara¢ao com os dados
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experimentais de Oliveira et al. (2007). Portanto, consideramos a velocidade do ar de
aeragao constante igual a 0,23 m/s. a mesma utilizada por Oliveira et al. (2007), Radtke
(2009), Kwiatkowski Jr. (2011), Rigoni (2022) e Rigoni et al. (2022).

A massa porosa € constituida pelos graos e pelo espago vazio entre 0s graos.
Assim a porosidade € a relacdo entre o volume ocupado pelo ar existente na massa de
graos e o volume total ocupado por esta massa, tendo grande influéncia sobre pressao
de fluxo de ar que atravessa a massa de graos (KWIATKOWSKI JR., 2011).

Considerando a porosidade (¢) da massa de graos constante, pois a porosidade
da maioria dos graos esta entre 35 e 55% (BROOKER et al., 1992), usando 0,361
conforme Brooker et al. (1974).

Visando corrigir os possiveis efeitos da altitude a massa especifica do ar (p,)
foi apresentada por Alé (2001) como sendo

B 258,8 Poim
©101,325(T + 273,15)

Pa (5.12)

A densidade dos graos (p,) determina o volume necessario para armazenar
uma determinada quantidade de um produto e influencia diretamente a taxa de fluxo
de ar necessaria para aeracao € o calor e a massa do processo de transferéncia no
ambiente de armazenamento (LOPES et al., 2006). Neste trabalho vamos considerar
ps = 737 (kgm~3) (THORPE, 2001a).

Vale ressaltar que todos os parametros citados ao longo do texto é para o grao
de soja. Para outros graos devemos observar os valores apresentados na Tab. 5.

TABELA 5 - CONSTANTES DE ACORDO COM O TIPO DO GRAO.

Tipo de Gréo A B C &%) po (2%) cy(Jhgt°C™)
Arroz 594,65 21,733 35,703 0,584 576 1197,0
Aveia - - - 0,555 480 1277,0

Cevada 761,74 19,889 91,323 - - -
Milho 312,31 16,958 30,205 0,435 640 1534,8
Soja 138,45 14,967 24,576 0,361 737 1637,0
Sorgo 1099,68 19,644 102,849 - - -
Trigo 725,59 23,607 35,662 0,453 762 1184,0

FONTE: Pfost et al. (1976), Brooker et al. (1992), Thorpe (2001b), Jayas e
Cenkowski (2006).
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5.2 CONDICOES INICIAIS E DE CONTORNO

Antes do armazenamento no silo, os graos passam pelo processo de secagem. A
secagem tem o objetivo de retirar &gua do produto até um valor seguro para 0 armazenamento,
apos a secagem a temperatura dos graos é sempre alta e desfavoravel ao armazenamento
seguro, por isso, a necessidade do processo de aeragdo. Assim, a condi¢do inicial em toda a
massa de graos (todo o dominio) é igual a essa temperatura inicial (77). Isto é,

T(y,0) = T. (5.13)

O teor de agua inicial (U;) € obtida segundo Thorpe (2001b), onde a Eq. (5.14)
converte um teor de agua em bu. para bs (base seca). O teor de dgua inicial dos graos é aquele
obtido durante a secagem, devendo ser estipulado com base em critérios relacionados ao
armazenamento seguro.

U,
U(y,0) = ———+— = U, (5.14)
onde U, € o teor de agua inicial da massa de graos, em porcentagem (% bu).

As condicbes de contorno correspondem a superficie da massa de graos e o piso
do silo (NAVARRO; NOYES, 2001). Dessa forma, supondo que o ventilador e os dutos para
aeracao estejam localizados na parte inferior do silo (piso do silo), a condigdo de contorno do
tipo de Dirichlet para a temperatura em y = 0 é dada por

7(0,t) = T, (5.15)

onde Tz € a temperatura do ar de aeragao (°C).

E para o teor de agua, é dada por

U@Jy:_lm{m(—ra)(—TB+C>]:UE (5.16)

B 100 A

gue € uma adaptacao de Chung-Pfost (Eq. (5.11)), sendo Up o teor de 4guaparay =0er, éa
umidade relativa do ar de aeragao (%), calculada por

up Ky ef2—Ka

A7
o (5.17)

Ta

com wu, representando a umidade relativa do ar ambiente (%) e K; com i = 1,2,3 e 4, represen-
tando equacdes auxiliares para calcular r,, dadas repectivamente por

6 x 10%°
K = 5.18
YT (Tom + 273,15)5° (5-18)

6800

Ky=—-—— A

2T Tomp + 273,15 (5.19)

6 x 102
Ky=—"1t — 5.20
57 (Tp + 273,15)° (5-20)

© 6800
Kj=—— (5.21)

CTg+ 273,15
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em que T,,,, € a temperatura ambiente (°C).

Na superficie da massa de graos (y = L), temos a condi¢gdo de Neumann, tanto para
temperatura quanto para o teor de agua,

(&)
oy y=L

5.3 SOLUGAO FABRICADA

oU
= (= =0. .22
(@)FL ’ (522)

A solucao fabricada (Eq. (5.23)) que por conveniéncia chamaremos nesta tese de
solugao analitica, proposta por Rigoni et al. (2022) é baseada, comparada e validada com os
dados experimentais de um mini-silo realizada por Oliveira et al. (2007).

Segundo Rigoni et al. (2022), para determinar a solugao fabricada da Eq. (5.1) proposta
neste trabalho foram efetuadas modificagées por meio de uma solugéo apresentado por Van
Genuchten et al. (1982), dada por

) = T4 (113 oo L 220t e (s Yoo 22E 1
(5.23)

onde erfc representa a funcao erro complementar (VAN GENUCHTEN et al., 1982), definida por

erfe(x) =1 — erf(z \f/ (5.24)

De acordo com Rigoni et al. (2022), para a funcao definida anteriormente ser conside-
rada solugdo analitica da Eq. (5.1), um termo fonte (Sp) é adicionado a equagao governante,
como segue,

oT Ohy,
ot {pa[cg + CWU} + 5/)&[0& + R(CW + oT )}} =
oU Oh, | 0T dm
pohs—— ot — UqaPa |:Ca + R(CW + 5 oT ):| dy + pUE(QT - O’Ghso) + Sp, (5.25)

com o termo fonte (Sp), dado por

oT dh,
Sp = 5 {pg[cg+ch]+€pa[ca+R(cW+ 5T )]}
U dhy, 10T dm
—pO'hSE + UqPa |:Ca + R(CW + mj):l 87 paE(QT — 0,6}%@) (526)

8Ter9T

Sendo as derivadas dadas respectivamente por

2 exp [—125000(y—2,2X104t)2] ( _176,777(y—2,2x10"4) 0,0777817)
t E Vi
VT
125000(2,2x 104t+y)> 1 [ 0,0777817  176,777(2,2x10~ 4t +y)
27,5y — - ] ]

Vi g
NG

1
E (T -T
2(3 T)

2exp

(5.27)
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e
or 1 353,553(2,2 x 1074t + y)
I (T —T)) |27 5exp [27.5 erfc( MG )
Ay 5(Ts = Ti) p [27,5y] i
398,942 exp —125000(y—t2,2xl0*4t)2} 398,942 exp [27’53/ B 125000(2,2>t<10*4t+y)2]
- - . (5.28
Vit NG (5.28)

Assim, obtemos o termo fonte, substituindo as Egs. (5.27) e (5.28) na Eq. (5.26),

_ _ 44\2 _ —4
o . § § 2exp[ 125000(yt2,2><10 t) ]<_ 176,777(yt%2,2><10 t) 0,07\7/;817>
P = 5( B—1Tr)| — NG
125000(2,2x 104t +4)% 7 ( 0,0777817  176,777(2,2x 10~ *t+y)
towBron : (5 ) ey + cwl]
ﬁ pU g w
Ohy, oUu Ohy,
+ Epa[ca + R(CW + oT )]} - pohs ot + UqPq l:ca + R(CW + oT )]
1 2,2 x 107%¢
{Q(TB —Ty) 27,5 exp [27,5y] erfc(353’553( ! \2 O 7t y))
398,942 exp [7125000(y7t2,2xl(]_4t)2} 398,942 exp {27753/ _ 125000(2,2>;10_4t+y)2:|
Vit Vit
dm
_poﬁ(Qr - 076}7‘(,0)7 (5-29)
ou ainda, de forma simplificada, dada por
1 C-D F
Sp==-Tg—-T7) A 4+ B|E—398,942 ( — , 5.30
r= g M=t {4 [ 2] o e -amson (7)) 530
sendo o
A:pg[cg—i—cWU]—|—5pa[ca+R(cW+8—jf>}, (5.31)
[ oh
B = uapa|ca + R(cw v a;)} , (5.32)
125000 1 /176,777 0,0777817
C=2exp|— — 2,2 x 10%)? ( ’ —22x107% +’>, 5.33
p [ (v 2l (A )+ (5.33)

125000 0,0777817 176,777
D = 2exp | 27,5y — + 2,2 x 10% 2] ( ’ - +2,2x107% ) ,
D [ Y (y ) 7 N (y )
(5.34)
353,553 2,2 x 1074
£ = 27,5exp (27,5y) er fe ( 553y + \/i’ . )> (5.35)
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125000 125000

(y+22x1074%)%|.  (5.36)

F=exp|— (y — 2,2 x 104t)2] + exp [27,53/ —
Dessa forma, efetuando algumas simplificagbes, a equagao que descreve a tempera-
tura (T') da massa de grao, é dada por
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6 MODELO NUMERICO

Notamos que podemos ter mais de uma quantidade para ser armazenada em um
dado volume de controle (VC) da malha. Quando todas as propriedades sdo armazenadas no
centro de tal volume, dizemos que é um arranjo colocalizado e quando isto ndo ocorre dizemos
que € um arranjo desencontrado (MALISKA, 2017). Nesta tese trabalharemos com o arranjo
colocalizado, pois, possuem maior facilidade de implementacéo e dessa forma, apenas um tipo
de VC pode ser utilizado para todas as integracdes das equacdes do modelo matematico.

O MVF utiliza como ponto de partida a forma integral da equagao da conservagéao. O
dominio de solugao (Fig. 12) é dividido em um numero finito de VCs contiguos e a equacao
da conservacao ¢é aplicada a cada VC (Fig. 13). No centroide de cada VC localiza-se um n6
computacional, no qual sdo calculados os valores das variaveis. Os valores das variaveis nas
faces dos VCs sao obtidos por interpolacao em fungéao dos valores nodais (MALISKA, 2017).

FIGURA 13 — DOMINIO DISCRETIZADO.

L K‘*-

ve (NG | Ay

ve (NC- 1] Ay

vc(2) |Ay
ve(l) | Ay

L AL BUIUIE JE BE BE BN

FONTE: O autor (2023).

Como podemos observar na Fig. 13, NC representa o volume no contorno, e como
ja visto, Ay = L/N, é o distanciamento entre os centros dos volumes consecutivos e N, é 0
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namero destes volumes na direcao espacial. Como trata-se de um problema transiente, temos
também At = t¢/N;, com t; sendo o tempo final e N, 0 nUmero de passos no tempo. A segui,
apresentamos as discretizacoes.

6.1 ESQUEMA UPWIND (UDS)

Para a aproximacéo espacial de T' e R por UDS e a temporal de T utilizando a
formulagao 6 na Eq. (5.1) e inserindo um termo fonte S% para adequar-se a solugéo analitica
proposta em Rigoni (2022) e Rigoni et al. (2022), obteremos:

ALTE = A%TE, — B%ﬁ (T,@ - Tg) + S8At, (6.1)
Ay
onde:
oh
A?D = Po |:CO’ + CWU163:| + €pa |:Ca + R?D <CW + <P>:| > (62)
oT
oh
BY = uapq [ca + RY, <cw + m:")} (6.3)
e
1 C-D F
S% = 5 (T = Ti) {A% [ 7 ] + B [5 — 398,942 <\/i>} } , (6.4)

com A, B, C, D, £ e F, dados respectivamente, pelas Egs. (6.2), (6.3), (5.33), (5.34), (5.35) e
(5.36).

Aproximando a derivada espacial de R por UDS e a derivada temporal em relagéo a
variavel U na Eq. (5.2), teremos:

. . Atdm
U = Uf - o (R~ BE) + =L (064 U) (6.5)
onde At
UqPa
o . 6.6
poAy (69

Nas Egs. (6.1) a (6.4) e na Eq. (6.5), ¢ representa as formulacdes explicita (¢ = 0),
implicita (¢ = 1) ou Crank-Nicolson (6 = 0,5) (MALISKA, 2017).

Todas as equagdes apresentadas sdo para os volumes internos, portanto para se obter
as equacgoes algébricas completas é necessario obter as equagdes nos volumes nas fronteiras
do dominio. Como ja mencionado, neste estudo vamos aplicar a técnica dos volumes ficticios.
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Como sabemos, o balanco entre as propriedades nos volumes ficticios e seus vizinhos
reais devem satisfazer as condicées de contorno originais do problema. Portanto,em y = L,
para a temperatura T' e teor de agua U, respectivamente, temos

The = Thoor (6.7)
e
Ul = Ul - (6.8)

A seguir apresentaremos as trés formulagdes temporais: explicita, implicita e Crank-
Nicolson.

6.1.1 Formulagéo Explicita

Para o caso 6 = 0, a Eq. (6.1) pode ser reescrita como

. . At , A ,
ALTIFY = ALTY, — Py (75 - 12) + Shav, (6.9)
onde
j j j Ohy
Ap = pos |:CU+CwUP} +epa |ca + Rp cw+8—T , (6.10)
. . oh
B} = uapa [ca+R§3 <cw+mf>} (6.11)
e
1 - [c-D ; F
Sp =5 (Ts = Ti) {A@ [\/7?] + B, [5 — 398,942 (ﬁ)} } : (6.12)
Escrevendo a Eq. (6.9) no formato da Eq. (3.19), temos
anN = 0, (613)
as =0, (6.14)
ap = Al (6.15)
© At
bp = ALTY, — ngfy (7% - 18) + Sha. (6.16)

No caso da Eq. (6.5), obtemos

dm

. Atrdm , . , Atrdm
Uit = <1 + dt) U}~ o (B) — R) + 06—, (6.17)

Po o
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6.1.2 Formulagéo Implicita

Para o caso # = 1, a Eq. (6.1) pode ser reescrita como

(Aﬂ“ 4+ B! 2 ) I — AT + BRI 4 si A,
Yy

Ay
onde
. 4 . oh
Ai;rl = Po |:CO' + CWUJJDJA} + €pa |:Ca + jol <CW + S0>:| )
oT
i i oh
B = tapa [ca + Ry <CW + 87;
e
; 1 1 [C—D ; F
I = (Tp —Ty) LA | = e — 398,942 (= )| .
1= - 2] e o
Com os coeficientes de acordo com o formato da Eq. (3.19), dados por
any =0,
1 At
as = B3
ap = .AJ+1 + BJ_H At
Ay
e

bp = AT + SHT AL

No caso da Eq. (6.5), obtemos

Apdm ) ) ) ) Apdm
(1 - ) U =Uf - o (R - RET) + 06— 4.

6.1.3 Formulagéo Crack-Nicolson (CN)

Para o caso # = 0,5, a Eq. (6.1) pode ser reescrita como

2 A 2 Ay

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

CN CN A CN
<A]c;N L BT At) T — <A0N B BP“) TS+ 2P Bp” At (Tﬂ+1 +TJ) +SENAL, (6.27)

2 Ay

onde

A%N = o {cg + CTW (U}fl + U]jj)} + €pq

R+ R), Ohy,
%+2(W+8T)

(6.28)
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R+ R) oh
B}gN = UqpPa |Ca + P 9 P (CW + a;) (629)
e
1 C-D F
cN _ 1t _ CN CN | o _ s
Spt = 5 (Ts —Ty) {AP [ NG ] + Bp [5 398,942 <\/¥>} } . (6.30)
Com os coeficientes de acordo com o formato da Eq. (3.19), dados por
ay =0, (6.31)
_ BEN At
as = Tfy’ (632)
BEN At
_ ACN P
ap=Ap" + 5 Ay (6.33)
© BCN A CN
_(4ov _Bp A\ _;  Bp" At_;  on
bp = <AP 2 Ay Tp + 5 AyTS + Sp At (6.34)

No caso da Eq. (6.5), obtemos

Apdm\ Atdm\ R - RIFY 4RI, _ RI At

6.2 ESQUEMA DE LEITH (LS)

O esquema de Leith (LEITH, 1965) considera as aproximagoes temporal e espacial
para T', dadas respectivamente, por

o
(‘Z); ~ e —Tp o Tr (6.36)
<6T>J’+1z5<T};_Tg> g (T}Q—Té) (6.37)
dy ) p Ay 20y ) '
com ;
- Zg, (6.38)

onde as Egs. (6.2) e (6.3) representam, respectivamente, A e B que sao explicitas, por isso o
uso da notacao j no lugar de 6 no superindice.

Portanto, discretizando as Egs. (5.1) e (5.2) utilizando este esquema e inserindo um
termo fonte S% para adequar-se a solugio analitica proposta em Rigoni et al. (2022), obtemos,
respectivamente

1 = (5, ) gy, P T gy, (P9 sk 639
P
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e
d
4 2p0+‘2—mm _ oy - A 0,6Atd—m
Uittt = d%A UL+ —azRfD—l—i(aQ—i-a)R?\,—l—i(aQ—a)ng—i-pit ,
20, — — At 7
Pe ™ at
(6.40)

sendo S{; dado pela Eq. (6.4), o parametro o determinado pela Eq. (6.6), e v dado por

N = Lgm' (6.41)

2p0 — At

Reescrevendo a Eq. (6.39) no formato da Eq. (3.19), temos
an =0, (6.42)
ag =0, (6.43)
ap =1 (6.44)
e

bp = <A1y—52> T;_;,+2A1y(52+ﬁ) T§+2A1y(52—6) T;'V+Sg;z. (6.45)

E sabido que o esquema de Leith é um esquema de segunda ordem (LEITH, 1965).
Nas aproximagdes de segunda ordem, utilizamos a viscosidade artificial para controlar as
oscilagdes nao fisicas, acrescentando na Eq. (6.45) o termo n, dado por

n:)\A—t | T = Th | (T4 - Th) — 1 Th - T4 | (Th-T8) |, (6.46)
Y
em que )\ é o fator de viscosidade, ajustavel e adimensional.

Para as condi¢des de contorno utilizaremos as condigdes dadas pelas Eqgs. (6.53) e
(6.54) apresentadas na Secao 6.3.

6.3 ESQUEMA DE DIFERENCA CENTRAL (CDS)

Aproximando a derivada espacial de T utilizando CDS e a derivada temporal de T’
usando a formulagéo ¢ = 0,5 (CN) e inserindo um termo fonte S% para adequar-se a solugéo
analitica proposta em Rigoni et al. (2022), a forma discreta da Eq. (5.1) é dada por

T =1} — g (T]{,“ + T{V) - g (Tg;“ - Tg) + Sjgﬁt? (6.47)
onde AICDN, SIQN e (3 sao definidas, respectivamente, pelas Egs. (6.2), (6.4) e (6.38).
Os coeficientes obtidos sao 8
aN = =7 (6.48)
as = % (6.49)
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ap =1 (6.50)

SOCN At
AGN

bP:T;L,+§(Tg’—TfV)+

. (6.51)

Como CDS-CN é uma aproximagao de segunda ordem, podemos utilizar de forma
andloga a Eq. (6.46) para controlar as oscilagdes nao fisicas da solugdo numérica.

Utilizando a aproximacao para R, discretizando a Eq. (5.2), temos,

d
[ d—mAt . , - o 2aam
Upt = | —— 2 v} + 7+ o (RS +RE - RV - R+ —dL ) (6.52)
m 4 Po

com « € v, dados pelas Egs. (6.6) e (6.41).

As condicdes de contorno de Neumann podem ser aproximadas usando CDS combi-
nado com a técnica dos volumes ficticios (TANNEHILL et al., 1997), assim a temperatura 7" e 0
teor de agua da massa de graos U em y = L podem ser calculadas, respectivamente, por

- At

o
P
© d d
‘ ‘ an- A
Uit = UL+ pdt Ul + 0,6 pdt . (6.54)

6.4 ALGORITMO DO PROCESSO DE AERAGAO

Apresentaremos nesta sec¢do, o algoritmo para calcular a temperatura (T') e teor de
agua da massa de graos (U). Neste caso, usamos o método LS; o algoritmo para as demais
formulacdes possui estrutura analoga.
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ALGORITMO 2 CALCULO DA TEMPERATURA E DO TEOR DE AGUA DA MASSA
DE GRAOS COM O METODO LS
Entrada: u,, cw, cq, Qv €, pos Coy A, B, C, uy, Uy Poyy, T8, T, L, g, Ny, Ny
Calcular: Ay (Eq. (3.5)) e At (Eq. (3.6))
Inicializar: 7'(1: N,,1: N;), U(1: Ny, 1: Ny)), R(1: N,,1: Ny)ej<+1
fori=1:N,do
T(i,7) =T (Eq. (5.13)) e U(i,j) = Ur (Eq. (5.14))
end for
fori=1:N,do
Calcular: a presséo de vapor de saturagéo (p;) (Eq. (5.10))
Calcular: o teor de 4gua de equilibrio (r,) (Eq. (5.11))
Calcular: a razdo de mistura inicial R(i, 5) (Eq. (5.9))
end for
forj =2: N, do
fori=1:N,do
if (i = 1) then
Calcular: a densidade do ar (p,) (Eg. (5.12))
Calcular: a umidade relativa do ar de aeragéao (r,) (Eq. (5.17))
Calcular: a pressao de vapor de saturacao (ps.) (Eq. (5.10))
Calcular: a razdo de misturaem y = 0 (R(1, j)) (Eq (5.9))
Calcular: o teorde aguaemy =0 (U(1, ))) (Eq. (5.16))
Calcular: a temperaturaem y = 0 (7'(1, 7)) (Eq. (5.15))
end if
fori=2:N,—-1do
Calcular: a derivada da perda de matéria seca em relagéo ao tempo (%2) (Eq.
(5.3))
Calcular: a pressao de vapor de saturacao (p;) (Eqg. (5.10))
Calcular: o teor de agua de equilibrio (r,) (Eq. (5.11))
Calcular: a razdo de mistura (R(i, 7)) (Eq. (5.9))
Calcular: o teor de agua (U(i, j)) (Eq. (6.40))
Calcular: a derivada da perda de matéria seca em relagéo ao tempo (%2) (Eq.
(5.3))
Calcular: entalpia especifica de vaporizacdo da agua (h,) (Eq. (5.8))
Calcular: a derivada da entalpia de vaporizacdo da agua em relagéao a tempe-
ratura (%) (Eq. (5.8))
Calcular a entalpia diferencial de sorgéo h, (Eq. (5.7))
Calcular: a temperatura (7'(z, j)) (Eq. (6.39))
end for
if ({ = N,) then
Calcular: a pressao de vapor de saturacéao em y = L (p,) (Eq. (5.10))
Calcular: o teor de agua de equilibrioem y = L (r,) (Eq. (5.11))
Calcular: a razdo de misturaem y = L (R(N,, j)) (Eq. (5.9))
Calcular: o teor de aguaem y = L (U(N,, 7)) (Eaq. (6 54))
Calcular: a derivada da perda de matéria seca em relacao ao tempoemy = L
(%) (Eq. (5.3))
Calcular: entalpia especifica de vaporizacdo da agua em y = L (h,) (Eq.
(5.8))
Calcular: entalpia diferencial de sorcdo em y = L h (EqQ. (5.7))
Calcular: a temperaturaem y = L (T'(N,, j)) (EQ. (6.53))
end if
end for
end for
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7 RESULTADOS

Neste capitulo apresentaremos os resultados desta tese. Inicialmente, na
Secao 7.1, mostraremos os resultados numéricos com a solucao analitica fabricada. Na
Secao 7.2 faremos uma comparacao entre o MDF e MVF. Posteriormente, na Se¢éo 7.3,
seguimos com uma verificagdo do cddigo usando as ordens efetivas. A seguir, teremos
a influéncia da razao espaco-tempo no modelo com seus respectivos resultados na
Secao 7.4. Na Secao 7.5, mostraremos o esfor¢co computacional dos cédigos utilizados.
Finalmente, nas Sec¢des 7.6 e 7.7, apresentaremos, respectivamente, os resultados
com a Multipla Extrapolacao de Richardson (MER) e a efetividade dos estimadores.

7.1 RESULTADOS NUMERICOS COM SOLUGAO ANALITICA FABRICADA

Os resultados foram obitidos utilizando um computador com processador Intel
Core i7-2670QM com 12 GB de memoria RAM (1344 MHz) e uma placa de video
Gt540m de 2GB. Para a compilacdo, utilizamos a IDE (integrated development environ-
ment) Microsoft Visual Studio Code v 1.76.1, programando os algoritmos em Fortran
90. Para a geracao grafica, o Python com a mesma IDE foi utilizado.

A principio, as simulagbes foram realizadas para as temperaturas 7,, com
y = 0,25, 0,50 e 0,75 correspondendo as alturas do silo em metros, com ¢; = 3600s.
Os resultados das simulagdes foram comparadas com a solugao analitica fabricada
(RIGONI et al., 2022) para o modelo proposto por Thorpe (2001a), apresentada na
Secéo 5.3, dada por

~ 1
T(y,t) = TI"‘§ (TB_T1>

V8 x 10-6¢ 8 x 1076 V8 x 10-6¢
(7.1)
onde erfc representa a funcao erro complementar (VAN GENUCHTEN et al., 1982),

definida por

—22x 1074 2,2 x 1074 2,2 x 1074

erfc(z) =1 — erf(x) = % /OO e dt. (7.2)

As Figs. 14 e 15, representam uma comparacao da solucao fabricada (analitica)
com sua simulagao numérica aplicando, respectivamente as aproximagdes de segunda
ordem CDS-CN e LS sem usar o fator de viscosidade artificial para N, = 128 e N, = 512
discretizada pelo MVF.

Como podemos notar, as aproximacdes de segunda ordem apresentam oscila-
cbes nao fisicas comparadas com a solucdo analitica. Para evitar tais oscilacoes foi
aplicada a viscosidade artificial, conforme Rigoni et al. (2022).
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FIGURA 14 — REPRESENTAGCAO DO PROCESSO DE AERAGAO SEM O FATOR DE VISCO-
SIDADE ARTIFICIAL PARA CDS-CN.
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FONTE: O autor (2023).

FIGURA 15— REPRESENTAGCAO DO PROCESSO DE AERAGAO SEM O FATOR DE VISCO-
SIDADE ARTIFICIAL PARA LS.
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FONTE: O autor (2023).

Utilizar a viscosidade artificial significa acrescentar o termo dado pela Eq. (6.46)
nos termos independentes b, para ambas as aproximagdes de segunda ordem (CDS-
CN e LS), ajustando o parametro adimensional \ para reduzir ao maximo os efeitos
das oscilagdes nao fisicas nas simulacées numéricas.

As Figs. 16 e 17 representam 0 mesmo processo de aeracao anterior quando
utilizamos a viscosidade artificial, respectivamente para CDS-CN e LS com A = 6,3FE —5
e A = 1,7E — 5. Neste caso, utilizamos MVF e malha N, = 128 e NV, = 512.
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FIGURA 16 — REPRESENTACAO DO PROCESSO DE AERAGCAO COM O FATOR DE VISCO-
SIDADE ARTIFICIAL PARA CDS-CN.
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FONTE: O autor (2023).
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FIGURA 17 — REPRESENTACAO DO PROCESSO DE AERAGCAO COM O FATOR DE VISCO-

SIDADE ARTIFICIAL PARA LS.
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Assim como para o MDF em Rigoni et al. (2022), verificamos que para o
MVF, o uso da viscosidade artificial reduz consideravelmente as oscilagbes para as
aproximagdes de segunda ordem estudadas. Vale ressaltar que os valores do fator de
viscosidade ()\) sao diferentes para cada aproximacao de segunda ordem, e determina-
los é trabalhoso. Normalmente para reduzir o tempo de simulagéo na busca do melhor
do fator de viscosidade, utilizamos malhas mais grossas.
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7.2 COMPARACAO ENTRE MDF E MVF

Nesta secao mostraremos os resultados da simulagdo numérica discretizada
pelo MVF e MDF comparando com os dados com a solugdo analitica. A discretizagdo
do MVF foi apresentada na Secédo 3.2. Para verificar a forma discretizada pelo MDF,
consulte as referéncias Lopes et al. (2006), Radtke (2009), Kwiatkowski Jr. (2011) e
Rigoni et al. (2021, 2022).

As figuras a seguir fardo uso do erro no eixo das abscissas. Tal valor € calculado
fazendo-se uso da norma infinito do erro (|| F ||.) para ambos os métodos (MVF e
MDF) e para todas as possiveis combinac¢des de discretizacdo. Esse erro é a diferenca
entre a solugdo analitica e numérica, ou seja, | E |=| & — ¢ |.

As Figs. 18 a 27 mostram as solugdes fabricadas (analitica), as solugcdes
numeéricas e seus erros para os métodos CDS-CN, LS (métodos de segunda ordem),
UDS-CN, UDS-Explicito e UDS-Implicito (métodos de primeira ordem), apresentadas
para a malha N, = 128 e N, = 256 (desconsiderando os volumes ficticios). Note que
esta malha tem a razao espaco-tempo 7 = 2. A malha adotada para este experimento
é considerada uma malha intermediaria do ponto de vista de nimero total de volumes,
dado que para outros experimentos (mais adiante), com a mesma razao espago-tempo,
as malhas utilizadas foram de N, =8 e N, = 16 a N, = 4096 e N; = 8192.

A Fig. 18 apresenta o processo de aeracao para diferentes alturas (ou ca-
madas): y = 0,25m, y = 0,50m e y = 0,75m, discretizado com MVF e MDF e com
CDS-CN.

FIGURA 18 — REPRESENTACAO DO PROCESSO DE AERAGAQ PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM CDS-CN PELO MVF E MDF.
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A Fig. 19 evidencia o erro absoluto entre a solugdo numérica e analitica e
o MVF e MDF. Verificamos que, o erro maximo para a aproximacao CDS-CN, esta
abaixo de 1,60°C para y = 0,25m, abixo de 1,30°C' para y = 0,50m e abaixo de 0,80°C'
para y = 0,75m. Notamos que, como o processo de aeragao atinge o tempo de 3600s,
a ultima camada analisada nao esta completamente resfriada. Isto ndo se deve a
velocidade do ar de aeracao, mas sim pelo fato de que se esta adotando uma solugéao
analitica proposta (RIGONI et al., 2021, 2022), que é baseada e comparada com 0s
dados experimentais de um mini-silo (OLIVEIRA et al., 2007).

FIGURA 19— ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM CDS-CN PELO

MVF E MDF.
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FONTE: O autor (2023).

A Fig. 20 apresenta as comparacgdes para a aproximacgao de segunda ordem
LS pelo MVF e MDF nas alturas estudadas. A Fig. 21 representa o erro absoluto entre
a solucao analitica e a solugcao numérica para os dois métodos estudados, ou seja, 0
MVF e o MDF.

Na Fig. 21, o valor maximo do erro esta abaixo de 1,10°C para y = 0,25m em
dois pontos de simulacao, um pouco abaixo de 1,00°C para y = 0,50m e esta proximo
de 0,8°C para y = 0,75m.

Comparando os erros das aproximagdes CDS-CN (Fig. 19) e LS (Fig. 21),
eles sao relativamente menores para o LS em ambas as camadas, y = 0,25m e
y = 0,50m tanto para o MVF quanto para o MDF. Porém, para y = 0,75m o ar de
aeracao nao resfriou totalmente a massa de graos, portanto ndo podemos garantir
diferencas de temperaturas menores para o LS. No que diz respeito ao MDF, estes
resultados confirmam os resultados apresentados por Rigoni et al. (2022).
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FIGURA 20 — REPRESENTACAO DO PROCESSO DE AERAGAQ PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM LS PELO MVF E MDF.
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FONTE: O autor (2023).

FIGURA 21— ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM LS PELO MVF E

MDF.
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FONTE: O autor (2023).

A Fig. 22 mostra a primeira comparac¢ao entre o MVF e o MDF para uma
aproximagao de primeira ordem. A Fig. 23 apresenta o erro absoluto para ambos os
métodos com relagéo a solugéo analitica. Obtendo um erro maximo préximo de 1,90°C
para y = 0,25m, aproximadamente 1,85°C para y = 0,50m e de 1,17°C para a altura
y = 0,75m. Notamos, que os erros absolutos apresentados tanto para o MVF quanto
para o MDF na aproximacao UDS-CN, apresentaram erros maximos maiores que 0s
apresentados nas aproximagdes de segunda ordem.
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FIGURA 22 — REPRESENTACAO DO PROCESSO DE AERAGAQ PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM UDS-CN PELO MVF E MDF.
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FIGURA 23 - ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM UDS-CN PELO
MVF E MDF.
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A Fig. 24 representa o processo de aeragdo com os MVF e MDF, para as trés
camadas (y = 0,25m, y = 0,50m e y = 0,75m), utilizando a aproximacao UDS-Explicito.

Na Fig. 25 temos os erros absolutos para ambos os métodos nas diferentes
alturas estudadas. O UDS-Explicito é a aproximacao mais utilizada na literatura para a
simulacao do processo de aeracao da massa de graos através do modelo proposto por
Thorpe (2001b) discretizado com o MDF. Observamos na Fig. 25, que o erro maximo €
1,63°C para y = 0,25m, acima de 1,53°C em y = 0,50m e para y = 0,75m, 0 erro maximo
esta préximo de 1,09°C.
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FIGURA 24 - REPRESENTAQAO DO PROCESSO DE AERAQAO PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM UDS-EXPLICITO PELO MVF E MDF.
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FIGURA 25— ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM UDS-EXPLICITO

PELO MVF E MDF.
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Comparando o valor maximo dos erros para a aproximagcao UDS-Explicito dado

pela Fig. 25 com a aproximacao UDS-CN representado pela Fig. 23, ambos de primeira
ordem, verificamos que o UDS-Explicito € melhor que o UDS-CN e também melhor

que o UDS-Implicito (também método de primeira ordem) que pode ser visto na Fig.
27. Contudo, o UDS-Explicito n&o se sobressai em relacao aos métodos de segunda
ordem CDS-CN (Fig. 19) e LS (Fig. 21), j& confirmado para o MDF (RIGONI et al.,

2022) e agora comprovado para o MVF.
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Na Fig. 26 representamos 0 processo de aeragao para diferentes alturas
(camadas), discretizado com a aproximagédo UDS-Implicito pelo MVF e MDF; e na Fig.
27, o erro absoluto para tais aproximacgoes.

FIGURA 26 — REPRESENTACAO DO PROCESSO DE AERAGAO PARA DIFERENTES ALTU-
RAS, DISCRETIZADO COM UDS-IMPLICITO PELO MVF E MDF.
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FONTE: O autor (2023).

FIGURA 27 — ERRO EM DIFERENTES ALTURAS, DISCRETIZADO COM UDS-IMPLICITO
PELO MVF E MDF.
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Observamos na Fig. 27 que os valores maximos dos erros sao proximos de
2,12°C, 2,09°C e 2,07°C, respectivamente, para as alturas y = 0,25m, y = 0,50m e
y = 0,75m. Portanto, para a malha em analise e para as demais malhas o UDS-Explicito
€ a melhor aproximacéao de primeira ordem.
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Entre o UDS-Explicito (melhor método de primeira ordem) e o LS (melhor
método de segunda ordem), o LS apresentou o menor erro tanto para o MVF como
para o MDF. Tal fato ja tinha sido relatado por Rigoni et al. (2022) para o MDF, e agora,
comprovando para o MVF.

A seguir realizamos simula¢des variando o niumero de volumes (N) para as
aproximagdes utilizadas conforme Tab. 6.

TABELA 6 — NUMERO DE INCOGNITAS E VALORES DE REFINO ESPACIAL PARA 7 = 2.

N, N, N h=
g8 16 128 0,12500E+00
16 32 512  0,62500E-01

32 64 2048 0,31250E-01
64 128 8192 0,15625E-01
128 256 32768 0,78125E-02
256 512 131072  0,39062E-02
512 1024 524288 0,19531E-02
1024 2048 2097152 0,97656E-03
2048 4096 8388608 0,48828E-03
4096 8192 33554432 0,24414E-03

FONTE: O autor (2023).

As Figs. 28 e 29 apresentam o decaimento do erro, respectivamente pelo MDF
e MVF, versus o refino da malha, utilizando uma malha temporal duas vezes a malha
espacial, ou seja, 7 = 2, no ponto 7'(t,y) com t = 1800s e y = 0,50m, para todas as
aproximacoes.

Podemos observar nas Figs. 28 e 29, que na malha mais grosseira, N, = 8
e N, = 16, a aproximacao LS tem um desempenho inferior as demais aproximacoes
utilizadas para discretizagao tanto para o MDF como para o MVF. Observamos que o
MVF apresentou um erro inferior ao MDF. O método CDS-CN na malha grossa também
€ melhor para o MVF em relacdo ao MDF, mas com uma diferenca reduzida. Em relacao
aos métodos de primera ordem, o UDS-Explicito apresenta um desempenho melhor na
malha mais grossa comparado ao UDS-CN e ao UDS-Implicito, tanto no MDF quanto
no MVF. Assim como os métodos de segunda ordem, os de primeira ordem também
apresentam erros menores na malha grossa para MVF.

Vale destacar que o ponto escolhido T'(¢t,y) com ¢t = 1800s e y = 0,50m, sera
utilizado em todo nosso trabalho. Isso se deve ao fato do ponto estar localizado no
centro espacial da massa de graos, portanto, ndo recebe uma quantidade elevada de
ar de aeracao para os graos da base do silo e ndo tdo pouco se comparado aos graos
do topo do silo, onde 0 ar que proporciona a aeragao é baixo com o passar do tempo.
Um raciocinio analogo pode ser feito com relacao ao ponto de analise estar no centro
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temporal do processo de aeracédo. Assim, poderemos efetuar uma analise apropriada
no tempo e no espago.

FIGURA 28 — DECAIMENTO DO ERRO ABSOLUTO VERSUS O REFINO DA MALHA NAS
APROXIMACOES ESTUDADAS DISCRETIZADAS PELO MDF COM 7 = 2,
t = 1800s E y = 0,50m.
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FONTE: O autor (2023).

FIGURA 29 — DECAIMENTO DO ERRO ABSOLUTO VERSUS O REFINO DA MALHA NAS
APROXIMACOES ESTUDADAS DISCRETIZADAS PELO MVF COM r = 2,
t = 1800s E y = 0,50m.
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FONTE: O autor (2023).

107t

A Fig. 30 representa o decaimento do erro versus o numero de variaveis para as
aproximagodes estudadas no ponto analisado. Observando na Fig. 30 que aumentando
0 numero de incégnitas, ou seja, refinando a malha, o desempenho do MVF é melhor
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do que o MDF. Notamos ainda que as aproximagdes menos eficazes sdao UDS-Implicito
e UDS-CN. J4 CDS-CN divergiu para malhas muito refinadas.

FIGURA 30 - DECAIMENTO DO ERRO ABSOLUTO VERSUS NUMERO DE VARIAVEIS
PARA TODAS AS APROXIMAGCOES ESTUDADOS DISCRETIZADAS PELOS
MDF E MVF COM 7 = 2, ¢t = 1800s E y = 0,50m

101,
0
10 T
10715 S
W 1p-2/ B ¥
MDF MVF RS
1074 -m- CDS-CN -=- CDS-CN RS
-e- IS -o- 15 °©
10-4] -#- UDS-CN -4~ UDS-CN
-¥- UDS-Explicito  -+- UDS-Explicito
. UDS-Implicito UDS-Implicito
10754
102 103 104 10° 106 107
N

FONTE: O autor (2023).

Apresentamos na Tab. 7, os resultados da || E||; para todas as aproximagdes
utilizadas nas discretizagcées em todas as malhas com 7 = 2, t = 1800s e y = 0,50m.

TABELA 7 —NORMA 2 DO ERRO PARA MDF E MVF.

Método MDF MVF
CDS-CN 5,498E+00 2,708E-01
LS 1,235E+01 6,188E+00
UDS-CN 9,450E+00 6,128E+00
UDS-Explicito  7,319E+00 4,516E+00
UDS-Implicito 1,113E+01 7,383E+00

FONTE: O autor (2023).

Como podemos notar, o MVF obteve valores menores de ||E||», tendo como
menor valor para CDS-CN. Entretanto, tal valor deve ser desconsiderado em compa-
ragcdo com os demais métodos, pois este método tem quantidade de discretizagdes
menor que 0s demais devido a algumas malhas terem divergido, e isto afeta o resul-
tado final da norma. Dessa forma, a menor norma esta com UDS-Explicito. Portanto,
expusemos nesta secao que o MVF apresentou melhor desempenho do que o MDF,
logo abordaremos deste ponto adiante somente o MVF em nosso trabalho.
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7.3 VERIFICACAO DAS ORDENS EFETIVAS

Na Secéo 3.1 apresentamos as formulacdes e teoria sobre a ordem efetiva do
erro de discretizacdo, que se trata de um teste a posteriori, para estimarmos a ordem
assintética do método, quando temos uma solugao analitica conhecida do modelo.

Com base nestas informagdes aplicamos a verificagdo da ordem efetiva para
os métodos de primeira ordem (UDS-CN, UDS-Explicito e UDS-Implicito) e para os
métodos de segunda ordem (CDS-CN e LS), efetuando a verificagao para as diferentes
razdes espago-tempo 7 = 2, 4, 8, 16, 32 e 64, para t = 1800s e y = 0,50m, conforme as
Figs. 31 a 36.

Nas Figs. 31 a 36 foram aplicados os fatores da viscosidade artificial fixos,
A=6,3E-5e )\ =1,7E-5, respectivamente para CDS-CN e LS em todas as malhas. Os
valores adimensionais dos fatores da viscosidade (\) sdo escolhidos por verificagdes,
substituindo o valor escolhido e posteriormente verificando se as oscilagoes foram
suavizadas. Estes testes sao efetuados normalmente em malhas grossas e fixado para
todas as malhas, visto que o tempo computacional para malhas refinadas é elevado.

As Figs. 31 a 32 apresentam respectivamente, o comportamento das ordens
efetivas para a razdo espacgo-tempor=2e 7 =4.

FIGURA 31 — COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-

CAO COM 7 = 2.
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FONTE: O autor (2023).

Como podemos notar na Fig. 31, quando 7 = 2, as ordens efetivas relacionadas
a cada método de aproximagao numérica tende a ordem assintotica p;, = 1, tanto para
os métodos de primeira ordem quanto para os de segunda ordem com o refino da
malha. As aproximacdes de segunda ordem teoricamente deveriam tender para p;, = 2.
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Contudo, observamos que na Fig. 32, quando m = 4, as ordens efetivas para CDS-CN
e LS estado se distanciando de p;, = 1.

FIGURA 32 — COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-

CAO COM 7 — 4.
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FONTE: O autor (2023).

A Fig. 33 mostra o comportamento das ordens efetivas para a razao espaco-
tempo 7 = 8, na Fig. 34 apresentamos o comportamento das ordens efetivas para
7 =16.

FIGURA 33 — COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-

CAOCOM 7 =38.
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FONTE: O autor (2023).
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FIGURA 34 - COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
CAO COM 7 = 16.
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FONTE: O autor (2023).

O distanciamento das ordens efetivas de p;, = 1 para as aproximag¢des de
segunda ordem é notado também quando 7 = 8 (Fig. 33), ficando ainda mais evidente
na Fig. 34, quando 7 = 16. As ordens efetivas para m = 32 sdo observadas na Fig. 35 e
finalmente representamos as ordens efetivas para = = 64 na Fig. 36.

FIGURA 35— COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
CAO COM 7 = 32.
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FONTE: O autor (2023).
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FIGURA 36 - COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
CAO COM 7 = 64.
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FONTE: O autor (2023).

Também observamos que a medida que aumenta a razao espaco-tempo, as
ordens efetivas dos métodos tendem as suas ordens assintéticas, ou seja, p;, = 1 para
os métodos de primeira ordem (UDS-CN, UDS-Implicito e UDS-Explicito) e p, = 2
para os métodos de segunda ordem (CDS-CN e LS). Tal fato ocorre somente para as
aproximacdes de segunda ordem, pois é onde se aplica a viscosidade artificial.

Para auxiliar na determinacao da ordem efetiva, melhorar a convergéncia e
nao depender de um valor elevado para a razao espacgo-tempo, em vez de manter fixo
os valores do fator de viscosidade artificial para todas as malhas com a mesma razéo
espaco-tempo, variamos este fator de acordo com a relacédo 1/4 do erro comegando na
malha mais grossa com A = 5,0F —5e A\ = 1,8 — 5, respectivamente para CDS-CN
e LS, assim, variando o fator de viscosidade para os métodos de segunda ordem.
Devemos ressaltar que tal processo é empirico, portanto, trabalhoso e tem relacéo
direta com o ponto estudado, t = 1800s € y = 0,50m.

A Fig. 37, apresenta o comportamento das ordens efetivas das aproximagdes
de primeira e segunda ordens, onde houve uma variacdo do fator de viscosidade
artificial em relacao ao refino da malha para os métodos de segunda ordem. Este teste
foi realizado utilizando a razdo espago-tempo 7 = 2.

Observamos na Fig. 37 que o LS tendem a ordem assintética em malhas
nao tao refinadas se comparado a Fig. 36, onde o fator de viscosidade artificial foi
considerado fixo. Por outro lado, ndo podemos afirmar nada sobre o0 CDS-CN, devido ao
problema de valores incoerentes ja comentados. Mas, na ultima malha discretizada para
o método CDS-CN, notamos que o valor de pz esta se aproximando de p; . Portanto,
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outros estudos sdo necessarios para verificar tais fatos com relagdo ao CDS-CN.

FIGURA 37 — COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
CAO COM 7 = 2 E VARIANDO O FATOR DE VISCOSIDADE \.
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FONTE: O autor (2023).

7.4 INFLUENCIA DA RAZAO ESPACO-TEMPO

Na presente secdo mostraremos a influéncia da razdo espago-tempo no mo-
delo proposto para todas as aproximacdes estudadas, comparando inicialmente os
métodos com o mesmo fator anisotrépico em relacdo ao decaimento do erro, e posteri-
ormente, evidenciando o erro em relagdo ao numero de variaveis para diversos fatores
anisotrépicos.

Para efetuar as verificagbes, usaremos as normas ||E||; € ||E||~ € 0 erro E.

A seguir a Tab. 8 mostra em sua primeira coluna, 0 numero de volumes na
direcéo vertical (/V,) e nas demais colunas colunas, o numero de volumes na dire¢do
temporal (1V;), para os diversos fatores anisotrépicos 7 = 2, 4, 8, 16, 32 e 64, onde por
exemplo 7 = 2 significa que o numero de volumes da malha temporal (V;) é duas vezes
0 numero de volumes da malha espacial (\V,) e niUmero de variaveis reais (sem contar
volumes ficticios) € de N = N, x N;.
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TABELA 8 — NUMERO DE VARIAVEIS NAS MALHAS EM RELACAO A RAZAO ESPACO-

TEMPO (7).
N Nt = TNy
Y T=2 T1=4 T= T=16 T=32 T=064
8 16 32 64 128 256 512

16 32 64 128 256 512 1024
32 64 128 256 512 1024 2048
64 128 256 512 1024 2048 4096
128 256 512 1024 2048 4096 8192
256 512 1024 2048 4096 8192 16384
512 1024 2048 4096 8192 16384 32768
1024 2048 4096 8192 16384 32768 65536
2048 4096 8192 16384 32768 65536 131072
4096 8192 16384 32768 65536 131072 -
8192 16384 32768 65536 - - -
16384 32768 - - - - -

FONTE: O autor (2023).

7.4.1 Comparacao entre os métodos empregando a mesma razao espago-tempo

A seguir mostraremos as compragdes entre o erro versus o numero de variaveis
para diferentes razdes espaco-tempo (7). Nas Fig. 38 e Fig. 39, apresentamos o
decaimento do erro em relacao ao numero de variaveis, respectivamente para a razao
espacgo-tempo 7 =2 e 4.

FIGURA 38 — DECAIMENTO DO ERRO VERSUS NUMERO DE VARIAVEIS PARA TODAS
AS APROXIMAGOES DISCRETIZADAS PELO MVF COM 7 = 2.
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FONTE: O autor (2023).
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FIGURA 39 — DECAIMENTO DO ERRO VERSUS NUMERO DE VARIAVEIS PARA TODAS
AS APROXIMACOES DISCRETIZADAS PELO MVF COM 7 = 4.
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Nesse sentido, observamos que inicialmente nas malhas mais grossas, o
menor erro € do UDS-CN, tendo o maior erro a aproximacao LS e o UDS-Explicito
para 7 = 2 (Fig. 38). Para = = 4 o menor erro é para o UDS-Explicito e o maior
continua sendo o erro do LS (Fig. 39). Entretanto, a medida que as malhas séo
refinadas, as aproximacgdes de segunda ordem tém significativa vantagem com relacao
ao decaimento do erro sobre as aproximagdes de primeira ordem. Destacamos as
aproximacdes de segunda ordem o LS e nos de primeira ordem o UDS-Explicito.

Além disso, apresentamos na Tab. 9, os valores de maximo e minimo do erro,
para cada aproximagao abordada, para 7 = 2 e 7 = 4, corroborando respectivamente,
com as Figs. 38 e 39.

TABELA 9 — NORMA INFINITA DO ERRO E O MENOR ERRO PARA AS APROXlMAQOES
COMT=2Er=4.

T=2 T=4

Método

Max Min Max

Min

LS
UDS-CN

UDS-Explicito
UDS-Implicito

5,176E+00
4,167E+00
3,307E+00
4,831E+00

9,829E-05
7,970E-03
4,548E-03
1,140E-02

4,736E+00
4,047E+00
3,609E+00
4,436E+00

1,208E-04
1,533E-02
1,188E-02
1,878E-02

FONTE: O autor (2023).

A Fig. 40 representa o decaimento do erro em relagdo ao numero de variaveis,
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com a razao espaco-tempo 7 = 8 e a Fig. 41 representa o decaimento do erro em
relagdo ao numero de variaveis para 7 = 16.

FIGURA 40 — DECAIMENTO DO ERRO VERSUS NUMERO DE VARIAVEIS PARA TODAS
AS APROXIMACOES DISCRETIZADAS PELO MVF COM 7 = 8.
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FONTE: O autor (2023).

FIGURA 41 - DECAIMENTO DO ERRO VERSUS NUMERO DE VARIAVEIS PARA TODAS
AS APROXIMACOES DISCRETIZADAS PELO MVF COM 7 = 16.
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FONTE: O autor (2023).

Notamos, nas Figs. 40 e 41, que o comportamento na malha mais grossa,
novamente o menor erro € do UDS-Explicito e o maior erro € do LS em ambas as
razdes espaco-tempo. Outra observacao importante, € que a medida que elevamos a
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razao espaco-tempo, neste caso, 7 = 8 e 7 = 16, respectivamente, para as Figs. 40 a
41, os erros dos métodos de primeira ordem ficam mais préximos, indiferente da malha
observada. Para os de segunda ordem, os erros sdo proximos apenas nas malhas
mais grossas.

A Tab. 10 mostra os valores maximo € minimo do erro. Observamos, assim,
que o comportamento do decaimento do erro segue os padrdes apresentados nas Figs.
40 e 41, isto é, o menor erro, na malha mais refinada é do LS, conforme a Tab. 10.

TABELA 10 — NORMA INFINITA DO ERRO E O MENOR ERRO PARA AS APROXIMAGCOES
COMr=8E T =16.

T=28 T=16
Método Max Min Max Min
LS 4,683E+00 7,791E-05 4,653E+00 1,681E-04
UDS-CN 4,119E+00 1,500E-02 4,150E+00 2,989E-02
UDS-Explicito 3,910E+00 1,327E-02 4,051E+00 2,814E-02
UDS-Implicito 4,313E+00 1,672E-02 4,245E+00 3,164E-02

FONTE: O autor (2023).

As Figs. 42 e 43, representam o decaimento do erro versus o numero de
incégnitas, respectivamente, com as razdes espaco-tempo 7 = 32 e 7 = 64.

FIGURA 42 — DECAIMENTO DO ERRO VERSUS NUMERO DE VARIAVEIS PARA TODAS
AS APROXIMACOES DISCRETIZADAS PELO MVF COM 7 = 32.
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FONTE: O autor (2023).
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FIGURA 43 — DECAIMENTO DO ERRO VERSUS NUMERO DE VARIAVEIS PARA TODAS
AS APROXIMACOES DISCRETIZADAS PELO MVF COM 7 = 64.
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FONTE: O autor (2023).

Consequentemente, as Figs. 42 e 43 representam comportamentos semelhan-
tes as Figs. 38 a 41, como podemos também verificar na Tab. 11, ressaltando que
guanto maior a razao espago-tempo, menor é a diferenca entre os métodos de primeira
ordem, UDS-CN, UDS-Explicito e UDS-Implicito.

Com relagé@o aos métodos de segunda ordem CDS-CN e LS, o comportamento
e semelhante, nas malhas grossas e nas intermediarias. Observamos na Fig. 43 que
ha pouca diferenca no erro dos métodos. Nas malhas muito refinadas, em virtude da
divergéncia do CDS-CN, ndo poderemos efetuar a andlise.

TABELA 11 — NORMA INFINITO DO ERRO E O MENOR ERRO PARA AS APROXIMAGCOES
COM T =32E 7 =64.

T =064
Max Min
4,622E+00 5,091E-04
4,157E+00 6,019E-02
4,134E+00 5,930E-02
4,181E+00 6,109E-02

T=232
Max Min
4,633E+00 1,466E-04
4,156E+00 2,972E-02
4,108E+00 2,884E-02
4,203E+00 3,059E-02

Método
LS
UDS-CN
UDS-Explicito
UDS-Implicito

FONTE: O autor (2023).

Portanto, concluimos que, indiferente da razdo espago-tempo, a aproximagao
LS é a que apresenta melhor decaimento do erro em relacao as outras aproximacoes
estudadas, com um adendo que, entre as aproximagdes de primeira ordem, destaca-
se a aproximacao UDS-Explicito. Por fim, verificamos que com o aumento do fator
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anisotropico, o erro diminui entre as aproximag¢des de mesma ordem.

7.4.2 Comparagao entre os métodos para cada razao espago-tempo

Esta secédo apresenta o comportamento dos erros versus o numero de incogni-
tas, para cada razao espacgo-tempo, para todas as aproximagdes abordadas. As Figs.
44 e 45 apresentam, respectivamente, os erros para o CDS-CN e LS.

FIGURA 44 — COMPARACAO DO ERRO VERSUS O NUMERO DE VARIAVEIS PARA O CDS-
CN DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE 7.
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FIGURA 45— COMPARACAO DO ERRO VERSUS O NUMERO DE VARIAVEIS PARA O LS
DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE .
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Observamos nas Figs. 44 e 45 que o erro decai com o refino da malha. Mais do
que isso, notamos que para as razdes espago-tempo maiores (7 = 64, 32 € 16) o erro €
maior se comparado as razdes espaco-tempo menores (7 = 2, 4 € 8) e que para as
malhas mais refinadas e baixas razées espago-tempo, ocorre uma pequena curvatura,
desacelerando o decaimento do erro.

Nas Figs. 46, 47 e 48 apresentamos respectivamente, a comparagao do erro
versus o numero de incégnitas, pelos métodos UDS-CN, UDS-Explicito e UDS-Explicito.

FIGURA 46 — COMPARACAO DO ERRO VERSUS O NUMERO DE VARIAVEIS PARA O UDS-
CN DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE .
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FONTE: O autor (2023).

FIGURA 47 — COMPARACAO DO ERRO VERSUS O NUMERO DE VARIAVEIS PARA O UDS-
EXPLICITO DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE .
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FIGURA 48 — COMPARAGAO DO ERRO VERSUS O NUMERO DE VARIAVEIS PARA O UDS-
IMPLICITO DISCRETIZADO PELO MVF PARA DIVERSOS VALORES DE r.
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FONTE: O autor (2023).

Notamos que o método UDS-CN (Fig. 46) expdem melhor resultado em relagao
ao numero de variaveis na malha mais refinada para 7 = 2. Ainda, observamos que
no método UDS-Explicito (Fig. 47), = = 2 é a que tem melhor resultado em relacéo
ao decaimento versus o numero de variaveis. Além disso, o UDS-Explicito € o melhor
método entre os de primeira ordem. Do mesmo modo, para UDS-Implicito (Fig. 48) a
razdo espago-tempo 7 = 2, é a que melhor representa o erro com relacdo ao numero
de variaveis.

Neste sentido, a Tab. 12 apresenta a norma 2, para as quatro aproximacgoes
estudadas. O CDS-CN néo foi comparado, pois, para a nhorma analisada, tal método
pode dar resultados incoerentes se comparado aos demais, pela quantidade de malhas
abordadas.

TABELA 12— NORMA 2 DO ERRO PARA AS APROXIMAQAO PARA DIVERSOS VALORES
DE r.

Método T=2 7=4 7=8 7=16 7=32 T7=64
LS 6,188 5,727 5,646 5,616 5,597 5,585
UDS-CN 6,128 6,114 6,087 6,088 6,088 6,087
UDS-Explicito 4,516 5,311 5,696 5,899 5,995 6,041
UDS-Implicito 7,383 6,828 6,454 6,271 6,179 6,132

FONTE: O autor (2023).
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Assim, o melhor valor apresentado para a ||E||» € o método UDS-Explicito,
tendo o UDS-Implicito como pior caso, seguido do LS com 7 = 2. Isto nao significa que
LS seja a pior aproximagéao a ser utilizada, muito pelo contrario, como os resultados
vém mostrando, LS é o melhor método dos analisados com o refino da malha.

Contudo, o fato do LS ter o maior valor para a norma 2, esta relacionado ao
elevado erro numérico desse método nas malhas grossas, contaminando assim, 0s
bons resultados apresentados para o LS. Ainda, observando a Tab. 12 notamos que
com o aumento das razfes espaco-tempo, o erro decai e temos o melhor caso para a
aproximagao LS seguido do UDS-Explicito, para 7 = 64. Outro fato importante, é que a
medida que aumentamos a razao espaco-tempo, temos valores mais elevados para o
UDS-Explicito.

7.5 O ESFORGCO COMPUTACIONAL

Uma das formas de se avaliar o esforco computacional de um método numérico
€ através da analise do comportamento dos tempos de execug¢éao (¢, em segundos), ou
tempo de C' PU, em funcdo do numero de VC de cada malha (GONCALVES, 2013), ou
seja, analisar o efeito do numero de incégnitas (N) sobre o tempo de CPU.

Segundo Pinto (2006), entende-se por tempo de CPU (tcpyy) 0 tempo gasto para
realizar a geragédo de malhas, atribuicdo da estimativa inicial, calculo dos coeficientes
e resolucéo do sistema até atingir o critério de convergéncia (critério de parada). Os
valores do tempo de CPU das simulagdes desta secéo, sdo encontrados em formato
de tabelas no Apéndice (A.1).

De acordo com Burden e Faires (2016), para determinarmos a complexidade
do método (ou algoritmo) que é dado pelo efeito do numero de incégnitas em relagao
tepu, fazemos um ajuste nédo linear do tipo

toru (N) = ¢ (N, (7.3)

onde ¢ é o coeficiente do método, p representa a ordem de complexidade e N é o
namero total de incégnitas do problema. Com p representando a ordem do algoritmo,
isto é, a inclinagdo da curva em escala bilogaritmica, e ¢ € uma constante que depende
do método. E importante notar que na nova escala bilogaritmica, uma reta é obtida com
0 ajuste ndo linear, onde ¢ € o coeficiente linear de tal reta e representa o valor inicial
da relagéo entre tempo e N, enquanto p € o coeficiente angular e indica a tendéncia de
crescimento.

As Figs. 49 e 50 retratam o tempo de CPU versus N para todas as aproxima-
cdes consideradas, nesta ordem, para T =2 € 4.



Resultados

108

FIGURA 49 — EFEITO DO NUMERO DE INCOGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMACAO UTILIZADA COM 7 = 2.
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FONTE: O autor (2023).

FIGURA 50 — EFEITO DO NUMERO DE INCOGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMACAO UTILIZADA COM 7 = 4.
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A principio, o LS tem o tempo de CPU menor em relagéo aos demais meétodos,
seguido do CDS-CN e UDS-CN, com os piores tempos para o UDS-Explicito e UDS-
Implicito. Entretanto, elevando o numero de variaveis, isto é, refinando a malha, o
CDS-CN nao pode ser avaliado, seguindo com o melhor tempo o LS, seguido do UDS-
CN, UDS-Explicito e UDS-Implicito nas ultimas duas malhas analisadas. Note que esta

analise é valida para ambas as razdes espaco-tempo, conforme as Figs. 49 e 50.



Resultados

109

Nas Figs. 51 e 52 temos o tempo em relacgdo ao refino da malha com as razdes

espago-tempo 7 = 8 e 16, respectivamente.

FIGURA 51 — EFEITO DO NUMERO DE INCOGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAGAO UTILIZADA COM 7 = 8.
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FONTE: O autor (2023).

FIGURA 52 — EFEITO DO NUMERO DE INCOGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAGAOQ UTILIZADA COM 7 = 16.
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As Figs. 51 e 52 apresentaram comportamento semelhante aos das Figs. 49
e 50, ou seja, inicialmente o LS apresentou o tempo de CPU menor, seguido das
aproximacgdes CDS-CN e UDS-CN, tendo os piores tempos as aproximagdes UDS-
Explicito e UDS-Implicito. Por outro lado, a razdo espaco-tempo r = 16, ilustrado
pela Fig. 52, mostra-nos que os menores tempos sao para as aproximacgodes LS,
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UDS-Explicito e UDS-Implicito, sendo as piores aproximacées CDS-CN e UDS-CN,
indiferente do numero de incégnitas.

As Figs. 53 e 54 apresentam, respectivamente para - = 32 e 7 = 64, 0
comportamento para o tempo de CPU versus numero de variaveis, confirmando um
comportamento semelhante ao apresentado pela Fig. 52, onde os menores tempos de
CPU sao dados pelos métodos LS, UDS-Explicito e UDS-Implicito.

FIGURA 53 — EFEITO DO NUMERO DE INCOGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAGAO UTILIZADA COM 7 = 32.
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FIGURA 54 — EFEITO DO NUMERO DE INCOGNITAS SOBRE O TEMPO DE CPU PARA
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As Tabs. 13 e 14 foram criadas a partir dos dados apresentados nas Figs. 49 a
54 para analisar os valores de c e p gerados pelo ajuste dado pela Eq. (7.3). Notamos
dessas tabelas que, enquanto as inclinacdes (representadas por p) sdo semelhantes,
os valores de ¢ sdo bem distintos (por uma ou duas ordens).

TABELA 13 — PARAMETROS DO AJUSTE GEOMETRICO PARA OS METODOS DE PRI-
MEIRA ORDEM.

UDS-CN UDS-Explicito UDS-Implicito
p & p C P 15
0,970 1,676E-02 | 0,981 2,088E-02 | 0,993 1,929E-02
0,991 1,466E-02 | 0,981 2,070E-02 | 0,976 2,147E-02
1,017 1,229E-02 | 0,990 1,955E-02 | 0,979 2,125E-02
0,993 1,953E-02 | 1,012 1,031E-02 | 1,048 8,066E-03
0,999 1,884E-02 | 1,004 1,080E-02 | 1,007 1,063E-02
64 | 0,979 2,170E-02 | 1,001 1,110E-02 | 0,999 1,133E-02

W =
5oy 00 & o

FONTE: O autor (2023).

TABELA 14 — PARAMETROS DO AJUSTE GEOMETRICO PARA OS METODOS DE SE-
GUNDA ORDEM.

CDS-CN LS
P c P c
0,965 1,718E-2 | 0,998 1,135E-2
0,993 1,431E-2 | 0,961 1,456E-2
0,999 1,555E-2 | 0,999 1,137E-2
0,980 2,309E-2 | 0,989 1,218E-2
0,981 2,092E-2 | 1,012 1,039E-2
64 | 0,960 2,397E-2 | 0,997 1,154E-2

w =
55 o 00 o N

FONTE: O autor (2023).

Ao comparar os valores de p para 7 = 2, para as aproximacdes de primeira
ordem, os valores mais préximos da unidade é para o UDS-Implicito (sexta coluna da
Tab. 13). Para a mesma razao espago-tempo 7 = 2, nas aproximagdes de segunda
ordem, o mais proximo a unidade € o LS (quarta coluna da Tab. 14), com relagao, a
uma razao espaco-tempo elevada, por exemplo, 7 = 64, os valores de p mais proximos
a unidade sao UDS-Explicito e UDS-Implicito (quarta e sexta colunas da Tab. 13
respectivamente) e LS (quarta coluna da Tab. 14), respectivamente, para os métodos
de primeira e segunda ordens.
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7.6 MULTIPLA EXTRAPOLAGAO DE RICHARDSON (MER)

A principio, mostraremos nesta secao o uso de Mdltiplas Extrapolagcdes de
Richardson (MER) para reduzir o erro de discretizagdo na simulagdo do modelo do
processo de aeracdo da massa de graos, assim, comparando tais erros com e sem a
aplicacao da MER, respectivamente denotados por E,, e E},. Posteriormente, apresen-
taremos o uso de estimadores de erros baseados em MER, mostrando que € possivel
obter solugcdes com alta ordem de acuracia e de forma confiavel.

Roache (1994) enfatiza a necessidade de convergéncia de malha com refina-
mentos elevados para obter boa estimativa da ordem de acuracia. Consequentemente,
descartaremos as malhas mais grossas para o estudo da MER, visto que, nas malhas
mais finas a ordem efetiva (px) tende para a ordem assintotica (p;).

A Fig. 55 representa o erro com a aplicagdo da MER (E,,) e sem sua utilizagao
(En)-

FIGURA 55— ERRO NUMERICO COM E SEM MER PARA TODAS AS APROXlMAQC)ES
COM r =2.
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FONTE: O autor (2023).

Observamos que a aplicacdo da MER reduz drasticamente os erros E, para
todos os métodos utilizados, dando destaque ao LS que teve a maior reducao (note
que o método LS foi afetado pelo erro de arredondamento na malha mais refinada).
Essa reducao drastica do erro pode ser confirmada pela seguinte analise.

A Tab. 15 mostra a razéo entre E,, e E,, (E,/FE,,) para os métodos analisados
nas diversas malhas. Portanto, quanto maior tal razdo, maior a redugao de E,, com
relacdo a F, ou seja, maior o efeito da MER na reducéao do erro.
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TABELA 15— E),/E,, COM 7 = 2 PARA OS METODOS ESTUDADOS.

Ny, x N LS UDS-CN  UDS-Explicito UDS-Implicito
128 x 256 1.214E+04 6.003E+01 4.445E+01 7.230E+01
256 x 512 1.940E+06 8.008E+02 5.352E+02 9.985E+02
512 x 1024 6.324E+08 1.706E+04 9.930E+03 2.274E+04

1024 x 2048 4.121E+11 6.197E+05 3.183E+05 8.950E+05
2048 x 4096 1.498E+15 3.793E+07 1.832E+07 5.878E+07
4096 x 8192 2.743E+19 4.363E+09 2.160E+09 6.817E+09
8192 x 16384 2.275E+24 1.046E+12 5.309E+11 1.601E+12
16384 x 32768 - 5.188E+14 2.664E+14 7.849E+14

FONTE: O autor (2023).

Observamos que a aplicacao da MER reduz significativamente o erro de discre-
tizagdo. Este fato pode ser evidenciado pela razéo £,/ FE,, na Tab. 15. Note a tendéncia
dessas razdes aumentarem com o refino de malha, o que ja era esperada devido
ao aspecto das curvas da Fig. 55, ou seja, tais curvas vao se distanciando a me-
dida que refinamos a malha. As aproximacdes pelo método LS obteve os maiores
valores para as razdes comparando com as outras aproximagodes, em todas as ma-
Ihas. Isso significa, por exemplo, que ao aplicar a MER para o método de Leith na
malha N, x N, = 8192 x 16384 com 8 niveis de extrapolag&o, obtemos uma solugéo
aproximadamente 2,275 x 10** vezes mais acurada, caso ndo aplicassemos a MER.

Por sua vez a Tab. 16 apresenta a razao entre E, e E,, para os métodos

analisados nas diversas malhas.

TABELA 16 — E},/E,, COM 7 = 4 PARA OS METODOS ESTUDADOS.

N, x N LS UDS-CN  UDS-Explicito UDS-Implicito
128 x 512 7.440E+03 5.913E+01  5.046E+01 6.635E+01
256 x 1024  6.593E+05 6.433E+02  5.170E+02 7.507E+02
512 x 2048 1.119E+08 1.114E+04  8.369E+03 1.370E+04
1024 x 4096 9.375E+10 3.311E+05  2.406E+05 4.221E+05
2048 x 8192 3.956E+14 1.896E+07  1.392E+07 2.412E+07
4096 x 16384 7.375E+18 2.274E+09  1.690E+09 2.862E+09
8192 x 32768 - 5.641E+11  4.215E+11 7.056E+11

FONTE: O autor (2023).

Verificamos na Tab. 16 que os valores da razao E;/E,, no geral sdo menores
que os valores apresentado para 7 = 2. Novamente o LS apresentou o maior valor em
todas as malhas.



Resultados 114

Na Fig. 56, apresentamos o erro numeérico com (£,,) e sem (E},) a aplicagao
da MER, para os métodos avaliados utilizando razao espago-tempo 7 = 4.

FIGURA 56 — ERRO NUMERICO COM E SEM MER PARA TODAS AS APROXIMACOES
COM 7 = 4.
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FONTE: O autor (2023).

Notamos na Fig. 56 que os métodos de primeira ordem reduzem de forma
menos acentuada o erro de discreticdo com a MER (F,,,) e sem (F}), ja o de segunda
ordem foi 0 melhor em ambos os casos. Outro fator importante, é o refino da malha:
mesmo com a razao espaco-tempo maior, o decaimento da MER n&o foi significativo.

A Tab. 17 apresenta a razdo E,/E,,, para 7 = 8, para todos os meétodos
analisados.

TABELA 17 — E,/E,, COM 7 = 8 PARA OS METODOS ESTUDADOS.

Ny, x N LS UDS-CN  UDS-Explicito UDS-Implicito
128 x 1024  7.342E+03 5.190E+01  4.818E+01 5.544E+01
256 x 2048 6.735E+05 5.694E+02  5.153E+02 6.211E+02
512 x 4096 1.171E+08 9.973E+03  8.731E+03 1.119E+04
1024 x 8192 9.301E+10 2.898E+05  2.494E+05 3.314E+05

2048 x 16384 3.753E+14 1.650E+07  1.428E+07 1.881E+07
4096 x 32768 6.545E+18 1.979E+09  1.722E+09 2.242E+09
8192 x 65536 - 4.907E+11  4.283E+11 5.544E+11

A Fig. 57 mostra a comparacao do erro com e sem a MER, para r = 8, para
todos os métodos avaliados nas diversas malhas.

FONTE: O autor (2023).
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FIGURA 57 — ERRO NUMERICO COM E SEM MER PARA TODAS AS APROXIMACOES
COM 7 =8.
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FONTE: O autor (2023).

Constatamos na Fig. 57 que o comportamento continua padréo, destacando-se
o método LS em relagao as Figs. 55 a 56. Com relacédo a Tab. 17, os valores para a

razao entre F, e E,, foram maiores para LS, repetindo o comportamento quando 7 = 2
e 4.

Na Tab. 18, apresentamos a razéo £/ FE,, para os diversos métodos e malhas
e a Fig. 58 apresenta o comportamento do erro numérico com e sem MER para a
razdo espacgo-tempo 7 = 16. Como podemos notar na Tab. 18 que os maiores valores
evidenciados para a razdo E;/FE,, sdo para o LS em todas as malhas também para
7 = 16. Podemos observar na Fig. 58, o comportamento do erro com (F,,) € sem (E},)
a MER continua satisfatorio.

TABELA 18 — E,/E,, COM 7 = 16 PARA OS METODOS ESTUDADOS.

N, x N, LS UDS-CN  UDS-Explicito UDS-Implicito
128 x 2048 1.012E+03 3.523E+01  3.351E+01 3.693E+01
256 x 4096 4.473E+04 3.100E+02 2.900E+02 3.300E+02
512 x 8192 8.724E+06 4.516E+03 4.185E+03 4.854E+03

1024 x 16384 8.594E+09 1.280E+05 1.189E+05 1.372E+05
2048 x 32768 3.604E+13 7.666E+06  7.143E+06 8.198E+06
4096 x 65536 6.383E+17 9.500E+08  8.865E+08 1.014E+09

FONTE: O autor (2023).
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FIGURA 58 — ERRO NUMERICO COM E SEM MER PARA TODAS AS APROXIMACOES
COM 7 = 16.
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FONTE: O autor (2023).

Finalmente, na Fig. 59, apresentamos o comportamento do erro numérico para
a razao espacgo-tempo r = 32 com (FE,,) e sem (E,) a plicagdao da MER e a Tab. 19
apresenta a razdo £,/ E,, para os diversos métodos e malhas.

FIGURA 59 — ERRO NUMERICO COM E SEM MER PARA TODAS AS APROXIMACOES
COM 1 = 32.
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FONTE: O autor (2023).

O comportamento apresentado na Fig. 59 para razdo espacgo-tempo 7 = 32
€ semelhante ao apresentado para as demais razdes espago-tempo (7 = 2, 4, 8 e
16), destacando-se o LS tanto com (F,,) como sem (FE,) a aplicacao da MER. Os
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resultados apresentados na Tab. 19 mostram que para a razdo E,/E,, o comporta-
mento é semelhante as Tabs. 15, 16, 17 e 18, destacando-se 0 LS como evidenciado
graficamente.

TABELA 19— E},/E,, COM 7 = 32 PARA OS METODOS ESTUDADOS.

N, x N, LS UDS-CN  UDS-Explicito UDS-Implicito
128 x 4096  1.024E+03 3.520E+01  3.433E+01  3.606E+01
256 x 8192  4.505E+04 3.063E+02 2.963E+02  3.162E+02
512 x 16384  8.734E+06 4.486E+03 4.319E+03  4.654E+03

1024 x 32768 8.498E+09 1.272E+05 1.226E+05  1.319E+05

2048 x 65536 3.490E+13 7.621E+06 7.357E+06  7.888E+06

4096 x 131072 5.955E+17 9.445E+08 9.123E+08  9.768E+08

FONTE: O autor (2023).

Portanto, com os erros numéricos com MER (FE,,,) e sem sua aplicacao (F),
utilizando diferentes razes espaco-tempo (7 = 2, 4, 8, 16 e 32) dados pelas Figs. 55 a
59; e as razbes E;/E,, dadas pelas Tabs. 15 a 19, podemos observar que os melhores
resultados foram atingidos com o uso do método de Leith para as menores razdes
espaco-tempo e para malhas mais refinadas, mas mesmo assim, excelentes resultados
foram alcangados para todos os métodos, razdes espacgo-tempo e malhas.

7.7 ANALISE DOS ESTIMADORES PARA A MER

Nesta se¢&o apresentaremos os resultados dos estimadores Una, Uy, Upe, Uy
e Uy- (estimadores apresentados na Secao 4.2), além de suas efetividades I" (dada
pela Eq. (4.22)) para os erros numéricos apos a aplicagédo de MER (E,,). Inicialmente
apresentando para a razdo espago-tempo 7 = 2 e em seguida, para 7 = 32. Para as
demais razdes, as figuras encontram-se no Apéndice (B.1).

A Tab. 20 apresenta a efetividade I" dos cinco estimadores analisados para o
método LS e 7 = 2. Devemos lembrar que a estimativa é considerada acurada se I"' ~ 1
e confiavel se I > 1 (MARCHI, 2001).

Notamos na Tab. 20 que I' ~ 1,449 para o estimador de Richardson (U,..) €
que os demais estimadores n&o atendem a condi¢ao I' =~ 1. A efetividade do estimador
A cresce com o refino da malha, ou seja, ele ndo é um bom estimador para E,, (é
confidvel mas nao é acurado). Os demais estimadores tendem a um valor, mas nao
proximos da unidade. Podemos notar também que, mesmo o estimador U,,,,,. sendo um
pouco acurado devido ao valor I' ~ 1,449 quando deveria ser I > 1, ainda assim, ele é
confiavel, pois I' > 1 em todas as malhas.
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TABELA 20 — EFETIVIDADE DOS ESTIMADORES PARA r = 2 COM O METODO LS.

NoxNi  T(Us)  T(Uw)  D(Ume)  T(Us)  T(Uy)
128 x256 2,896E+03 1,951E+00 1,458E+00 9,038E+01 1,974E+00
256x512 2,986E+05 1,938E+00 1,451E+00 7,380E+01 1,943E+00

512x1024 2,787E+08 1,934E+00 1,450E+00 7,054E+01 1,936E+00
1024x2048 2,237E+11 1,933E+00 1,449E+00 6,977E+01 1,934E+00
2048x4096 2,125E+15 1,933E+00 1,449E+00 6,958E+01 1,933E+00
4096x8192 9,511E+20 1,933E+00 1,449E+00 6,953E+01 1,933E+00
8192x16384 2,385E+26 1,933E+00 1,449E+00 6,952E+01 1,933E+00

FONTE: O autor (2023).

A Fig. 60 mostra o erro numérico com a aplicagdo de MER (FE,,) e sem sua
utilizacéo (E4), além da estimativa de Richardson (U,,,), para o método LS e 7 = 2.
Nesta segéo estamos optando por esbogar sempre as figuras com o estimador U,,,
para a visualizacdo dos erros e suas estimativas apenas por questdes didaticas, pois,
como veremos, este ndo sera sempre o melhor estimador.

FIGURA 60 - COMPARAGAO ENTRE O ERRO E,, E SUA ESTIMATIVA U,,, PARA 7 = 2
COM O METODO LS.
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FONTE: O autor (2023).

Verificamos que a estimativa para o erro (U,,,,) estd em grande conformidade
com o erro numérico apés a aplicagdo de MER (E,,), apesar de estar visualmente um
pouco acima, conforme Fig. 60.

Apresentamos na Fig. 61, uma comparacao do erro numérico com a aplicacao
de MER (E,,) e sem sua utilizagéo (E}), além da estimativa de Richardson (U,,,), para
o metodo UDS-CN e 7 = 2. Verificamos que a estimativa e o erro estdo em grande
conformidade, porém com a estimativa tendo valores levemente inferiores.
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FIGURA 61— COMPARAQAO ENTRE O ERRO (E,,) E SUA ESTIMATIVA U,,,,, PARA 7 =2
COM O METODO UDS-CN.
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FONTE: O autor (2023).

A Tab. 21 apresenta a efetividade I" dos cinco estimadores analisados para o
método UDS-CN e 7 = 2.

TABELA 21 — EFETIVIDADE DOS ESTIMADORES PARA 7 = 2 COM O METODO UDS-CN.

Ny x Ny

['(Ua)

L(Upm)

I'(Upme)

['(Uy)

['(Uy-)

128 x256

256x512

512x1024
1024 <2048
2048x4096
40968192
8192x 16384

4,251E+00
6,039E+01
1,901E+03
5,600E+04
4,786E+06
7,971E+08
1,908E+11

6,980E-01
6,922E-01
6,897E-01
6,886E-01
6,880E-01
6,878E-01
6,876E-01

3,368E-01
3,182E-01
3,095E-01
3,053E-01
3,033E-01
3,023E-01
3,017E-01

2,349E+00
1,484E+00
1,238E+00
1,140E+00
1,097E+00
1,076E+00
1,066E+00

7,543E-01
7,169E-01
7,013E-01
6,942E-01
6,908E-01
6,891E-01
6,883E-01

FONTE: O autor (2023).

Observando os valores da efetividade (I'), apresentados nesta tabela, verifica-
mos que entre os estimadores com I' ~ 1, temos o estimador U,,,, 0 estimador Uy- € 0
estimador Uy, apresentando respectivamente, as efetividades I' ~ 0,688, 0,688 e 1,066,
ou seja, I' esta mais proxima da unidade do que o LS.

Note que as efetividades dos estimadores Ua € U,,., além de ndo atenderem
a condicao I' ~ 1, tais efetividades tende a crescer (no caso de U,) ou tende a uma
constante ndo proxima da unidade (no caso de U,,,), com com o refino da malha, ou
seja, ndo sdo bons estimadores. Neste caso temos que os estimadores U,,,, € Uy- S@0
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pouco acurados e nao confiaveis, enquanto que, o estimador Uy € acurado e confiavel,
para o método analisado.

Na Fig. 62 apresentamos o erro numérico com a aplicacao de MER (F£,,), sem
sua aplicacédo (E}) e a estimativa de Richardson (U,,,), para o método UDS-Explicito
e 7 = 2. Verificamos que ha grande concordéancia entre U,,, e E,,, apesar de estar
visualmente um pouco abaixo.

FIGURA 62 - COMPARAQAO ENTRE O ERRO (E,,) E SUA ESTIMATIVA Up,,, PARA 7 = 2
COM O METODO UDS-Explicito.
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FONTE: O autor (2023).

1074

A Tab. 22 apresenta a efetividade I" dos cinco estimadores analisados para o
método UDS-Explicito e 7 = 2.

TABELA 22 — EFETIVIDADE DOS ESTIMADORES PARA r = 2 COM O METODO UDS-

EXPLICITO.
N, x N; T'(Ua) L(Upm) L(Upme) ['(Uyg) ['(Uyg~)
128x256  3,360E+00 7,383E-01 3,267E-01 1,911E+00 7,996E-01
256x512  2,746E+01 7,261E-01 3,085E-01 1,286E+00 7,523E-01
512x1024 6,276E+02 7,206E-01 2,999E-01 1,097E+00 7,326E-01
1024x2048 2,471E+04 7,179E-01 2,958E-01 1,020E+00 7,237E-01
2048x4096 5,543E+05 7,166E-01 2,938E-01 9,850E-01 7,195E-01
4096x8192 4,770E+07 7,160E-01 2,928E-01 9,684E-01 7,174E-01
8192x16384 9,675E+10 7,157E-01 2,923E-01 9,602E-01 7,174E-01

FONTE: O autor (2023).
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Notamos que para UDS-Explitico, temos I"' ~ 0,716, 0,717 e " ~ 1, respectiva-
mente para U, Uy~ € Uy. Novamente os outros estimadores ndo s&o bons, pois suas
efetividades tendem a crescer ou tendem a uma constante ndo préoxima da unidade
com o refino da malha. E o estimadores U,,,, € Uy~ $80 um pouco mais acurados que
os demais, porém nao confiaveis. O estimador Uy € acurado e confidvel em malhas
mais grosseiras, mas ndo confiavel em malhas mais refinadas.

Para o método UDS-Implicito e 7 = 2, a Fig. 63 apresenta E,,, £, € Uy,
e a Tab. 23 apresenta a efetividade I" dos cinco estimadores analisados. Tivemos
resultados analogos aos obtidos com o método UDS-Explicito exceto para Uy que além
de confiavel é acurado.

FIGURA 63 - COMPARAGAO ENTRE O ERRO (E,,) E SUA ESTIMATIVA U,,, PARA 7 = 2
COM O METODO UDS-IMPLICITO.
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FONTE: O autor (2023).

TABELA 23 — EFETIVIDADE DOS ESTIMADORES PARA r = 2 COM O METODO UDS-
IMPLICITO.

NyXNt

['(Ua)

L(Upm)

I'(Upme)

['(Uy)

['(Uy-)

128 x256

256x512

512x 1024
1024 x2048
2048x4096
4096x8192
8192x 16384

3,772E+00
4,395E+01
1,375E+03
6,577E+04
5,632E+06
1,323E+09
4,419E+11

7,041E-01
7,015E-01
7,004E-01
7,000E-01
6,997E-01
6,996E-01
6,996E-01

3,382E-01
3,195E-01
3,108E-01
3,065E-01
3,045E-01
3,034E-01
3,029E-01

2,419E+00
1,489E+00
1,233E+00
1,132E+00
1,088E+00
1,066E+00
1,056E+00

7,606E-01
7,266E-01
7,120E-01
7,056E-01
7,025E-01
7,010E-01
7,003E-01

FONTE: O autor (2023).
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Agora apresentaremos os resultados das efetividades I' dos estimadores U,
Upms Upmes Uy € Uy~, para os erros numéricos apoés a aplicagdo de MER (£,,) con-
siderando a razédo espaco-tempo 7 = 32. As Tabs. 24, 25, 26 e 27 apresentam I,
respectivamente para os métodos LS, UDS-CN, UDS-Explicito e UDS-Implicito.

TABELA 24 — EFETIVIDADE DOS ESTIMADORES PARA 7 = 32 COM O METODO LS.

N [(Ua) L(Upm) F'(Upme) ['(Uy) ['(Ug+)
128x4096 8,699E+02 7,311E-01 5,213E-01 1,296E+01 7,397E-01
256x8192 1,173E+05 7,274E-01 5,191E-01 5,975E-01 7,296E-01
512x16384 5,940E+07 7,267E-01 5,186E-01 2,656E-01 7,271E-01
1024x32768 6,918E+10 7,264E-01 5,185E-01 1,245E-01 7,265E-01

2048x65536 3,914E+06 7,263E-01 5,185E-01 6,036E-02 7,263E-01

FONTE: O autor (2023).

TABELA 25— EFETIVIDADE DOS ESTIMADORES PARA 7 = 32 COM O METODO UDS-CN.

N L(Ua) L(Upm) F'(Upme) ['(Uy) ['(Ug~)
128x4096 2,101E+01 7,311E-01 3,208E-01 2,091E+01 7,909E-01
256x8192 2,564E+00 7,285E-01 2,991E-01 1,267E+01 7,547E-01
512x16384 1,278E+00 7,277E-01 2,888E-01 1,031E+01 7,400E-01
1024x32768 8,319E+02 7,275E-01 2,839E-01 9,380E-01 7,334E-01

2048x65536 3,566E+04 7,274E-01 2,815E-01 8,960E-01 7,303E-01

FONTE: O autor (2023).

TABELA 26 — EFETIVIDADE DOS ESTIMADORES PARA r = 32 COM O METODO UDS-
EXPLICITO.

N ['(Ua) I'(Upm) I'(Upme) I'(Uy) ['(Ug+)
128x4096 2,585E+00 7,326E-01 3,211E-01 2,082E+01 7,927E-01
256x8192  3,102E+00 7,297E-01 2,993E-01 1,266E+01 7,560E-01
512x16384 6,488E+02 7,288E-01 2,892E-01 1,031E+01 7,411E-01
1024x 32768 2,106E+04 7,286E-01 2,843E-01 9,386E-01 7,345E-01
2048x65536 1,531E+06 7,284E-01 2,819E-01 8,968E-01 7,313E-01

FONTE: O autor (2023).

Dessa forma, observamos em todas as tabelas (Tabs. 24, 25, 26 e 27), que 0s
valores dos estimadores U,,,, € Uy~ para 7 = 32, tem respectivamente I' ~ 0,726 e 0,730,
indiferente do método aplicado para a discretizacdo. Neste caso os estimadores U,
e Uy~ S0 um pouco acurados e nao confiaveis (I' < 1). O estimador U é confiavel
mas n&o acurado, o estimador U,,,,. ndo & nem confidvel e nem acurado. Por sua vez
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TABELA 27 — EFETIVIDADE DOS ESTIMADORES PARA 7 = 32 COM O METODO UDS-

IMPLICITO.

N [(Ua) L'(Upm) I'(Upme) ['(Uy) I(Ug+)
128x4096 2,096E+01 7,297E-01 3,206E-01 2,100E+01 7,894E-01
256x8192 3,215E+00 7,273E-01 2,988E-01 1,2683E+01 7,536E-01
512x16384 1,831E+00 7,268E-01 2,886E-01 9,373E-01 7,390E-01
1024x32768 4,017E+01 7,266E-01 2,836E-01 8,951E-01 7,325E-01
2048x65536 1,515E+01 7,266E-01 2,812E-01 8,751E-01 7,294E-01

FONTE: O autor (2023).

o estimador Uy € pouco acurado e nao confiavel para os métodos UDS-CN, UDS-
Explicito e UDS-Implicito, e n&o sendo nem acurado e nem confiavel para o método
LS.

Portanto, com os erros numéricos e suas estimativas para = = 2, dadas pelas
Figs. 60 a 63; e as efetividades dos estimadores para 7 = 2 e 32, dadas pelas Tabs. 20 a
27, podemos observar que, dentre todos os estimadores, o estimador Ux néo € acurado
mas € confiavel, independente do método de discretizacao e da razdo espago-tempo
utilizados. Portanto, nossa andlise a seguir ird desconsiderar tal estimador.

Para baixas razdes espaco-tempo, o método UDS-Explicito ndo teve nenhum
estimador que fosse acurado e confiavel simultaneamente. Entretanto, o método LS
para U,,, e Uy- s&o confiaveis e ndo acurados, U,,,. € confiavel e pouco acurado e Uy, €
acurado mas néo confiavel. Para os métodos UDS-CN e UDS-Implicito os estimadores
U,m € Uy~ s80 acurados e ndo confiaveis, U,,,. ndo é confiavel e nem acurado e Uy €
acurado e confiavel.

Para altas razbes espaco-tempo, todos métodos tiveram estimadores néo
confiaveis, pois I' < 1 para todos eles exceto para U,, 0 que na pratica significa que
0S erros sao superiores as suas estimativas, causando um pouco de inseguranga
ao admitir tais estimativas. Entretanto, pelas Figs. 60 a 63, vimos que, apesar das
estimativas serem nao confiaveis, elas sao precisas, podendo ser usadas com cautela.
Para isso, vemos que todos os métodos tiveram estimadores acurados, exceto o
estimador U,,,,. que n&o foi acurado para nenhum dos métodos.

Uma ressalva deve-se fazer: na busca por estimadores acurados e confiaveis
para altas razdes espacgo-tempo, podemos usar qualquer um dos métodos, mas levando
em consideracdo apenas as malhas mais grossas.

Uma possivel explicagdo para nao termos estimadores acurados e confiaveis
para qualquer método, qualquer razao espago-tempo ou qualquer grau de refino de
malha, pode ser pelo fato da anélise de erros (MER e estimativas) ser feita a partir
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de uma solucao analitica fabricada a partir de dados experimentais, ou seja, nao é
uma solucao analitica do modelo te6rico de Thorpe e que nao tem solugao analitica
conhecida. Outra possivel explicacédo, pode ser por conta das ordens verdadeiras
tedricas utilizadas na aplicacao da MER. A partir da segunda ordem verdadeira nao
conseguimos definir com precisdo seus valores no modelo, dado que 0 mesmo possui
muitos parametros que influenciam diretamente esses valores.

Assim, se faz necessario mais estudos para se obter um estimador acurado
e confiavel para nossos modelos numéricos, independente da razdo espago-tempo.
Apesar disso, conseguimos encontrar estimadores acurados e em alguns casos também
confiaveis para as baixas razées espaco-tempo.
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8 CONCLUSAO

Nesta secado apresentamos as conclusdes gerais obtidas ao longo do trabalho,
bem como as principais contribuicdes e finalmente as propostas para trabalhos futuros.

8.1 OBSERVACOES GERAIS

Inicialmente, propomos a comparacao entre as solugbes numéricas pelos
MDF e MVF com diferentes esquemas de aproximag¢des numéricas para o problema
de aeracao da massa de graos dado pelo modelo de Thorpe. Tais esquemas de
aproximacao sao: UDS-CN, UDS-Explicito e UDS-Implicito (métodos de primeira ordem)
e CDS-CN e LS (métodos de segunda ordem). No caso dos métodos de segunda
ordem, aplicamos a viscosidade artificial para evitar oscilacées. Usando a variavel de
interesse do tipo da Fig. 11 e razao espaco-tempo r = 2, foram efetuadas andlises do
erro de discretizagdo (E,) para diferentes malhas (") utilizando a solugao fabricada.
Neste caso, o MVF destacou-se por apresentar o menor erro se comparado com o
MDF (método comumente usado na literatura para este tipo de problema). Portanto,
decidimos utilizar tal método na andlises posteriores.

Dando sequéncia, fizemos um estudo das ordens efetiva (pr) do erro de
discretizacao para o MVF, para as aproximac¢des abordadas, com diferentes razées
espaco-tempo (r = 2, 4, 8, 16, 32 e 64). Mostramos que, para um coeficiente de
viscosidade artificial ()\) fixo, pr tende a ordem assintética (p;) nas aproximacgoes de
segunda ordem (CDS-CN e LS), somente para razdes espaco-tempo elevadas, por
exemplo, 7 = 64.

Assim, para obter uma convergéncia adequada de pg para p;, = 2, indepen-
dente de 7, foi estabelecida uma relagcédo para a variacao A, onde a razao dos erros
entre as malhas fina e grossa é levada em consideracéo.

Posteriormente, analisamos a influéncia da razao espaco-tempo no modelo.
Para isso, efetuamos verificacdes através do decaimento da norma do erro e constata-
mos que 7 = 2 é a melhor razao espaco-tempo. Verificamos também que os métodos
de segunda ordem apresentaram decaimento do erro mais rapido do que os de pri-
meira ordem, conforme esperado. Devemos frisar que o método LS destaca-se entre
os métodos de segunda ordem, enquanto que o método UDS-Explicito entre os de
primeira ordem.

No passo seguinte, foram efetuadas analises das ordens de complexidade de
todos os métodos, usando para isto, o efeito do nimero de incégnitas (N) sobre o
tempo de CPU (tcpy), para diferentes razdes espago-tempo. O método LS apresentou
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melhor tempo de CPU que os demais e foi seguido pelo UDS-Explicito.

Na sequéncia, aplicamos MER para obtermos uma reducao dos erros de
discretizacdo em todos os métodos, exceto CDS-CN por apresentar problemas de
convergéncia em malhas refinadas. Novamente o LS se sobressaiu entre os métodos.
Efetuamos a anélise da MER para diferentes razdes espaco-tempo e mais uma vez o
T = 2 apresentou os melhores resultados.

Finalmente, efetuando o teste de efetividade para os diversos métodos estuda-
dos, verificamos que o estimador U, nao € acurado nem confiavel, independente do
método de discretizacao e razdes espaco-tempo utilizadas. Com relagéo aos estimado-
res Upm, Upme, Uy € Uy~ para baixas razdes espaco-tempo, o método UDS-Explicito ndo
teve nenhum estimador que fosse acurado e confiavel simultaneamente exceto o Ua
que é confiavel mas nao acurado. Entretanto, os métodos LS, UDS-CN e UDS-Implicito
tiveram resultados variando de acordo com o estimador.

Ainda, para baixas abnisotropias o0 método de segunda ordem LS para os
estimadores U,,, e Uy~ s80 confiaveis e ndo acurados, U,,. € confiavel e pouco
acurado e Uy € acurado mas ndo confiavel. Os métodos de primeira ordem UDS-CN e
UDS-Implicito os estimadores U,,,, e Uy- S&0 acurados e ndo confiaveis, U,,,. Ndo é
confidvel e nem acurado e Uy € acurado e confiavel.

Para altas razdes espaco-tempo, todos os métodos tiveram estimadores néao
confiaveis, exceto para o estimador Ux que € confiavel mas ndo acurado. Portanto, na
busca por estimadores acurados e confidveis para tais razdes espaco-tempo, podemos
usar qualquer um dos métodos (LS, UDS-CN, UDS-Implicito e UDS-Explicito), mas
levando em cosideragao o estimador mais adequado.

Portanto, 0 modelo do processo de aeracdo da massa de gréaos proposto
por Thorpe (2001b) é descrito muito bem pelo MVF, provando que o LS & a melhor
aproximacgao a serem utilizada com e sem a aplicdo da MER. O método também foi
eficiente em relacédo a razao espaco-tempo, pois em diversas simulacdes, a menor
razdes espaco-tempo (7 = 2) obteve melhores resultados.

8.2 PRINCIPAIS CONTRIBUICOES

» Propomos uma solugdo numérica para o modelo de Thorpe pelo MVF, mostramos
sua concordancia e melhor acuracia se comparada ao MDF (método comumente
utilizado na literatura).

» Propomos uma relagdo na escolha do fator de viscosidade artificial para garantir
a ordem adequada do erro de discretizagdo em métodos de segunda ordem,
mesmo para razoes espaco-tempo baixas.
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8.3

Analisamos a influéncia dos diferentes razdes espaco-tempo nos diferentes méto-
dos numéricos propostos.

Reduzimos radicalmente o erro de discretizagdo com a aplicacdo da Multipla
Extrapolacao de Richardson (MER) para diferentes razdes espago-tempo.

Mostramos o comportamento de diversos estimadores de erros e elegemos o
estimador de Richardson para o modelo proposto.

PROPOSTAS DE TRABALHOS FUTUROS

Analisar os estimadores para outras sequéncias de ordens verdadeiras.

Utilizar outras aproximacdes de segunda ordem, ou ordens mais elevadas, que
possam minimar ou eliminar as oscilagdes.

Desenvolver o MVF utilizando arranjo desencontrado para as variaveis.
Analisar a influéncia da anisotropia fisica.

Usar outras técnicas para discretizar os volumes no contorno, como por exemplo,
a técnica de balancos para os volumes de fronteira.

Utilizar outros tipos de gréaos verificando a ingfluéncia das constantes do gréo no
modelo proposto.

Implementar o modelo matematico em 2D e fazer uma analise de erros similar ao
que foi feita.

Resolver os sistemas gerados pelos problemas 2D com outros solvers e acelera-
dores de convergéncia.

Discretizar o modelo em outros tipos de malhas.
Aplicar paralelismo para otimizar o tempo de simulacao, quando possivel.

Verificar a melhor técnica ou das melhores combinacdes de técnicas para sistemas
em escala comercial.

Efetuar simulacdes de sistemas de controle em que a tomada de decisdes €
baseada na simulagéo do processo.
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A.1 TEMPO DE CPU EM RELAQAO AS RAZOES ESPACO-TEMPO r =2, 4, 8, 16,
32 E 64
TABELA 28 — TEMPO DE CPU EM RELACAO A r PARA O METODO CDS-CN.
N, T=2 T=4 T=28 T=16 T =32 T =064
8 1,562E-02 1,562E-02 4,688E-02 1,406E-01 2,500E-01 5,625E-01
16 3,125E-02 4,688E-02 9,375E-02 5,625E-01 9,375E-01 2,172E+00
32 1,094E-01 2,188E-01 4,062E-01 1,906E+00 3,547E+00 7,453E+00
64 4,062E-01 8,594E-01 1,609E+00 7,359E+00 1,391E+01 2,759E+01
128 1,766E+00 3,453E+00 6,922E+00 2,792E+01 5,397E+01 1,078E+02
256 6,781E+00 1,386E+01 2,767E+01 1,065E+02 2,120E+02 4,245E+02
512 2,745E+01 5,500E+01 1,101E+02 4,386E+02 8,446E+02 1,696E+03
1024 1,111E+02 2,197E+02 4,383E+02 1,688E+03 3,370E+03 -
2048 4,498E+02 7,985E+02 1,755E+03 - - -
4096 1,821E+03 - - - - -
FONTE: O autor (2023).
TABELA 29 — TEMPO DE CPU EM RELACAO A r PARA O METODO LS.
Ny T=2 T=4 T=28 T=16 T =232 T=064
8 7,812E-03 3,125E-02 1,562E-02 4,688E-02 6,250E-02 1,719E-01
16 1,562E-02 3,125E-02 7,812E-02 1,406E-01 2,500E-01 4,688E-01
32 3,125E-02 1,562E-01 2,656E-01 5,156E-01 8,594E-01 1,922E+00
64 2,656E-01 4,219E-01 1,078E+00 1,969E+00 4,266E+00 8,719E+00
128 1,078E+00 1,906E+00 4,250E+00 8,656E+00 1,742E+01 3,544E+01
256 4,469E+00 8,609E+00 1,780E+01 3,492E+01 7,036E+01 1,413E+02
512 1,772E+01 3,450E+01 7,089E+01 1,398E+02 2,806E+02 5,607E+02
1024 7,044E+01 1,408E+02 2,826E+02 5,595E+02 1,119E+03 2,237E+03
2048 2,553E+02 5,630E+02 1,119E+03 2,245E+03 4,487E+03 8,848E+03
4096 1,122E+03 2,217E+03 4,479E+03 8,932E+03 1,785E+04 -
8192 4,433E+03 8,855E+03 1,758E+04 - - -
16384 1,756E+04 - - - - -

FONTE: O autor (2023).
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TABELA 30 — TEMPO DE CPU EM RELACAO A + PARA O METODO UDS-CN.

N, T=2 T=4 T=28 T=16 T =32 T=064
8 1,562E-02 1,562E-02 1,562E-02 1,250E-01 2,188E-01 6,094E-01
16 3,125E-02 6,250E-02 1,094E-01 4,375E-01 9,375E-01 1,938E+00
32 1,094E-01 2,031E-01 4,219E-01 1,797E+00 3,438E+00 7,297E+00
64 4,375E-01 8,750E-01 1,750E+00 6,734E+00 1,356E+01 2,695E+01
128 1,734E+00 3,375E+00 6,797E+00 2,650E+01 5,289E+01 1,062E+02
256 6,750E+00 1,361E+01 2,742E+01 1,054E+02 2,102E+02 4,203E+02
512 2,616E+01 5,462E+01 1,077E+02 4,196E+02 8,380E+02 1,680E+03
1024 1,082E+02 2,171E+02 4,301E+02 1,677E+03 3,353E+03 7,127E+03
2048 4,242E+02 8,668E+02 1,733E+03 7,201E+03 1,480E+04 2,957E+04
4096 1,709E+03 3,467E+03 6,984E+03 2,901E+04 5,974E+04 -
8192 6,883E+03 1,386E+04 2,814E+04 - - -
16384 2,772E+04 - - - - -

FONTE: O autor (2023).

TABELA 31— TEMPO DE CPU EM RELACAO A 7 PARA O METODO UDS-EXPLICITO.

Ny T=2 T=4 T=28 T =16 T =232 T=064
8 1,562E-02 3,125E-02 4,688E-02 3,125E-02 6,250E-02 1,406E-01
16 7,813E-02 1,406E-01 2,656E-01 9,375E-02 2,969E-01 4,844E-01
32 2,187E-01 4,375E-01 9,844E-01 5,312E-01 8,281E-01 2,031E+00
64 9,219E-01 1,703E+00 3,312E+00 2,109E+00 3,984E+00 8,359E+00
128  3,344E+00 6,609E+00 1,319E+01 8,609E+00 1,686E+01 3,391E+01
256 1,308E+01 2,606E+01 5,198E+01 3,406E+01 6,748E+01 1,358E+02
512 5,183E+01 1,034E+02 2,066E+02 1,368E+02 2,692E+02 5,415E+02
1024 2,069E+02 4,131E+02 8,241E+02 5,281E+02 1,076E+03 2,162E+03
2048 8,282E+02 1,648E+03 3,304E+03 2,159E+03 4,340E+03 8,594E+03
4096 3,311E+03 6,573E+03 1,318E+04 8,549E+03 1,716E+04 -
8192 1,324E+04 2,621E+04 5,258E+04 - - -
16384 5,281E+04 - - - - -

FONTE: O autor (2023).
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TABELA 32 - TEMPO DE CPU EM RELACAO A + PARA O METODO UDS-IMPLICITO.

N, T=2 T=4 T=28 T =16 T =32 T=064
8 1,562E-02 4,688E-02 7,812E-02 1,562E-02 6,250E-02 1,562E-01
16 4,688E-02 1,094E-01 2,344E-01 7,812E-02 2,969E-01 5,000E-01
32 2,344E-01 4,062E-01 9,375E-01 5,000E-01 7,969E-01 1,859E+00
64 8,750E-01 1,781E+00 3,391E+00 2,062E+00 3,906E+00 8,516E+00
128  3,422E+00 6,922E+00 1,322E+01 8,672E+00 1,638E+01 3,480E+01
256 1,316E+01 2,634E+01 5,227E+01 3,480E+01 6,850E+01 1,381E+02
512 5,223E+01 1,045E+02 2,082E+02 1,384E+02 2,739E+02 5,512E+02
1024 2,087E+02 4,165E+02 8,335E+02 5,515E+02 1,064E+03 2,199E+03
2048 8,345E+02 1,664E+03 3,335E+03 2,186E+03 4,400E+03 8,786E+03
4096 3,345E+03 6,649E+03 1,334E+04 8,630E+03 1,743E+04 -
8192 1,341E+04 2,656E+04 5,336E+04 - - -
16384 5,374E+04 - - - - -

FONTE: O autor (2023).
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B.{ COMPARAGCAO ENTRE MER E A ESTIMATIVA DE RICHARDSON U, PARA AS
RAZOES ESPACO-TEMPO 7 = 4, 8, 16 E 32 COM OS DIVERSOS METODOS

FIGURA 64 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 4 COM LS.
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FONTE: O autor (2023).

FIGURA 65— COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 4 COM UDS-CN.
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FONTE: O autor (2023).
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FIGURA 66 — COMPARAGCAO ENTRE MER E A ESTIMATIVA U,,, PARA r = 4 COM UDS-
EXPLICITO.
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FONTE: O autor (2023).

FIGURA 67 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,, PARA 7 = 4 COM UDS-

IMPLICITO.
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FIGURA 68 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 8 COM LS.
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FONTE: O autor (2023).

FIGURA 69 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,,, PARA 7 = 8§ COM UDS-CN.
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FIGURA 70 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,, PARA r = 8 COM UDS-
EXPLICITO.
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FONTE: O autor (2023).

FIGURA 71 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,, PARA 7 = 8 COM UDS-

IMPLICITO.
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FIGURA 72 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,, PARA 7 = 16 COM LS.
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FIGURA 73 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 16 COM UDS-
CN.
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FIGURA 74 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 16 COM UDS-

EXPLICITO.
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FONTE: O autor (2023).

FIGURA 75— COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 16 COM UDS-

IMPLICITO.
_____ Y
T A==
-1 —imm— T T
10 p— — o
© =z
> ol
S 1073 =
© el
£ peg
E . y
G 10 g =
] D
b =7
© 10 >
i &
-4- Ep-UDS-Implicito
1079 Em-UDS-Implicito
-63- Upm-UDS-Implicito
103

h
FONTE: O autor (2023).



Apéndice B 149

FIGURA 76 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 32 COM LS.
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FIGURA 77 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 32 COM UDS-
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FIGURA 78 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 32 COM UDS-

EXPLICITO.
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FONTE: O autor (2023).

FIGURA 79 — COMPARAGAO ENTRE MER E A ESTIMATIVA U,,,, PARA 7 = 32 COM UDS-

IMPLICITO.
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ANEXO A -

A.1 DETALHES DO MODELO MATEMATICO

Neste capitulo, € apresentado com detalhes o modelo matematico desenvolvido
por Thorpe (2001a), utilizando a descricdo apresentada por Kwiatkowski Jr. (2011).

O modelo considera as relagdes psicrométricas nas equacdes de balanco
de massa e energia. Assim, considerando um volume da camada de gréos, a lei de
conservacao da massa de graos implica que nao ha criacdo nem destruicdo da massa
neste volume de controle. Sendo que a taxa na qual o ar seco entra na massa de
graos esta sendo expresso por p,u,, onde o ultimo termo é a velocidade do ar, e
considerando um deslocamento Ay, apos este deslocamento a densidade do ar e a
velocidade mudam respectivamente para p, + %Ay € U + %L;Ay.

Sendo a taxa de massa acumulada no volume da massa de graos igual a taxa
de massa que entra neste volume menos a taxa que sai, e considerando ¢ a porosidade,
o volume de ar no dominio (dado por ¢.1.Ay) e a taxa de mudanca de densidade do ar

no dominio (dada por 85;), temos:

8pa aua 6pa
= ooty — |, + 2 i : A.1
€ DY = Palla (u + oy Ay) (p + o Ay) (A.1)

onde: u, - velocidade do ar seco (ms™'), p, - massa especifica do ar intergranular
(kgm™3), ¢ - porosidade da massa de graos (decimal), ¢ - tempo (s) e Ay - altura da
camada (m).

Efetuando as operacdes elementares na Eq. (A.1) e fazendo Ay tender a zero,
obtemos assim a equacgao de conservagao da massa de ar seco fluindo em um meio
poroso unidimensional, dada por

Opa a<paua)
ot T oy

= 0. (A.2)

Considerando a porosidade (¢) da massa de graos e a densidade dos graos
(p,) constantes, o balan¢o da massa de conservagao de massa de agua (a umidade
acumulada na massa de graos) € dada por p,(1 — 5)%—({. O balanco de massa de
umidade ocorre de forma analoga ao balanc¢o do ar seco, portanto,

o _
ot

Opy Ip,
€ BN + Uy, oy

ou
0,2+ o1 =€) 5 =0 (A3

onde: u, - velocidade de Darcy do vapor da agua (ms—!), p,, - densidade do vapor da
umidade do ar intersticial (kgm=3) e p, - densidade dos gréos, (kgm™3).
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Sempre que a primeira lei da termodinamica € aplicada a processos que
envolvem fluxo, mudancas na energia potencial e cinética do ar podem, frequentemente,
ser ignoradas. Considerando um sistema fechado como a aeracgéo, e dado que nenhum
trabalho é realizado pelo sistema, o balanco de energia se reduz ao balanco de
entalpia (THORPE, 2001a), pois a primeira lei da termodinamica diz que a energia total
transferida para um sistema € igual a variagdo da sua energia interna, isto é:

Energia interna = calor + trabalho + radiacao.

Quando esta variacao forma um sistema fechado como da aeracao da massa
de graos onde depende unicamente de dois estados o inicial e o final esta variacao é
dada por:

Energia interna = calor - trabalho.

A quantidade de radiacao é nula pois, em sistema fechado, ndo se verificam
absorcoes nem emissdes de radiacao. A energia interna é definida como a soma das
energias cinéticas e de interacao de seus constituintes. Este principio enuncia, entao, a
conservacao de energia.

Logo, o balango de entalpia € expresso por:

Opaha dpoh OH T
Pollo Ny + e P22 Ny 4 (1 — €)po g Ay = (pauaha + Poiphy — keffa_y) +

ot ot

Opatiaha dp,u,hy or o0 (9T
— A LNy —kof | — + =— [ =— Ay.
(pauaha + y Y+ p¢u¢hg + oy y—k If ( oy + oy (ay ) )) Y

(A.4)
Aplicando a regra do produto da diferenciagdo na Eq. (A.4) temos,
OH a(hapa> a<h19p$0) a(paua)
1-— a, a
(A.5)
Ohy, a(P U ) Ohy 0*T
e h pe v _
—I—paua ay + hy ay +p¢u¢ (93/ k‘eff 8y2’

onde: u, - velocidade de Darcy do ar seco (ms™1), u,, - velocidade de Darcy do vapor da
agua (ms—'), p, - densidade do ar seco (kgm™?*), p,, - densidade do vapor da umidade
do ar intersticial (kg m=3), p, - densidade dos gréos (kgm=3), h, - entalpia especifica do
ar seco (Jkg™'), hy - entalpia especifica da umidade (Jkg~'), H - entalpia especifica
dos gréos umidos (Jkg~'), T - temperatura dos gréos (°C), k. - condutividade térmica
da massa de grdos (Wm~'s™'), e - porosidade da massa de gréos (decimal), ¢ - tempo
(s) e Ay - altura da camada (m).
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Multiplicando a entalpia do ar seco (h,) pela Eq. (A.2) do balan¢o da massa de
ar seco, e fazendo o produto entre a Eqg. (A.3) do balanco de massa da umidade pela
entalpia da umidade (hy), temos, respectivamente as Egs. (A.6) e (A.7):

pa a(paua)

eha 5 T hq oy 0 (A.6)
© dp Jp, duy, ou
ehﬁnghﬁ "By + hypy n —hypo(1 —e)g. (A.7)
Substituindo as Egs. (A.6) e (A.7) na Eq. (A.5) de balanco de entalpia, obtere-
mos:

oH Ohq Ohy Ohy, Ohy ou O*T
pa(1_€>a+€paﬁ+5pwﬁ+pa a ay A T PpUe—— a pahﬁ(l 5) ot - keffa_yz- (A8)

Segundo Thorpe (2001a), a entalpia especifica dos graos umidos, é dada por
H=h+c,(T-T°)+U|hy+cew(T—-T°|+ Hy, (A.9)

onde: H - entalpia especifica dos grdos Umidos (Jkg~'), Hy, - calor de umedecimento
dos graos (Jkg™!), U - teor de agua da massa de gréos (b.s.), T - temperatura dos
gréos °C'; T° - temperatura de referéncia (0°C), h2 - entalpia especifica dos gréos na
temperatura de referéncia (Jkg™!), hS - entalpia especifica da umidade na temperatura
de referéncia, (Jkg™'), ¢, - calor especifico dos graos (Jkg~1°C) e ¢y - calor especifico
do vapor da agua (Jkg~1°C).

Diferenciando a Eq. (A.9) obtemos o calor de umedecimento dos graos e logo
apos, aplicando as propriedades de integracao no intervalo [0,U] e substituindo na Eq.

(A.9), temos:
0H

U
sendo: hyy - entalpia especifica do vapor de agua (Jkg—°C).

= B9+ ey (T — T°) + hoy, (A.10)

Diferenciando a Eq. (A.9) em relacdo a temperatura, obtemos:

oOH OHy
8T CU+CwU+a—T (A.11)

Utilizando as Egs. (A.10) e (A.11)) em

OH OHOU OHOIT

ot " ovor Tar ot (A-12)

temos,

oH

e . oU OHy \ T
E = (hﬂ—FCW(T T )+hw> ot + <C0+CwU+ oT ) 815 (A13)
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Em substancias como o ar, que ndao ha mudanca de fase indiferente da tempe-
ratura em condigbes atmosféricas normais, a entalpia especifica por unidade de massa
é,

ha = B + co(T — T°), (A.14)
onde: h, - entalpia especifica do ar (Jkg~!), T - temperatura dos graos (°C), T° -
temperatura de referéncia (0°C), h° - entalpia especifica do ar na temperatura de
referéncia (Jkg~') e ¢, - calor especifico do ar (Jkg1)°C.

Assumindo que o calor especifico do ar e do vapor de agua sédo constantes,
diferenciando a Eq. (A.14), obtemos,

Oh, oT
o= or (A19)
® oh or
=, —. A.1
o oy (A.16)

A equacéao que define a entalpia especifica do vapor de agua, € dada por
hw = hy + ew (T — Ty,) + he, (A.17)

onde: hyy - entalpia especifica do vapor da dgua (Jkg 1), T - temperatura dos graos
(°C), Ty, - temperatura de referéncia (0°C') com relagcdo ao vapor de agua nos gréos
(°C), hy, - entalpia especifica da d&gua na temperatura de referéncia 75, (Jkg™*), cw -
calor especifico da agua, (Jkg~'°C) e h, - entalpia especifica de vaporizagédo da agua
(Jkg™).

Aplicando a regra da cadeia da derivacao na Eq. (A.17), mas para isto dei-

xaremos claro que a entalpia especifica de vaporizagdo da dgua € uma funcédo que
depende somente da temperatura, logo podemos aplicar tal regra. Assim, teremos

Ohy 8T Oh, 0T

ot Yo Tar ot (A-18)

Ohy 0T 4 O Oh, 0T
oy Way T T By
Substituindo as Egs. (A.13), (A.15), (A.16), (A.18) e (A.19) na Eq. (A.8), temos

8HW> ar

(A.19)

pa(l - 8)

ot or | ot

ou
(hg; +ew(T —=T°) + hw> — + (c(, +ewlU +

T or onor\ o oor o or onor),
SPaCagy TEPO\ W T r | T PeteCaTyy TP W T BT By

oU 0*T
—pghg(l — E) 6t = keffa—yQ. (AZO)
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Assim reescrevendo a Eq. (A.8) do balanco de entalpia, teremos a expressao

. ] oU OHy 10T
pg<1—€)[hﬁ+CW(T—T)+hw]§+pg(1—€) CU+CWU+8—Ti|E+
Oh,1 0T Oh,1 0T
+e [paCa + PoCw + :Ocpa_Ti| E + [PaUaCa + PpUpCy + pgougoa_T] a_y+ (A21)
. ) oU o°T
—,00(1 — 8) |:h19 + Cw(T - T ) + h¢:| E = keffa_yQ

Considerando as velocidades do vapor da agua (u,,) e do ar seco (u,) iguais.
Ja a umidade do ar (R) nos poros intergranulares, pode ser aproximada por

rR="e (A.22)
Pa

Reescrevendo a Eq. (A.21) por meio das Egs. (A.6) e (A.7) e substituindo u,p,
por f,, obteremos

OHy 10T Ohy,\1 0T
pol1 =)o +ewll + S| T+ e fea+ R{ew + 52 ) | 5+
(A.23)
oUu OHw 10T 0*T
~po(1 = s + o el + St | G = gy

A fim de considerarmos a deteriorizacao dos graos, incluimos o termo fonte

(1= <)o, 2 (@ — 06h,), (A.24

em que, ¢ - porosidade da massa de gréaos (decimal), p, - densidade dos graos (kgm3),
dm . derivada da perda de materia seca em relagdo ao tempo (kgs~!), @, - calor de
oxidagao dos gréos (Js 'm~?) e h, - entalpia especifica de vaporizagédo da agua
(Jkg™H).

Expressando em termos de f, a Eq. (A.3), utilizando a Eq. (A.22) e logo apds
usando a Eq. (A.2), teremos

(1—¢e)po—+fa 0. (A.25)

oU OR _
ot oy

Levando em conta a deteriorizacdo dos graos, obtemos o termo fonte,

d
é?@ﬁ+U) (A.26)
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Logo, a equacao de balanco de massa e energia, é dada por

{pg(l —¢) [ca +ewU + ai] + £pa [ca + R(CW + %)} }8_T =

aT ar /1) ot
oU Oh,\10T
— o1 = s = o [CU+R(CW+8—T>}8—y+ (A.27)
o*T dm
_'_keffa_yQ + (1 - 8)/00%(@7" - 076h<,0)
© aU L
(1= e)pogy = fa + =06+ 0). (A.28)

Segundo Muir e Jayas (2003), a condutividade térmica (k.;;) pode ser des-
considerada, pois a massa de graos apresenta baixa condutividade térmica tendo
maior influéncia nos graos proximos a parede do silo. Como o modelo apresentado
€ unidimensional, o termo keff%g nao apresentou grande importancia durante as
simulagoes.

De acordo com Navarro e Noyes (2001) o termo 8HW pode resultar em valores
incoerentes, pois ele depende de valores empiricos. Os autores negligenciarao este
termo durante o processo de aeracado sem afetar os dados.
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