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RESUMO

Neste trabalho estudamos métodos de resolução eficientes para problemas multifásicos
em meios porosos rígidos uni (1D) e bi-dimensional (2D), no contexto da teoria de poro-
elasticidade de Biot. Existem diferentes formulações quando se trabalha em problemas
multifásicos, dependendo se a incógnita escolhida é a saturação ou a pressão. As equações
que modelam esses problemas podem ser resolvidas de uma maneira monolítica, ou seja,
resolver simultaneamente todo o sistema acoplado. Neste trabalho, a fim de fazer simu-
lações de grande escala, propomos desenvolver métodos de resolução rápidos e robustos
para resolver problemas 1D e 2D com solução analítica e um problema 2D mais realístico,
sem solução analítica, em um meio poroso heterogêneo com permeabilidades randômicas,
a partir do qual os poros são preenchidos com dois fluídos imiscíveis e incompressíveis
que correspondem a um sistema de equações diferenciais parciais acopladas e fortemente
não linear. Para isso, utilizamos a formulação matemática mista pressão-saturação, Mé-
todo de Volumes Finitos e Euler ímplícito para as discretizações espacial e temporal,
respectivamente. Os métodos de Picard modificado e L-esquema foram usados para a
linearização do sistema. Com o sistema linear gerado, utilizamos Gauss-Seidel acoplado
para resolvê-lo. Com o intuito de acelerar a convergência, utilizamos o método multigrid.
Com a combinação das técnicas aplicadas nos problemas em meios porosos rígidos foi
possível gerar um algoritmo eficiente e robusto até mesmo em um meio poroso randômico
heterogêneo, convergindo nas primeiras iterações.
Palavras-chave: Problema acoplado. Métodos de linearização. Multigrid. Método de volumes
finitos. Euler implícito.



ABSTRACT

In this work, we study efficient resolution methods of solving multiphase problems in one
(1D) and two-dimensional (2D) in rigid porous media, in the context of Biot’s poroelasticity
theory. There are different formulations when working on multiphase problems, depending
on whether the unknown chosen is saturation or pressure. The poroelasticity equations
can be solved in a monolithic way, that is, simultaneously solve the whole coupled system.
In this work, in order to do large scale simulations, we propose to develop fast and robust
resolution methods to solve 1D and 2D problems, with analytical solution and a more
realistic 2D problem, without analytical solution, in a heterogeneous porous medium
with random permeabilities, from of which the pores are filled with two immscible and
incompressible fluid that correspond to coupled partial differential equations system
and strongly nonlinear. For this, we use the mixed mathematical formulation, pressure-
saturation formulation, Finite Volume Method, and implicit Euler for the discretization of
the equation in space and in time, respectively. Modified Picard and L-scheme methods
were used for the linearization of the system. The systems of linear equations generated
were solved by the Gauss-Seidel solver in a coupled way. In order to accelerate convergence,
we use the multigrid method. With the combination of the techniques applied to problems
in rigid porous media, it was possible to generate an efficient and robust algorithm even in
heterogeneous random porous media, converging in the first iterations.
Keywords: Coupled problem. Linearization methods. Multigrid. Finite Volume Method.
Implicit Euler.
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pE Ordem efetiva

pL Ordem assintótica

pU Ordem aparente

q Velocidade do escoamento [m/s]

r Vetor dos resíduos

|| · ||∞ Norma do máximo (ou norma-infinito)

re Razão de engrossamento

S Saturação

S̄ Saturação efetiva

Sαr Saturação residual da fase α

SG Matriz iteração de Gauss-Seidel

TOLlin Tolerância do método de linearização

TOLMG Tolerância do método multigrid

tCPU Tempo de CPU

t0 Tempo inicial



tf Tempo final

U Matriz triangular superior

u Vetor das incógnitas

v Aproximação da variável de interesse u

wj Modos de Fourier



Letras Gregas

∆ Operador Laplaciano

▽ Operador gradiente

λα Mobilidade do fluido na fase α [(Pa s)−1]

λ Parâmetro de Brooks-Corey

µ Viscosidade do fluido [Pa s]

ν0 Número de suavizações na malha mais grossa

ν1 Número de pré-suavizações

ν2 Número de pós-suavizações

Ω Domínio

Ωh Malha fina

Ω2h Malha grossa com engrossamento padrão

ρ Densidade do fluido [Kg/m3]

ϕ Porosidade do meio

ρM Fator de convergência médio do multigrid

τ Tamanho do passo de tempo

ϱ Ciclo do multigrid

ζ Função indicador de espaço vazio

subscritos

α Fase do fluido

E Volume localizado a leste do volume de controle central

i Posição do volume de controle na direção y

j Posição do volume de controle na direção x

h Malha fina

2h Malha grossa

N Volume localizado ao norte do volume de controle central



n Fase não-úmida do fluido

P Volume de controle central

S Volume localizado ao sul do volume de controle central

W Volume localizado ao oeste do volume de controle central

w Fase úmida do fluido

Sobrescritos

n Iteração do passo de tempo

m Iteração do método de linearização
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1 INTRODUÇÃO

Numerosas aplicações importantes em Geomecânica, Engenharia de Petróleo,
Hidrogeologia, Biomedicina, etc., são modeladas por meio de equações que envolvem
problemas multifásicos. Para o estudo desses problemas são gerados diferentes modelos
matemáticos que os representem, dependendo da pressão, saturação e permeabilidade
relativa, sendo posteriormente resolvidos por meio de simulações numéricas. Independente
da maneira que esses modelos são formulados, são gerados sistemas de equações diferenciais
parciais (EDPs) acoplados e altamente não lineares. Portanto, um dos desafios é encontrar
métodos robustos e eficientes para a solução numérica desses problemas.

Em todos os problemas estudados aqui, foram analisadas algumas técnicas já
conhecidas em uma formulação muito utilizada, a formulação mista pressão-saturação,
porém após linearização, o sistema é reescrito em um formato não tão comum a fim de
se obter um sistema com as pressões como variáveis principais. Depois disso, utilizamos
um método para acelerar a convergência, obtendo bons resultados com baixo custo
computacional.

A equação de Richard foi usada para formular tais fenômenos. As duas equações
do sistema (uma para cada fase) são acopladas devido a dependência da permeabilidade
relativa, pressão e a saturação de ambas as fases. Para resolver numericamente as equações
de escoamento acopladas, é necessário primeiro discretiza-lás no tempo e espaço. Para
isso, existem inúmeras técnicas para a discretização de EDPs. Em relação ao tempo, as
mais comuns são os métodos de Euler e Crank-Nickson (BURDEN; FAIRES; BURDEN,
2015). Neste trabalho, nos concentramos apenas na primeira abordagem, suficiente para
os nossos objetivos.

Antes de realizar a discretização no espaço, tratamos de linearizar o sistema de
equações, para tal processo, podemos utilizar alguns métodos, como por exemplo, método
de Newton (ILLIANO; POP; RADU, 2020), Picard, Picard modificado (CELIA; BINNING,
1992) ou L-esquema (POP; RADU; KNABNER, 2004; KARPINSKI; POP; RADU, 2017).
Neste trabalho utilizamos e comparamos as duas últimas técnicas, pois além dos métodos
de Picard modificado e L-esquema serem de fácil implementação, um dos focos deste
trabalho foi utilizar o método multigrid que tem bom comportamento em sistema lineares
com equações elípticas, que são resultante dessas linearizações, proporcionando assim um
melhor desempenho ao multigrid.

Com o sistema linearizado, realizamos a discretização no espaço, sendo que os
métodos mais comuns são: Método de Elementos Finitos (MEF) (HUGHES, 2000), Método
de Diferenças Finitas (MDF) (FERZIGER; PERIĆ; STREET, 2002) e Método de Volumes
Finitos (MVF) (MALISKA, 2004; VERSTEEG; MALALASEKERA, 2007). Usamos o
MVF para a discretização no espaço. Algumas vantagens desse método é que ele pode
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ser aplicado em qualquer tipo de malha, em geometrias complexas e diferentes sistemas
coordenados (FERZIGER; PERIĆ; STREET, 2002), além do esquema resultante conservar
integralmente as propriedades em questão através de qualquer grupo de volumes de controle
e consequentemente, todo o domínio (PATANKAR, 2018). Portanto, mesmo em uma malha
grosseira, a solução apresenta bons resultados.

Realizada a discretização espacial, obtemos uma sequência de sistemas de equações
algébricas lineares, geralmente do tipo

Au = f, (1.1)

onde, A é a matriz dos coeficientes, u é o vetor das incógnitas e f é o vetor do termo fonte,
ou dos termos independentes. O sistema linear então pode ser resolvido por algum método
de resolução de sistemas. As duas principais classificações desses métodos são: diretos e
iterativos (aqui chamados de solvers). Devido a estes sistemas, em geral serem esparsos e
de grande porte, neste trabalho utilizamos os métodos iterativos, mais especificamente o
método de Gauss-Seidel de forma acoplada (GASPAR et al., 2004).

Ao iniciar o processo de solução do sistema linear, o solver tem uma taxa de
convergência relativamente alta, fazendo com que o erro diminua rapidamente, porém, com
o passar das iterações essa taxa diminui e o erro tende a cair muito lentamente, ou, em
alguns casos, até estabilizar (WESSELING, 2004; BRIGGS; HENSON; MCCORMICK,
2000; TROTTENBERG; OOSTERLEE; SCHÜLLER, 2001). Esse fraco desempenho se dá
devido ao fato que, quando o erro é decomposto em modos de Fourier, no início do processo
iterativo as componentes oscilatórias do erro (erros de alta frequência) são reduzidas
rapidamente pelos solvers e com o passar do processo iterativo, permanecem apenas as
componentes suaves do erro (erros de baixa frequência) (TROTTENBERG; OOSTERLEE;
SCHÜLLER, 2001). Tais erros de alta frequência podem ser gerados por diferentes motivos,
devido a: estimativa inicial, erro de discretização, erro de arredondamento, etc. Neste
trabalho, os métodos iterativos (solvers) que possuem a propriedade de reduzir rapidamente
os erros de alta frequência, serão tratados como suavizadores (smoothers).

Para acelerar a convergência dos suavizadores de forma eficiente, utilizamos
o método multigrid. Sendo este desenvolvido para superar as dificuldades dos métodos
iterativos, ou seja, reduzem rapidamente os erros de alta frequência nas primeiras iterações e
posteriormente caem lentamente, chegando as vezes até estabilizar; e tratar adequadamente
as componentes suaves do erro. Tal método consiste em transferir as componentes de
erro de modos suaves de uma determinada malha para uma malha mais grossa (menor
quantidade de volumes), onde os mesmos tornam-se mais oscilatórios (TROTTENBERG;
OOSTERLEE; SCHÜLLER, 2001) e assim, o método iterativo pode ser aplicado. Portanto,
o método multigrid é composto por um conjunto de diferentes malhas, as quais são
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percorridas ao longo do processo iterativo, reduzindo eficientemente todas as componentes
do erro.

A grande oportunidade de pesquisa encontrada neste trabalho foi a solução de
problemas de escoamento de duas fases, com a combinação do método de linearização de
Picard Modificado e um algoritmo do multigrid, que converge mesmo em meios aleatórios
heterogêneos.

1.1 Objetivos

O objetivo geral deste trabalho é desenvolver métodos de resolução rápida e robusta
para um problema acoplado bifásico com coeficientes realísticos, permeabilidade relativa
randômica e em meio poroso rígido heterogêneo, considerando um domínio retangular.

Os objetivos específicos são:

• Construir um sistema de equações diferenciais na formulação mista saturação-pressão,
que logo após a linearização, gere um sistema com as variáveis principais sendo as
pressões;

• Discretizar no tempo e espaço pelos métodos de Euler implícito e Volumes Finitos,
respectivamente, com malhas uniformes e colocalizadas;

• Analisar a eficiência dos métodos de linearizações: Picard modificado e L-esquema;

• Acelerar a convergência de suavizadores com o uso do método multigrid.

1.2 Revisão Bibliográfica

Nesta seção é detalhada uma revisão bibliográfica de forma geral sobre os problemas
multifásicos, métodos de linearização e sobre o multigrid.

1.2.1 Problemas multifásicos em meios porosos

O estudo de simulações numéricas está cada vez mais presente em pesquisas de
alto impacto no mundo, pois com modelos matemáticos condizentes com problemas reais, é
possível prever e observar tanto fenômenos, quanto situações. Os problemas de escoamento
multifásicos e transporte em meios porosos representam uma abrangência de aplicações em
diversos ramos das Ciências e Engenharias. As equações governantes desses problemas são
altamente não lineares, o que geralmente se torna um obstáculo para a simulação numérica.
Uma forma de contornar esses obstáculos, quando possível, é fazer algumas simplificações
no modelo. Por exemplo, no caso do escoamento bifásico, água e ar simultaneamente,
em um solo insaturado, podemos supor que a fase do ar permanece constante, ou ainda,
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igual à pressão atmosférica (CELIA; BOULOUTAS; ZARBA, 1990), assim, o sistema é
reduzido à fase aquosa apenas. Esta abordagem é chamada de aproximação de Richard
(RICHARD, 1931). Porém, em alguns casos essa abordagem não pode ser aplicada, pois
a fase do ar interfere significativamente no movimento da fase de água, de modo que é
necessário utilizar o modelo de duas fases.

Considerando um modelo de duas ou mais fases, o sistema de equações gerado é
fortemente não linear, o que fez com que alguns trabalhos manipulassem as expressões que
interferem nesse fato. Li e Horne (2006) compararam alguns métodos, como por exemplo,
método de Purcell e Brooks-Corey, para calcular a permeabilidade relativa da pressão
capilar em um meio poroso úmido consolidado. Pois, a escolha desses modelos devem ser
representativa ao problema em estudo, para obter resultados satisfatórios.

Para uma previsão precisa das permeabilidades relativas, Adibifard et al. (2020)
usaram dois algoritmos diferentes, GA (Genetic Algorithm) e Iter EnKF (Iterative Ensemble
Kalman Filter), para estimar o conjunto ótimo de curvas de permeabilidade relativa de
Corey, e concluíram que a diferença entre as soluções ótimas de ambos os algoritmos foram
insignificantes. Em um estudo recente de Dana, Jammoul e Wheeler (2022), os autores
analisaram o desempenho do algoritmo fixed stress split para um problema de escoamento
de duas fases imiscíveis.

Esses problemas podem ser modelados por diferentes formulações matemáticas. As
propriedades de cada formulação dependem da especificidade do problema. Contudo, em
algumas formulações são usadas algumas novas variáveis (artificiais) que podem facilitar a
resolução do sistema (BASTIAN, 1999). Formulação saturação-pressão da fase (BASTIAN;
HELMIG, 1999), formulação saturação-pressão global, formulação mista e formulação
pressão-pressão (ATAIE-ASHTIANI; RAEESI-ARDEKANI, 2010), são exemplos de for-
mulações possíveis de serem aplicadas em problemas de duas fases, sendo as duas primeiras
as mais comuns na literatura. Para uma introdução das diferentes formulações para as
equações de escoamento multifásico ver também Chavent e Jaffré (1986), Helmig et al.
(1997), Bastian (1999), Peaceman (2000).

1.2.2 Métodos de linearização

Para obter a solução numérica dos modelos de escoamento bifásicos devemos
escolher uma maneira de resolver o sistema acoplado de equações não linear. Um dos
métodos mais comuns para resolver esses modelos é o método IMPES (Implicit Pressure
Explicit Saturation), implícito na pressão e explícito na saturação, apesar de seus problemas
com instabilidade e necessidade de restrições no tamanho do passo de tempo. Versões
melhoradas do esquema IMPES foram apresentadas em Chen, Huan e Ma (2006), Lu
e Wheeler (2009), Kou e Sun (2010), Kvashchuk e Radu (2017), Chen et al. (2019).
As principais alternativas ao IMPES são os esquemas totalmente implícito (FREPOLI;
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MAHAFFY; OHKAWA, 2003; LACROIX et al., 2003; GANIS et al., 2014; RADU et al.,
2015; KARPINSKI; POP; RADU, 2017) que são mais confiáveis no que diz respeito à
robustez, devido ao tratamento totalmente implícito e totalmente acoplado das equações
governantes. Esses métodos evitam quaisquer restrições no passo de tempo, mas precisam
de um algoritmo eficiente para resolver o sistema não linear resultante. Uma forma de
resolver esse tipo de sistema é utilizar algumas técnicas de linearização, transformando-as
em sequência de equações lineares e assim aplicar os métodos tradicionais de resolução de
sistemas lineares.

O método de Newton (KUEPER; FRIND, 1991; KNABNER; ANGERMANN,
2003; BURDEN; FAIRES; BURDEN, 2015; GOLUB; ORTEGA, 2014) para resolução de
sistemas algébricos não lineares é considerado muito preciso, com convergência quadrática,
porém caro computacionalmente, devido ao alto custo com o cálculo das derivadas em
cada iteração.

O L-esquema (RADU et al., 2015; KARPINSKI; POP; RADU, 2017) é outro
método de linearização extremamente comum devido à sua simplicidade, pois substitui a
iteração de Newton por uma iteração de ponto fixo. Considerando o escoamento bifásico em
meio poroso com efeitos de capilaridade dinâmica, Karpinski, Pop e Radu (2017) utilizaram
o L-esquema, que não requer etapa de regularização, pois não utiliza cálculos de derivadas
geradas pela linearização como o método de Picard e Newton. Por exemplo, no L-esquema
a derivada da saturação é substituída por um valor constante. Esse procedimento de
linearização foi apresentado por Pop, Radu e Knabner (2004) para resolver problemas não
lineares elípticos. Sua robustez, no entanto, vem ao preço de uma convergência mais lenta
(geralmente convergência linear).

Finalmente, as técnicas de Picard também são amplamente utilizadas. O método
de Picard (GOLUB; ORTEGA, 2014) é mais barato computacionalmente, mas não é
tão preciso devido à aproximação ser feita por uma parte linear e outra não linear. A
linearização baseada na forma mista da equação, que permite a transição das zonas
insaturadas para as saturadas e mantém a conservação da massa, a fim de manter seu
baixo custo computacional (se comparado com Newton) e a tentativa de melhorar sua
precisão, é chamada de método de Picard modificado. Foi introduzido por Celia, primeiro
para a equação de Richard (CELIA; BOULOUTAS; ZARBA, 1990) e depois para o
problema de escoamento bifásico em meios porosos (CELIA; BINNING, 1992).

Uma comparação entre as abordagens de Newton, Picard modificado e L-esquema,
para a linearização do problema de transporte de um surfactant em meio poroso foi
apresentada em Illiano, Pop e Radu (2020), os quais chegaram a conclusão de que, entre
os métodos estudados, o Newton é o único com convergência quadrática, Picard e Newton
geraram matrizes mal condicionada e os solvers baseados no L-esquema foram os mais
robustos, pois produziram sistemas lineares bem condicionadas. Outra comparação de
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métodos de linearização, em particular entre o L-esquema e o método de Picard modificado,
foi realizado por (OLIVEIRA et al., 2020), para um problema de escoamento bifásico
unidimensional em meios porosos rígidos e combinando tais linearizações com o método
multigrid para a solução do sistema de equações resultantes.

1.2.3 Solvers

O desenvolvimento de solvers iterativos eficientes para simulação totalmente
implícita de problemas complexos de escoamento multifásico tem sido amplamente estudado
nas últimas décadas. Uma das abordagens mais populares na comunidade de simulação de
reservatórios é baseada na combinação de métodos de subespaço de Krylov com uma técnica
de pré-condicionamento de Resíduo de Pressão Restrita (Constrained Pressure Residual,
CPR) (WALLIS, 1983; WALLIS; KENDALL; LITTLE, 1985). Sua implementação padrão
(LACROIX; VASSILEVSKI; WHEELER, 2001; SCHEICHL; MASSON; WENDEBOURG,
2003; CAO et al., 2005; STÜBEN et al., 2007; ZHOU; JIANG; TCHELEPI, 2013; GRIES
et al., 2014; LIU; WANG; CHEN, 2016) acopla um pré-condicionador multigrid algébrico
(AMG) para o bloco de pressão geralmente elíptico e uma fatoração incompleta, que é
efetiva para a parte hiperbólica. Além disso, diferentes variantes do pré-condicionamento
da CPR têm sido propostas (CUSINI et al., 2015; WANG et al., 2017; BUI; WANG; OSEI-
KUFFUOR, 2018). No entanto, outras alternativas podem ser encontradas na literatura.
Em Singh, Pencheva e Wheeler (2018), os autores consideram uma construção Jacobiana
aproximada como alternativa ao método convencional de Newton, com a construção
Jacobiana exata, como um solver não linear.

Em Yang et al. (2018), foi proposto um solver altamente paralelo no qual o sistema
não linear resultante que surge a cada passo de tempo é resolvido de forma acoplada
usando um algoritmo do tipo Newton–Krylov–Schwarz. Recentemente, diferentes métodos
baseados na Redução do Complemento de Schur foram apresentados (BUI; ELMAN;
MOULTON, 2017; BÜSING, 2021). Em Nardean, Ferronato e Abushaikha (2021a), os
autores consideram um pré-condicionador de bloco original que explora a estrutura de
blocos da matriz Jacobiana enquanto lida com a natureza não simétrica dos blocos
individuais. Os mesmos autores propõem em Nardean, Ferronato e Abushaikha (2021b)
uma nova técnica de pré-condicionamento (Explicit Decoupling Factor Approximation,
EDFA) baseada na aproximação dos fatores de desacoplamento da matriz do sistema
usando operadores de restrição apropriados para o cálculo do complemento de Schur.

Neste trabalho, nosso foco está na solução iterativa dos sistemas lineares que
surgem em uma discretização de volume finito, centrado na célula, totalmente implícito
de um sistema de escoamento bifásico, com as fases sendo incompressíveis e imiscíveis,
e a matriz não deformável. Algoritmos baseados na iteração de Picard modificado de
(CELIA; BOULOUTAS; ZARBA, 1990) têm sido amplamente empregados como métodos
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de solução iterativa eficientes para a equação de Richard. As vantagens deste método são
a sua facilidade de implementação, uma vez que não requerem o cálculo de Jacobianos,
bem como seus baixos requisitos de armazenamento. Aqui, consideramos uma combinação
da extensão da iteração Picard modificado para problemas de escoamento de duas fases
(CELIA; BINNING, 1992) e um método multigrid centrado em células para a solução do
sistema linear resultante.

No âmbito de resoluções de sistemas de equações lineares, o método multigrid é
uma das técnicas numéricas mais eficientes (BRIGGS; HENSON; MCCORMICK, 2000;
TROTTENBERG; OOSTERLEE; SCHÜLLER, 2001; WESSELING, 2004) para acelerar
a convergência de suas soluções. Como o próprio nome diz, esse método é composto
por diversas malhas com diferentes graus de refino, as quais são percorridas durante um
processo iterativo.

Há registros de que o multigrid começou a ser estudado por Fedorenko (1964)
e Bakhvalov (1966), sendo reconhecido apenas uma década depois, pelos trabalhos de
(BRANDT, 1977), onde apresentou o esquema de correção (Correction Scheme, CS) para
problemas lineares e a razão de engrossamento mais recomendável sendo re = 2 (mais
detalhes na seção 3.1). Nesse trabalho, Brandt (1977) apresentou também uma introdução
ao esquema de aproximação completa (Full Approximation Scheme, FAS), específico para
problemas não lineares. Como neste trabalho utilizamos métodos no intuito de linearizar
nossas equações, então utilizamos somente o esquema de correção CS. Abaixo segue uma
relação de alguns dos trabalhos onde podemos encontrar o uso do método multigrid com o
esquema CS, como por exemplo: Kelkar (1990), Sathyamurthy e Patankar (1994), Craig
(1996), Karki, Sathyamurthy e Patankar (1996), Tannehill, Anderson e Pletcher (1997),
Trottenberg, Oosterlee e Schüller (2001) e Ferziger, Perić e Street (2002).

Dentre os diversos estudos do multigrid, foram Hortmann, Perić e Scheurer (1990)
e Ferziger, Perić e Street (2002) que apresentaram uma análise onde o número de iterações
independem do tamanho da malha para ocorrer convergência na malha mais fina. Além
do método multigrid ter seu grande reconhecimento, decorrente a sua ampla capacidade
de resolver rapidamente grandes sistemas de equações, demonstrando complexidade ótima,
na resolução de muitos problemas, em diferentes áreas (OOSTERLEE; SCHULLER;
TROTTENBERG, 2001).

Em trabalhos mais recentes, também é possível perceber a importância das
aplicações do multigrid. Com o objetivo de acelerar da convergência dos solvers, o multigrid
foi usado para resolver problemas com equações anisotrópicas (OLIVEIRA et al., 2018;
RUTZ; PINTO; GONÇALVES, 2019), equações de poroelasticidade (WIENANDS et al.,
2004; GASPAR; RODRIGO, 2017; LUO et al., 2017; FRANCO et al., 2018), sempre
obtendo ótimos resultados.
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No contexto de problemas de escoamento bifásico em meios porosos, o método
multigrid foi aplicado, por um lado, para a solução da equação da pressão dentro de uma
abordagem desacoplada (IMPES) em Scott (1985) e Dendy Jr (1987). Por outro lado, o
multigrid também foi aplicado à abordagem totalmente acoplada e totalmente implícita
em Brakhagen e Fogwell (1990), Molenaar (1995) e Bastian e Helmig (1999).

A solução de equações não lineares por multigrid é possível com duas abordagens
diferentes: (i) onde uma abordagem de linearização global, geralmente pelo método de
Newton, é realizada e as equações lineares resultantes são resolvidas com multigrid linear
(CS), ou (ii) uma abordagem onde a não linearidade é tratada dentro do multigrid (Full
Approximation Scheme, FAS). Embora seja possível essas duas abordagens diferentes
para a não linearidade, Molenaar (1995) comparou ambas descobrindo que a primeira é
computacionalmente mais eficiente. Aqui, seguimos a primeira abordagem e propomos o
uso do algoritmo multigrid em malhas com arranjo colocalizado para resolver um sistema
de equações lineares obtido após a linearização da formulação mista do problema por meio
do Picard modificado.

É bem conhecido que o desempenho do multigrid depende fortemente da escolha
de seus componentes e, portanto, eles devem ser cuidadosamente escolhidos. O algoritmo
proposto considera Gauss-Seidel como suavizador, um operador de prolongação constante
por partes e a média aritmética como a restrição, e uma técnica de discretização direta para
definir os operadores discretos nas malhas grossas. Veremos que esse algoritmo multigrid
converge bem, mesmo no contexto de campos heterogêneos aleatórios. Um algoritmo
multigrid semelhante foi proposto por Kumar et al. (2020) para resolver a equação de
Richard.

1.3 Organização do texto

Além deste primeiro capítulo introdutório, organizamos este texto em mais 5
capítulos, como segue. No Capítulo 2, apresentamos as propriedades básicas sobre os
problemas de escoamentos multifásicos, o método de Euler implícito para a discretização
temporal e o MVF para a discretização espacial das EDPs, além dos métodos de linearização.
No Capítulo 3, apresentamos uma introdução aos métodos iterativos básicos e o método
multigrid. Os modelos matemáticos são dados no Capítulo 4. O detalhamento dos modelos
numéricos, assim como o processo de discretização das equações e as condições iniciais e de
contorno empregadas, são apresentados no Capítulo 5. No Capítulo 6, são encontrados os
experimentos numéricos, os detalhes computacionais, os resultados obtidos e sua discussão;
enquanto que as conclusões, constam no Capítulo 7.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo realizamos uma fundamentação teórica sobre as propriedades
básicas de problemas de escoamentos multifásicos, o método de Euler implícito para a
discretização temporal e o MDF para a discretização espacial das EDPs, além dos métodos
de linearização.

2.1 Propriedades básicas de escoamentos multifásicos

Nesta seção apresentamos as componentes físicas e matemáticas dos problemas
multifásicos em meios porosos rígidos para os casos uni e bi-dimensional. Todas as informa-
ções foram baseadas nos livros de Bastian (1999), Chen, Huan e Ma (2006) e Nordbotten
e Celia (2011).

O meio poroso é composto por uma parte sólida, chamada de matriz sólida, o
restante do espaço vazio (ou espaço poroso) desse meio pode ser preenchido por um ou
mais fluidos (por exemplo, água, óleo, ar e gás). No modelo multifásico o espaço vazio
do meio é preenchido por dois ou mais fluidos que neste texto, são admitidos imiscíveis
entre si, isto é, não se misturam (por exemplo, água e óleo). A FIGURA 1 mostra um
meio poroso 2D (Bidimensional) completamente preenchido apenas por água (sistema
monofásico, à esquerda) ou preenchido com água e óleo (sistema bifásico, à direita).

FIGURA 1 – ILUSTRAÇÃO DE UM MEIO POROSO PREENCHIDO COM UM OU DOIS
FLUIDOS.

FONTE: Adaptada de Bastian (1999).

O material poroso assume muitas formas e meios. O concreto, material utilizado
na construção civil, possui porosidade relativamente baixa. No entanto, a FIGURA 2a
apresenta um concreto com alta porosidade. Este tipo de concreto é utilizado para
pavimentos onde se deseja permear e armanezar água para reduzir o escoamento superficial
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em caso de tempestade. A FIGURA 2b mostra uma formação rochosa fraturada, causadas
muitas vezes pela mudança do ambiente. Essas formações são altamente permeáveis. A
FIGURA 2c mostra uma espuma metálica, um material leve e muito usado para diversos
fins, como amortecimento de vibrações, isolamento térmico e acústico, além de absorção
de energia de impacto. Já na FIGURA 2d, temos um exemplo de material biológico como
meio poroso, um osso humano com osteoporose.

FIGURA 2 – MATERIAIS POROSOS.

(a) Concreto. (b) Rocha.

(c) Espuma Metálica. (d) Osso com osteoporose.

FONTE: Adaptada de Cheng (2016).

Outros exemplos bem comuns de meios porosos são: terra, areia, arenito, espuma
de borracha, pão, pulmões, rins, entre outros.

Para conseguirmos diferenciar matematicamente os diversos meios porosos, existe
uma quantidade chamada porosidade (ϕ). A porosidade ϕ(x0) na posição x0 com relação
ao volume médio Ω0(x0) é definida como

ϕ(x0) = 1
medida(Ω0(x0))

∫
Ω0(x0)

ζ(x)dx, (2.1)

onde x0 ∈ Ω0 ⊂ Ω, Ω é o domínio espacial, medida(Ω) é comprimento, área ou volume
dependendo da dimensão, ζ(x) é a função indicador de espaço vazio em um nível microscópio,
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definida pela expressão

ζ(x) =
1, x ∈ espaço vazio

0, x ∈ matriz sólida
. (2.2)

Assim, a porosidade é definida pela razão entre o volume do espaço vazio e o
volume total. Essa quantidade é adimensional e está entre 0 e 1.

Geralmente o meio poroso tem uma geometria bastante complexa, por isso não pode
ser descrito por um ponto, pois em cada ponto pode conter apenas sólido ou apenas fluido.
Por isso, aqui vamos usar uma abordagem comum que ao invés de considerarmos um único
ponto, consideramos o Volume Elementar Representativo (Representative Elementary
Volume, REV). O REV é o menor volume possível que pode conter uma quantidade
representativa de vazio e sólido de forma que possamos definir as propriedades com eles,
as quais são detalhadas na subseção a seguir.

A FIGURA 3 mostra uma maneira que Kvashchuk e Radu (2017) apresentaram
para escolher o tamanho de REV mais adequado. Se o REV for muito pequeno, poderá ter
oscilações aleatórias em relação à parte vazia, ou seja, a região escolhida pode ter muitos
espaços vazios ou poros, não representando o meio em análise. Por isso, é preciso aumentar
o tamanho do REV para obter um equilíbrio. Por outro lado, segundo Bastian (1999), o
tamanho do REV deve ser tal que, o valor da quantidade média (ou seja, o valor usado
para a porosidade do meio, por exemplo) não dependa do tamanho do REV. Assim, o
REV poderia ser escolhido em qualquer lugar do intervalo em questão.

FIGURA 3 – REPRESENTAÇÃO DA RELAÇÃO ENTRE O VAZIO E VOLUME REV.

FONTE: Kvashchuk (2015).

A TABELA 1 apresenta os valores aproximados esperados das porosidades em
rochas sólidas e porosas sob várias condições.
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TABELA 1 – EXEMPLOS DE POROSIDADES.

Concreto 0,02-0,07
Carvão 0,02-0,12
Arenitos 0,08-0,38
Cascalho 0,25-0,40
Areia 0,25-0,50
Lodo 0,35-0,50
Argila 0,40-0,70
Fibra de vidro 0,88-0,93
Espuma metálica 0,98

FONTE: Adaptada de Yu et al. (1993) e Kaviany (2012).

Segundo Bastian (1999), um meio poroso é homogêneo se a quantidade (média)
macroscópica de um parâmetro for o mesmo valor em todo o domínio. Caso contrário, é
chamado de heterogêneo.

Por exemplo, na FIGURA 4a é possível perceber que o meio tem poros diferentes
com grãos grandes e pequenas, portanto, é heterogêneo em relação à porosidade. Entretanto,
na FIGURA 4b os poros são todos iguais, portanto um meio homogêneo.

FIGURA 4 – ILUSTRAÇÃO DE MEIOS POROSOS (a) HETEROGÊNEO E (b) HOMOGÊ-
NEO.

(a) Meio poroso heterogêneo. (b) Meio poroso homogêneo.

FONTE: Bastian (1999).
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2.1.1 Equações governantes

Consideramos um meio poroso onde o espaço vazio será preenchido por duas fases
de fluidos imiscíveis e incompressíveis, denotados por w e n, fase úmida e não úmida,
respectivamente. Então a equação da conservação da massa dos fluidos pode ser escrita da
forma (NORDBOTTEN; CELIA, 2011):

∂ (ραθα)
∂t

+▽ · (ραqα) = Fα, em Ω × [0, tf ]. (2.3)

sendo Ω o domínio espacial, dado por Ω ⊂ Rd, com d = 1,2 e [0, tf ] intervalo de tempo
considerado, sendo tf o o tempo final.

A equação (2.3) mostra que a taxa de variação da massa do fluido em um volume
de controle arbitrário V ⊆ Ω é igual ao escoamento líquido sobre a superfície ∂V e a
contribuição das fontes dentro de V (BASTIAN, 1999).

As variáveis da equação (2.3) possuem os seguintes significados:

• θα = ϕ(x)Sα(x,t) é adimensional, usada apenas como simplificação, é uma variável
composta pela porosidade (ϕ(x)) e saturação (Sα(x,t)), que são explicadas a seguir;

• ϕ(x) é a porosidade do meio poroso. Em meios heterogêneos é uma função de posição.
Essa variável pode depender da pressão do fluido ou do tempo (por exemplo, inchaço
da argila);

• Sα(x,t) é a saturação da fase do fluido α. É uma quantidade adimensional definida
como uma fração do espaço de poro ocupado pelo fluido α em REV. Assim, temos
que 0 ≤ Sα(x,t) ≤ 1;

• ρα(x,t) é a densidade do fluido da fase α dado por [kg/m3]. Neste trabalho como
consideramos fluidos incompressíveis, a densidade é um valor constante;

• qα(x,t) é o vetor de escoamento volumétrico do fluido da fase α, ou seja, velocidade
do escoamento, dado por [m/s];

• Fα(x,t) é o termo fonte da fase α com unidade [kg/m3s].

O vetor de escoamento volumétrico é dado pela Lei de Darcy multifásica estendida
(BASTIAN, 1999), ou seja, generalizada para o caso multifásico

qα = −Kα

µα
(▽pα − ραg) . (2.4)

As novas variáveis na equação (2.4) representam as seguintes definições:
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• µα(x,t) é a viscosidade dinâmica do fluido da fase α dado por [Pa s]. A viscosidade
representa a facilidade com que o fluido pode escoar, podendo depender do espaço e
tempo, mas aqui vamos considerar como constante em todo o domínio;

• pα(x,t) é a pressão do fluido α com unidades [Pa] = [N/m2]. Nesta tese, esta é a
função incógnita a ser determinada pela modelo;

• g é o vetor de aceleração gravitacional, com unidades [m/s2];

• Kα é o tensor simétrico da permeabilidade absoluta [m2], representado por

Kα = krα(Sα)K, (2.5)

isto é, um fator escalar adimensional, sendo krα(Sα) a permeabilidade relativa do
fluido da fase α e K a permeabilidade absoluta independe do fluido (BASTIAN,
1999).

Quando se trata de escoamentos bifásicos precisamos lidar com um sistema onde
parte dos poros já estão ocupados com um fluido, o que obstrui o escoamento do outro
fluido. Isso implica em menor permeabilidade para ambos os fluidos. Por isso, a necessidade
da permeabilidade relativa krα, que é diferente para cada fase α e obedece à restrição (2.6).
Geralmente as permeabilidades relativas são anisotrópicas (KVASHCHUK, 2015).

0 ≤ krα(Sα) ≤ 1. (2.6)

Inserindo a equação (2.5) na equação (2.4) obtemos

qα = −krα
µα

K (▽pα − ραg) . (2.7)

A quantidade λα = krα

µα
é frequentemente conhecida como mobilidade.

Substituindo a equação (2.7) na equação (2.3), considerando o caso incompressível
e o vetor de aceleração gravitacional igual a zero, temos a equação simplificada:

∂θα
∂t
−▽ · (λαK ▽ pα) = Fα

ρα
. (2.8)

Além dessas equações, que valem para as fases α = w e n, temos algumas relações
auxiliares (BASTIAN; HELMIG, 1999):

• Pressão capilar é a diferença entre as pressões de cada fase

pc = pn − pw; (2.9)
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• A soma das saturações de cada fase é igual à 1

Sw + Sn = 1, (2.10)

com isso temos que, θw + θn = ϕ.

2.1.2 Pressão capilar, permeabilidade relativa e suas parametrizações

As formas mais comuns da pressão capilar (equação (2.9)) e permeabilidade
relativa (equação (2.6)) são baseadas em experimentos laboratórias. Assim, existem na
literatura algumas parametrizações à respeito desses parâmetros, como por exemplo Van
Genuchten e Brooks-Corey, que serão fornecidas a seguir.

Parametrização de Van Genuchten

Para o modelo de Van Genuchten a pressão capilar pode ser escrita dependendo
da saturação efetiva, como vemos na equação (2.11).

pc(Sα) = pe(S̄α
−1/m − 1)1−m, (2.11)

onde pe é a pressão de entrada e S̄α é a saturação efetiva da fase α. Se pc = 0, então
S̄α = 1. Temos ainda que m depende de nV G, m = 1 − 1/(nV G) e apenas pe e nV G são
parâmetros livres de Van Genuchten. Segundo Bastian (1999) os valores típicos de nV G
estão na faixa de 2 a 5. No caso particular de α = w (fase úmida), temos

S̄w = Sw − Swr
1− (Swr + Snr)

, (2.12)

em que Sαr é a saturação residual da fase α (BASTIAN, 1999). A FIGURA 5 mostra a
pressão capilar calculada pela função de Van Genuchten para diferentes valores de nV G,
pe = 3 e Sαr = 0.

As funções de permeabilidade relativa de Van Genuchten para o sistema de duas
fases (úmida w e não úmida n) são escritas dependendo da saturação efetiva:

krw(Sw) =
√
S̄w(1− (1− S̄w

1/m)m)2,

krn(Sw) =
√

1− S̄w(1− S̄w
1/m)2m,

(2.13)

onde m é o mesmo parâmetro definido para a equação (2.11) vista anteriormente. Na
FIGURA 6 é apresentado a permeabilidade relativa calculada pela função de Van Genuchten
para diferentes valores de nV G e Sαr = 0.

Parametrização de Brooks-Corey
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FIGURA 5 – FUNÇÃO DA PRESSÃO CAPILAR DE VAN GENUCHTEN EM ESCALA log
VERSUS Sw, PARA DIFERENTES PARÂMETROS nV G, pe = 3 E Sαr = 0.
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FONTE: A autora (2022).

Para o modelo de Brooks-Corey, a pressão capilar pode ser escrita dependendo da
saturação efetiva, como vemos na equação (2.14)

pc(Sα) = peS̄α
− 1

λ , (2.14)

com pe e λ sendo dois parâmetros de Brooks-Corey. Como descrito anteriormente, pe é a
pressão de entrada do meio poroso e λ está relacionado com a distribuição do tamanho
dos poros (se mais ou menos uniforme, por exemplo). Assim, um material com um único
tipo de grão tem um valor grande de λ e no caso de um material altamente não uniforme,
λ tem um valor pequeno. Geralmente λ assume valores entre 0,2 e 3 (BASTIAN, 1999). A
FIGURA 7 mostra a pressão capilar calculada pela função de Brooks-Corey para diferentes
valores de λ, pe = 2 fixo e Sαr = 0.

O modelo para a permeabilidade relativa proposto por Brooks-Corey dependente
da saturação efetiva é dada por:
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FIGURA 6 – FUNÇÃO DA PERMEABILIDADE RELATIVA DE VAN GENUCHTEN PARA
DIFERENTES PARÂMETROS E Sαr = 0.
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FONTE: A autora (2022).

FIGURA 7 – FUNÇÃO DA PRESSÃO CAPILAR DE BROOKS-COREY PARA DIFERENTES
λ, pe = 2 E Sαr = 0.
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FONTE: A autora (2022).

krw(Sw) = S̄w
2+3λ

λ ,

krn(Sw) = (1− S̄w)2(1− S̄w
2+λ

λ ).
(2.15)
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O parâmetro λ é o mesmo da pressão capilar. Na FIGURA 8 é apresentada a
permeabilidade relativa calculada pela função de Brooks-Corey para diferentes valores de
n e Sαr = 0.

FIGURA 8 – FUNÇÃO DA PERMEABILIDADE RELATIVA DE BROOKS-COREY PARA
DIFERENTES PARÂMETROS E Sαr = 0.
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2.2 Método de Euler Implícito

Quando temos uma derivada temporal, precisamos realizar a discretização em
relação ao tempo. Para isso, existem inúmeras formulações na literatura, podendo ser
dividas em três grupos de formulações: explícita, semi-implícita e implícita. Segundo
Maliska (2004), temos a formulação explícita quando todas as incógnitas vizinhas do
ponto i são analisadas no passo de tempo anterior m, ou seja, já conhecidas, conforme
apresentamos na FIGURA 9a.

Quando todas as incógnitas vizinhas ao ponto i são avaliadas no passo de tempo
atual m+ 1, ou seja, não são conhecidas na sua totalidade, temos a formulação implícita
(FIGURA 9b). E, no último caso, quando as incógnitas vizinhas ao ponto i são avaliadas
nos passos de tempo atual m+ 1 e anterior m, como apresentamos na FIGURA 9c, temos
a formulação semi-implícita (Crank-Nicolson é um exemplo clássico desta formulação).
Neste trabalho iremos usar apenas métodos de um passo na discretização temporal, ou
seja, não usaremos métodos multi-passos (BURDEN; FAIRES; BURDEN, 2015).
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Segundo Burden, Faires e Burden (2015), para problemas lineares, o método
explícito é condicionalmente estável, pois sua convergência depende de uma relação entre
o tamanho do passo de tempo e a distância entre os nós na malha espacial; já os métodos
semi-implícitos e implícitos são incondicionalmente estáveis, isto é, independem de tal
relação; fazendo nossa escolha tender aos métodos semi-implícitos ou implícitos.

FIGURA 9 – FORMULAÇÕES EXPLÍCITA, SEMI-IMPLÍCITA E IMPLÍCITA PARA UM
PONTO (i, m) EM RELAÇÃO A SUA POSIÇÃO ESPACIAL E TEMPORAL.

(a) Formulação explícita.

(b) Formulação implícita.

(c) Formulação semi-implícita.

FONTE: A autora (2022).

Dentre os métodos para a discretização temporal, utilizamos neste trabalho o
método de Euler implícito, que apesar de ser um método de primeira ordem, ele é um
método incondicionalmente estável, mais barato computacionalmente que o método de
Crank-Nicolson e atende plenamente aos objetivos desta pesquisa.

Segundo Burden, Faires e Burden (2015), o objetivo do método de Euler implícito
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é obter aproximações para a solução de um problema de valor inicial bem posto, dado por

du

dt
= f, (2.16)

com u e f funções das variáveis (x,t), em que x está no domínio espacial, t ∈ [t0,tf ], onde
t0 e tf representam o tempo inicial e final, respectivamente.

Aqui, vamos considerar um número positivo inteiro, Nt, de pontos no domínio
temporal distribuídos uniformemente no intervalo [t0,tf ], gerando assim o que chamamos
de malha temporal. Os pontos t desta malha são dados por

tm+1 = t0 + (m+ 1)τ, m = 0, 1,..., Nt − 1, (2.17)

sendo τ = tf −t0
Nt

o tamanho do passo de tempo.

Observamos que a derivada temporal é ordinária e apesar de depender dos valores
espaciais x, considera-se x conhecidos durante o cálculo da variável temporal. Então, por
simplicidade de notação, ao invés de escrevermos u(x, t) usamos apenas por u(t).

Consideramos u(t) ϵ C2[t0,tf ] a única solução da equação (2.16), de forma que
para cada m a sua expansão de Taylor é dada por

u(tm+1) = u(tm) + τ
du

dt
(tm) + τ 2

2
d2u

dt2
(ϵk), (2.18)

para algum ϵk ∈ (t0,tf ).

O método de Euler implícito constrói vm ≈ u(tm), sendo v uma aproximação da
solução u, ao desconsiderar os termos de segunda ordem de aproximação. Assim, o método
de Euler implícito é dado pela equação

vm+1 = vm + τf(vm+1,tm+1). (2.19)

Note que para obtermos o valor de vm+1 são necessários valores relacionados aos
passos de tempo m e m+ 1 em f (BURDEN; FAIRES; BURDEN, 2015).

Neste trabalho usamos o método de Euler, que será denominado por Euler Implí-
cito.

2.3 Métodos de Linearização

Quando nos deparamos com um sistema não linear e precisamos resolvê-lo, uma
das opções é utilizar algum método de linearização e assim aplicar um método para
sistemas lineares, que é o mais usual. Neste trabalho analisamos dois esquemas: Picard
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modificado e L-esquema. Nesta seção vamos dar apenas as noções básicas de ambos os
métodos. Mais detalhes serão dados na seção 5.2.

Para entendermos como ocorre o processo de utilização desses métodos de linea-
rização, nos baseamos no livro de Golub e Ortega (2014). Primeiro, consideramos uma
equação a qual pode ser estendida para um sistema de equações

fi(x1,x2,...,xn) = 0, i = 1,...,n, (2.20)

onde f1, f2,..., fn são funções das n variáveis x1, x2,..., xn. Podemos reescrever esta equação
na forma vetorial

F (x) = 0, (2.21)

em que, F é uma função vetorial com as componentes f1, f2,..., fn e x é um vetor contendo
x1, x2,..., xn.

Quando n = 1, obtemos apenas uma equação não linear, não sendo necessário
realizar nenhuma manipulação e pode ser resolvido por algum método de zeros de funções,
como o método do ponto fixo, Newton, secante, etc (BURDEN; FAIRES; BURDEN, 2015).
No caso em que n ≥ 2, para verificar se o problema tem soluções, e quantas, geralmente
é muito difícil. Aqui, consideramos que o tal sistema tenha pelo menos uma solução
(hipóteses de existência e unicidade podem ser encontradas em Golub e Ortega (2014),
Burden, Faires e Burden (2015)).

Em muitas situações o sistema representado pela equação (2.21) pode ser reescrito
na forma

F (x) = Ax+H(x) = 0, (2.22)

onde A é uma matriz não singular e H é um vetor de funções não lineares. Neste caso, um
procedimento iterativo bem natural, porém não necessariamente bom, é

xm+1 = −A−1H(xm), m = 0,1, · · · , (2.23)

em que, os superíndices indicam o processo iterativo. Tal processo iterativo é conhecido
como iteração de Picard.

No método de linearização de Picard modificado, ao invés de todas as variáveis
serem usadas como estimativa conhecida, apenas uma segue essa ideia e a outra variável é
aproximada pela série de Taylor de segunda ordem. Já, o L-esquema, não requer etapa
de regularização, além de não utilizar cálculos de derivadas como o método de Picard e
Newton.
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2.4 Método de Volumes Finitos

Um modelo matemático de equações ou sistema de equações diferenciais parciais
(EDPs) pode ser resolvido numericamente, e para isso é necessário discretizar o domínio de
cálculo, gerando uma malha de pontos ou volumes, onde os termos das equações diferenciais
são aproximadas e assim recaindo na resolução de um sistema de equações algébricas.

Neste trabalho utilizamos o método de volumes finitos (MVF) para discretizar as
equações diferenciais. Este método consiste em dividir o domínio de cálculo por subdomínios
finitos, chamados de volumes de controle (VCs), envolvendo apenas um ponto nodal da
malha, em que os valores da variável de interesse são calculados (PATANKAR, 2018).
Posteriormente, cada EDP é integrada sobre cada VC e para as variáveis nas faces são
utilizadas funções de interpolação em termos de valores nodais (PATANKAR, 2018).

Segundo Patankar (2018), no caso de sistemas de equações diferenciais, onde há
mais de duas variáveis de interesse, existe duas possibilidades de posicionamento (arranjo)
das variáveis. O primeiro é o arranjo colocalizado (veja a FIGURA 10b), onde todas as
variáveis estão no centro do volume. O segundo é o arranjo desencontrado (veja a FIGURA
10a), onde algumas variáveis estão no centro e outras em suas fases.

Nesta tese utilizamos malhas colocalizadas, por simplicidade na implementação
das condições de contorno e devido ao uso do método multigrid, que é mais viável com o
uso deste tipo de arranjo.

FIGURA 10 – MALHAS COM ARRANJOS (a) DESENCONTRADO E (b) COLOCALIZADO
PARA AS VARIÁVEIS pα E Sα.

(a) Arranjo desencontrado.

pα
Sα

(b) Arranjo colocalizado.

pα

Sα

FONTE: A autora (2022).

A organização dos VCs em uma malha uni e bidimensional uniforme é apresentada
na FIGURA 11, em que P,N, S,E e W representam o centro do volume e seus vizinhos
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norte, sul, leste e oeste, respectivamente; e n, s, e e w representam as faces norte, sul, leste
e oeste do VC, respectivamente. Nesta figura, h, hx e hy representam os tamanhos dos
VCs nas direções indicadas.

FIGURA 11 – DISPOSIÇÃO DE UM VOLUME DE CONTROLE P E SEUS VIZINHOS EM
UMA MALHA UNIFORME UNIDIMENSIONAL (ESQUERDA) E BIDIMENSI-
ONAL (DIREITA).

W w EeP

h

W w Ee

S

s

N

n

P

hx

hy

FONTE: A autora (2022).

Para ilustrar a discretização de uma EDP, segundo o MVF, vamos considerar,
como exemplo, um caso simples unidimensional. Seja

d

dx

(
du

dx

)
= 0, (2.24)

onde u é uma função que depende somente de x. Integrando a equação (2.24) sobre cada
VC, temos que

∫∫∫
V C

d

dx

(
du

dx

)
dV = 0, (2.25)

onde dV é o elemento de volume de controle de P .

Aplicando o teorema da Divergência de Gauss (PATANKAR, 2018) nesta equação,
temos

∫∫
A

du

dx
· n⃗ dA = 0, (2.26)
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sendo dA o elemento área da superfície do volume de controle P e n⃗ o vetor unitário
normal à superfície do elemento dA e apontando para fora de tal volume.

Calculando as integrais da equação (2.26) em relação ao volume de controle P ,
conforme a FIGURA 11, obtemos:

∫∫
A

du

dx
· n⃗dA ≈

(
du

dx

)∣∣∣∣∣
e

−
(
du

dx

)∣∣∣∣∣
w

hx
hx = 0, (2.27)

ou seja,

∫∫
A

du

dx
· n⃗dA ≈

(
du

dx

)∣∣∣∣∣
e

−
(
du

dx

)∣∣∣∣∣
w

= 0. (2.28)

Para aproximar as derivadas nas fases e e w do volume de controle P , podemos
empregar algum método de interpolação. Maliska (2004) apresenta diversos esquemas
para esta interpolação unidimensional, como por exemplo, o esquema central (Central
Differencing Scheme, CDS), esquema a montante (Upwind Differencing Scheme, UDS) e
Esquema exponencial. Neste exemplo, e ao longo desta tese, vamos usar o CDS por ser
um esquema de 2ª ordem.

Considerando a posição dos VC na FIGURA 11, as aproximações na equação
(2.28) são dadas por:

(
du

dx

)∣∣∣∣∣
e

= uE − uP
hx

, (2.29)(
du

dx

)∣∣∣∣∣
w

= uP − uW
hx

. (2.30)

Note que as aproximações nas faces são calculadas com os valores nodais. Assim,
podemos substituir as equações (2.29) e (2.30) na equação (2.28) e rearranjando os termos,
obtemos um sistema linear do tipo

aPuP = aWuW + aEuE + bP , (2.31)

onde aP = 2
hx

, aW = aE = 1
hx

e bP = 0. A extensão para o caso bidimensional é análoga,
gerando um sistema do tipo

aPuP = aWuW + aEuE + aNuN + aSuS + bP . (2.32)

Note que as equações (2.31) e (2.32) são casos específicos da equação (1.1) e
representam as equações discretizadas para um volume de controle interno. No caso
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dos volumes que estão na fronteira dependem da condição de contorno estabelecida no
problema, que pode ser Dirichlet, Neumann ou Robin (PATANKAR, 2018). Segundo
Maliska (2004) existem algumas maneiras de aplicar essas condições, tais como: balanço
para os volumes da fronteira, meio-volume ou volumes fictícios. Neste trabalho, utilizamos
a técnica de volumes fictícios pelo fato de manter-se as mesmas equações/formulações
para todos dos volumes internos e sua fácil aplicação apesar do aumento de incógnitas do
sistema algébrico (GONÇALVES, 2013).

Nesta técnica precisamos adicionar volumes de controle ao redor do domínio físico,
fazendo com que as condições de contorno originais do problema continuem sendo satisfeitas.
Neste trabalho utilizamos tanto a condição de contorno de Dirichlet por conhecermos a
quantidade de uc na fronteira, como a condição de Neumann por conhecermos a derivada
da quantidade du na fronteira. Na FIGURA 12 ilustramos os coeficientes dos volumes
fictícios para o volume P . Como exemplo, considere a condição de contorno de Dirichlet
uc no lado esquerdo da FIGURA 12, assim temos

uc = uP + uE
2 . (2.33)

FIGURA 12 – CONDIÇÕES DE CONTORNO COM VOLUMES FICTÍCIOS NA FRONTEIRA.

P E

h
2

Volume fictício

W P

Volume fictício
FONTE: A autora (2022).

Isolando a variável no volume de controle P , temos

uP = −uE + 2uc. (2.34)

Comparando esta equação com a equação (2.31), obtemos as expressões para os
coeficientes e termo fonte do volume fictício

aP = 1; aE = −1; aW = 0; bP = 2uc. (2.35)
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3 MÉTODOS ITERATIVOS BÁSICOS E MULTIGRID

Vimos pela seção anterior, que sistemas lineares esparsos e de grande porte são
gerados na discretização das EDPs. Segundo Burden, Faires e Burden (2015), neste tipo
de sistemas lineares, os métodos iterativos são mais eficientes computacionalmente do que
os métodos diretos.

Para encontrarmos a solução desses sistemas de equações lineares a partir dos
métodos iterativos, tanto para as equações específicas (2.31) e (2.32), como para a equação
geral (1.1), é preciso de uma estimativa inicial e posteriormente as novas soluções são
aproximadas com esta (hipóteses para a convergência podem ser encontradas em Golub e
Ortega (2014), Burden, Faires e Burden (2015)). Esse processo é realizado sucessivamente
até encontrarmos uma solução que atenda a certo critério de parada, que pode ser baseado
no erro, resíduo, número de iterações, etc. Entre os vários métodos iterativos, podemos
citar: Jacobi, Jacobi ponderado, Gauss-Seidel (GS), Sobre-Relaxação Sucessiva (Successive
Over-relaxation, SOR), etc.

Reescrevemos a matriz A da equação (1.1) como:

A = D − L− U, (3.1)

onde D é matriz que contém os elementos da diagonal de A, L guarda a parte inferior de
A e U a parte superior. Substituindo a equação (3.1) na equação (1.1), e após um certo
arranjo a fim de gerar o método GS, obtemos o processo iterativo

uk+1 = (D − L)−1Uuk + (D − L)−1f, (3.2)

onde SG = (D − L)−1U é a matriz de iteração de Gauss-Seidel e k + 1 é a iteração atual.
Nesta tese, temos um interesse especial pelo método de Gauss-Seidel por ele possuir boas
propriedades de suavização, que serão explicadas logo a seguir, no contexto do método
multigrid. Em particular, vamos utilizar o método GS ponto-a-ponto, ou seja, a atualização
das variáveis é feita a cada volume separadamente, e não de forma coletiva por linhas ou
por blocos, por exemplo.

Para tanto, necessitamos estabelecer uma ordem na leitura dessas informações. Em
Trottenberg, Oosterlee e Schüller (2001) encontramos uma ordem lexicográfica começando
no canto superior esquerdo (veja FIGURA 13). Esta será a ordem adotada neste trabalho
e que será tratada simplesmente por “ordem lexicográfica”.

Assim, considerando o lado direito da FIGURA 11 e usando a ordenação lexico-
gráfica (FIGURA 11) na equação (2.32), temos o método de Gauss-Seidel
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uk+1
P = (aWuk+1

W + aEu
k
E + aSu

k+1
S + aNu

k
N − bP )/aP , (3.3)

onde os superíndices representam as iterações e os subíndices a posição na malha.

Novamente considerando a FIGURA 11 e a ordenação lexicográfica (FIGURA
13), podemos notar que os volumes P,W,E,N e S corresponderão aos pontos (i,j), (i,j −
1), (i,j + 1), (i− 1,j) e (i+ 1,j), respectivamente. Assim, usando esses volumes novamente
na equação (2.32), temos o método Gauss-Seidel escrito em função dos subíndices i, j

uk+1
i,j = (ai,j−1u

k+1
i,j−1 + ai,j+1u

k
i,j+1 + ai+1,ju

k+1
i+1,j + ai−1,ju

k
i−1,j − bi,j)/ai,j. (3.4)

FIGURA 13 – ORDENAÇÃO LEXICOGRÁFICA COMEÇANDO DO CANTO SUPERIOR
ESQUERDO PARA O EMPREGO DO MÉTODO DE GAUSS-SEIDEL PONTO-
A-PONTO.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

FONTE: A autora (2022).

3.1 Método multigrid

O multigrid é uma técnica muito eficiente usada para acelerar a convergência
dos métodos iterativos (BRIGGS; HENSON; MCCORMICK, 2000; TROTTENBERG;
OOSTERLEE; SCHÜLLER, 2001). Para compreendermos melhor a sua filosofia, vamos
apresentar aqui os conceitos básicos para o caso unidimensional e algumas extensões para
o caso bidimensional.
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Primeiro, definimos os modos de Fourier (BRIGGS; HENSON; MCCORMICK,
2000):

whj = sen
(
jkπ

N

)
, 1 ≤ k ≤ N − 1, 0 ≤ j ≤ N, (3.5)

em que whj é uma aproximação da solução no volume j de uma malha com h sendo o
tamanho do volume, k sendo o número de ondas ou modos de Fourier e N sendo o número
de pontos.

Na FIGURA 14 são ilustrados alguns modos de Fourier, com k = 1, k = 3 e k = 6.
Podemos perceber que quanto menor o valor de k, mais longas e suaves são as ondas,
enquanto que, se aumentarmos os valores de k, teremos ondas mais curtas e oscilatórias.

FIGURA 14 – MODOS DE FOURIER.

FONTE: Briggs, Henson e McCormick (2000).

Alguns métodos iterativos possuem a propriedade de redução rápida das com-
ponentes oscilatórias do erro, deixando apenas suas componentes suaves. Gauss-Seidel,
por exemplo, possui esta propriedade, aqui chamada de propriedade de suavização. De
acordo com Briggs, Henson e McCormick (2000), Trottenberg, Oosterlee e Schüller (2001),
esses modos suaves tornam-se mais oscilatórios em malhas mais grossas. Nesse sentindo, o
método multigrid (que trabalha com vários níveis de refino de malha), leva as informações
para diferentes e diversas malhas, fazendo com que o método convirja mais rapidamente
por suavizar todas as componentes do erro.

O princípio básico do multigrid é a suavização e correção nessas diversas malhas,
para tanto, necessitamos do conceito de equação residual, onde concentraremos o esforço
do método multigrid.

A equação residual da equação (1.1) é dada por Ae = r, onde r é o resíduo, dado



Capítulo 3. Métodos iterativos básicos e multigrid 48

por

r = f − Av, (3.6)

com v sendo a solução aproximada de u e e o erro numérico, dado por

e = u− v. (3.7)

O algoritmo do multigrid pode ser construído segundo o esquema de correção
(Correction Scheme, CS) ou o esquema de aproximação completo (Full Approximation
Scheme, FAS). O esquema CS consiste em resolver o problema apenas na malha mais fina
e a equação residual (correção) nas demais malhas grossas. No esquema FAS, além de se
resolver o problema na malha mais fina, não se resolve a equação residual explicitamente
na malha mais grossa, e sim, a equação discretizada em tal malha (completa). De acordo
com essas informações, indicam-se os esquemas CS e FAS para se resolver, respectivamente,
os problemas lineares e não lineares (BRANDT, 1977; BRIGGS; HENSON; MCCOR-
MICK, 2000; TROTTENBERG; OOSTERLEE; SCHÜLLER, 2001). Como neste trabalho
tratamos de problemas não lineares que tiveram que ser linearizados, usamos o esquema
CS. Adicionalmente, as diferentes formas de percorrer as malhas dão origem a diferentes
tipos de ciclos, por exemplo, ciclo V, W ou F.

Como o multigrid é composto por um conjunto de malhas é preciso utilizar alguma
razão de engrossamento entre elas. Segundo Briggs, Henson e McCormick (2000), Brandt
(1977) a razão re = 2 é a mais utilizada e mais recomendável, por isso, optamos em
utilizar esta. Isto significa que o tamanho do volume de malha imediatamente mais grossa
(ΩH) é duas vezes o tamanho do volume na malha imediatamente mais fina (Ωh), ou
seja, H = 2h. Na FIGURA 15 podemos visualizar uma sequência de malhas com re = 2
para o caso bidimensional. Com esta razão definida, podemos determinar o número de
malhas a serem percorridas para cada tamanho de problema. No nosso caso optamos por
utilizar o maior número de malhas possível, chamando de Lmax, por exemplo, para um
problema de tamanho N = 64 × 64 volumes, o maior conjunto de malhas possível será
N = 2 × 2, 4 × 4, 8 × 8, 16 × 16, 32 × 32 e 64 × 64. Portanto, para este exemplo, temos
Lmax = 6.

Para a transferência de informações entre malhas finas (Ωh) e a malha imediata-
mente mais grossa (Ω2h), precisamos utilizar alguns operadores, conhecidos como restrição
e prolongação, representados por I2h

h e Ih2h, respectivamente.

Dentre os diversos operadores de restrição existentes na literatura (BRIGGS;
HENSON; MCCORMICK, 2000; TROTTENBERG; OOSTERLEE; SCHÜLLER, 2001),
aqui neste trabalho utilizamos a média aritmética dos valores das propriedades dos quatro
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FIGURA 15 – APLICAÇÃO DA RAZÃO DE ENGROSSAMENTO re = 2 PARA A MALHA
FINA Nx ×Ny = 8× 8.

4h

2h

h

FONTE: A autora (2022).

volumes da malha fina, definido pela equação (3.8) para o caso bidimensional e com a
variável de interesse no centro do volume.

v2h
ij =

vh2i−1,2j−1 + vh2i−1,2j + vh2i,2j−1 + vh2i,2j
4 . (3.8)

com 1 ≤ i ≤ Nx e 1 ≤ i ≤ Ny.

Em relação a prolongação, utilizamos a interpolação constante por partes, dada
pela equação (3.9).

vh2i−1,2j−1 = v2h
ij ,

vh2i−1,2j = v2h
ij ,

vh2i,2j−1 = v2h
ij ,

vh2i,2j = v2h
ij .

(3.9)

com 1 ≤ i ≤ Nx e 1 ≤ i ≤ Ny.

Como dissemos, as diferentes formas de percorrer as malhas dão origem a diferentes
tipos de ciclos. Neste trabalho optamos em utilizar o ciclo W (ν1,ν2) (veja a FIGURA
16), onde ν1 e ν2 são o número de pré- e pós-suavização, ou seja, o número de iterações
no processo de restrição e prolongação, respectivamente. Como sabido, o ciclo W é um
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pouco mais caro computacionalmente, se comparado com o ciclo V, mas ele é mais robusto
(FRANCO, 2017).

FIGURA 16 – CICLO W COM 4 MALHAS.

Restrição

Prolongação

Suavização

FONTE: A autora (2022).

Com isto, temos o ALGORITMO 1, onde apresentamos o ϱ-ciclo para o método
multigrid, que é aplicado de forma recursiva usando uma hierarquia de malhas (entre a
malha fina e malhas mais grossas), dada por 2l+1, l = 1, 2, 3, · · · , onde l é o nível da malha
espacial. Por exemplo, se ϱ = 1, o algoritmo realiza um ciclo V e se ϱ = 2, o algoritmo
executa um ciclo W.

Algoritmo 1: MG-ϱ-ciclo.
Input: ϱ, v0,v,f, h,ν1, ν2
if l = Lmax é o nível de malha mais grossa then

Resolva A(l)u(l) = f (l) em Ω2l−1h. else
Suavize A(l)u(l) = f (l), ν1 vezes em Ω2l−1h com estimativa inicial v(l)

0 ;
Calcule o resíduo R(l) = f (l) − A(l)v(l);
Restrinja o resíduo da malha Ω2l−1h para a malha Ω2lh : f l+1 = I2lh

2l−1hR
2l−1h.

for ciclo = 1 : ϱ do
Resolva no próximo nível: MG-ϱ-ciclo (l + 1).

end
Corrija v(l) ← v(l) + I2l−1h

2lh v(l+1);
Suavize A(l)u(l) = f (l), ν2 vezes em Ω2l−1h com estimativa inicial v(l).

end
end
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4 MODELOS MATEMÁTICOS

Neste capítulo apresentamos os modelos matemáticos que serão tratados nesta
tese, com seus domínios de cálculos, as condições de contorno e suas soluções analíticas.

Para isso, consideramos o problema não linear de escoamento bifásico em meios
porosos rígidos cuja equação (2.8) pode ser reescrita para α = w, n, ou seja, para a fase
úmida (w) e não úmida (n):


∂θw
∂t
−▽ · (λwK ▽ pw) = Fw

ρw

∂θn
∂t
−▽ · (λnK ▽ pn) = Fn

ρn

, (4.1)

no domínio espacial dado por Ω ⊂ Rd, com d ∈ {1,2}, sendo x ∈ Ω = [0,L] se d = 1 ou
−→x = (x,y) ∈ Ω = [0,Lx]× [0,Lx] se d = 2. Temos ainda t ∈ [0,tf ], o intervalo de tempo
considerado. Nesta notação ∇ é o gradiente d-dimensional e ∇· o divergente d-dimensional.

Consideramos θα(x,t) e pα(x,t) e supomos que as condições iniciais são dadas por

pα(x,0) = pαci,

θα(x,0) = θαci.
(4.2)

Por enquanto, definimos as condições de contornos do tipo Dirichlet, isto é,

pα(xcc,t) = pαcc

θα(xcc,t) = θαcc

, xcc ∈ ∂Ω, 0 < t ≤ tf . (4.3)

No final desta tese iremos utilizar condições de contorno de Neumann e que serão definidas
no momento oportuno.

Para realização dos nossos testes, exibiremos os modelos matemáticos 1D e 2D
nas seções a seguir.

4.1 Modelo matemático 1D

Neste trabalho utilizamos a solução analítica do problema proposto por Illiano
(2016) (seção 5.1, p. 37). Nesse trabalho, Illiano (2016) considera a formulação pressão-
saturação da forma p̄ — Sw, onde p̄ = pw+pn

2 . Neste caso, temos como solução analítica

f(x,t) = p̄(x,t) = Sw(x,t) = xt(1− x), (4.4)
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com domínio espacial Ω = [0,L] e temporal [0, tf ] com L = tf = 1. As condições iniciais e
de contorno são dadas por f(x,0) = f(0,t) = f(1,t) = 0.

A fim de se obter um sistema elíptico (onde é sabido que o método multigrid
funciona bem), realizamos algumas modificações no sistema gerado pela formulação pressão-
saturação a fim de reescrevê-lo em função das variáveis da pressão, pw e pn (detalhes desta
modificação e consequentemente discretizações, serão dados no próximo capítulo).

Para tanto, tivemos que fazer algumas adaptações para usar pw e pn ao invés de p̄
de Illiano (2016). Com isso, utilizando a equação de pressão capitar (pc = pn − pw) e p̄,
obtemos que

pw = p̄− pc
2 e pn = p̄+ pc

2 , (4.5)

em que pc(Sw) = 1− 1
2S

2
w. Adicionalmente, utilizamos θα = ϕSα, logo θw = ϕ

√
2− 2pc e

θn = ϕ− θw.

Utilizando essas expressões encontramos os termos fontes:

Fw = −1
2ρw[2ϕ(x− 1)x+Kwλwt(−4 + t− 6tx+ 6tx2)], (4.6)

Fn = 1
2ρn[2ϕ(x− 1)x+Knλnt(4 + t− 6tx+ 6tx2)]. (4.7)

4.2 Modelo matemático 2D

Para o caso 2D, usamos o problema proposto por Kvashchuk (2015) (seção 4.1,
p.39). Nesse trabalho, Kvashchuk (2015) considera também a formulação pressão-saturação
da forma p̄ — Sw, onde p̄ = pw+pn

2 . Nesse caso, a solução analítica é dada por

p̄(x⃗,t) = tx(1− x)y(1− y),

Sw(x⃗,t) = 1
2 + tx(1− x)y(1− y),

(4.8)

com domínio espacial Ω = [0,Lx] × [0,Ly] e temporal [0,tf ] com Lx = Ly = tf = 1. As
condições iniciais e de contorno são dadas por p̄(x⃗,0) = p̄(0,y,t) = p̄(1,y,t) = p̄(x,0,t) =
p̄(x,1,t) = 0 e Sw(x⃗,0) = Sw(0,y,t) = Sw(1,y,t) = Sw(x,0,t) = Sw(x,1,t) = 1

2 .

Por razões análogas às explicadas na seção anterior, aqui também realizamos
as adaptações na formulação pressão-saturação, ou seja, obtemos um sistema com as
variáveis pw e pn, utilizando as equações (4.5) também para o caso 2D. Consequentemente,
após algebrismo similar ao caso 1D, obtemos os termos fontes adequados que atendam ao
sistema (4.1).
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5 APROXIMAÇÕES NUMÉRICAS

Neste capítulo, vamos abordar os modelos numéricos, esquemas e procedimentos
adotados no desenvolvimento do presente estudo computacional e que gerou a grande
contribuição desta tese.

Para tanto, apresentamos detalhes sobre a discretização temporal, seguido do
esquema de linearização (incluindo a manipulação para tornar as variáveis pw e pn como
variáveis principais do sistema), discretização espacial, tipo de malha e, finalmente, o
suavizador empregado.

Aqui, vamos abordar apenas o modelo matemático do caso 1D, pois a extensão
para o caso 2D possui procedimentos análogos.

Por questões didáticas, vamos repetir aqui a equação (4.1) que será objeto de
discretização:


∂θw
∂t
−▽ · (λwK ▽ pw) = Fw

ρw

∂θn
∂t
−▽ · (λnK ▽ pn) = Fn

ρn

.

Da equação (2.5) (Kα = krαK) e do fato que λα = krα

µα
, podemos reescrever este

sistema como



∂θw
∂t
−▽ ·

(
Kw

µw
▽ pw

)
= Fw
ρw

∂θn
∂t
−▽ ·

(
Kn

µn
▽ pn

)
= Fn
ρn

. (5.1)

5.1 Dicretização temporal

Primeiramente empregamos o método de Euler implícito para a discretização
temporal deste sistema de equações, obtemos:



θn+1
w − θnw

τ
− ∂

∂x

[
Kn+1
w

µw

∂

∂x
(pn+1
w )

]
= F n+1

w

ρw

θn+1
n − θnn

τ
− ∂

∂x

[
Kn+1
n

µn

∂

∂x
(pn+1
n )

]
= F n+1

n

ρn

, (5.2)

onde n + 1 representa o nível de tempo atual, τ = tf
Nt

é o tamanho do passo do tempo,
onde, tf é o tempo final e Nt é o número de pontos da discretização temporal.
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5.2 Linearização

O próximo passo é linearizar o sistema representado pela equação (5.2). Para isso,
criamos o processo iterativo para tal linearização, dado por



θn+1,m+1
w − θnw

τ
− ∂

∂x

[
Kn+1,m
w

µw

∂

∂x
(pn+1,m+1
w )

]
= F n+1,m

w

ρw

θn+1,m+1
n − θnn

τ
− ∂

∂x

[
Kn+1,m
n

µn

∂

∂x
(pn+1,m+1
n )

]
= F n+1,m

n

ρn

, (5.3)

onde m+ 1 representa a iterada atual e θnα (α = w ou n) representa a solução convergida
no passo de tempo anterior.

Neste trabalho usamos o esquema de linearização de Picard modificado (CELIA;
BINNING, 1992) para termos um novo processo iterativo em que uma das variáveis de
interesse (θα) será aproximada pela série de Taylor e a outra (krα) será aproximada por
uma condição inicial.

Com o intuito de isolar as variáveis pw e pn, a fim de se obter um sistema de
equações elípticas após sua discretização, usamos a série de Taylor para calcular θn+1,m+1

α ,
que depende da pressão capilar pc, como segue

θn+1,m+1
α = θn+1,m

α + ∂

∂pc
(θn+1,m
α )[pn+1,m+1

c − pn+1,m
c ] +O(δp2

c). (5.4)

Negligenciando os termos de alta ordem e considerando que para ambas as fases,
as manipulações são análogas, podemos reescrever a equação (5.3) da seguinte forma



1
τ

{
θn+1,m
w + ∂

∂pc
(θn+1,m
w )[δpn+1,m+1

c ]− θnw

}
− ∂

∂x

[
Kn+1,m
w

µw

∂

∂x

(
pn+1,m+1
w

)]
= Fn+1,m

w

ρw

1
τ

{
θn+1,m
n + ∂

∂pc
(θn+1,m
n )[δpn+1,m+1

c ]− θnn

}
− ∂

∂x

[
Kn+1,m
n

µn

∂

∂x

(
pn+1,m+1
n

)]
= Fn+1,m

n

ρn

,

(5.5)

onde δpn+1,m+1
α = pn+1,m+1

α − pn+1,m
α . Organizando nossas equações, temos



θn+1,m
w − θnw

τ
+ ∂

∂pc
(θn+1,m
w )

[
δpn+1,m+1

c

τ

]
− ∂

∂x

[
Kn+1,m
w

µw

∂

∂x
(pn+1,m+1
w )

]
= F n+1,m

w

ρw

θn+1,m
n − θnn

τ
+ ∂

∂pc
(θn+1,m
n )

[
δpn+1,m+1

c

τ

]
− ∂

∂x

[
Kn+1,m
n

µn

∂

∂x
(pn+1,m+1
n )

]
= F n+1,m

n

ρn

,

(5.6)

A fim de resolvermos o sistema tendo as correções das pressões como variáveis prin-
cipais, devemos realizamos alguns manipulações algébricas. Adicionamos ∂

∂x

[
Kn+1,m

α

µα

∂
∂x

(pn+1,m
α )

]
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em ambos os lados das igualdades e substituindo pelas correções da pressões, δpn+1,m+1
α =

pn+1,m+1
α − pn+1,m

α , chegamos na expressão



θn+1,m
w − θnw

τ
+ ∂

∂pc
(θn+1,m
w )

[
δpn+1,m+1

c

τ

]
− ∂

∂x

[
Kn+1,m
w

µw

∂

∂x
(δpn+1,m+1

w )
]

=

∂

∂x

[
Kn+1,m
w

µw

∂

∂x
(pn+1,m
w )

]
+ F n+1,m

w

ρw

θn+1,m
n − θnn

τ
+ ∂

∂pc
(θn+1,m
n )

[
δpn+1,m+1

c

τ

]
− ∂

∂x

[
Kn+1,m
n

µn

∂

∂x
(δpn+1,m+1

n )
]

=

∂

∂x

[
Kn+1,m
n

µn

∂

∂x
(pn+1,m
n )

]
+ F n+1,m

n

ρn

. (5.7)

Usando Cw = ∂θw

∂pc
= −∂θn

∂pc
e a definição de pressão capilar (pc = pn− pw), obtemos



Cn+1,m
w

δpn+1,m+1
n − δpn+1,m+1

w

τ
− ∂

∂x

[
Kn+1,m
w

µw

∂

∂x
(δpn+1,m+1

w )
]

=

∂

∂x

[
Kn+1,m
w

µw

∂

∂x
(pn+1,m
w )

]
+ F n+1,m

w

ρw
− θn+1,m

w − θnw
τ

−Cn+1,m
w

δpn+1,m+1
n − δpn+1,m+1

w

τ
− ∂

∂x

[
Kn+1,m
n

µn

∂

∂x
(δpn+1,m+1

n )
]

=

∂

∂x

[
Kn+1,m
n

µn

∂

∂x
(pn+1,m
n )

]
+ F n+1,m

n

ρn
− θn+1,m

n − θnn
τ

. (5.8)

Neste trabalho também usamos o esquema de linearização chamado L-esquema
(KARPINSKI; POP; RADU, 2017), para termos um processo iterativo menos custoso, se
comparado com o método de Picard modificado. Para aplicar tal método, basta substituir-
mos Cw por um Ls suficientemente grande, tal que Ls ≥ |Cw| (POP; RADU; KNABNER,
2004; KARPINSKI; POP; RADU, 2017; ILLIANO; POP; RADU, 2020).

5.3 Discretização espacial

Na sequência realizamos a discretização espacial com o MVF para o caso unidi-
mensional, pois a extensão para o caso bidimensional é análoga.

Para isso, consideramos o nosso domínio como um segmento de comprimento L e
consideramos a malha uniforme, Dh = {(xj);xj = (j − 1/2)hx, j = 1, ..., Nx}, sendo Nx

número de volumes no espaço e ∆x = hx = h = L
Nx

a distância espacial das aproximações
entre os volumes (veja FIGURA 17). Note que estamos usando o arranjo colocalizado
da variáveis, ou seja, tais variáveis de interesse são posicionadas no centro do volume de
controle.
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FIGURA 17 – DISCRETIZAÇÃO 1D NO ESPAÇO.

0
×

[pn]j [pw]j
· · ·× ×

L

h/2

h

FONTE: A autora (2022).

Utilizando a discretização por MVF, primeiro precisamos integrar o sistema de
equações. Vamos apresentar neste momento o desenvolvimento da discretização envolvendo
apenas a primeira equação do sistema (5.8), ou seja, a equação para a fase úmida w,
considerando os volumes internos. Para a fase não úmida n, o procedimento é análogo.
Com isso obtemos

∫∫∫
V C

{
Cn+1,m
w

δpn+1,m+1
n − δpn+1,m+1

w

τ
− ∂

∂x

[
Kn+1,m
w

µw

∂

∂x
(δpn+1,m+1

w )
]}

dV =

∫∫∫
V C

{
∂

∂x

[
Kn+1,m
w

µw

∂

∂x
(pn+1,m
w )

]
+ F n+1,m

w

ρw
− θn+1,m

w − θnw
τ

}
dV.

(5.9)

Notemos que essa integral tripla, para o caso 1D, elimina automaticamente as
integrais nas outras duas direções. Portanto, usando o teorema da divergência de Gauss
(KREYSZIG, 2009), calculando as integrais e usando a localização dos volumes na forma
matricial, como mostra a FIGURA 18, obtemos a expressão

[
Cn+1,m
w

δpn+1,m+1
n − δpn+1,m+1

w

τ

]∣∣∣∣∣
(j)
h−

Kn+1,m
w

µw

∣∣∣∣∣
(j+ 1

2 )

∂

∂x
(δpn+1,m+1

w )
∣∣∣∣∣
(j+ 1

2 )
−

Kn+1,m
w

µw

∣∣∣
(j− 1

2 )

∂

∂x
(δpn+1,m+1

w )
∣∣∣∣∣
(j− 1

2 )

 =
Kn+1,m

w

µw

∣∣∣∣∣
(j+ 1

2 )

∂

∂x
(pn+1,m
w )

∣∣∣∣∣
(j+ 1

2 )
−

Kn+1,m
w

µw

∣∣∣∣∣
(j− 1

2 )

∂

∂x
(pn+1,m
w )

∣∣∣∣∣
(j− 1

2 )

+
[
F n+1,m
w

ρw
− θn+1,m

w − θnw
τ

]∣∣∣∣∣
(j)
h.

(5.10)

As aproximações nas faces para as pressões e suas correções são calculadas com os
valores nodais conforme vimos nas equações (2.29) e (2.30). Assim, com essas aproximações
obtemos uma expressão linear do tipo
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FIGURA 18 – DISPOSIÇÃO DE UM VOLUME DE CONTROLE (i,j) E SEUS VIZINHOS
EM UMA MALHA UNIFORME UNIDIMENSIONAL (ESQUERDA) E BIDI-
MENSIONAL (DIREITA).

(j − 1) (j + 1)(j)

h

(i,j − 1) (i,j + 1)

(i+ 1,j)

(i− 1,j)

(i,j)

hx

hy

FONTE: A autora (2022).

[Cw]n+1,m
j

(
[δpn]n+1,m+1

j − [δpw]n+1,m+1
j

) h
τ
−
{

[Kw]n+1,m
j+ 1

2

(
[δpw]n+1,m+1

j+1 − [δpw]n+1,m+1
j

h

)
−

[Kw]n+1,m
j− 1

2

(
[δpw]n+1,m+1

j − [δpw]n+1,m+1
j−1

h

)}
1
µw

=
{

[Kw]n+1,m
j+ 1

2

(
[pw]n+1,m+1

j+1 − [pw]n+1,m+1
j

h

)

−[Kw]n+1,m
j− 1

2

(
[pw]n+1,m+1

j − [pw]n+1,m+1
j−1

h

)}
1
µw

+
 [Fw]n+1,m

j

ρw
−

[θw]n+1,m
j − [θw]nj

τ

h.
(5.11)

Multiplicando toda a expressão por τ
h

temos

[Cw]n+1,m
j

(
[δpn]n+1,m+1

j − [δpw]n+1,m+1
j

)
−
{

[Kw]n+1,m
j+ 1

2

(
[δpw]n+1,m+1

j+1 − [δpw]n+1,m+1
j

)
+

[Kw]n+1,m
j− 1

2

(
[δpw]n+1,m+1

j−1 − [δpw]n+1,m+1
j

)} τ

h2µw
=
{

[Kw]n+1,m
j+ 1

2

(
[pw]n+1,m+1

j+1 − [pw]n+1,m+1
j

)

+[Kw]n+1,m
j− 1

2

(
[pw]n+1,m+1

j−1 − [pw]n+1,m+1
j

)} τ

h2µw
+
τ [Fw]n+1,m

j

ρw
− [θw]n+1,m

j + [θw]nj .
(5.12)

Reorganizando esta equação com o intuito de resolver a variável da correção da
pressão úmida δpw e repetindo todo o processo para a equação da correção da pressão não
úmida δpn, obtemos o seguinte sistema linear que deve ser resolvido a cada linearização,
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Aw B

B An

δpw
δpn

 =
fw
fn

 , (5.13)

sendo que,

Aα =



bc

[aα]j−1 [aα]j [aα]j+1

[aα]j−1 [aα]j [aα]j+1
. . . . . . . . .

[aα]j−1 [aα]j [aα]j+1

[aα]j−1 [aα]j [aα]j+1

bc


, (5.14)

B =



bc

cj

cj
. . .

cj

cj

bc


, (5.15)

onde bc são condições de contorno e:

[aα]j = −[Cw]n+1,m
j + τ

h2µα

(
[Kα]n+1,m

j+ 1
2

+ [Kα]n+1,m
j− 1

2

)
,

[aα]j+1 = − τ

h2µα
[Kα]n+1,m

j+ 1
2
,

[aα]j−1 = − τ

h2µα
[Kα]n+1,m

j− 1
2
,

cj = [Cw]n+1,m
j ,

[fα]j = τ

h2µα
[Kα]n+1,m

j+ 1
2

[pα]n+1,m
j+1 − τ

h2µα

(
[Kα]n+1,m

j+ 1
2

+ [Kα]n+1,m
j− 1

2

)
[pα]n+1,m

j +

τ

h2µα
[Kα]n+1,m

j− 1
2

[pα]n+1,m
j−1 + τ

ρα
[Fα]n+1,m

j − [θα]n+1,m
j + [θα]nj ,

(5.16)

onde [Kα]n+1,m
j− 1

2
e [Kα]n+1,m

j+ 1
2

denotam a condutividade inter-bloco de cada fase, ou seja,
a condutividade nas faces de cada volume, calculado pela média aritmética ou média
harmônica, dependendo da efetividade em cada teste. Para o caso do método de linearização
de L-esquema, basta trocar cj por um L adequado.
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Note que as expressões para todos os coeficientes valem apenas para os volumes
internos. Vejamos agora como fica a discretização nos contornos. Para isso, utilizamos a
ideia de volumes fictícios (veja a FIGURA 12).

Aqui vamos detalhar a condição de contorno de Dirichlet em j = 1, pois, para o
outro contorno, os procedimentos são análogos. Assim, temos que:

[aα]1 = −[Cw]n+1,m
1 + τ

h2µα

(
[Kα]n+1,m

3
2

+ 2[Kα]n+1,m
1
2

)
,

[aα]2 = − τ

h2µα
[Kα]n+1,m

3
2

,

[aα]0 = 0,

c1 = [Cw]n+1,m
1 ,

[fα]1 = τ

h2µα
[Kα]n+1,m

3
2

[pα]n+1,m
2 − τ

h2µα

(
2[Kα]n+1,m

3
2

+ [Kα]n+1,m
1
2

)
[pα]n+1,m

1 +

2τ
h2µα

[Kα]n+1,m
1
2

[pα]cc+ τ

ρα
[Fα]n+1,m

1 − [θα]n+1,m
1 + [θα]n1 ,

(5.17)

onde [pα]cc é a condição de contorno da pressão da fase α aplicada em j = 1.
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6 EXPERIMENTOS NUMÉRICOS

6.1 Testes Numéricos com solução analítica

Nesta seção apresentamos a verificação do código para dois exemplos de problemas
bifásicos em meios porosos rígidos. O primeiro caso é referente ao problema 1D e o segundo
para o problema 2D. Para tal análise realizamos alguns testes utilizando singlegrid (método
de malha única) ou multigrid (com os componentes algoritmos já estabelecidos na seção
3.1). Todos os algoritmos foram implementados no MATLAB R2018b com precisão dupla,
em uma máquina com processador Intel Core i7 2.6 GHz, 8GB de memória RAM e sistema
operacional Windows 10 com 64 bits.

O critério de parada dentro de cada passo de linearização no código usado é
baseado na correção das variáveis de interesse, que no, nosso caso, são as variáveis
correções das pressões úmida e não úmida, δpw e δpn, conforme apresentamos no sistema
dado pela equação (5.13). O tal critério é o máximo, em módulo, destas correções, ou seja,
diff = max(|δpw|, |δpn|), que deve ser menor ou igual a uma tolerância,

diff ≤ TOLlin, (6.1)

em que TOLlin é a tolerância para a linearização.

Como critério de parada do processo iterativo (singlegrid ou multigrid), utilizamos
a norma infinito do resíduo adimensional pela estimativa inicial, isto é,

∥rm∥∞ /
∥∥∥r0

∥∥∥
∞
≤ TOL, (6.2)

em que rm é o resíduo na iteração m e r0 é o resíduo na estimativa inicial e TOL =
TOLMG = TOLSG é a tolerância adotada, em que, TOLMG, TOLSG, são a tolerância para
o método multigrid e singlegrid, respectivamente.

Tanto para os casos unidimensionais, quanto bidimensionais, assumimos por
simplificação em todas as simulações que as saturações residuais foram desconsideradas,
ou seja, Sαr = 0 e a viscosidade em ambos as fases é 1, isto é, µα = 1.

6.1.1 Exemplo 1D

A fim de verificarmos nosso código, realizamos alguns testes com os esquemas de
linearização de Picard modificado e L-esquema. Illiano (2016) utilizou dados simplificados
para obter cálculos fáceis, pois sua intenção também era de verificação. Tais dados são
apresentados no Teste 1 da TABELA 2. Para obter de fato um meio poroso, realizamos
a alteração da variável da porosidade (ϕ), para tal mudança, nominamos como Teste 2,
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sendo apresentado também na TABELA 2. Em ambos os casos, as condições iniciais e de
contorno foram dadas na seção 4.1.

TABELA 2 – PROPRIEDADES.

λw λn K ϕ ρw ρn

Teste 1 (ILLIANO, 2016) 1 2 1 1 1 1
Teste 2 1 2 1 0,9 1 1

FONTE: A autora (2022).

Para analisar a implementação do multigrid fizemos uma comparação com o
singlegrid. Para o singlegrid e multigrid usamos o solver GS acoplado. Além disso, para
o multigrid utilizamos o número máximo de níveis (Lmax) e os seguintes operadores de
transferência entre malhas: restrição através da média aritmética e prolongação através
da interpolação constante por partes (TROTTENBERG; OOSTERLEE; SCHÜLLER,
2001). Neste exemplo, usamos os dados da TABELA 3, sendo que ν1 e ν2 representam o
número de pré e pós-suavização; ν0, o número de suavizações na malha mais grossa; TOL,
a tolerância para os ciclos W ou para o GS; e TOLlin, a tolerância para a linearização.

TABELA 3 – DADOS DE IMPLEMENTAÇÃO.

ν1 ν2 ν0 TOL TOLlin

5 5 5 10e− 5 10e− 8
FONTE: A autora (2022).

Picard modificado

Inicialmente reproduzimos a figura 5.1 de Illiano (2016) que apresenta a solução
numérica e analítica (equação (4.4)) obtida da saturação para os dados do Teste 1 da
TABELA 2 para diversos passos no tempo. Os gráficos gerados são apresentados na
FIGURA 19, onde é possível perceber que todas as nossas soluções (para alguns tamanhos
de malhas e em vários passos de tempo) estão próximas das soluções analíticas de Illiano
(2016). Neste caso, o erro entre elas está na ordem do erro de máquina.

Como na grande parte dos problemas à serem resolvidos, a solução analítica não
é conhecida e, consequentemente, o erro numérico também não. Nestes casos, uma forma
de verificar a solução é mediante um estimador de erro, baseado na ordem aparente (pU).
Quando conhecemos a solução analítica, podemos calcular a ordem efetiva (pE). Essas
ordens são calculadas da seguinte maneira (MARCHI, 2001):
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FIGURA 19 – SATURAÇÃO ANALÍTICA E NUMÉRICA OBTIDA NO PRIMEIRO PASSO
DE TEMPO COM TOLlin = 10−9 E EM DIFERENTES MALHAS: (A) h = τ =
0,1, (B) h = τ = 0,05, (C) h = τ = 0,025 E (D) h = τ = 0,0125.

(a) Sw PARA h = τ = 0,1. (b) Sw PARA h = τ = 0,05.

(c) Sw PARA h = τ = 0,025. (d) Sw PARA h = τ = 0,0125.

FONTE: A autora (2022).

pU =
log( |ψ2−ψ3|

|ψ1−ψ2|)
log(q) e pE =

log( |Ψ−ψ2|
|Ψ−ψ1|)

log(q) , (6.3)

em que Ψ é a solução analítica, ψ1, ψ2 e ψ3 representam três soluções em três malhas distin-
tas com volumes de tamanho h1, h2 e h3, malhas fina, grossa e super grossa, respectivamente,
e q = h2/h1 = h3/h2 é a razão de refino entre as malhas.

Consideramos a norma infinito do erro numérico como variável de interesse,
buscamos verificar se as ordens efetiva (pE) e aparente (pU) do erro de discretização
tendem à ordem assintótica, mediante o refino da malha. Para o problema considerado a
ordem assintótica é pL = 2, dado que utilizamos as aproximações espaciais de segunda
ordem de acurácia, CDS (VERSTEEG; MALALASEKERA, 2007).

Na FIGURA 20 apresentamos os gráficos com os resultados obtidos para pU e pE
com o Teste 1, utilizando o singlegrid. Com o intuito de se isolar apenas os efeitos do erro
de discretização, utilizamos um método direto na resolução dos sistemas que surgem das
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linearizações do método de Picard modificado, onde as simulações foram executadas até
que o diff atingisse o erro de máquina (erro de arredondamento). Dessa forma, tentamos
negligenciar o erro de iteração. Aqui as variáveis de interesse são as normas infinito dos
erros numéricos de pw, pn e θw. Como podemos observar por esta figura, para as malhas
analisadas, pU e pE estão se aproximando de pL = 2, conforme esperado.

FIGURA 20 – ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM PICARD MODIFICADO PARA O TESTE 1.

FONTE: A autora (2022).

Na TABELA 4 apresentamos o tempo de CPU (tCPU) total necessário (que leva
em consideração todos os passos de tempo e suas respectivas linearizações necessárias)
para cada um dos métodos e seu speedup S. S representa quantas vezes o multigrid é
mais rápido que o singlegrid, ou seja, S = tCP U -SG

tCP U -MG . Aqui, optamos apenas pelo refino
espacial, que já é suficiente para verificar as propriedades desejáveis do multigrid diante do
singlegrid. Note que S > 1 em todos os casos, ou seja, o multigrid sempre é mais rápido
que o singlegrid. E ainda mais, a medida que refinamos a malha, S vai ficando cada vez
maior, o que significa que o multigrid vai ficando cada vez mais eficiente, característica
altamente desejável.

Realizamos também um ajuste geométrico do tipo tCPU = c(Nx)p (BURDEN;
FAIRES; BURDEN, 2015) para analisar o desempenho do método, onde c é uma constante
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TABELA 4 – TEMPO DE CPU E SPEEDUP PARA O MULTIGRID E SINGLEGRID.

Nt Nx tCPU - SG tCPU - MG S

16 16 24,860 3,630 6,848
16 32 175,394 10,013 17,516
16 64 1310,780 27,618 47,460
16 128 9892,466 62,690 157,799
FONTE: Adaptado de Oliveira et al. (2020).

relativa ao método e p representa a ordem de complexidade do algoritmo, que no caso do
multigrid, deve estar próximo da unidade (TROTTENBERG; OOSTERLEE; SCHÜLLER,
2001). Considerando o primeiro passo de tempo e a primeira linearização em diferentes
malhas, Nx = 4, 8, 16, 32, 64, 128, 256, 512 e 1024, obtemos c = 0,0127 e p = 1,1103, estando
de acordo com a literatura.

L-esquema

Nas FIGURAS 21 e 22 apresentamos os gráficos com pU e pE obtidos pela equação
(6.3) referente aos dados do Teste 1 da TABELA 3, utilizando o singlegrid, o método de
linearização L-esquema com Ls = 104 e Ls(t) = 5max(|Cw(x,t)|), respectivamente. Note
que estas escolhas de Ls atendem aos critérios estabelecidos por Illiano, Pop e Radu (2020).

Como podemos observar nessas figuras, pU e pE tendem à pL = 2, conforme
esperado. Como o comportamento para os dois valores de Ls são semelhantes e notamos
que para o Ls(t) a convergência foi ligeiramente mais rápida, utilizamos apenas o caso
de Ls(t) para avaliar o Teste 2 (veja dados nas TABELAS 2 e 3), onde novamente pU e
pE, tendem à pL = 2, conforme podemos ver na FIGURA 23. Assim, verificamos que para
ambos os Testes para o problema 1D, as ordens aparentes e efetivas tendem à 2, conforme
esperado.

Realizamos ainda alguns testes variando a escolha do Ls no L-esquema, pois
neste momento o objetivo era analisar o comportamento do método de linearização. Por
isso, para os primeiros testes optamos em utilizar o método direto para a resolução dos
sistemas lineares gerados. Na FIGURA 24, escolhemos um Ls = 104 fixo para todos
os volumes de controle e para todos os passos de tempo. Na FIGURA 25, escolhemos
5max(|Cw(x,t)|) para qualquer volume em cada passo de tempo. Finalmente, na FIGURA
26 foram escolhidos os valores fixos para cada malha, ou seja, Ls = 102, 103 e 104 para as
malhas Nx = Nt = 10, 20 e 40, respectivamente. Nessas figuras (FIGURA 24, 25 e 26), é
possivel perceber que o erro diminui com o refino da malha, como é esperado.

Podemos perceber que entre as três escolhas para Ls, Ls(t) = 5max(|Cw(x,t)|)
obteve melhores resultados, pois a ordem do erro é menor (veja FIGURA 25).
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FIGURA 21 – ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM Ls = 104 PARA O TESTE 1.

FONTE: A autora (2022).

FIGURA 22 – ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM Ls(t) = 5max(|Cw(x,t)|) PARA O TESTE 1.

FONTE: A autora (2022).

Na FIGURA 27 é apresentado o diff em relação ao número de linearizações (itlin)
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FIGURA 23 – ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM Ls(t) = 5max(|Cw(x,t)|) PARA O TESTE 2.

FONTE: A autora (2022).

FIGURA 24 – NORMA INFINITO DO ERRO NUMÉRICO COM Ls = 104 PARA O TESTE
1.

FONTE: A autora (2022).
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FIGURA 25 – NORMA INFINITO DO ERRO NUMÉRICO COM Ls(t) = 5max(|Cw(x,t)|)
PARA O TESTE 1.

FONTE: A autora (2022).

para alguns tamanhos de malhas e Ls = 104 para o Teste 1. Notamos que na primeira
linearização, o diff diminuiu abruptamente e depois mais suavemente. Em relação ao
tamanho de malha, podemos perceber que foi necessário mais linearizações para malhas
mais grosseiras.

Na TABELA 5 é possível percebermos o número de linearizações no último passo
de tempo (itlin) e a média de linearizações no tempo (itmelin) para as diferentes escolhas
de Ls no L-esquema para o Teste 1 até que o critério de parada TOLlin = 10−9 fosse
atingindo. Comparando tais escolhas de Ls, percebemos que uma boa escolha é utilizar
Ls(t) = 5max(|Cw(x,t)|), pois foi a escolha onde o número de iterações se manteve mais
estável e necessitou menor número médio de linearizações para convergir.

Portanto, após essas análises e segundo as pesquisas recentes encontradas na
literatura sobre a escolha de Ls (RADU et al., 2018; ILLIANO; POP; RADU, 2020;
SABATINI et al., 2020), optamos por utilizar Ls = max(|Cw(x,t)|), pois atende ao critério
de convergência indicado por Illiano (2016) (Ls ≥ |Cw(x,t)|), aos testes realizados por
Sabatini et al. (2020) e é uma forma de não se obter valores tão grandes para Ls. Assim,
para obter os próximos resultados, realizamos várias simulações, comparamos os métodos
de linearizações, Picard modificado e L-esquema com Ls = max(|Cw(x,t)|), com o número
máximo de linearizações itmaxlin = 500 e o uso do método multigrid com as componentes
algorítmicas apresentadas na seção 3.1. Os demais dados usados estão na TABELA 3.
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FIGURA 26 – NORMA INFINITO DO ERRO NUMÉRICO COM Ls = 102, 103 E 104 PARA
O TESTE 1.

FONTE: A autora (2022).

TABELA 5 – NÚMERO DE ITERAÇÕES DA LINEARIZAÇÃO COM L-ESQUEMA PARA O
TESTE 1.

Nx = Nt
Ls = 104 Ls(t) = 5max(|Cw(x,t)|) Ls = 102, 103 e 104

itlin itmelin itlin itmelin itlin itmelin

10 18.823 10.815,7 286 288,3 272 10.152
20 19.106 10.361,1 553 540,85 2.383 1.292,5
40 18.767 9.846,58 1.041 990,77 18.767 9.846,58
80 17.974 9.240,51 1.907 1.766,63 – –
160 – – 3.391 3.048,48 – –

FONTE: A autora (2022).

Comparação entre as linearizações de Picard modificado e L-esquema

Mostramos na TABELA 6 a média de linearizações, itmelin, e a média de ciclos
do multigrid, itmeMG. Assim, podemos notar que o número de iterações necessários no
multigrid é sempre pequeno em relação aos métodos de linearizações. Se compararmos
os resultados da coluna itmelin de Ls(t) = 5max(|Cw(x,t)|) da TABELA 5 com a coluna
Teste 1 de L-esquema da TABELA 6 é possível perceber que no segundo caso, o número
de iterações média para a linearização foi menor, isso se deve principalmente ao fato de
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FIGURA 27 – diff NO 1º PASSO DE TEMPO COM Ls = 104 para o Teste 1.

FONTE: A autora (2022).

estarmos utilizando Ls(t) = max(|Cw(x,t)|) e não Ls(t) = 5max(|Cw(x,t)|). Percebemos
também que para esse problema, o Picard modificado necessita de um número bem menor
de iterações que o L-esquema, tornando-se bem mais eficiente. Estes resultados também
podem ser vistos em Oliveira et al. (2020) (Anexo A).

TABELA 6 – ITERAÇÕES DO PICARD MODIFICADO E L-ESQUEMA COM MULTIGRID

Nx = Nt

Picard modificado L-esquema
Teste 1 Teste 2 Teste 1 Teste 2

itmelin itmeMG itmelin itmeMG itmelin itmeMG itmelin itmeMG

4 5,25 1,50 5,25 1,50 16,25 1,12 16,00 1,13
8 4,63 2,50 4,63 2,50 34,13 1,12 33,75 1,12
16 4,31 2,50 4,31 2,50 65,19 1,06 64,69 1,06
32 3,75 2,67 3,72 2,67 117,66 1,03 117,00 1,03
64 3,22 2,67 3,22 2,67 228,94 1,02 244,20 1,02

FONTE: Adaptado de Oliveira et al. (2020).

Na FIGURA 28 apresentamos a norma infinito da diferença entre as soluções
analitícas e numéricas de pα versus Nx = Nt = 4 até 64 para os esquemas de linearização
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estudados (Picard modificado e L-esquema com Ls = max|Cw(x,t)|), tanto para o Teste
1 (T1) como para o Teste 2 (T2). Os resultados obtidos mostram que, independente do
esquema de linearização usado, o erro são aproximadamente iguais e diminuem com o
refino da malha.

FIGURA 28 – NORMA INFINITO DO ERRO NUMÉRICO VERSUS Nx = Nt PARA OS
TESTES 1 E 2, COM PICARD MODIFICADO E L-ESQUEMA.

FONTE: Adaptado de Oliveira et al. (2020).

6.1.2 Exemplos 2D

A fim de verificar nosso código em relação ao problema 2D, utilizamos o exemplo
com domínio, solução analítica conhecida, condições iniciais e de contorno definidos na
seção 4.2 (proposta em Kvashchuk (2015)) e que possui os seguintes dados:

• Teste 3: λw = 1
4 , λn = 3

4 , pc = 1− S2
w, K = 1 e ϕ = ρα = 1.

Realizamos neste momento os testes apenas com o método direto, considerando o
critério de parada TOLlin = 1,0e− 09 para o processo iterativo do método de linearização
de Picard Modificado.
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Os resultados que obtivemos para a saturação Sw são apresentados na FIGURA
29, sendo possível perceber que a nossa solução numérica é aproximadamente igual a
solução analítica, com erros na ordem 10−4, resultados muito próximos aos obtidos em
Kvashchuk (2015).

FIGURA 29 – SOLUÇÃO NUMÉRICA, ANALÍTICA E ERRO DE Sw PARA O TEMPO tf = 1
COM Nx = Ny = Nt = 20.

FONTE: A autora (2022).

Nas FIGURAS 30 e 31 apresentamos as soluções numéricas e analíticas das
pressões úmida (pw) e não úmida (pn), respectivamente. Aqui podemos perceber também
que as soluções numéricas estão de acordo com as analíticas.

FIGURA 30 – (a) SOLUÇÃO NUMÉRICA E (b) ANALÍTICA DE pw OBTIDA NO PASSO
DE TEMPO tf = 1.

(a) pw com hx = hy = τ = 0,05. (b) pwana.

FONTE: A autora (2022).

Na FIGURA 32 apresentamos os valores de pU e pE obtidos pela equação (6.3)
para as variáveis pw, pn e Sw referente aos dados do Teste 3. Note que pU e pE tendem a
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FIGURA 31 – (a) SOLUÇÃO NUMÉRICA E (b) ANALÍTICA DE pn NO PASSO DE TEMPO
tf = 1.

(a) pn com hx = hy = τ = 0,05. (b) pnana.

FONTE: A autora (2022).

ordem assintótica, pL = 2 com o refino da malha.

FIGURA 32 – ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM PICARD MODIFICADO PARA O TESTE 3.

FONTE: A autora (2022).
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Na FIGURA 33 apresentamos a norma infinito do erro numérico de pα versus
Nx = Ny = Nt = 4 até 64 para o Teste 3, onde é possível perceber que o erro diminui com
o refino da malha.

FIGURA 33 – NORMA INFINITO DO ERRO NUMÉRICO VERSUS Nx = Ny = Nt PARA O
TESTE 3.

FONTE: Adaptado de Oliveira et al. (2020).

Examinamos também a convergência do método de Picard modificado no problema
2D, analisando os erros para diferentes discretizações e comparamos com os resultados
apresentados por Kvashchuk (2015), apresentados na TABELA 7 (onde se lê dt em
Kvashchuk (2015), leia-se τ no presente trabalho). Aqui apresentamos apenas os resultados
com o uso do método multigrid, com seu respectivo critério de parada TOLMG = 1,0e−05 e
o processo iterativo dos métodos de linearização com critério de parada TOLlin = 1,0e−09.
Devemos reforçar que a pressão (p) que está na TABELA 7 representa p̄ = (pw+pn)/2. Para
comparação, os nossos resultados, obtidos com Picard modificado, estão sendo apresentados
na TABELA 8.

Na TABELA 8, mostramos que o erro na norma-2 para as variáveis da saturação
e em ambas as pressões (Ei

Sw
, Ei

pw
e Ei

pn
, respectivamente), juntamente com a redução do

erro correspondente (Ei−1
γ /Ei

γ, com γ a variável correspondente). Com isso podemos ver
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que os resultados obtidos estão de acordo com a estimativa do erro teórico estabelecido
pela literatura, com segunda ordem de convergência.

TABELA 7 – ERROS NA NORMA-2 DA PRESSÃO (p̄) E SATURAÇÃO (Sw) ÚMIDA PARA
DIFERENTES VALORES DOS PARÂMETROS DE DISCRETIZAÇÃO ESPA-
CIAL E TEMPORAL COM tf = 1 E OS DADOS DO TESTE 3.

i h = τ Ei
p̄ Ei

Sw
Ei−1
p̄ /Ei

p̄ Ei−1
Sw
/Ei

Sw

1 0,1 2,296e-04 0,0012
2 0,05 4,938e-05 2,634e-04 4,6491 4,4626
3 2,5e-02 1,222e-05 6,599e-05 4,0401 3,9917
4 1,25e-02 3,097e-06 1,676e-05 3,9465 3,9367
5 6,25e-03 7,665e-07 4,159e-06 4,0405 4,0309

FONTE: Adaptada de Kvashchuk (2015).

TABELA 8 – ERROS NA NORMA-2 DAS PRESSÕES (pw, pn) E SATURAÇÃO (Sw) PARA
DIFERENTES VALORES DOS PARÂMETROS DE DISCRETIZAÇÃO ESPA-
CIAL E TEMPORAL, COM tf = 1, PARA O TESTE 3.

i h = τ Ei
pw

Ei
pn

Ei
Sw

Ei−1
pw
/Ei

pw
Ei−1
pn
/Ei

pn
Ei−1
Sw
/Ei

Sw

1 0,1 6,884e-04 3,251e-04 3,441e-04
2 0,05 1,729e-04 8,152e-05 8,668e-05 3,9809 3,9876 3,9695
3 2,5e-02 4,328e-05 2,040e-05 2,171e-05 3,9950 3,9961 3,9926
4 1,25e-02 1,082e-05 5,102e-06 5,430e-06 3,9988 3,9987 3,9984
5 6,25e-03 2,706e-06 1,276e-06 1,358e-06 3,9997 3,9995 3,9998

FONTE: A autora (2022).

Note que qualitativamente as TABELAS 7 e 8 têm o mesmo padrão. Entretanto,
pequenas diferenças quantitativas são justificáveis. Kvashchuk (2015) usa p̄ ao invés de
pw e pn, como usamos neste trabalho. Além disso, para Kvashchuk (2015) as variáveis
de interesse são p̄ e Sw, enquanto que neste trabalho são pw e pn, o que significa que
as variáveis de interesse, e obviamente, as variáveis soluções dos sistemas, são variáveis
distintas.

Na TABELA 9 mostramos itmelin, número médio de iterações na linearização.
Para esse exemplo específico, realizamos a comparação dos métodos de Picard modificado e
L-esquema com Ls = max(|Cw(x,t)|). Notamos que Picard modificado necessita de menos
iterações que L-esquema para atender o critério de parada, se mostrando mais eficiente.

Se compararmos o número de iterações média necessárias para o exemplo 2D da



Capítulo 6. Experimentos Numéricos 75

TABELA 9 – ITERAÇÕES DOS MÉTODOS DE PICARD MODIFICADO E L-ESQUEMA
PARA O TESTE 3.

Nx = Ny = Nt
itmelin

Picard modificado L-esquema
10 3,00 6,00
20 3,00 6,10
40 3,00 6,00
80 3,00 5,89

FONTE: A autora (2022).

TABELA 9 (Teste 3) com o exemplo 1D da TABELA 6 (Testes 1 e 2), podemos perceber
que o comportamento geral é o mesmo: Picard modificado necessita menos iterações que
L-esquema.

Como o Picard modificado tem se mostrado mais eficiente que o L-esquema,
optamos em utilizar apenas o método de Picard modificado para os próximos testes.

6.2 Testes numéricos realísticos

O foco nesta seção foi a construção de um exemplo de um problema de escoamento
multifásico em meios porosos sem solução analítica conhecida, para com isso, mostrar o quão
eficiente e robusto é a metodologia proposta nesta tese. Para tanto, apresentamos resultados
obtidos para uma sequência de problemas (Testes) 2D com pequenas modificações em cada
um deles até evoluir a um problema mais realístico. Para tal análise realizamos alguns
testes utilizando multigrid (com as componentes algorítmicas já estabelecidas na seção
3.1).

Nesta seção o multigrid tem como critérios de parada TOLMG = 1,0e − 05, o
processo iterativo dos métodos de linearização com critério de parada TOLlin = 1,0e− 09
e a porosidade phi = 0,9.

6.2.1 Exemplos 2D

Para análise dos resultados envolvendo o problema 2D utilizamos alguns dados
abordados por Kvashchuk (2015), conforme seguem os testes a seguir.

Teste 4

Diferentemente do Teste 3, para o Teste 4, usamos dados baseados na para-
metrização de Van Genuchten, que é baseada em experimentos práticos. Neste caso,
a permeabilidade relativa de cada fase não possuem solução analítica e dependem da
saturação do fluido (equação (2.13)),
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krw(Sw) =
√
S̄w(1− (1− S̄w

1/m)m)2,

krn(Sw) =
√

1− S̄w(1− S̄w
1/m)2m,

onde o parâmetro de Van Genuchten usado aqui será igual à n = 2, ou seja, m = 1/2
(KVASHCHUK, 2015). Adicionalmente, a pressão capilar é dada pela equação polinomial,
pc = 1− S2

w.

Note que neste Teste 4 temos uma situação um pouco mais realística, dado que
estas permeabilidades geram mobilidades λα (α = w e n) dependentes de Sw e não mais
valores constantes, como no Teste 3.

Os resultados obtidos por Kvashchuk (2015), para a queda do erro com o refino da
malha medido na norma-2, usando a formulação p̄ — Sw, são apresentados na TABELA
10. Para as nossas simulações os resultados obtidos são apresentados na TABELA 11. Note
que há concordância entre os dados destas tabelas.

TABELA 10 – ERROS NA NORMA-2 DA PRESSÃO (p̄) E SATURAÇÃO (Sw) PARA DIFE-
RENTES VALORES DOS PARÂMETROS DE DISCRETIZAÇÃO ESPACIAL
E TEMPORAL, COM tf = 1 E OS DADOS DO TESTE 4.

i h = τ Ei
p̄ Ei

Sw
Ei−1
p̄ /Ei

p̄ Ei−1
Sw
/Ei

Sw

1 0,1 9,910e-05 1,574e-04
2 0,05 2,200e-05 3,893e-05 4,5046 4,0433
3 2,5e-02 5,588e-06 9,991e-06 3,9372 3,8964
4 1,25e-02 1,433e-06 2,548e-06 3,9007 3,9210
5 6,25e-03 3,587e-07 6,3823e-07 3,9940 3,9923

FONTE: Adaptada de Kvashchuk (2015).

TABELA 11 – ERROS NA NORMA-2 DA PRESSÕES (pw, pn) E SATURAÇÃO (Sw) PARA
DIFERENTES VALORES DOS PARÂMETROS DE DISCRETIZAÇÃO ESPA-
CIAL E TEMPORAL, COM tf = 1 PARA O TESTE 4.

i h = τ Ei
pw

Ei
pn

Ei
Sw

Ei−1
pw
/Ei

pw
Ei−1
pn
/Ei

pn
Ei−1
Sw
/Ei

Sw

1 0,1 2,986e-04 3,370e-04 2,880e-04
2 0,05 8,456e-05 8,516e-05 9,065e-05 3,5312 3,9573 3,1776
3 2,5e-02 2,217e-05 2,135e-05 2,425e-05 3,8149 3,9892 3,7379
4 1,25e-02 5,614e-06 5,341e-06 6,165e-06 3,9481 3,9972 3,9335
5 6,25e-03 1,408e-06 1,335e-06 1,547e-06 3,9868 3,9992 3,9852

FONTE: A autora (2022).
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Na TABELA 12 mostramos o número médio de iterações na linearização (itmelin)
para o uso do método de Picard modificado para o Testes 4. Podemos notar que a medida
que a malha se torna mais refinada, o número médio de iterações necessárias diminui,
propriedade altamente desejável.

TABELA 12 – ITERAÇÕES DO MÉTODO DE PICARD MODIFICADO PARA O TESTE 4.

Nx = Ny = Nt itmelin

10 4,70
20 4,45
40 3,98
80 3,90
160 3,61

FONTE: A autora (2022).

Teste 5

Os dados utilizados no Teste 5 são baseados na parametrização de Van Genuchten
tanto para a permeabilidade relativa de cada fase quanto para a pressão capilar. Note
que, diferentemente do Teste 4, aqui estamos supondo também que a pressão capilar não
possui solução analítica.

As permeabilidades relativas de Van Genuchten são apresentadas na equação
(2.13), e relembradas nos dados do Teste 4, e a pressão capilar dada pela equação (2.9),

pc(Sα) = pe(S̄α
−1/m − 1)1/n,

com os parâmetros de Van Genuchten igual à n = pe = 2.

Apresentamos os resultados apresentados por Kvashchuk (2015) na TABELA 13,
para os dados deste Teste.

Calculamos os erros entre a solução analítica e numérica para diferentes valores
na discretização no passo de tempo (τ) e no espaço (h = hx = hy). Na TABELA 14,
mostramos o erro na norma-2 para as variáveis da saturação e em ambas as pressões (Ei

Sw
,

Ei
pw

e Ei
pn

, respectivamente), juntamente com a redução do erro correspondente (Ei−1
γ /Ei

γ ,
com γ a variável correspondente). Com isso podemos ver que os resultados obtidos estão
de acordo com os resultados de Kvashchuk (2015) e de acordo com a estimativa do erro
teórico estabelecido pela literatura, com segunda ordem de convergência.

O número de ciclos do multigrid no último passo de tempo (itMG), a média de
ciclos necessários do multigrid (itmeMG), o número de linearizações no último passo de
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TABELA 13 – ERROS NA NORMA-2 DA PRESSÃO (p̄) E SATURAÇÃO (Sw) PARA DIFE-
RENTES VALORES DOS PARÂMETROS DE DISCRETIZAÇÃO ESPACIAL
E TEMPORAL, COM tf = 1 E OS DADOS DO TESTE 5.

i h = τ Ei
p̄ Ei

Sw
Ei−1
p̄ /Ei

p̄ Ei−1
Sw
/Ei

Sw

1 0,1 1,258e-04 9,380e-05
2 0,05 3,719e-05 2,261e-05 3,3823 4,1491
3 2,5e-02 1,085e-05 5,961e-06 3,4280 3,7928
4 1,25e-02 2,796e-06 1,561e-06 3,8796 3,8183

FONTE: Adaptada de Kvashchuk (2015).

TABELA 14 – ERROS NA NORMA-2 DA PRESSÕES (pw, pn) E SATURAÇÃO (Sw) PARA
DIFERENTES PASSOS NO TEMPO E TAMANHOS DE MALHAS, COM
tf = 1 PARA O TESTE 5.

i h = τ Ei
pw

Ei
pn

Ei
Sw

Ei−1
pw
/Ei

pw
Ei−1
pn
/Ei

pn
Ei−1
Sw
/Ei

Sw

1 0,1 1,261e-03 2,755e-03 1,883e-04
2 0,05 3,276e-04 6,995e-04 4,726e-05 3,8483 3,9389 3,9847
3 2,5e-02 8,274e-05 1,756e-04 1,183e-05 3,9599 3,9843 3,9943
4 1,25e-02 2,073e-05 4,393e-05 2,960e-06 3,9903 3,9960 3,9980
5 6,25e-03 5,186e-06 1,099e-05 7,400e-07 3,9979 3,9990 3,9992

FONTE: A autora (2022).

tempo (itlin) e a média de iterações para o esquema de linearização (itmelin) com o método
de Picard modificado para este teste estão na TABELA 15.

TABELA 15 – NÚMERO DE ITERAÇÕES DO MULTIGRID E DA LINEARIZAÇÃO DE PI-
CARD MODIFICADO PARA DIFERENTES VALORES DOS PARÂMETROS
DE DISCRETIZAÇÃO PARA O TESTE 5.

h = τ itMG itmeMG itlin itmelin

0,1 34 50,22 6 5,7
0,05 20 20,27 6 5,25

2,5e-02 8 9,63 5 4,78
1,25e-02 5 5,82 5 4,51
6,25e-03 4 4,00 5 4,03

FONTE: A autora (2022).

Podemos observar por esta tabela, que o número necessário de linearizações do
Picard modificado para a convergência do algoritmo é pequena em todos os casos, dando
origem a um algoritmo robusto independente dos valores utilizados como parâmetros de
discretização, tanto espacial, como temporal. Além disso, para valores suficientemente
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pequenos de h e τ , o número de iterações do multigrid é sempre pequeno, propriedade
altamente desejável.

Teste 6

A partir deste momento, os próximos testes foram considerados para problemas
sem soluções analíticas conhecidas p = (pw + pn)/2 e Sw, no intuito de comprovar a
eficiência e robustez do nosso algoritmo. Além disso, consideramos o termo fonte nulo
(Fw = Fn = 0), permeabilidades relativas e pressão capilar de Van Genuchten e mantemos
as mesmas condições iniciais e de contorno de Dirichlet utilizadas no Teste anterior.

A TABELA 16 apresenta número de médio de linearizações (Picard modificado)
e número médio de ciclos de multigrid, com o refino da malha. Nesta tabela notamos o
baixo número, tanto para itmelin, quanto para itmeMG.

TABELA 16 – NÚMERO DE ITERAÇÕES MÉDIAS DE LINEARIZAÇÕES E MULTIGRID
PARA O TESTE 6.

h = τ itmelin itmeMG

0,1 1 3
0,05 1 4

2,5e-02 1 4
1,25e-02 1 4
6,25e-03 1 4

FONTE: A autora (2022).

Teste 7

Como no Teste 6, aqui continuamos a considerar Fw = Fn = 0, condições de
contorno e inicial do Teste 5, pressão capilar de Van Genuchten, porém, vamos admitir
um campo de permeabilidade randômica para krw e krn em nosso domínio (veja FIGURA
34 para krw). Neste caso, usamos a função random do MATLAB.

Na TABELA 17 encontramos o número médio de linearizações (Picard modificado)
e número médio de ciclos de multigrid conforme o refino da malha. Podemos perceber que
tanto o multigrid quanto o Picard modificado convergem rapidamente, pois necessitam de
poucas iterações.

Teste 8

Diferentemente do Teste 7, fizemos uma pequena modificação nas condições de
contorno no intuito de inserirmos condição de Neumann na fronteira sul e mantermos
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FIGURA 34 – CAMPO DE PERMEABILIDADE krw, PARA Nx ×Ny = 64× 64.
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FONTE: A autora (2022).

TABELA 17 – NÚMERO DE ITERAÇÕES PARA O TESTE 7.

h = τ itmelin itmeMG

0,1 1 3
0,05 1 4

2,5e-02 1 4,8
1,25e-02 1 4,81
6,25e-03 1 5

FONTE: A autora (2022).

Dirichlet nas demais. As novas condições adotadas aqui serão dadas a seguir.

As TABELAS 18 e 19 mostram o número médio de linearizações e número médio
de ciclos do multigrid com diferentes parâmetros de discretização. Na TABELA 18 foram
feitas 3 variações no Teste 8: no Teste 8.1 consideramos a condição de contorno de Neumann
nula para a variável pn, ou seja, ∂pn(x⃗S ,t)

∂y
= 0 com x⃗S = (1,y); no Teste 8.2 consideramos

a condição de Neumann nula para a variável pw, ou seja, ∂pw(x⃗S ,t)
∂y

= 0; já no Teste 8.3,
consideramos a condição de Neumann nula para ambas as variáveis, pn e pw.

Na TABELA 19 foram feitas outras 3 variações no Teste 8. No Teste 8.4 usamos a
condição de contorno de Neumann dada por uma função para pw e uma constante não nula
para pn. Neste caso, para pw temos ∂pw(x⃗S ,t)

∂y
conhecida, com pw dada pelas equações (4.5)

e (4.8); e para pn, a média do valor de ∂pn(x⃗S ,t)
∂y

conhecida, com pn dada pelas equações
(4.5) e (4.8). No Teste 8.5 fizemos o contrário, a constante não nula para pw e a função
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TABELA 18 – NÚMERO MÉDIO DE ITERAÇÕES PARA A CONDIÇÃO DE CONTORNO
DE NEUMANN NULA NA FRONTEIRA SUL PARA OS TESTES 8.1, 8.2 E
8.3.

h = τ
Teste 8.1 Teste 8.2 Teste 8.3

itmelin itmeMG itmelin itmeMG itmelin itmeMG

2,5e-01 4 3 4 3.25 1 3
1,25e-01 4 4 4 4 1 4
6,25e-02 4 5,36 4 5,2 1 4,38
3,13e-02 4 5,79 4 5,51 1 4,97
1,56e-02 4 5,57 4 5,5 1 5

FONTE: A autora (2022).

para pn, seguindo a mesma ideia anterior. Já no Teste 8.6, usamos a constante não nula
para ambas as variáveis.

TABELA 19 – NÚMERO MÉDIO DE ITERAÇÕES PARA CONDIÇÃO DE CONTORNO DE
NEUMANN NÃO NULA NA FRONTEIRA SUL PARA OS TESTES 8.4, 8.5 E
8.6.

h = τ
Teste 8.4 Teste 8.5 Teste 8.6

itmelin itmeMG itmelin itmeMG itmelin itmeMG

2,5e-01 4 3 4 3,25 2,75 3,67
1,25e-01 4 4 4 4 2,5 4
6,25e-02 4 5,36 4 5,2 2,5 5,37
3,13e-02 4 5,79 4 5,52 2,44 5,67
1,56e-02 4 5,57 4 5,5 2,25 5,69

FONTE: A autora (2022).

Podemos perceber que para as variações do Teste 8, o número médio de iterações
necessárias tanto para a linearização, quanto para o multigrid foram pequenas. O que
confirma que o nosso algoritmo funciona bem para esses casos também.

Teste 9

No Teste 9 fizemos uma mudança em relação à malha. Aqui utilizamos uma malha
anisotrópica (anisotropia no sentido geométrico), onde o número de volumes da direção
x é diferente da direção y, implicando hx ̸= hy. Os outros dados e informações são os
mesmos do Teste 8.6: termo fonte nulo, permeabilidades randômicas, condição de contorno
de Neumann na fronteira sul e Dirichlet nas demais.

Na TABELA 20 mostramos o número de iterações médias da linearização de Picard



Capítulo 6. Experimentos Numéricos 82

modificado e ciclos mutligrid com diferentes refinos de malha. Note que os resultados foram
satisfatórios com relação à linearização, mostrando a eficiência e robustez do algoritmo
para esse caso também. Entretanto, o número médio de ciclos multigrid é maior que
em casos anteriores e cresce à medida que cresce o tamanho do problema (propriedade
indesejada). Voltaremos a discutir esta questão no Teste 11.

TABELA 20 – NÚMERO DE ITERAÇÕES MÉDIAS DO TESTE 9 - ANISOTROPIA GEO-
MÉTRICA.

Nx ×Ny Nt hx = τ hy itmelin itmeMG

4× 32 4 2,5e-01 0,031 4,25 85,67
8× 64 8 1,25e-01 0,016 4,13 90,96

16× 128 16 6,25e-02 0,008 4,13 95,27
32× 256 256 3,13e-2 0,004 4,18 98,38

FONTE: A autora (2022).

Teste 10

No Teste 10, mantemos as mesmas informações e dados do Teste 9, mudamos
apenas para um domínio retangular Ω = (0,1)× (0,8) com o número de volumes na direção
x diferente da direção y, Nx ̸= Ny, mas com hx = hy, ou seja, domínio retangular com
uma malha isotrópica. Vamos admitir um novo campo de permeabilidade randômica para
krw nesse novo domínio retangular (veja FIGURA 35). Neste caso, usamos novamente a
função random do MATLAB.

A TABELA 21 mostra o número médio de linearizações do Picard modificado e o
número médio de ciclos de multigrid, para diferentes malhas e passos no tempo.

TABELA 21 – NÚMERO MÉDIO DE LINEARIZAÇÕES E CICLOS DE MULTIGRID PARA
O TESTE 10 - MALHA ISOTRÓPICA E DOMÍNIO RETANGULAR.

Nx ×Ny Nt h = τ itme_lin itme_MG

4× 32 4 2,5e-01 4 4,95
8× 64 8 1,25e-01 4 4,59

16× 128 16 6,3e-02 4 5,30
32× 256 256 3,13e-02 4 5,45

FONTE: A autora (2022).

Teste 11
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FIGURA 35 – CAMPO DE PERMEABILIDADE krw, PARA Nx ×Ny = 64× 64 PARA DOMÍ-
NIO RETANGULAR.
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FONTE: A autora (2022).

Todos os dados do Teste 10 foram mantidos, exceto o número de volumes na
direção x igual ao da direção y, Nx = Ny, com hx ≠ hy, ou seja, domínio retangular com
anisotropia geométrica.

A TABELA 22 mostra o número médio de linearizações do Picard modificado e o
número médio de ciclos de multigrid, para diferentes malhas e passos no tempo para este
teste.

Podemos perceber que a metodologia também funcionou neste caso de anisotropia,
como pode ser visto pelos resultados satisfatórios com relação à linearidade. Porém, foram
necessários um número grande de ciclos do multigrid para este caso (veja também no Teste
9). Note também que o número médio de ciclos cresce à medida que cresce o tamanho do
problema (propriedade indesejada). Entretanto, isso gera um possível tema para trabalhos
futuros, por exemplo, a utilização de um solver linha na direção da anisotropia, pois este
tipo de solver tem um bom comportamento neste tipo de prolema.

Teste 12

Diferentemente ao caso isotrópico tratado no Teste 10, no Teste 12 temos o objetivo
de abordar um problema ainda mais realístico. Para isso, aqui utilizamos todos os dados do
Teste 10, mas mudando as condições de contorno: Neumann na fronteira sul (∂pw(x⃗S ,t)

∂y
= −1

e ∂pn(x⃗S ,t)
∂y

= 0) e Dirichlet no restante.
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TABELA 22 – NÚMERO DE ITERAÇÕES MÉDIAS DE LINEARIZAÇÃO E MULTIGRID
PARA ANISOTRÓPICA GEOMÉTRICA E DOMÍNIO RETANGULAR.

Nx = Ny = Nt hx = τ hy itmelin itmeMG

4 2,5e-01 2,000 3 5,33
8 1,25e-01 1,000 3,88 15,72
16 6,25e-02 0,500 4 36,98
32 3,13e-02 0,250 4 58,73
64 1,56e-02 0,250 4 73,43

FONTE: A autora (2022).

Além disso, vamos admitir um novo campo de permeabilidades randômicas nesse
domínio retangular para um intervalo real de variação dessa permeabilidade (veja FIGURA
36 para krw). Segundo Knappett e Craig (2019), essa variação de permeabilidade abrange
solos desde cascalho, areia limpa, até areia muito fina, argila não fissurada, entre outros.

FIGURA 36 – CAMPO DE PERMEABILIDADE krw, PARA Nx ×Ny = 64× 512.
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FONTE: A autora (2022).

Apresentamos na TABELA 23, o número médio de linearizações de Picard modifi-
cado e ciclos multigrid para diferentes tamanhos de malhas. Além disso, exibimos na última
coluna dessa tabela, a média aritmética do fator de convergência assintótica do multigrid
(ρM), calculado da seguinte forma (TROTTENBERG; OOSTERLEE; SCHÜLLER, 2001),
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ρM = 1
itlin

itlin∑
j=1

ρjm, onde ρjm = itMG

√√√√ ||RitMG||∞
||R0||∞

. (6.4)

Como podemos observar, o método proposto necessita de algumas poucas linea-
rizações para atingir o critério de parada estipulado, bem como um pequeno número de
iterações de multigrid em cada etapa de linearização. Observe que os resultados apresenta-
dos também são robustos com relação aos parâmetros de discretização. Esses resultados
mostram a robustez e eficiência da solução do método proposto.

TABELA 23 – NÚMERO DE ITERAÇÕES PARA O MULTIGRID E PICARD MODIFICADO,
JUNTAMENTE COM O FATOR DE CONVERGÊNCIA ASSINTÓTICO, PARA
DIFERENTES PARÂMETROS DE DISCRETIZAÇÃO.

Nx ×Ny Nt h = τ itMG itmeMG itlin itmelin ρM

4× 32 4 2,5e-01 4 3,13 4 4 0,0235
8× 64 8 1,25e-01 5 3,84 4 4 0,0468

16× 128 16 6,25e-02 5 3,53 4 4 0,0267
32× 256 32 3,13e-02 6 3,8 4 4 0,0483
64× 512 64 1,56e-02 5 4,33 4 4 0,0631

FONTE: A autora (2022).

Portanto, podemos notar que em todos os testes aqui realizados (desde o Teste 1
até o Teste 12), a metodologia proposta para os problemas de escoamentos multifásicos
em meios porosos rígidos, se mostrou eficiente e robusta, com melhor performance em
problemas isotrópicos.
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7 CONSIDERAÇÕES FINAIS

7.1 Conclusões gerais

Neste trabalho analisamos o problema de escoamento bifásico em meios poro-
sos rígidos, para os casos uni e bidimensionais. Utilizamos alguns exemplos numéricos
da literatura para poder comparar dois métodos de linearização, Picard modificado e
L-esquema, juntamente com o multigrid. Inicialmente realizamos alguns testes a fim de
verificar nosso código, comparamos as soluções numéricas com soluções analíticas e poste-
riormente analisamos, no caso 1D, o speedup do multigrid em relação ao singlegrid, com
bons resultados. Com isso, pudemos então gerar alguns resultados e perceber que o uso dos
métodos de linearização com o método multigrid, geraram bons resultados, pois o número
de iterações necessários tanto para a linearização quanto para o multigrid, foram baixas. O
erro numérico teve um bom comportamento, pois a medida que refinamos a malha, o erro
foi diminuindo e na ordem em que isto deveria ocorrer. Portanto, podemos concluir que
a combinação que propomos, foi eficiente e robusta: formulação mista pressão-saturação,
discretização temporal com Euler implícito, discretização espacial com MVF usando arranjo
colocalizado, Picard modificado (com melhor desempenho) ou L-esquema nas linearizações,
Gauss-Seidel acoplado como solver e multigrid com componentes algorítmicas padrão.

7.2 Principais contribuições

1. Aplicação da formulação mista pressão-saturação para um problema bifásico em
meio poroso rígido, utilizando as pressões como variáveis principais, na construção
do sistema de equações diferenciais;

2. Análise dos métodos de linearizações, Picard modificado e L-esquema, mostrando a
eficiência e robustez de ambos devido ao pouco número de iterações necessárias para
a convergência nos diversos testes propostos;

3. Ao utilizar tais linearizações, geramos um sistema linear de equações elípticas, em
que o multigrid tem comprovada eficiência, e verificadas pela boa convergência do
método em nossos testes.

7.3 Propostas de trabalhos futuros

1. Fazer uma análise sobre os parâmetros ótimos de Van Genuchten e Brooks-Corey;

2. Comparar e analisar as aproximações numéricas das permeabilidades relativas e
pressão capilar dadas por Van Genuchten e por Brooks-Corey;
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3. Aplicar um solver linha para resolver o problema de escoamento bifásico anisotrópico;

4. Desenvolver métodos de resolução eficientes e robustos, baseados no uso do método
multigrid, para o problema de escoamento multifásico em meios porosos deformáveis
com o objetivo de fazer simulações em sistema de grande porte relacionadas com
aplicações práticas.
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Abstract. Applications of two-phase problems in porous media are common in Geomechanics, Hydrogeology,
Engineering and Biomedicine. There are different formulations when working on two-phase problems, in this
work we have chosen to use the pressure-pressure formulation. The equations system generated is a strongly non-
linear system of coupled partial differential equations. Thus, the modified Picard and L-scheme to perform its
linearization, the Finite Volume Method for the discretization of the equation in space and implicit Euler scheme
for the discretization of the equation in time were used. The systems of linear equations generated were solved
by the lexicographic Gauss-Seidel solver in a coupled way. In this work, we proposed to use multigrid method
with the Correction Scheme and W-cycle, in order to accelerate the convergence of this solver. Based on the tests
performed using an example with a known analytical solution, it was possible to notice the convergence to the
solution with a few iterations and little computational time.

Keywords: Two-phase flow, Linearization methods, Coupled problem, Finite Volume Method, Implicit Euler.

1 Introduction

Problems with the two-phase flow in porous media are found in Engineering, Geomechanics, Hydrogeology
and Biomedicine applications. For the study of these problems, different mathematical models are generated to
represent them, depending on the pressure, saturation and relative permeability, being subsequently solved by
numerical simulations. Independent of how these models are formulated, coupled differential equations and highly
non-linear systems are generated. Therefore, the challenge is to find robust and efficient methods for the numerical
solution.

Many articles are found in the literature involving two-phase flow in porous media, using different methods
and approaches to variables. A numerical algorithm, based in modified Picard linearization is proposed by Celia
and Binning [1] for simulation of these problems, considering unsaturated soils and pressure-pressure formulation.
Kvashchuk and Radu [2] presented a new implicit scheme based in IMPES (Implicit Pressure Explicit Saturation),
that obtained a superior performance in relation to the standard IMPES.

Considering the two-phase flow in porous media with dynamic capillarity effects, Karpinski et al. [3] pro-
posed a linearization scheme, called L-scheme, that does not require regularization step, besides not using derivate
calculations like the Picard and Newton method. Proved that the scheme is robust and linearly convergent. That
procedure linearization was also presented by Pop et al. [4] to solve non-linear elliptical problems.

Illiano et al. [5] applied three techniques, Newton, modified Picard and L-scheme methods, for linearization
of the surfactant transport in porous media. They concluded that monolithic Newton is the only method with
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quadratic convergence, modified Picard and Newton generated ill-conditioned matrices and that solvers based on
L-scheme were the most robust because produce well-conditioned linear systems.

Because this problem is strongly non-linear, some works consisted of manipulating the expressions that in-
terfere in this fact. Li and Horne [6] compared some methods, for example, Purcell and Brooks-Corey methods,
to calculate the relative permeability of the capillary pressure in a consolidated wetting porous media. Being that,
permeability can be satisfactory if a suitable model is chosen for the problem under study.

Most of the literature found has the main focus on the analysis of different linearization methods. But,
thinking about the solver convergence, Franco et al. [7] used a new approach with the use of space-time multigrid
method for solving poroelasticity equations, obtaining excellent results.

Therefore, in this work, we study a problem involving the flow of two incompressible and immiscible fluids
in rigid porous media. Using pressure-pressure formulation modeling, where the variables of interest are the
pressures of each both phases, thus, relative permeability and saturation were calculated by numerical expressions
that depend on the pressures. Discretizations in time and space were carried out by the Implicit Euler and Finite
Volumes Methods (FVM) (Ferziger et al. [8]), respectively. As we have a non-linear system, so we have chosen to
apply and compare two methods of linearization, modified Picard (Celia and Binning [1]) and L-scheme (Karpinski
et al. [3], Pop et al. [4]), and later to solve the linear system, used iterative method, coupled Gauss-Seidel (Gaspar
et al. [9]). To accelerate the convergence of solver, we proposed to use multigrid method (MG) (Briggs et al. [10]).

The rest of the paper is organized as follows. In Section 2, the one-dimensional porous media equations are
introduced together with their linearization and discretization techniques in time and space. Solver and multigrid
method for the equation of porous media is detailed in Section 3. The code verification and results are demonstrated
in Section 4. Finally, conclusions are drawn in Section 5.

2 Mathematical Model and Discretization

In this section, we present the mathematical model and its discretization, for the two-phase flow in a rigid
porous medium.

2.1 Government equations

The fluids considered were immiscible and incompressible with the flow in a rigid porous medium. For each
α phase of the fluid, the mass equation can be written as:

∂ (ραθα)

∂t
+5 · (ρα ~qα) = Fα, in Ω× [0, T ]. (1)

where α = w, n represents the fluid phases (w wetting, n non-wetting), θα = φSα, φ is the porosity, Sα is the
saturation, ρα is the density, ~qα is the volumetric flux vector and Fα is the source term of phase α. The domain is
Ω ⊂ R+ and T is the final time. The volumetric flow is given by the generalized Darcy’s Law for the multiphase
case

~qα = −λαK (5pα − ρα~g) , (2)

where λα is the mobility, λα = krα/µα, krα = krα(Sα) is the relative permeability, µα is the viscosity, K is the
intrinsic permeability tensor (see Bastian [11]), pα is the pressure, ~g is the gravitational acceleration vector.

Substitution of eq.(2) into eq.(1), and consider incompressible case and null gravitational acceleration vector,
the equation can be simplified:

∂θα
∂t
− λα 5 · (K5 pα) =

Fα
ρα
. (3)

In addition to these differential equations, we have the auxiliary relations (Bastian and Helmig [12]): capillary
pressure pc = pn − pw and saturation Sw + Sn = 1, so, θw + θn = φ.

2.2 Discretization

We begin with a implicit Euler time discretization, use the modified Picard linearization (Celia and Binning
[1]) to linearize the equations and consider pressure-pressure formulation (Ataie-Ashtiani and Raeesi-Ardekani
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[13]). It lets superscripts n andm denote time level and iteration number, respectively. The distance between points
of temporal approximation is τ = T

Nt
, where, T is final time and Nt is points number in temporal discretization.

Then discretizing the eq. 3 for wetting and non-wetting phases, we get eqs. (4, 5), respectively,

Cn+1,m
w

δpn+1,m+1
n −δpn+1,m+1

w

τ − ∂
∂x

[
Kn+1,m
w

∂
∂x

(
δpn+1,m+1
w

)]
= ∂

∂x

[
Kn+1,m
w

∂
∂x

(
pn+1,m
w

)]

+Fn+1
w − θn+1,m

w −θnw
τ ,

(4)

−Cn+1,m
w

δpn+1,m+1
n −δpn+1,m+1

w

τ − ∂
∂x

[
Kn+1,m
n

∂
∂x

(
δpn+1,m+1
n

)]
= ∂

∂x

[
Kn+1,m
n

∂
∂x

(
pn+1,m
n

)]

+Fn+1
n − θn+1,m

n −θnn
τ ,

(5)

where Kn+1,m
α = Kλα, δpn+1,m+1

α = pn+1,m+1
α − pn+1,m

α and Cw = ∂θw
∂pc

= −∂θn∂pc
. But, for L-scheme using

Ls, large enough, in place of Cw, that is Ls ≥ |Cw| (Illiano et al. [5]).
Subsequently, space discretization was done using the FVM. For that, our domain will be a segment of lenght

L and considering uniform mesh, Dh = {(xi);xi = (i− 1/2)h, i = 1, ..., Nx}, withNx volume number in space
and h = L

Nx
distance between volumes of the space approximation, given in Fig. 1.

Figure 1. Space discretization

Thus, the system that we should result in each time step is described in eq. (6).

Aw B

B An




δpw
δpw


 =


fw
fn


 , (6)

being that,

Aα =




bc 0

[aα]i−1 [aα]i [aα]i+1 0

0 [aα]i−1 [aα]i [aα]i+1 0

. . .
. . .

. . .
. . .

0 [aα]i−1 [aα]i [aα]i+1

0 bc




, B =


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0 ci 0

0 ci 0

. . .
. . .

. . .
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0 bc
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,

where, bc are boundary conditions and:
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]
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where
[
Kn+1,m
α

]
i− 1

2

and
[
Kn+1,m
α

]
i+ 1

2

denote the interblock conductivities of each phase, calculated by arith-
metic mean.
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3 Solver and Multigrid Method

To solve the system of linear equations that appear in each linearization step, there are direct and iterative
methods. Direct methods are not efficient in cases where matrices are large and sparse (Burden et al. [14]). In this
article, we use the coupled Gauss-Seidel method.

However, these methods present high-frequency error smoothing properties (oscillatory components), while
low-frequency errors are virtually unchanged. Therefore, in the first iterations, the error is reduced quickly and later
very slowly, with a predominance of smooth modes (Briggs et al. [10], Trottenberg et al. [15], Oliveira et al. [16]).
So the MG technique is based on solving the problem in several grids, because after the smoothing the oscillatory
modes in a refined grid, these modes are transferred for a coarse-grid, where they become more oscillatory and the
convergence of the iterative method is efficient. That procedure can be repeated up to coarsest or desired grid. For
the transfer process between grids, restriction and prolongation operators are required with their respective pre-
(ν1) and post-smoothing (ν2) numbers.

There are several ways to go through the various involved grids, which we call a cycle. In this work, we solve
the eq. 6 with the MG method, using the W-cycle and null initial estimative. The ratio between the size of the
volumes of the fine grid (Ωh) and the immediately coarse-grid ΩH is defined as the grid coarsening ratio (r). In
this work, we use r = 2 (standard coarsening) (Wesseling [17]). For the stop criterion we use ||Rm||∞/||R0||∞ ≤
TOLMG, where Rm is the residual in the iteration m, R0 is the residual in the initial guess and TOLMG is the
tolerance for the W-cycle.

4 Results

In this work we use the analytical solution of the problem proposed by Illiano [18] (section 5.1, p.37). In
that work, Illiano [18] considers the pressure-saturation formulation of the p̄–Sw, where p̄ = pw+pn

2 . In this case,
we have the analytical solution f(x, t) = p̄(x, t) = Sw(x, t) = xt(1 − x), whose spatial x temporal domain is
D = [0, L] × [0, T ], L = T = 1, with initial and boundary conditions f(x, 0) = f(0, t) = f(1, t) = 0. As we
have opted for pressure-pressure formulation of the form pw–pn, we have to make some adaptations to use pw
and pn instead of p̄. For this, using the capillary pressure equation (pc = pn − pw) and p̄, we have obtained that
pw = p̄− pc

2 and pn = p̄+ pc
2 , where pc(Sw) = 1− 1

2S
2
w. Additionally, we use θα = φSα, thus θw = φ

√
2− 2pc

and θn = φ− θw. As a consequence, we have: Cw = ∂θw
∂pc

= − φ√
2−2pc , for pc 6= 1.

Using these expresisons we have found the source terms:

Fw = −1

2
ρw[2φ(x− 1)x+Kλwt(−4 + t− 6tx+ 6tx2)], (7)

Fn =
1

2
ρn[2φ(x− 1)x+Kλnt(4 + t− 6tx+ 6tx2)]. (8)

According to Illiano [18] data were used to obtain easy calculations, which are presented in test 1 of Table 1.
Table 1 we also find data from test 2.

Table 1. Properties

λw λn K φ ρw ρn

Test 1 (Illiano [18]) 1 2 1 1 1 1

Test 2 1 2 1 0.9 1 1

We implemented the algorithms in the Scilab 6.1.0 language on a computer with an Intel Core i7 2.6 GHz
processor, 8 GB of RAM, and Windows 10 operating system, with 64 bits.

4.1 Code Verification

In order to verify our code, we reproduce the figure 5.1 of Illiano et al. [5], which presents the numerical
and analytical solution obtained for the saturation for the test 1 data of Table 1 for several steps in time. These
generated graphs are presented in Fig. 2, where is possible to see that all of our solutions (different grids size and
in different time steps) coincide with the Illiano’s analytical solutions (Illiano [18]).
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(a) Sw for h = τ = 0.05 with TOLL = 10−9 (b) Sw for h = τ = 0.025 with TOLL = 10−9

Figure 2. Analytical and numerical saturation obtained in first step time with different meshes: (a) Nx = Nt = 20
and (b) Nx = Nt = 40

In order to analyze the MG implementation we made a comparison with Singlegrid (SG) (single grid method).
For the SG and MG, we used the coupled Gauss-Seidel solver. Besides, for MG we used the following transfer
operators between grids: restriction by full weighting and prolongation by linear interpolation (Trottenberg et al.
[15], Rutz et al. [19]). In this work, we have used the maximum number of levels and data from the Table 2, being
that, ν1 and ν2 is the pre- and post-smoothing number, respectively, ν0 the number of smoothing in the coarsest
grid, TOLMG, the tolerance for the W-cycle and TOLL tolerance for the linearization.

Table 2. Implementation data

ν1 ν2 ν0 TOLMG TOLL

5 5 5 10E − 5 10E − 8

In Table 3 we presented the required total CPU time (tCPU ) (which takes into account all the time steps and
their respective necessary linearizations) for each method and the speedup (S = tCPU -SG

tCPU -MG , that is, S represents
how many times the MG is faster than the SG). Here, we opted only for spatial refining, which is already sufficient
to verify the desirable properties of MG concerning SG. Note that S > 1 in all cases, that is, MG is always faster
than SG. Even more, as we refine the grid, S gets bigger and MG gets more efficient.

Table 3. CPU time for MG and SG

Nt Nx tCPU - SG tCPU - MG S

16 16 24.860 3.630 6.848

16 32 175.394 10.013 17.516

16 64 1310.780 27.618 47.460

16 128 9892.466 62.690 157.799

We performed a geometrical adjustment of the type tCPU = c(Nx)p to analyze the performace of MG, where
c is a constant relative to the method and p represents the order of the algorithm. Considering the first time step and
the first linearization in different loops, Nx = 4, 8, 16, 32, 64, 128, 256, 512 and 1024, we obtained c = 0.0127
and p = 1.1103 ≈ 1, according to the literature (Trottenberg et al. [15]).

4.2 Results in a specific porous medium

In order to obtain the following results, we performed several simulations, comparing the linearization meth-
ods, modified Picard and L-scheme, with Ls(t) = max(|Cw|). The data used were those in the Table 1, others
data in the Table 2 and maximum number of linearization iterations, itmaxL = 500.
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Table 4 shows itmeL, arithmetic mean linearization iterations and itmeMG, arithmetic mean of MG cycles.
Thus, we can see that the number of iterations in MG is always a small number, concerning linearization methods.
We also realized that for this specific problem, modified Picard needs fewer iterations that the L-scheme, becoming
the most efficient.

Table 4. Modified Picard and L-scheme with Multigrid

Nx = Nt

Modified Picard L-scheme
Test 1 Test 2 Test 1 Test 2

itmeL itMG itmeL itMG itmeL itMG itmeL itMG

4 5.25 1.50 5.25 1.50 16.25 1.12 16.00 1.13

8 4.63 2.50 4.63 2.50 34.13 1.12 33.75 1.12

16 4.31 2.50 4.31 2.50 65.19 1.06 64.69 1.06

32 3.75 2.67 3.72 2.67 117.66 1.03 117.00 1.03

64 3.22 2.67 3.22 2.67 228.94 1.02 244.20 1.02

Figure 3 presents the infinity norm of the difference between the analytical and numerical solution of pα
versus Nx = Nt = 4 up to 64 for linearization schemes studied, the results obtained show that, regardless of the
linearization scheme used, the errors were essentially the same and decrease with the grid refinement.

Figure 3. Infinity norm of the numerical error vs. Nx = Nt for Tests 1 and 2, with modified Picard and L-scheme

5 Conclusions

In this work, we have analyzed two linearization methods, together with MG, for a two-phase flow problem
in a rigid porous media. Initially, we carried out some tests to verify our code, compared the numerical with
analytical solutions, then analyzed the speedup of MG in relation to SG, where we obtained good results. With
that, we were able to generate some results and to realize the use of the linearization methods, modified Picard
and L-scheme, with the MG method, generated good results, because the numbers of iterations necessary for both
linearization and MG, were low numbers. The numerical error performed well because as we refined the grid, the
error decreased. Therefore, we can conclude that the combination we have used in this article is efficient. Now,
among the two linearization methods studied, the modified Picard with MG method was the only which presented
the best performance to the problem studied.
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