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RESUMO

Neste trabalho estudamos métodos de resolucao eficientes para problemas multifasicos
em meios porosos rigidos uni (1D) e bi-dimensional (2D), no contexto da teoria de poro-
elasticidade de Biot. Existem diferentes formulacoes quando se trabalha em problemas
multifasicos, dependendo se a incognita escolhida é a saturagdo ou a pressao. As equacoes
que modelam esses problemas podem ser resolvidas de uma maneira monolitica, ou seja,
resolver simultaneamente todo o sistema acoplado. Neste trabalho, a fim de fazer simu-
lacoes de grande escala, propomos desenvolver métodos de resolucao rapidos e robustos
para resolver problemas 1D e 2D com solugao analitica e um problema 2D mais realistico,
sem solugao analitica, em um meio poroso heterogéneo com permeabilidades randdémicas,
a partir do qual os poros sao preenchidos com dois fluidos imisciveis e incompressiveis
que correspondem a um sistema de equagoes diferenciais parciais acopladas e fortemente
nao linear. Para isso, utilizamos a formulacao matematica mista pressao-saturacao, Mé-
todo de Volumes Finitos e Euler implicito para as discretizacoes espacial e temporal,
respectivamente. Os métodos de Picard modificado e L-esquema foram usados para a
linearizagao do sistema. Com o sistema linear gerado, utilizamos Gauss-Seidel acoplado
para resolvé-lo. Com o intuito de acelerar a convergéncia, utilizamos o método multigrid.
Com a combinacgao das técnicas aplicadas nos problemas em meios porosos rigidos foi
possivel gerar um algoritmo eficiente e robusto até mesmo em um meio poroso randémico
heterogéneo, convergindo nas primeiras iteragoes.

Palavras-chave: Problema acoplado. Métodos de linearizacao. Multigrid. Método de volumes
finitos. Euler implicito.



ABSTRACT

In this work, we study efficient resolution methods of solving multiphase problems in one
(1D) and two-dimensional (2D) in rigid porous media, in the context of Biot’s poroelasticity
theory. There are different formulations when working on multiphase problems, depending
on whether the unknown chosen is saturation or pressure. The poroelasticity equations
can be solved in a monolithic way, that is, simultaneously solve the whole coupled system.
In this work, in order to do large scale simulations, we propose to develop fast and robust
resolution methods to solve 1D and 2D problems, with analytical solution and a more
realistic 2D problem, without analytical solution, in a heterogeneous porous medium
with random permeabilities, from of which the pores are filled with two immscible and
incompressible fluid that correspond to coupled partial differential equations system
and strongly nonlinear. For this, we use the mixed mathematical formulation, pressure-
saturation formulation, Finite Volume Method, and implicit Euler for the discretization of
the equation in space and in time, respectively. Modified Picard and L-scheme methods
were used for the linearization of the system. The systems of linear equations generated
were solved by the Gauss-Seidel solver in a coupled way. In order to accelerate convergence,
we use the multigrid method. With the combination of the techniques applied to problems
in rigid porous media, it was possible to generate an efficient and robust algorithm even in
heterogeneous random porous media, converging in the first iterations.

Keywords: Coupled problem. Linearization methods. Multigrid. Finite Volume Method.
Implicit Euler.
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1 INTRODUCAO

Numerosas aplicagoes importantes em Geomecanica, Engenharia de Petréleo,
Hidrogeologia, Biomedicina, etc., sao modeladas por meio de equagoes que envolvem
problemas multifdsicos. Para o estudo desses problemas sao gerados diferentes modelos
matematicos que os representem, dependendo da pressao, saturacao e permeabilidade
relativa, sendo posteriormente resolvidos por meio de simulagoes numéricas. Independente
da maneira que esses modelos sao formulados, sdo gerados sistemas de equagoes diferenciais
parciais (EDPs) acoplados e altamente nao lineares. Portanto, um dos desafios é encontrar

métodos robustos e eficientes para a solucdo numeérica desses problemas.

Em todos os problemas estudados aqui, foram analisadas algumas técnicas ja
conhecidas em uma formulacao muito utilizada, a formulacdo mista pressao-saturacao,
porém apoés linearizagdo, o sistema é reescrito em um formato nao tao comum a fim de
se obter um sistema com as pressoes como variaveis principais. Depois disso, utilizamos
um método para acelerar a convergéncia, obtendo bons resultados com baixo custo

computacional.

A equacao de Richard foi usada para formular tais fendmenos. As duas equagoes
do sistema (uma para cada fase) sdo acopladas devido a dependéncia da permeabilidade
relativa, pressao e a saturacao de ambas as fases. Para resolver numericamente as equagoes
de escoamento acopladas, é necessario primeiro discretiza-las no tempo e espago. Para
isso, existem intimeras técnicas para a discretizacao de EDPs. Em relacao ao tempo, as
mais comuns sdo os métodos de Euler e Crank-Nickson (BURDEN; FAIRES; BURDEN,
2015). Neste trabalho, nos concentramos apenas na primeira abordagem, suficiente para

0s 1nossos objetivos.

Antes de realizar a discretizacao no espaco, tratamos de linearizar o sistema de
equagoes, para tal processo, podemos utilizar alguns métodos, como por exemplo, método
de Newton (ILLIANO; POP; RADU, 2020), Picard, Picard modificado (CELIA; BINNING,
1992) ou L-esquema (POP; RADU; KNABNER, 2004; KARPINSKI; POP; RADU, 2017).
Neste trabalho utilizamos e comparamos as duas tltimas técnicas, pois além dos métodos
de Picard modificado e L-esquema serem de facil implementacao, um dos focos deste
trabalho foi utilizar o método multigrid que tem bom comportamento em sistema lineares
com equagoes elipticas, que sao resultante dessas linearizagoes, proporcionando assim um

melhor desempenho ao multigrid.

Com o sistema linearizado, realizamos a discretizagao no espaco, sendo que os
métodos mais comuns sao: Método de Elementos Finitos (MEF) (HUGHES, 2000), Método
de Diferencas Finitas (MDF) (FERZIGER; PERIC; STREET, 2002) e Método de Volumes
Finitos (MVF) (MALISKA, 2004; VERSTEEG; MALALASEKERA, 2007). Usamos o

MVF para a discretizagao no espago. Algumas vantagens desse método é que ele pode
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ser aplicado em qualquer tipo de malha, em geometrias complexas e diferentes sistemas
coordenados (FERZIGER; PERIC; STREET, 2002), além do esquema resultante conservar
integralmente as propriedades em questao através de qualquer grupo de volumes de controle
e consequentemente, todo o dominio (PATANKAR, 2018). Portanto, mesmo em uma malha,

grosseira, a solucao apresenta bons resultados.

Realizada a discretizacao espacial, obtemos uma sequéncia de sistemas de equagoes

algébricas lineares, geralmente do tipo

Au = f, (1.1)

onde, A é a matriz dos coeficientes, u é o vetor das incognitas e f é o vetor do termo fonte,
ou dos termos independentes. O sistema linear entao pode ser resolvido por algum método
de resolucao de sistemas. As duas principais classificagoes desses métodos sao: diretos e
iterativos (aqui chamados de solvers). Devido a estes sistemas, em geral serem esparsos e
de grande porte, neste trabalho utilizamos os métodos iterativos, mais especificamente o
método de Gauss-Seidel de forma acoplada (GASPAR et al., 2004).

Ao iniciar o processo de solucao do sistema linear, o solver tem uma taxa de
convergéncia relativamente alta, fazendo com que o erro diminua rapidamente, porém, com
o passar das iteragoes essa taxa diminui e o erro tende a cair muito lentamente, ou, em
alguns casos, até estabilizar (WESSELING, 2004; BRIGGS; HENSON; MCCORMICK,
2000; TROTTENBERG; OOSTERLEE; SCHULLER, 2001). Esse fraco desempenho se d4
devido ao fato que, quando o erro é decomposto em modos de Fourier, no inicio do processo
iterativo as componentes oscilatorias do erro (erros de alta frequéncia) sao reduzidas
rapidamente pelos solvers e com o passar do processo iterativo, permanecem apenas as
componentes suaves do erro (erros de baixa frequéncia) (TROTTENBERG; OOSTERLEE;
SCHULLER, 2001). Tais erros de alta frequéncia podem ser gerados por diferentes motivos,
devido a: estimativa inicial, erro de discretizacao, erro de arredondamento, etc. Neste
trabalho, os métodos iterativos (solvers) que possuem a propriedade de reduzir rapidamente

os erros de alta frequéncia, serdo tratados como suavizadores (smoothers).

Para acelerar a convergéncia dos suavizadores de forma eficiente, utilizamos
o método multigrid. Sendo este desenvolvido para superar as dificuldades dos métodos
iterativos, ou seja, reduzem rapidamente os erros de alta frequéncia nas primeiras iteracoes e
posteriormente caem lentamente, chegando as vezes até estabilizar; e tratar adequadamente
as componentes suaves do erro. Tal método consiste em transferir as componentes de
erro de modos suaves de uma determinada malha para uma malha mais grossa (menor
quantidade de volumes), onde os mesmos tornam-se mais oscilatérios (TROTTENBERG;
OOSTERLEE; SCHULLER, 2001) e assim, o método iterativo pode ser aplicado. Portanto,

o método multigrid é composto por um conjunto de diferentes malhas, as quais sdo
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percorridas ao longo do processo iterativo, reduzindo eficientemente todas as componentes

do erro.

A grande oportunidade de pesquisa encontrada neste trabalho foi a solucao de
problemas de escoamento de duas fases, com a combinacao do método de linearizagao de
Picard Modificado e um algoritmo do multigrid, que converge mesmo em meios aleatérios

heterogéneos.

1.1 Objetivos

O objetivo geral deste trabalho é desenvolver métodos de resolugao rapida e robusta
para um problema acoplado bifasico com coeficientes realisticos, permeabilidade relativa

randomica e em meio poroso rigido heterogéneo, considerando um dominio retangular.

Os objetivos especificos sao:

o Construir um sistema de equacoes diferenciais na formulagao mista saturacao-pressao,
que logo apos a linearizagao, gere um sistema com as variaveis principais sendo as

pressoes;

o Discretizar no tempo e espaco pelos métodos de Euler implicito e Volumes Finitos,

respectivamente, com malhas uniformes e colocalizadas;
o Analisar a eficiéncia dos métodos de linearizagoes: Picard modificado e L-esquema;

o Acelerar a convergéncia de suavizadores com o uso do método multigrid.

1.2 Revisao Bibliografica

Nesta sec¢ao é detalhada uma revisao bibliogréafica de forma geral sobre os problemas

multifasicos, métodos de linearizacao e sobre o multigrid.

1.2.1 Problemas multifasicos em meios porosos

O estudo de simulagoes numéricas esta cada vez mais presente em pesquisas de
alto impacto no mundo, pois com modelos matematicos condizentes com problemas reais, é
possivel prever e observar tanto fenémenos, quanto situagoes. Os problemas de escoamento
multifasicos e transporte em meios porosos representam uma abrangéncia de aplicagdes em
diversos ramos das Ciéncias e Engenharias. As equagoes governantes desses problemas sao
altamente nao lineares, o que geralmente se torna um obstaculo para a simulagdo numérica.
Uma forma de contornar esses obstaculos, quando possivel, é fazer algumas simplifica¢oes
no modelo. Por exemplo, no caso do escoamento bifasico, dgua e ar simultaneamente,

em um solo insaturado, podemos supor que a fase do ar permanece constante, ou ainda,
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igual a pressao atmosférica (CELIA; BOULOUTAS; ZARBA, 1990), assim, o sistema é
reduzido a fase aquosa apenas. Esta abordagem é chamada de aproximacao de Richard
(RICHARD, 1931). Porém, em alguns casos essa abordagem nao pode ser aplicada, pois
a fase do ar interfere significativamente no movimento da fase de dgua, de modo que é

necessario utilizar o modelo de duas fases.

Considerando um modelo de duas ou mais fases, o sistema de equagoes gerado é
fortemente nao linear, o que fez com que alguns trabalhos manipulassem as expressoes que
interferem nesse fato. Li e Horne (2006) compararam alguns métodos, como por exemplo,
método de Purcell e Brooks-Corey, para calcular a permeabilidade relativa da pressao
capilar em um meio poroso imido consolidado. Pois, a escolha desses modelos devem ser

representativa ao problema em estudo, para obter resultados satisfatérios.

Para uma previsao precisa das permeabilidades relativas, Adibifard et al. (2020)
usaram dois algoritmos diferentes, GA ( Genetic Algorithm) e Iter EnKF (Iterative Ensemble
Kalman Filter), para estimar o conjunto 6timo de curvas de permeabilidade relativa de
Corey, e concluiram que a diferenca entre as solugoes 6timas de ambos os algoritmos foram
insignificantes. Em um estudo recente de Dana, Jammoul e Wheeler (2022), os autores
analisaram o desempenho do algoritmo fized stress split para um problema de escoamento

de duas fases imiscivelis.

Esses problemas podem ser modelados por diferentes formula¢oes matematicas. As
propriedades de cada formulacao dependem da especificidade do problema. Contudo, em
algumas formulagoes sao usadas algumas novas varidveis (artificiais) que podem facilitar a
resolucao do sistema (BASTIAN, 1999). Formulagao saturagao-pressao da fase (BASTIAN;
HELMIG, 1999), formulagao saturagao-pressao global, formulagdo mista e formulagao
pressao-pressao (ATAIE-ASHTTIANI; RAEESI-ARDEKANTI, 2010), sao exemplos de for-
mulagoes possiveis de serem aplicadas em problemas de duas fases, sendo as duas primeiras
as mais comuns na literatura. Para uma introducao das diferentes formulacoes para as
equagoes de escoamento multifasico ver também Chavent e Jaffré (1986), Helmig et al.
(1997), Bastian (1999), Peaceman (2000).

1.2.2 Métodos de linearizacao

Para obter a solucdo numérica dos modelos de escoamento bifasicos devemos
escolher uma maneira de resolver o sistema acoplado de equagoes nao linear. Um dos
métodos mais comuns para resolver esses modelos é o método IMPES (Implicit Pressure
FEzxplicit Saturation), implicito na pressao e explicito na saturagao, apesar de seus problemas
com instabilidade e necessidade de restricdes no tamanho do passo de tempo. Versoes
melhoradas do esquema IMPES foram apresentadas em Chen, Huan e Ma (2006), Lu
e Wheeler (2009), Kou e Sun (2010), Kvashchuk e Radu (2017), Chen et al. (2019).
As principais alternativas ao IMPES sao os esquemas totalmente implicito (FREPOLI,
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MAHAFFY; OHKAWA, 2003; LACROIX et al., 2003; GANIS et al., 2014; RADU et al.,
2015; KARPINSKI; POP; RADU, 2017) que sao mais confidveis no que diz respeito a
robustez, devido ao tratamento totalmente implicito e totalmente acoplado das equacoes
governantes. Esses métodos evitam quaisquer restrigoes no passo de tempo, mas precisam
de um algoritmo eficiente para resolver o sistema nao linear resultante. Uma forma de
resolver esse tipo de sistema ¢ utilizar algumas técnicas de linearizacao, transformando-as
em sequéncia de equagoes lineares e assim aplicar os métodos tradicionais de resolugao de

sistemas lineares.

O método de Newton (KUEPER; FRIND, 1991; KNABNER; ANGERMANN,
2003; BURDEN; FAIRES; BURDEN, 2015; GOLUB; ORTEGA, 2014) para resolucao de
sistemas algébricos nao lineares é considerado muito preciso, com convergéncia quadratica,
porém caro computacionalmente, devido ao alto custo com o cédlculo das derivadas em

cada iteracao.

O L-esquema (RADU et al., 2015; KARPINSKI; POP; RADU, 2017) é outro
método de linearizacao extremamente comum devido a sua simplicidade, pois substitui a
iteragdo de Newton por uma iteracao de ponto fixo. Considerando o escoamento bifasico em
meio poroso com efeitos de capilaridade dindmica, Karpinski, Pop e Radu (2017) utilizaram
o L-esquema, que nao requer etapa de regularizacao, pois nao utiliza calculos de derivadas
geradas pela linearizacao como o método de Picard e Newton. Por exemplo, no L-esquema
a derivada da saturagao é substituida por um valor constante. Esse procedimento de
linearizagao foi apresentado por Pop, Radu e Knabner (2004) para resolver problemas nao
lineares elipticos. Sua robustez, no entanto, vem ao preco de uma convergéncia mais lenta

(geralmente convergéncia linear).

Finalmente, as técnicas de Picard também sao amplamente utilizadas. O método
de Picard (GOLUB; ORTEGA, 2014) é mais barato computacionalmente, mas nao é
tao preciso devido a aproximacao ser feita por uma parte linear e outra nao linear. A
linearizacao baseada na forma mista da equagdo, que permite a transicdo das zonas
insaturadas para as saturadas e mantém a conservacao da massa, a fim de manter seu
baixo custo computacional (se comparado com Newton) e a tentativa de melhorar sua
precisao, é chamada de método de Picard modificado. Foi introduzido por Celia, primeiro
para a equagao de Richard (CELIA; BOULOUTAS; ZARBA, 1990) e depois para o
problema de escoamento bifdsico em meios porosos (CELIA; BINNING, 1992).

Uma comparacao entre as abordagens de Newton, Picard modificado e L-esquema,
para a linearizacao do problema de transporte de um surfactant em meio poroso foi
apresentada em Illiano, Pop e Radu (2020), os quais chegaram a conclusao de que, entre
os métodos estudados, o Newton é o tinico com convergéncia quadratica, Picard e Newton
geraram matrizes mal condicionada e os solvers baseados no L-esquema foram os mais

robustos, pois produziram sistemas lineares bem condicionadas. Outra comparacao de
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métodos de linearizagdo, em particular entre o L-esquema e o método de Picard modificado,
foi realizado por (OLIVEIRA et al., 2020), para um problema de escoamento bifasico
unidimensional em meios porosos rigidos e combinando tais lineariza¢oes com o método

multigrid para a solugao do sistema de equacoes resultantes.

1.2.3  Solvers

O desenvolvimento de solvers iterativos eficientes para simulagao totalmente
implicita de problemas complexos de escoamento multifasico tem sido amplamente estudado
nas ultimas décadas. Uma das abordagens mais populares na comunidade de simulagao de
reservatorios é baseada na combinagao de métodos de subespago de Krylov com uma técnica
de pré-condicionamento de Residuo de Pressao Restrita (Constrained Pressure Residual,
CPR) (WALLIS, 1983; WALLIS; KENDALL; LITTLE, 1985). Sua implementagao padrao
(LACROIX; VASSILEVSKI; WHEELER, 2001; SCHEICHL; MASSON; WENDEBOURG,
2003; CAO et al., 2005; STUBEN et al., 2007; ZHOU; JIANG; TCHELEPI, 2013; GRIES
et al., 2014; LIU; WANG; CHEN, 2016) acopla um pré-condicionador multigrid algébrico
(AMG) para o bloco de pressao geralmente eliptico e uma fatoragdo incompleta, que é
efetiva para a parte hiperbdlica. Além disso, diferentes variantes do pré-condicionamento
da CPR tém sido propostas (CUSINI et al., 2015; WANG et al., 2017; BUL; WANG; OSEI-
KUFFUOR, 2018). No entanto, outras alternativas podem ser encontradas na literatura.
Em Singh, Pencheva e Wheeler (2018), os autores consideram uma construcao Jacobiana
aproximada como alternativa ao método convencional de Newton, com a construcao

Jacobiana exata, como um solver nao linear.

Em Yang et al. (2018), foi proposto um solver altamente paralelo no qual o sistema
nao linear resultante que surge a cada passo de tempo ¢ resolvido de forma acoplada
usando um algoritmo do tipo Newton-Krylov-Schwarz. Recentemente, diferentes métodos
baseados na Redugao do Complemento de Schur foram apresentados (BUI; ELMAN;
MOULTON, 2017; BUSING, 2021). Em Nardean, Ferronato e Abushaikha (2021a), os
autores consideram um pré-condicionador de bloco original que explora a estrutura de
blocos da matriz Jacobiana enquanto lida com a natureza nao simétrica dos blocos
individuais. Os mesmos autores propdem em Nardean, Ferronato e Abushaikha (2021b)
uma nova técnica de pré-condicionamento (Fzplicit Decoupling Factor Approzimation,
EDFA) baseada na aproximacao dos fatores de desacoplamento da matriz do sistema

usando operadores de restricao apropriados para o calculo do complemento de Schur.

Neste trabalho, nosso foco estd na solucao iterativa dos sistemas lineares que
surgem em uma discretizagdo de volume finito, centrado na célula, totalmente implicito
de um sistema de escoamento bifasico, com as fases sendo incompressiveis e imisciveis,
e a matriz ndo deforméavel. Algoritmos baseados na iteracao de Picard modificado de
(CELIA; BOULOUTAS; ZARBA, 1990) tém sido amplamente empregados como métodos
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de solucao iterativa eficientes para a equacao de Richard. As vantagens deste método sao
a sua facilidade de implementagao, uma vez que nao requerem o célculo de Jacobianos,
bem como seus baixos requisitos de armazenamento. Aqui, consideramos uma combinacao
da extensao da iteracao Picard modificado para problemas de escoamento de duas fases
(CELIA; BINNING, 1992) e um método multigrid centrado em células para a solucao do

sistema linear resultante.

No ambito de resolugoes de sistemas de equagoes lineares, o método multigrid é
uma das técnicas numéricas mais eficientes (BRIGGS; HENSON; MCCORMICK, 2000;
TROTTENBERG; OOSTERLEE; SCHULLER, 2001; WESSELING, 2004) para acelerar
a convergéncia de suas solugoes. Como o proprio nome diz, esse método é composto
por diversas malhas com diferentes graus de refino, as quais sao percorridas durante um

processo iterativo.

HA& registros de que o multigrid comegou a ser estudado por Fedorenko (1964)
e Bakhvalov (1966), sendo reconhecido apenas uma década depois, pelos trabalhos de
(BRANDT, 1977), onde apresentou o esquema de correcao (Correction Scheme, CS) para
problemas lineares e a razao de engrossamento mais recomendavel sendo re = 2 (mais
detalhes na segao 3.1). Nesse trabalho, Brandt (1977) apresentou também uma introdugao
ao esquema de aproximagao completa (Full Approzimation Scheme, FAS), especifico para
problemas nao lineares. Como neste trabalho utilizamos métodos no intuito de linearizar
nossas equagoes, entao utilizamos somente o esquema de correcao CS. Abaixo segue uma
relacao de alguns dos trabalhos onde podemos encontrar o uso do método multigrid com o
esquema CS, como por exemplo: Kelkar (1990), Sathyamurthy e Patankar (1994), Craig
(1996), Karki, Sathyamurthy e Patankar (1996), Tannehill, Anderson e Pletcher (1997),
Trottenberg, Oosterlee e Schiiller (2001) e Ferziger, Perié¢ e Street (2002).

Dentre os diversos estudos do multigrid, foram Hortmann, Peri¢ e Scheurer (1990)
e Ferziger, Peri¢ e Street (2002) que apresentaram uma analise onde o niimero de iteragoes
independem do tamanho da malha para ocorrer convergéncia na malha mais fina. Além
do método multigrid ter seu grande reconhecimento, decorrente a sua ampla capacidade
de resolver rapidamente grandes sistemas de equagoes, demonstrando complexidade 6tima,
na resolucdo de muitos problemas, em diferentes areas (OOSTERLEE; SCHULLER;
TROTTENBERG, 2001).

Em trabalhos mais recentes, também é possivel perceber a importancia das
aplicagoes do multigrid. Com o objetivo de acelerar da convergéncia dos solvers, o multigrid
foi usado para resolver problemas com equagoes anisotrépicas (OLIVEIRA et al., 2018;
RUTZ; PINTO; GONCALVES, 2019), equagoes de poroelasticidade (WIENANDS et al.,
2004; GASPAR; RODRIGO, 2017; LUO et al., 2017; FRANCO et al., 2018), sempre

obtendo 6timos resultados.
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No contexto de problemas de escoamento bifasico em meios porosos, o método
multigrid foi aplicado, por um lado, para a solugao da equagao da pressao dentro de uma
abordagem desacoplada (IMPES) em Scott (1985) e Dendy Jr (1987). Por outro lado, o
multigrid também foi aplicado a abordagem totalmente acoplada e totalmente implicita
em Brakhagen e Fogwell (1990), Molenaar (1995) e Bastian e Helmig (1999).

A solugao de equagdes nao lineares por multigrid é possivel com duas abordagens
diferentes: (i) onde uma abordagem de linearizacao global, geralmente pelo método de
Newton, ¢ realizada e as equacoes lineares resultantes sao resolvidas com multigrid linear
(CS), ou (ii) uma abordagem onde a nao linearidade é tratada dentro do multigrid (Full
Approximation Scheme, FAS). Embora seja possivel essas duas abordagens diferentes
para a nao linearidade, Molenaar (1995) comparou ambas descobrindo que a primeira é
computacionalmente mais eficiente. Aqui, seguimos a primeira abordagem e propomos o
uso do algoritmo multigrid em malhas com arranjo colocalizado para resolver um sistema

de equagoes lineares obtido apds a linearizacao da formulagao mista do problema por meio

do Picard modificado.

E bem conhecido que o desempenho do multigrid depende fortemente da escolha
de seus componentes e, portanto, eles devem ser cuidadosamente escolhidos. O algoritmo
proposto considera Gauss-Seidel como suavizador, um operador de prolongagao constante
por partes e a média aritmética como a restri¢ao, e uma técnica de discretizacao direta para
definir os operadores discretos nas malhas grossas. Veremos que esse algoritmo multigrid
converge bem, mesmo no contexto de campos heterogéneos aleatérios. Um algoritmo
multigrid semelhante foi proposto por Kumar et al. (2020) para resolver a equagao de
Richard.

1.3 Organizacao do texto

Além deste primeiro capitulo introdutoério, organizamos este texto em mais 5
capitulos, como segue. No Capitulo 2, apresentamos as propriedades bésicas sobre os
problemas de escoamentos multifasicos, o método de Euler implicito para a discretizacao
temporal e o MVF para a discretizacao espacial das EDPs, além dos métodos de linearizacao.
No Capitulo 3, apresentamos uma introducao aos métodos iterativos béasicos e o método
multigrid. Os modelos mateméaticos sao dados no Capitulo 4. O detalhamento dos modelos
numeéricos, assim como o processo de discretizacao das equagoes e as condigoes iniciais e de
contorno empregadas, sao apresentados no Capitulo 5. No Capitulo 6, sao encontrados os
experimentos numéricos, os detalhes computacionais, os resultados obtidos e sua discussao;

enquanto que as conclusoes, constam no Capitulo 7.



28

2 FUNDAMENTACAO TEORICA

Neste capitulo realizamos uma fundamentacao tedrica sobre as propriedades
basicas de problemas de escoamentos multifasicos, o método de Euler implicito para a
discretizacao temporal e o MDF para a discretizagao espacial das EDPs, além dos métodos

de linearizacao.

2.1 Propriedades basicas de escoamentos multifasicos

Nesta secao apresentamos as componentes fisicas e matematicas dos problemas
multifasicos em meios porosos rigidos para os casos uni e bi-dimensional. Todas as informa-
¢oes foram baseadas nos livros de Bastian (1999), Chen, Huan e Ma (2006) e Nordbotten
e Celia (2011).

O meio poroso ¢ composto por uma parte sélida, chamada de matriz sélida, o
restante do espago vazio (ou espago poroso) desse meio pode ser preenchido por um ou
mais fluidos (por exemplo, dgua, 6leo, ar e gas). No modelo multifasico o espago vazio
do meio é preenchido por dois ou mais fluidos que neste texto, sao admitidos imisciveis
entre si, isto é, nao se misturam (por exemplo, dgua e 6leo). A FIGURA 1 mostra um
meio poroso 2D (Bidimensional) completamente preenchido apenas por dgua (sistema

monofasico, a esquerda) ou preenchido com agua e dleo (sistema bifésico, a direita).

FIGURA 1 - ILUSTRACAO DE UM MEIO POROSO PREENCHIDO COM UM OU DOIS

S
BN NGNS

Matriz sélida |:| Agua |:| Oleo (ou ar)

251

]

FONTE: Adaptada de Bastian (1999).

O material poroso assume muitas formas e meios. O concreto, material utilizado
na construcao civil, possui porosidade relativamente baixa. No entanto, a FIGURA 2a
apresenta um concreto com alta porosidade. Este tipo de concreto é utilizado para

pavimentos onde se deseja permear e armanezar agua para reduzir o escoamento superficial
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em caso de tempestade. A FIGURA 2b mostra uma formagcao rochosa fraturada, causadas
muitas vezes pela mudanca do ambiente. Essas formagoes sao altamente permeaveis. A
FIGURA 2c¢ mostra uma espuma metdalica, um material leve e muito usado para diversos
fins, como amortecimento de vibragoes, isolamento térmico e actstico, além de absor¢ao
de energia de impacto. J4 na FIGURA 2d, temos um exemplo de material biol6gico como

meio poroso, um osso humano com osteoporose.

FIGURA 2 - MATERIAIS POROSOS.
(a) Concreto. (b) Rocha.

FONTE: Adaptada de Cheng (2016).

Outros exemplos bem comuns de meios porosos sao: terra, areia, arenito, espuma

de borracha, pao, pulmoes, rins, entre outros.

Para conseguirmos diferenciar matematicamente os diversos meios porosos, existe
uma quantidade chamada porosidade (¢). A porosidade ¢(x¢) na posicao zy com relagao

ao volume médio (2y(zg) é definida como

¢(wo) = medidazﬂo(xo)) /Qo(xo) ((z)de, (2.1)

onde g € 2y C (2, 2 é o dominio espacial, medida({2) é comprimento, area ou volume

dependendo da dimensao, ((z) ¢é a fungao indicador de espago vazio em um nivel microscopio,
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definida pela expressao

1, =z € espaco vazio
() = { (2.2)

0, z € matriz sélida

Assim, a porosidade é definida pela razao entre o volume do espaco vazio e o

volume total. Essa quantidade é adimensional e estd entre 0 e 1.

Geralmente o meio poroso tem uma geometria bastante complexa, por isso ndo pode
ser descrito por um ponto, pois em cada ponto pode conter apenas solido ou apenas fluido.
Por isso, aqui vamos usar uma abordagem comum que ao invés de considerarmos um tnico
ponto, consideramos o Volume Elementar Representativo (Representative Elementary
Volume, REV). O REV é o menor volume possivel que pode conter uma quantidade
representativa de vazio e sélido de forma que possamos definir as propriedades com eles,

as quais sao detalhadas na subsecao a seguir.

A FIGURA 3 mostra uma maneira que Kvashchuk e Radu (2017) apresentaram
para escolher o tamanho de REV mais adequado. Se o REV for muito pequeno, podera ter
oscilagoes aleatorias em relacao a parte vazia, ou seja, a regiao escolhida pode ter muitos
espagos vazios ou poros, nao representando o meio em andlise. Por isso, é preciso aumentar
o tamanho do REV para obter um equilibrio. Por outro lado, segundo Bastian (1999), o
tamanho do REV deve ser tal que, o valor da quantidade média (ou seja, o valor usado
para a porosidade do meio, por exemplo) ndo dependa do tamanho do REV. Assim, o

REV poderia ser escolhido em qualquer lugar do intervalo em questao.

FIGURA 3 - REPRESENTACAO DA RELACAO ENTRE O VAZIO E VOLUME REV.

=

Void Fraction

]
V] Volume

FONTE: Kvashchuk (2015).

A TABELA 1 apresenta os valores aproximados esperados das porosidades em

rochas sélidas e porosas sob varias condigoes.
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Segundo Bastian (1999), um meio poroso é homogéneo se a quantidade (média)

macroscopica de um parametro for o mesmo valor em todo o dominio. Caso contrario, é

TABELA 1 - EXEMPLOS DE POROSIDADES.

Concreto
Carvao
Arenitos
Cascalho
Areia

Lodo

Argila

Fibra de vidro

Espuma metalica

0,02-0,07
0,02-0,12
0,08-0,38
0,25-0,40
0,25-0,50
0,35-0,50
0,40-0,70
0,88-0,93

0,98

FONTE: Adaptada de Yu et al. (1993) e Kaviany (2012).

chamado de heterogéneo.

Por exemplo, na FIGURA 4a é possivel perceber que o meio tem poros diferentes

com graos grandes e pequenas, portanto, é heterogéneo em relagao a porosidade. Entretanto,

na FIGURA 4b os poros sao todos iguais, portanto um meio homogéneo.

FIGURA 4 — ILUSTRACAO DE MEIOS POROSOS (a) HETEROGENEO E (b) HOMOGE-

NEO.

(a) Meio poroso heterogéneo. (b) Meio poroso homogéneo.
DOO0000( BESsESsas=s
seceeee]———=
) OO0 B4

> T o o> o d
QLOOOO00000 S S S
DO000000000] [ a2s=2s=254
9000009009000 O O D]
DOO00000000O0O( S Sc ScooSa
lﬁoﬁoﬁoﬁoﬁoﬁoﬁoﬁoﬁoﬁoﬁg o< o> o> ]

FONTE: Bastian (1999).
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2.1.1 Equacoes governantes

Consideramos um meio poroso onde o espago vazio sera preenchido por duas fases
de fluidos imisciveis e incompressiveis, denotados por w e n, fase imida e nao tmida,

respectivamente. Entao a equacao da conservagdo da massa dos fluidos pode ser escrita da
forma (NORDBOTTEN; CELIA, 2011):

0 (paea)

T + V- (pata) = Fo, em 2 x[0,ty]. (2.3)

sendo (2 o dominio espacial, dado por 2 C R?, com d = 1,2 e [0, ;] intervalo de tempo

considerado, sendo t; o o tempo final.

A equagdo (2.3) mostra que a taxa de variagdo da massa do fluido em um volume
de controle arbitrario V' C (2 é igual ao escoamento liquido sobre a superficie OV e a
contribui¢ao das fontes dentro de V' (BASTIAN, 1999).

As varidveis da equagao (2.3) possuem os seguintes significados:

e 0, = ¢(x)S,(x,t) é adimensional, usada apenas como simplificagdo, é uma variavel

composta pela porosidade (¢(z)) e saturacao (S, (z,t)), que sao explicadas a seguir;

o ¢(x) é a porosidade do meio poroso. Em meios heterogéneos é uma funcao de posigao.
Essa varidvel pode depender da pressao do fluido ou do tempo (por exemplo, inchago

da argila);

o Su(x,t) é a saturacio da fase do fluido . E uma quantidade adimensional definida
como uma fragao do espago de poro ocupado pelo fluido & em REV. Assim, temos
que 0 < S,(z,t) <1,

o po(x,t) é a densidade do fluido da fase a dado por [kg/m?]. Neste trabalho como

consideramos fluidos incompressiveis, a densidade é um valor constante;

e quo(x,t) é 0 vetor de escoamento volumétrico do fluido da fase a, ou seja, velocidade

do escoamento, dado por [m/s];

o F,(z,t) é o termo fonte da fase o com unidade [kg/m?s].

O vetor de escoamento volumétrico é dado pela Lei de Darcy multifasica estendida

(BASTTAN, 1999), ou seja, generalizada para o caso multifasico

K,
Qo = —— (Vpa - pag) . (24>

(67

As novas varidveis na equagao (2.4) representam as seguintes definigdes:
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o fio(x,t) é a viscosidade dindmica do fluido da fase a dado por [Pa s]. A viscosidade
representa a facilidade com que o fluido pode escoar, podendo depender do espaco e

tempo, mas aqui vamos considerar como constante em todo o dominio;

e po(z,t) é a pressio do fluido o com unidades [Pa] = [N/m?]. Nesta tese, esta é a

fungao incognita a ser determinada pela modelo;
« g é o vetor de aceleracdo gravitacional, com unidades [m/s?];

o K, é o tensor simétrico da permeabilidade absoluta [m?], representado por

Ky = kra(S))K, (2.5)

isto é, um fator escalar adimensional, sendo k,.,(S,) a permeabilidade relativa do
fluido da fase o e K a permeabilidade absoluta independe do fluido (BASTIAN,
1999).

Quando se trata de escoamentos bifasicos precisamos lidar com um sistema onde
parte dos poros ja estdao ocupados com um fluido, o que obstrui o escoamento do outro
fluido. Isso implica em menor permeabilidade para ambos os fluidos. Por isso, a necessidade
da permeabilidade relativa k.., que é diferente para cada fase « e obedece a restrigao (2.6).
Geralmente as permeabilidades relativas sao anisotropicas (KVASHCHUK, 2015).

0 < kra(Ss) < 1. (2.6)

Inserindo a equagao (2.5) na equagao (2.4) obtemos

kTCM

«

qo = — K (Vpa - pag) : (27>

A quantidade A\, = ’Z—”‘ é frequentemente conhecida como mobilidade.

Substituindo a equagdo (2.7) na equagao (2.3), considerando o caso incompressivel

e o vetor de aceleragdo gravitacional igual a zero, temos a equacao simplificada:

00, F,

E - ) ()‘ozK Vpoz) = E' (28>

Além dessas equagoes, que valem para as fases a = w e n, temos algumas relagoes
auxiliares (BASTIAN; HELMIG, 1999):

o Pressao capilar é a diferencga entre as pressoes de cada fase

Pec = Pn — Pw; (2.9)
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» A soma das saturacoes de cada fase é igual a 1
Syt S, =1, (2.10)

com isso temos que, 0, + 0, = ¢.

2.1.2  Pressao capilar, permeabilidade relativa e suas parametrizagoes

As formas mais comuns da pressao capilar (equacao (2.9)) e permeabilidade
relativa (equacdo (2.6)) sao baseadas em experimentos laboratérias. Assim, existem na
literatura algumas parametrizacoes a respeito desses parametros, como por exemplo Van

Genuchten e Brooks-Corey, que serao fornecidas a seguir.

Parametrizacao de Van Genuchten

Para o modelo de Van Genuchten a pressao capilar pode ser escrita dependendo

da saturacgao efetiva, como vemos na equagao (2.11).

5 —1/m

Pe(Sa) = pe(Sa 7 — 1), (2.11)

onde p, é a pressao de entrada e S, é a saturacio efetiva da fase . Se p, = 0, entéo
S, = 1. Temos ainda que m depende de nyg, m = 1 — 1/(nyg) e apenas p, e nyg sio
parametros livres de Van Genuchten. Segundo Bastian (1999) os valores tipicos de ny¢

estao na faixa de 2 a 5. No caso particular de o« = w (fase imida), temos

5 Sw - Sw'r
= 2.12
Su =gz (Swr + Sur)’ (2.12)

em que S, € a saturacgao residual da fase o (BASTIAN, 1999). A FIGURA 5 mostra a
pressao capilar calculada pela fungao de Van Genuchten para diferentes valores de ny ¢,
Pe =3 € Sy = 0.

As fungoes de permeabilidade relativa de Van Genuchten para o sistema de duas

fases (imida w e ndo imida n) sdo escritas dependendo da saturagio efetiva:

Fr(Suw) = /Su(l — (1= 8,"™)ym)2,

kn(Sw) = /1 — Su(1— S,"™)2m,

onde m é o mesmo parametro definido para a equagao (2.11) vista anteriormente. Na

(2.13)

FIGURA 6 é apresentado a permeabilidade relativa calculada pela funcao de Van Genuchten

para diferentes valores de nyg e S, = 0.

Parametrizacao de Brooks-Corey
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FIGURA 5 - FUNCAO DA PRESSAO CAPILAR DE VAN GENUCHTEN EM ESCALA log
VERSUS S, PARA DIFERENTES PARAMETROS nyg, pe = 3 E S, = 0.

200 T T T T T T T T T
[ Acnyg =211

i O nyg = 3 ]
KA nya = 4| 1
- kg = 5
150 | 4 E
[A ]

VAN

< 100

50 F

0 I I I I I I I I I
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Sw

FONTE: A autora (2022).

Para o modelo de Brooks-Corey, a pressao capilar pode ser escrita dependendo da

saturagao efetiva, como vemos na equagao (2.14)

Pe(Sa) = peSa (2.14)

>l

com p, e A sendo dois parametros de Brooks-Corey. Como descrito anteriormente, p. é a
pressao de entrada do meio poroso e A estéd relacionado com a distribuicao do tamanho
dos poros (se mais ou menos uniforme, por exemplo). Assim, um material com um tnico
tipo de grao tem um valor grande de A e no caso de um material altamente nao uniforme,
A tem um valor pequeno. Geralmente A assume valores entre 0,2 e 3 (BASTIAN, 1999). A
FIGURA 7 mostra a pressao capilar calculada pela fungao de Brooks-Corey para diferentes

valores de A, p. = 2 fixo e S,, = 0.

O modelo para a permeabilidade relativa proposto por Brooks-Corey dependente

da saturacao efetiva é dada por:
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FIGURA 6 - FUNCAO DA PERMEABILIDADE RELATIVA DE VAN GENUCHTEN PARA

DIFERENTES PARAMETROS E S, = 0.

T T T T T T T T /k
krwy nyg = 4

0.9 - k’rna nyg = 4

>

” krum nyg = 2
- kmmnVG =2

0,7

0,6

0,5

]{:7’(1

0,4

0,3

0,2

0,1

FONTE: A autora (2022).

FIGURA 7 - FUNCAO DA PRESSAO CAPILAR DE BROOKS-COREY PARA DIFERENTES

A\, pe=2E Sa, = 0.

0 1 1 1 1 1 1 1 1 1
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(2.15)
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O parametro A é o mesmo da pressao capilar. Na FIGURA 8 é apresentada a
permeabilidade relativa calculada pela fungdo de Brooks-Corey para diferentes valores de

ne Sy =0.

FIGURA 8 - FUNCAO DA PERMEABILIDADE RELATIVA DE BROOKS-COREY PARA
DIFERENTES PARAMETROS E S, = 0.

k;"(Y

FONTE: A autora (2022).

2.2 Meétodo de Euler Implicito

Quando temos uma derivada temporal, precisamos realizar a discretizacdo em
relagdo ao tempo. Para isso, existem intimeras formulagoes na literatura, podendo ser
dividas em trés grupos de formulagoes: explicita, semi-implicita e implicita. Segundo
Maliska (2004), temos a formulagdo explicita quando todas as incégnitas vizinhas do
ponto 7 sao analisadas no passo de tempo anterior m, ou seja, ja conhecidas, conforme
apresentamos na FIGURA 9a.

Quando todas as incognitas vizinhas ao ponto i sdo avaliadas no passo de tempo
atual m + 1, ou seja, nao sao conhecidas na sua totalidade, temos a formulagao implicita
(FIGURA 9b). E, no tltimo caso, quando as incdgnitas vizinhas ao ponto i sdo avaliadas
nos passos de tempo atual m + 1 e anterior m, como apresentamos na FIGURA 9c, temos
a formulagao semi-implicita (Crank-Nicolson é um exemplo classico desta formulacao).
Neste trabalho iremos usar apenas métodos de um passo na discretizagao temporal, ou
seja, nao usaremos métodos multi-passos (BURDEN; FAIRES; BURDEN, 2015).
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Segundo Burden, Faires e Burden (2015), para problemas lineares, o método
explicito é condicionalmente estavel, pois sua convergéncia depende de uma relagao entre
o tamanho do passo de tempo e a distancia entre os nés na malha espacial; ja os métodos
semi-implicitos e implicitos sao incondicionalmente estaveis, isto é, independem de tal

relacao; fazendo nossa escolha tender aos métodos semi-implicitos ou implicitos.

FIGURA 9 - FORMULACOES EXPLICITA, SEMI-IMPLICITA E IMPLICITA PARA UM
PONTO (i,,n) EM RELACAO A SUA POSICAO ESPACIAL E TEMPORAL.

(a) Formulagao explicita.

i—1 i 141

¢ e m+ 1
. i - I?l
i—1 7 141

(b) Formulagéo implicita.

1 —1 i i+ 1

- > @< * m + 1
—e ) —o m
i—1 7 i+ 1

(¢) Formulacao semi-implicita.

t—1 i i+ 1

® > g * m+1
- ) - m
1 —1 7 1+ 1

FONTE: A autora (2022).

Dentre os métodos para a discretizagao temporal, utilizamos neste trabalho o
método de Euler implicito, que apesar de ser um método de primeira ordem, ele é um
método incondicionalmente estavel, mais barato computacionalmente que o método de

Crank-Nicolson e atende plenamente aos objetivos desta pesquisa.

Segundo Burden, Faires e Burden (2015), o objetivo do método de Euler implicito
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é obter aproximacoes para a solu¢ao de um problema de valor inicial bem posto, dado por

du
®_ 2.16
com u e f fungdes das varidveis (x,t), em que x estd no dominio espacial, ¢ € [to,tf], onde

ty e ty representam o tempo inicial e final, respectivamente.

Aqui, vamos considerar um nimero positivo inteiro, Ny, de pontos no dominio
temporal distribuidos uniformemente no intervalo [to.tf], gerando assim o que chamamos

de malha temporal. Os pontos ¢ desta malha sao dados por

tme1 = to + (m + 1)T, m=20,1,..., Ny — 1, (2.17)

tr—t
sendo 7 = ~[-= o tamanho do passo de tempo.

Observamos que a derivada temporal é ordinaria e apesar de depender dos valores
espaciais z, considera-se x conhecidos durante o calculo da variavel temporal. Entao, por

simplicidade de notagdo, ao invés de escrevermos u(z,t) usamos apenas por u(t).

Consideramos u(t) € C?[tg,ts] a tinica solugao da equagao (2.16), de forma que

para cada m a sua expansao de Taylor é dada por

du 72 d%u

para algum € € (fo,ts).

O método de Euler implicito constréi v™ = u(t,,), sendo v uma aproximagao da
solucao u, ao desconsiderar os termos de segunda ordem de aproximacao. Assim, o método

de Euler implicito é dado pela equagao

V™ =™ T f (O™ ). (2.19)

m—+1

Note que para obtermos o valor de v sao necessarios valores relacionados aos

passos de tempo m e m + 1 em f (BURDEN; FAIRES; BURDEN, 2015).

Neste trabalho usamos o método de Fuler, que serd denominado por Euler Impli-

cito.

2.3 Meétodos de Linearizacao

Quando nos deparamos com um sistema nao linear e precisamos resolvé-lo, uma
das opcoes ¢é utilizar algum método de linearizacao e assim aplicar um método para

sistemas lineares, que é o mais usual. Neste trabalho analisamos dois esquemas: Picard
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modificado e L-esquema. Nesta secdo vamos dar apenas as noc¢oes basicas de ambos os

métodos. Mais detalhes serao dados na segao 5.2.

Para entendermos como ocorre o processo de utilizacao desses métodos de linea-
rizacao, nos baseamos no livro de Golub e Ortega (2014). Primeiro, consideramos uma

equacao a qual pode ser estendida para um sistema de equacgoes

fi(z1,x9,...;2,) = 0, i=1,..n, (2.20)

onde fy, fa,..., fn s@o fungoes das n variaveis xq, xs,..., £,,. Podemos reescrever esta equagao

na forma vetorial

F(z) =0, (2.21)

em que, F' é uma funcao vetorial com as componentes fi, fo,..., f, € £ é um vetor contendo

L1y,LQy.eey Ty -

Quando n = 1, obtemos apenas uma equac¢ao nao linear, nao sendo necessario
realizar nenhuma manipulacao e pode ser resolvido por algum método de zeros de fungoes,
como o método do ponto fixo, Newton, secante, etc (BURDEN; FAIRES; BURDEN, 2015).
No caso em que n > 2, para verificar se o problema tem solugoes, e quantas, geralmente
é muito dificil. Aqui, consideramos que o tal sistema tenha pelo menos uma solucao
(hipdteses de existéncia e unicidade podem ser encontradas em Golub e Ortega (2014),
Burden, Faires e Burden (2015)).

Em muitas situagoes o sistema representado pela equagao (2.21) pode ser reescrito
na forma

F(z) = Az + H(z) =0, (2.22)

onde A é uma matriz nao singular e H é um vetor de fungdes nao lineares. Neste caso, um

procedimento iterativo bem natural, porém nao necessariamente bom, é

™l = —AilH(xm)a m=0,1,---, (223)

em que, os superindices indicam o processo iterativo. Tal processo iterativo é conhecido

como iteragao de Picard.

No método de linearizacao de Picard modificado, ao invés de todas as varidveis
serem usadas como estimativa conhecida, apenas uma segue essa ideia e a outra variavel é
aproximada pela série de Taylor de segunda ordem. J4, o L-esquema, nao requer etapa
de regularizacao, além de nao utilizar célculos de derivadas como o método de Picard e

Newton.
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2.4 Método de Volumes Finitos

Um modelo matematico de equacoes ou sistema de equagoes diferenciais parciais
(EDPs) pode ser resolvido numericamente, e para isso é necessario discretizar o dominio de
calculo, gerando uma malha de pontos ou volumes, onde os termos das equagoes diferenciais

sao aproximadas e assim recaindo na resolucao de um sistema de equagoes algébricas.

Neste trabalho utilizamos o método de volumes finitos (MVF) para discretizar as
equagoes diferenciais. Este método consiste em dividir o dominio de calculo por subdominios
finitos, chamados de volumes de controle (VCs), envolvendo apenas um ponto nodal da
malha, em que os valores da varidvel de interesse sao calculados (PATANKAR, 2018).
Posteriormente, cada EDP é integrada sobre cada VC e para as variaveis nas faces sao

utilizadas fungoes de interpolagao em termos de valores nodais (PATANKAR, 2018).

Segundo Patankar (2018), no caso de sistemas de equagoes diferenciais, onde ha
mais de duas variaveis de interesse, existe duas possibilidades de posicionamento (arranjo)
das variaveis. O primeiro é o arranjo colocalizado (veja a FIGURA 10b), onde todas as
varidveis estao no centro do volume. O segundo é o arranjo desencontrado (veja a FIGURA

10a), onde algumas varidveis estao no centro e outras em suas fases.

Nesta tese utilizamos malhas colocalizadas, por simplicidade na implementacao
das condigoes de contorno e devido ao uso do método multigrid, que é mais viavel com o

uso deste tipo de arranjo.

FIGURA 10 - MALHAS COM ARRANJOS (a) DESENCONTRADO E (b) COLOCALIZADO
PARA AS VARIAVEIS p, E S,.

(a) Arranjo desencontrado. (b) Arranjo colocalizado.
o 3 ]
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FONTE: A autora (2022).

A organizacao dos VCs em uma malha uni e bidimensional uniforme é apresentada

na FIGURA 11, em que P, N, S, E e W representam o centro do volume e seus vizinhos
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norte, sul, leste e oeste, respectivamente; e n, s, e e w representam as faces norte, sul, leste
e oeste do VC, respectivamente. Nesta figura, h, h, e h, representam os tamanhos dos

V(s nas diregdes indicadas.

FIGURA 11 — DISPOSICAO DE UM VOLUME DE CONTROLE P E SEUS VIZINHOS EM
UMA MALHA UNIFORME UNIDIMENSIONAL (ESQUERDA) E BIDIMENSI-
ONAL (DIREITA).

ha
k——
N
hy o
W P E
[ ] u [ ] (id [ ]
Ty B
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FONTE: A autora (2022).

Para ilustrar a discretizacao de uma EDP, segundo o MVF, vamos considerar,

como exemplo, um caso simples unidimensional. Seja

d (du
—[—1=0 2.24
dx (dw) ’ ( )

onde u é uma fungao que depende somente de z. Integrando a equacao (2.24) sobre cada

VC, temos que

L& () -0 -

onde dV é o elemento de volume de controle de P.

Aplicando o teorema da Divergéncia de Gauss (PATANKAR, 2018) nesta equacdo,

temos

du
— - ndA=0 2.26
//Ad:): " ’ ( )
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sendo dA o elemento area da superficie do volume de controle P e 1 o vetor unitario

normal a superficie do elemento dA e apontando para fora de tal volume.

Calculando as integrais da equagao (2.26) em relagao ao volume de controle P,

conforme a FIGURA 11, obtemos:
_(d
. dx

hy

(du>
d

//du.ﬁdA% r
A dx

wh, =0, (2.27)

ou seja,

du du du
//A A (@;) | - (m;) |w —0. (2.28)

Para aproximar as derivadas nas fases e e w do volume de controle P, podemos
empregar algum método de interpolagao. Maliska (2004) apresenta diversos esquemas
para esta interpolagdo unidimensional, como por exemplo, o esquema central (Central
Differencing Scheme, CDS), esquema a montante (Upwind Differencing Scheme, UDS) e
Esquema exponencial. Neste exemplo, e ao longo desta tese, vamos usar o CDS por ser

um esquema de 22 ordem.

Considerando a posicao dos VC na FIGURA 11, as aproximagodes na equacao
(2.28) sao dadas por:

du _ up —up
(dx) ’ e (2.20)
@
dx

Note que as aproximagoes nas faces sao calculadas com os valores nodais. Assim,

(2.30)

w

podemos substituir as equagoes (2.29) e (2.30) na equacio (2.28) e rearranjando os termos,

obtemos um sistema linear do tipo

apup = awuw + agug + bp, (231)

onde ap = %, aw = ag = i e bp = 0. A extensao para o caso bidimensional é anédloga,

gerando um sistema do tipo

apup = awuw + apup + anuy + agus + bp. (2.32)

Note que as equagdes (2.31) e (2.32) sao casos especificos da equagao (1.1) e

representam as equagoes discretizadas para um volume de controle interno. No caso
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dos volumes que estao na fronteira dependem da condi¢ao de contorno estabelecida no
problema, que pode ser Dirichlet, Neumann ou Robin (PATANKAR, 2018). Segundo
Maliska (2004) existem algumas maneiras de aplicar essas condigoes, tais como: balango
para os volumes da fronteira, meio-volume ou volumes ficticios. Neste trabalho, utilizamos
a técnica de volumes ficticios pelo fato de manter-se as mesmas equagoes/formulagoes

para todos dos volumes internos e sua facil aplicacao apesar do aumento de incégnitas do
sistema algébrico (GONCALVES, 2013).

Nesta técnica precisamos adicionar volumes de controle ao redor do dominio fisico,
fazendo com que as condigdes de contorno originais do problema continuem sendo satisfeitas.
Neste trabalho utilizamos tanto a condi¢ao de contorno de Dirichlet por conhecermos a
quantidade de u, na fronteira, como a condicdo de Neumann por conhecermos a derivada
da quantidade du na fronteira. Na FIGURA 12 ilustramos os coeficientes dos volumes
ficticios para o volume P. Como exemplo, considere a condi¢ao de contorno de Dirichlet

t. no lado esquerdo da FIGURA 12, assim temos

_UP+UE

c 2.33
u =" (233)

FIGURA 12 - CONDICOES DE CONTORNO COM VOLUMES FICTICIOS NA FRONTEIRA.

h
2y
P E W P
[ ] [ ] [ ] [ ] [ ]
Volume ficticio Volume ficticio

FONTE: A autora (2022).

Isolando a variavel no volume de controle P, temos

up = —ug + 2u,. (2.34)

Comparando esta equagdo com a equagao (2.31), obtemos as expressoes para 0s

coeficientes e termo fonte do volume ficticio

ap = l;ag = —1;aw = 0;bp = 2u,. (2.35)
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3 METODOS ITERATIVOS BASICOS E MULTIGRID

Vimos pela se¢ao anterior, que sistemas lineares esparsos e de grande porte sao
gerados na discretizagdo das EDPs. Segundo Burden, Faires e Burden (2015), neste tipo
de sistemas lineares, os métodos iterativos sdo mais eficientes computacionalmente do que

os métodos diretos.

Para encontrarmos a solucao desses sistemas de equacoes lineares a partir dos
métodos iterativos, tanto para as equagoes especificas (2.31) e (2.32), como para a equagao
geral (1.1), é preciso de uma estimativa inicial e posteriormente as novas solugoes sao
aproximadas com esta (hipdteses para a convergéncia podem ser encontradas em Golub e
Ortega (2014), Burden, Faires e Burden (2015)). Esse processo ¢ realizado sucessivamente
até encontrarmos uma solugao que atenda a certo critério de parada, que pode ser baseado
no erro, residuo, nimero de iteracoes, etc. Entre os varios métodos iterativos, podemos
citar: Jacobi, Jacobi ponderado, Gauss-Seidel (GS), Sobre-Relaxacao Sucessiva (Successive
Over-relazation, SOR), etc.

Reescrevemos a matriz A da equagao (1.1) como:

A=D-L-U, (3.1)

onde D é matriz que contém os elementos da diagonal de A, L guarda a parte inferior de
A e U a parte superior. Substituindo a equagao (3.1) na equagao (1.1), e apds um certo

arranjo a fim de gerar o método GS, obtemos o processo iterativo

u ™ = (D — L)y'Uu* + (D — L)7'f, (3.2)

onde Sg = (D — L)~'U é a matriz de iteragao de Gauss-Seidel e k + 1 é a iteragdo atual.
Nesta tese, temos um interesse especial pelo método de Gauss-Seidel por ele possuir boas
propriedades de suavizagao, que serao explicadas logo a seguir, no contexto do método
multigrid. Em particular, vamos utilizar o método GS ponto-a-ponto, ou seja, a atualizacao
das variaveis é feita a cada volume separadamente, e nao de forma coletiva por linhas ou

por blocos, por exemplo.

Para tanto, necessitamos estabelecer uma ordem na leitura dessas informagcoes. Em
Trottenberg, Oosterlee e Schiiller (2001) encontramos uma ordem lexicogréfica comegando
no canto superior esquerdo (veja FIGURA 13). Esta serd a ordem adotada neste trabalho

e que sera tratada simplesmente por “ordem lexicografica”.

Assim, considerando o lado direito da FIGURA 11 e usando a ordenacao lexico-
grafica (FIGURA 11) na equagao (2.32), temos o método de Gauss-Seidel
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up™ = (awul! + apuly + asuld™ + ayuly — bp) fap, (3:3)

onde os superindices representam as iteragoes e os subindices a posi¢ao na malha.

Novamente considerando a FIGURA 11 e a ordenagao lexicografica (FIGURA
13), podemos notar que os volumes P, W, E, N e S corresponderao aos pontos (,5), (i,j —
1), (i, +1),(i —1,7) e (i + 1,7), respectivamente. Assim, usando esses volumes novamente

na equagao (2.32), temos o método Gauss-Seidel escrito em func¢ao dos subindices 1, j

k+1 __ k+1

k k+1 k
w; i = (@it oy Qg G gug gt aigug g —big)/aig. (3.4)

FIGURA 13 - ORDENACAO LEXICOGRAFICA COMECANDO DO CANTO SUPERIOR
ESQUERDO PARA O EMPREGO DO METODO DE GAUSS-SEIDEL PONTO-
A-PONTO.

ol 0> ° 3 o °°

o6 o7 % 9 ol

oll @12 13 ol4 15

016 @17 18 19 20

02l 022 @23 @24 25

FONTE: A autora (2022).

3.1 Método multigrid

O multigrid é uma técnica muito eficiente usada para acelerar a convergéncia
dos métodos iterativos (BRIGGS; HENSON; MCCORMICK, 2000; TROTTENBERG;
OOSTERLEE; SCHULLER, 2001). Para compreendermos melhor a sua filosofia, vamos
apresentar aqui os conceitos basicos para o caso unidimensional e algumas extensoes para

o caso bidimensional.
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Primeiro, definimos os modos de Fourier (BRIGGS; HENSON; MCCORMICK,
2000):

'k
wh:sen<‘7N7T>, 1<k<N-1, 0<j<N, (3.5)
em que w;-’ ¢ uma aproximacao da solucao no volume 7 de uma malha com h sendo o
tamanho do volume, k£ sendo o niimero de ondas ou modos de Fourier e N sendo o nimero

de pontos.

Na FIGURA 14 sao ilustrados alguns modos de Fourier, com k=1, k =3 e k = 6.
Podemos perceber que quanto menor o valor de k, mais longas e suaves sao as ondas,

enquanto que, se aumentarmos os valores de k, teremos ondas mais curtas e oscilatorias.

FIGURA 14 - MODOS DE FOURIER.

FONTE: Briggs, Henson e McCormick (2000).

Alguns métodos iterativos possuem a propriedade de reducao rapida das com-
ponentes oscilatérias do erro, deixando apenas suas componentes suaves. Gauss-Seidel,
por exemplo, possui esta propriedade, aqui chamada de propriedade de suavizacao. De
acordo com Briggs, Henson e McCormick (2000), Trottenberg, Oosterlee e Schiiller (2001),
esses modos suaves tornam-se mais oscilatorios em malhas mais grossas. Nesse sentindo, o
método multigrid (que trabalha com varios niveis de refino de malha), leva as informagoes
para diferentes e diversas malhas, fazendo com que o método convirja mais rapidamente

por suavizar todas as componentes do erro.

O principio béasico do multigrid ¢ a suavizacao e correcao nessas diversas malhas,
para tanto, necessitamos do conceito de equagao residual, onde concentraremos o esforco

do método multigrid.

A equagao residual da equacao (1.1) é dada por Ae = r, onde r é o residuo, dado
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por

r=f— Av, (3.6)

com v sendo a solucao aproximada de u e e o erro numérico, dado por

e=u-—u. (3.7)

O algoritmo do multigrid pode ser construido segundo o esquema de correcao
(Correction Scheme, CS) ou o esquema de aproximagao completo (Full Approximation
Scheme, FAS). O esquema CS consiste em resolver o problema apenas na malha mais fina
e a equagao residual (corregdo) nas demais malhas grossas. No esquema FAS, além de se
resolver o problema na malha mais fina, nao se resolve a equagao residual explicitamente
na malha mais grossa, e sim, a equagao discretizada em tal malha (completa). De acordo
com essas informagoes, indicam-se os esquemas CS e FAS para se resolver, respectivamente,
os problemas lineares e nao lineares (BRANDT, 1977; BRIGGS; HENSON; MCCOR-
MICK, 2000; TROTTENBERG; OOSTERLEE; SCHULLER, 2001). Como neste trabalho
tratamos de problemas nao lineares que tiveram que ser linearizados, usamos o esquema
CS. Adicionalmente, as diferentes formas de percorrer as malhas dao origem a diferentes

tipos de ciclos, por exemplo, ciclo V, W ou F.

Como o multigrid é composto por um conjunto de malhas é preciso utilizar alguma
razao de engrossamento entre elas. Segundo Briggs, Henson e McCormick (2000), Brandt
(1977) a razao re = 2 é a mais utilizada e mais recomenddvel, por isso, optamos em
utilizar esta. Isto significa que o tamanho do volume de malha imediatamente mais grossa
(27) é duas vezes o tamanho do volume na malha imediatamente mais fina (£2%), ou
seja, H = 2h. Na FIGURA 15 podemos visualizar uma sequéncia de malhas com re = 2
para o caso bidimensional. Com esta razao definida, podemos determinar o niimero de
malhas a serem percorridas para cada tamanho de problema. No nosso caso optamos por
utilizar o maior nimero de malhas possivel, chamando de L,,,,, por exemplo, para um
problema de tamanho N = 64 x 64 volumes, o maior conjunto de malhas possivel serd
N =2x2,4x4,8x8,16 x 16,32 x 32 e 64 x 64. Portanto, para este exemplo, temos
Loz = 6.

Para a transferéncia de informacoes entre malhas finas (£2") e a malha imediata-

mente mais grossa (£22"), precisamos utilizar alguns operadores, conhecidos como restricio

e prolongacio, representados por I?" e I}, | respectivamente.

Dentre os diversos operadores de restrigdo existentes na literatura (BRIGGS;
HENSON; MCCORMICK, 2000; TROTTENBERG; OOSTERLEE; SCHULLER, 2001),

aqui neste trabalho utilizamos a média aritmética dos valores das propriedades dos quatro
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FIGURA 15 - APLICACAO DA RAZAO DE ENGROSSAMENTO re = 2 PARA A MALHA
FINA N, x Ny, =8 x 8.
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FONTE: A autora (2022).

volumes da malha fina, definido pela equagao (3.8) para o caso bidimensional e com a

variavel de interesse no centro do volume.

h h h h
on  U2i—12j—1 T VUgi_125 T V2951 T Vg
J 4

coml<i<N,el<i<N,.

Em relacao a prolongacao, utilizamos a interpolagao constante por partes, dada

pela equagao (3.9).

h 2h
Ugi—1 ,27—1 Uz] )
h _ . 2h
Ugi—1,25 = Vij >
(3.9)
h _ . 2h
Ui 2j—1 = Vij >
h 2h
Vg 27 vzg

coml<i<Nyel<i<N,.

Como dissemos, as diferentes formas de percorrer as malhas dao origem a diferentes
tipos de ciclos. Neste trabalho optamos em utilizar o ciclo W (vy,1,) (veja a FIGURA
16), onde v e vy sdo o nimero de pré- e pés-suavizagao, ou seja, o numero de iteragoes

no processo de restricao e prolongacao, respectivamente. Como sabido, o ciclo W é um
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pouco mais caro computacionalmente, se comparado com o ciclo V, mas ele é mais robusto

(FRANCO, 2017).

FIGURA 16 - CICLO W COM 4 MALHAS.

« Suavizacao

\ Restricao

/ Prolongacao
FONTE: A autora (2022).

Com isto, temos o ALGORITMO 1, onde apresentamos o g-ciclo para o método
multigrid, que é aplicado de forma recursiva usando uma hierarquia de malhas (entre a
malha fina e malhas mais grossas), dada por 2, 1 =1,2,3,--- onde [ é o nivel da malha
espacial. Por exemplo, se ¢ = 1, o algoritmo realiza um ciclo V e se o = 2, o algoritmo

executa um ciclo W.

Algoritmo 1: MG-p-ciclo.

Input: o,vg,0,f, h,vy, V9

if | = L,,00 € 0 nivel de malha mais grossa then
Resolva AOy® = fO em 027 'h else

Suavize AVu® = fO 1, vezes em 227" com estimativa inicial v(()l);

Calcule o residuo R = fO — AWy O,
Restrinja o residuo da malha 22 ' para a malha Q2" i1l = ]gllflhR2l_1h.
for ciclo =1 : pdo

| Resolva no préximo nivel: MG-g-ciclo (I + 1).
end
Corrija v + v® + Igll,zlhv(l“);
Suavize AQu® = fO 1, vezes em 22 ' com estimativa inicial v®.
end

end
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4 MODELOS MATEMATICOS

Neste capitulo apresentamos os modelos matematicos que serao tratados nesta

tese, com seus dominios de célculos, as condi¢oes de contorno e suas solugoes analiticas.

Para isso, consideramos o problema nao linear de escoamento bifdsico em meios
porosos rigidos cuja equacao (2.8) pode ser reescrita para o« = w, n, ou seja, para a fase

tumida (w) e nao dmida (n):

a0, E,
o '(AwKVPw)—pTU
o6 . (4.1)
. K S

no dominio espacial dado por 2 C R%, com d € {1,2}, sendo x € 2 = [0,L] se d = 1 ou
7 = (z,y) € 2 =1[0,L,] x [0,L,] se d = 2. Temos ainda t € [0,t], o intervalo de tempo

considerado. Nesta notagao V ¢é o gradiente d-dimensional e V- o divergente d-dimensional.
Consideramos 0, (x,t) e p,(x,t) e supomos que as condigdes iniciais sdo dadas por

pa<w70> = Paci,
(4.2)

Qa(x,()) = Qaci.
Por enquanto, definimos as condi¢des de contornos do tipo Dirichlet, isto é,
pa(xcc,t) = Pacc
: xee € 02,0 <t <ty. (4.3)

Oo(zce,t) = Opee

No final desta tese iremos utilizar condi¢oes de contorno de Neumann e que serao definidas

no momento oportuno.

Para realizacao dos nossos testes, exibiremos os modelos matematicos 1D e 2D

nas secgoes a seguir.

4.1 Modelo matematico 1D

Neste trabalho utilizamos a solu¢ao analitica do problema proposto por Illiano
(2016) (segao 5.1, p. 37). Nesse trabalho, Illiano (2016) considera a formulac¢ao pressao-

saturacao da forma p — S, onde p = %. Neste caso, temos como solugao analitica

flz,t) = p(x,t) = Sy(xt) = at(l — z), (4.4)
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com dominio espacial {2 = [0,L] e temporal [0,%] com L =t; = 1. As condicoes iniciais e
de contorno sdo dadas por f(z,0) = f(0,t) = f(1,t) = 0.

A fim de se obter um sistema eliptico (onde é sabido que o método multigrid
funciona bem), realizamos algumas modificagoes no sistema gerado pela formulagao pressao-
saturagao a fim de reescrevé-lo em fungao das varidveis da pressao, p,, e p, (detalhes desta

modificacao e consequentemente discretizagoes, serao dados no préximo capitulo).

Para tanto, tivemos que fazer algumas adaptacoes para usar p,, e p, ao invés de p
de Illiano (2016). Com isso, utilizando a equagao de pressao capitar (p. = pp, — Pw) € P,

obtemos que

_ DPec _  DPec
pw:p_E € pn:p"i_E) (45>
em que p.(S,) =1— %Si Adicionalmente, utilizamos 6, = ¢S,, logo 0, = $+/2 — 2p. e

0, =6 — 0,

Utilizando essas expressoes encontramos os termos fontes:

1

Fy = =5pul26(@ = )a + Kudut(—4+t = 6tw + 6ta?)), (4.6)
1

Fo = 5pal26(x = D+ K Ait(4 +t — 6tz + 6ta”)]. (47)

4.2 Modelo matematico 2D

Para o caso 2D, usamos o problema proposto por Kvashchuk (2015) (segao 4.1,
p.39). Nesse trabalho, Kvashchuk (2015) considera também a formulagao pressao-saturagao

da forma p — 5, onde p = prﬂ’". Nesse caso, a solucao analitica é dada por

p(@t) =tz(1 —2)y(1 —y),
(4.8)
+tz(l —2)y(l—y),

com dominio espacial 2 = [0,L,] x [0,L,] e temporal [0,tf] com L, = L, = t; = 1. As
condigoes iniciais e de contorno sao dadas por p(Z,0) = p(0,y,t) = p(1,y,t) = p(z,0,t) =
p(z,1,t) =0 e Syu(Z,0) = Su(0,y,t) = Su(1,y,t) = Su(x,0,t) = Sy(x,1,t) = L.

Por razoes analogas as explicadas na se¢ao anterior, aqui também realizamos
as adaptacoes na formulacao pressao-saturagdo, ou seja, obtemos um sistema com as
variaveis p,, e p,, utilizando as equagoes (4.5) também para o caso 2D. Consequentemente,
apos algebrismo similar ao caso 1D, obtemos os termos fontes adequados que atendam ao
sistema (4.1).
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5 APROXIMACOES NUMERICAS

Neste capitulo, vamos abordar os modelos numéricos, esquemas e procedimentos
adotados no desenvolvimento do presente estudo computacional e que gerou a grande

contribuicao desta tese.

Para tanto, apresentamos detalhes sobre a discretizacao temporal, seguido do
esquema de linearizagao (incluindo a manipulagao para tornar as variaveis p,, e p, como
varidveis principais do sistema), discretizagao espacial, tipo de malha e, finalmente, o

suavizador empregado.

Aqui, vamos abordar apenas o modelo matematico do caso 1D, pois a extensao

para o caso 2D possui procedimentos andlogos.

Por questoes didaticas, vamos repetir aqui a equagao (4.1) que serd objeto de

discretizacao:
00, F,
— 7 (VK w) = —2
oy ( Y Pw) o
a0 F,
T G MK T p,) = -2
T (A K 7 Pn) o

Da equacao (2.5) (K, = koK) e do fato que A\, = ’Zg, podemos reescrever este

sistema como

Dn o (B _
at Mw va - w

(5.1)
0, _ (K \_F

5.1 Dicretizagao temporal

Primeiramente empregamos o método de Euler implicito para a discretizacao

temporal deste sistema de equacoes, obtemos:

ot =y 9 [Ki 0 ] Fat
T oz Haw or " Pw
2
97711—1-1 _92 8 K;LH_I a ( n+1) B FTTLZ_H ’ (5 )
T ox | p, Ox Pn S
onde n + 1 representa o nivel de tempo atual, 7 = tﬁft ¢ o tamanho do passo do tempo,

onde, ty é o tempo final e N; é o nimero de pontos da discretizacao temporal.
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5.2 Linearizagao

O préximo passo é linearizar o sistema representado pela equagao (5.2). Para isso,

criamos o processo iterativo para tal linearizagao, dado por

9$+17m+1 — 0, _ 2 Kfﬁ“’mﬁ (pn—l—l,m—l—l) _ Fg“’m
T 0r | fy Oz " Puw (53
, 5.3
GZ—H’m—H — 0y 0 KZHM 9 (prilm+ly| = Fﬁ‘“’m
T ox [ Ox Pn Pn

onde m + 1 representa a iterada atual e 07 (a« = w ou n) representa a solucdo convergida,

no passo de tempo anterior.

Neste trabalho usamos o esquema de lineariza¢ao de Picard modificado (CELIA,;
BINNING, 1992) para termos um novo processo iterativo em que uma das variaveis de
interesse (6,) serd aproximada pela série de Taylor e a outra (k,,) serd aproximada por

uma condigao inicial.

Com o intuito de isolar as variaveis p,, e p,, a fim de se obter um sistema de
equagoes elipticas ap6s sua discretizacio, usamos a série de Taylor para calcular §71m+1,
que depende da pressao capilar p., como segue

0
(92+1,m)[ ?—i-l,m-i-l _ p?cl-i-l»m] + O(&pg) (5.4)

eg—i-l,m—i-l — eg—kl,m +
0
Pe

Negligenciando os termos de alta ordem e considerando que para ambas as fases,

as manipulagoes sao andlogas, podemos reescrever a equacao (5.3) da seguinte forma

1 o o Kn+1,m o Fn+17m
- 9n+1,m 7 9n+1,m ) n+1,m—+17] en} 7 w 7 (n+1m+1 _ Tw
e e L B B e
1 0 o | Kntlm g Frtlm
- 9n+1,m 7 9n+1,m ) n+1,m—+17] en} 7 n 7 (nt+1m+1 _n
~ e g | — | B et < B
(5.5)
onde dprtimtl = prtlmtl _ pntlm - Qreanizando nossas equagoes, temos
n+l,m _ on n+1,m+1 n+1,m n+1,m
0:, 2 I i(en-ﬁ-l,m) ope _ 0 | Ky 9 (prrim+ly | = L
T op. v T ox ey Oz Y Puw
n+l,m _ on n+1,m+1 n+1,m n-+1,m
o " —0n 4 i(@n—kl,m) ope T 9 | K 9 (prtbmt1y | = B
T ope. " T ox fn Ox " Pn
(5.6)

A fim de resolvermos o sistema tendo as corregdes das pressdes como variaveis prin-

o . . - o . nt1,m
cipais, devemos realizamos alguns manipulacoes algébricas. Adicionamos a% [Kau a% (
«

n+1,m
Pq
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em ambos os lados das igualdades e substituindo pelas corregdes da pressoes, dpn 1+ =
n+1m+1

n+1,m
Do

U , chegamos na expressao

en—l—l,m _ en (9 5pn+1,m+1 (9 Kn+1,m a
w w 7 9n+1,m c - w o 5 n+1,m-+1 —
T +8pc(w )l T ] 8:17[ L 8:U(pw )]
O [Ky™ 0 ] | FET™
or | e O (P ") | + o
n m n 7 m n m (57)
grttm —grn _i_i((gn-&-l,m) oppttmtt _ﬁ K+ 2(5pn+l,m+1) _
T op. " T ox fn Ox > "
E K;H—Lmﬁ( n+1’m) N Fgﬁ-l,m
Usando C, = g% = —% e a defini¢ao de pressao capilar (p. = p, — pw), Obtemos
. pg—ﬁ-l,m—&-l _ 5pILU+l,m+l a Kg—i—l,m 8 .
Cott T or By 0P| =
T x Lo x
o [Krttm 9 FrAtm o gnilm _ gn
Ox [ pow O (p7“l’+17m>] T 7
Spntlm+l _ §on+lm+l B +Lm (5-8)
n+1.m PZ " _ pZJ " Kg " n+1,m
—cp -~ [ — (op “)] -
T x Lhn, x
o [Krttm 9 Frtme o gntlm _ gn
2|2 ] + B
x n  Ox Pn T

Neste trabalho também usamos o esquema de linearizacao chamado L-esquema
(KARPINSKI; POP; RADU, 2017), para termos um processo iterativo menos custoso, se
comparado com o método de Picard modificado. Para aplicar tal método, basta substituir-
mos C,, por um L suficientemente grande, tal que Ly > |C,,| (POP; RADU; KNABNER,
2004; KARPINSKI; POP; RADU, 2017; ILLIANO; POP; RADU, 2020).

5.3 Discretizacao espacial

Na sequéncia realizamos a discretizagao espacial com o MVF para o caso unidi-

mensional, pois a extensao para o caso bidimensional é analoga.

Para isso, consideramos o nosso dominio como um segmento de comprimento L e

consideramos a malha uniforme, Dy, = {(z;);z; = (j —1/2)hy,j =1,..., N}, sendo N,

N,
entre os volumes (veja FIGURA 17). Note que estamos usando o arranjo colocalizado

ntimero de volumes no espaco e Az = h, = h = = a distancia espacial das aproximacoes
x

da varidveis, ou seja, tais variaveis de interesse sao posicionadas no centro do volume de

controle.
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FIGURA 17 — DISCRETIZACAO 1D NO ESPACO.

[Pnl; [Pwl;

\ ST B

0 L
H
h/2

-
h

FONTE: A autora (2022).

Utilizando a discretizagao por MVF, primeiro precisamos integrar o sistema de
equacgoes. Vamos apresentar neste momento o desenvolvimento da discretizagao envolvendo
apenas a primeira equagao do sistema (5.8), ou seja, a equacgdo para a fase imida w,
considerando os volumes internos. Para a fase ndo imida n, o procedimento é analogo.

Com isso obtemos

(')‘pn—i-l,m-‘rl _ 6pn+17m+1 a Kn—i—l,m a
n+1,m n w _ w o n+1,m+1 _
fffVC {Cw T 8:1}' L 8.73 ((5pw ) av ( )
5.9
a Kg—i—l,m a F;H—l,m 93—1—1,m _ GZ)
Hive {8:5 [ Oz (PZH’m)] + P . }dV

Notemos que essa integral tripla, para o caso 1D, elimina automaticamente as
integrais nas outras duas dire¢oes. Portanto, usando o teorema da divergéncia de Gauss
(KREYSZIG, 2009), calculando as integrais e usando a localiza¢do dos volumes na forma

matricial, como mostra a FIGURA 18, obtemos a expressao

6 n+1m+1 5 n+1,m-+1 Kn+1,m 8
[C;l}-i—l,m Dy Pw ] h— [ w - (Spr+im+1) _
T () Pty OF G+1)

n+1l,m KZ—’_l’m a

Kwuw ’(]_;) o (5pZ+1,m+1) _ P (p17f}+1,m) . (5.10)
G- Fw - l41) G+1)

n+1m n+1,m n+lm _ gn
I(w+ ﬁ (pn—‘rl,m) + le+ - 0w+ ew] h

Po oy O G-%) Puw T )

As aproximacoes nas faces para as pressoes e suas corregoes sao calculadas com os
valores nodais conforme vimos nas equagoes (2.29) e (2.30). Assim, com essas aproximagoes

obtemos uma expressao linear do tipo
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FIGURA 18 — DISPOSICAO DE UM VOLUME DE CONTROLE (i,j) E SEUS VIZINHOS
EM UMA MALHA UNIFORME UNIDIMENSIONAL (ESQUERDA) E BIDI-
MENSIONAL (DIREITA).

ha

k——A

(l — 13.7

hy b

(173 -1 ('L?]) (27] +1
[ ] [ ] [ ]
%{

-1 () G+1) (i+1y

[ ] [ ] [ ] [ ]

FONTE: A autora (2022).

n+1,m+1 n+1,m+1
[Cw]ﬂ-i-Lm ([5pn]’r}+l,m+1 N [5pw]7?+1,m+1) h . {[Kw]n-I—Lm <[5pw]jj—_1 - [5pw]j+ " ) _

J J J — j+i h

(K, (Mpw]? B 2 ey ’mH)} 1 _ {[K i ([pw]?if T [py]] Hmﬂ)
w j—% h L w j—i—% h
o n+1,m [pw]?—i_l’m—i_l - [pw]?jf’m+1 i [Fw]?+1’m B [Qw];}+1,m . [Qw]?
Hul;y - h.
=3 h [l P -

Multiplicando toda a expressao por 7 temos

[Cw]nJrl,m ([5pn]n+1,m+1 B [6pw]n+1,m+1) . {[Kw]nJr},m ([6pw];¢11,m+1 B [6pw];1+1,m+1) +

J j j j+i
n+1l,m n+lm n+lm T n+1,m n+1,m n+lm
Kl 3™ (18pali 5 = [puli™ H)} h?uw:{[Kw]jii ([pulf ™ = puly )
n+1,m n+1,m+1 n+1,m+1 T T[Fw]?+l7m n+1,m n

R (Il = [l o+ — 0 [0
2 Hw Pw
(5.12)

Reorganizando esta equagdo com o intuito de resolver a variavel da correcao da
pressao umida dp,, e repetindo todo o processo para a equacao da correcao da pressao nao

umida Jdp,,, obtemos o seguinte sistema linear que deve ser resolvido a cada linearizacao,
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A, B |0pw fw
o ] f] ). o
sendo que,
[ be
[aa]j-1 [aa];  [aalj+
[aclji—1  [aa];  [aalj+
A, = (5.14)
[aa]j-1 [aa];  [aalj+
[aalj-1  laal;  |aa]j
i be
" }
Cj
Cj
B = , (5.15)
€
Cj
be |
onde bc sao condigoes de contorno e:
. n+1m T n+1m n+1m
ol = ~[CuJ ™ 4 g (U™ + ).
T n+1,m
[aa]j—'_l:_hT[La[ a]j+% ’
T n+1m
[aaljo1 = =5 — Ko7,
Popa™ 0 (5.16)

- T n+1,m n+1,m T n+1,m n+1,m
ol = g Sl e = g (UGl 4 D)) [
T n+1lm n+1lm T n+1lm n+1lm n
e ISl Pl - LFATT = (a7 (6],

onde [Ka]jim e [K,]"T1™ denotam a condutividade inter-bloco de cada fase, ou seja,
2

a condutividade nas faces de cada volume, calculado pela média aritmética ou média

harmonica, dependendo da efetividade em cada teste. Para o caso do método de linearizacao

de L-esquema, basta trocar ¢; por um L adequado.
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Note que as expressoes para todos os coeficientes valem apenas para os volumes

internos. Vejamos agora como fica a discretizacao nos contornos. Para isso, utilizamos a

ideia de volumes ficticios (veja a FIGURA 12).

Aqui vamos detalhar a condicao de contorno de Dirichlet em j = 1, pois, para o

outro contorno, os procedimentos sao analogos. Assim, temos que:

n m T n m n m
R <[Ka]g+1’ PR ) ,
T n+1m
[aa)2 = N [Ka]% :
[aa]o = Oa

onde [p,],, é a condicdo de contorno da pressao da fase a aplicada em j = 1.

(5.17)
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6 EXPERIMENTOS NUMERICOS

6.1 Testes Numéricos com solucao analitica

Nesta se¢ao apresentamos a verificagao do cdédigo para dois exemplos de problemas
bifasicos em meios porosos rigidos. O primeiro caso é referente ao problema 1D e o segundo
para o problema 2D. Para tal analise realizamos alguns testes utilizando singlegrid (método
de malha tnica) ou multigrid (com os componentes algoritmos ja estabelecidos na segao
3.1). Todos os algoritmos foram implementados no MATLAB R2018b com precisao dupla,
em uma maquina com processador Intel Core i7 2.6 GHz, 8GB de meméria RAM e sistema

operacional Windows 10 com 64 bits.

O critério de parada dentro de cada passo de linearizacao no coédigo usado é
baseado na correcao das varidveis de interesse, que no, nosso caso, sao as variaveis
correcoes das pressoes imida e ndao umida, dp,, e dp,, conforme apresentamos no sistema
dado pela equagao (5.13). O tal critério é o méximo, em mddulo, destas corre¢oes, ou seja,

dif f = maz(|0pwl, |0ps]), que deve ser menor ou igual a uma tolerancia,

diff < TOLyn, (6.1)

em que T'OLy;, ¢ a tolerancia para a linearizacgao.

Como critério de parada do processo iterativo (singlegrid ou multigrid), utilizamos

a norma infinito do residuo adimensional pela estimativa inicial, isto é,

Il /| < TOL, (6.2)

0 ¢ o residuo na estimativa inicial e TOL =

em que "™ é o residuo na iteracdo m e r
TOLy G =TOLgq € a tolerancia adotada, em que, TOL ¢, TO Lgg, sao a tolerancia para

o método multigrid e singlegrid, respectivamente.

Tanto para os casos unidimensionais, quanto bidimensionais, assumimos por
simplificacdo em todas as simula¢des que as saturacoes residuais foram desconsideradas,

ou seja, S, = 0 e a viscosidade em ambos as fases é 1, isto é, u, = 1.

6.1.1 Exemplo 1D

A fim de verificarmos nosso c6digo, realizamos alguns testes com os esquemas de
linearizagao de Picard modificado e L-esquema. Illiano (2016) utilizou dados simplificados
para obter cédlculos faceis, pois sua intencao também era de verificagao. Tais dados sao
apresentados no Teste 1 da TABELA 2. Para obter de fato um meio poroso, realizamos

a alteracao da variavel da porosidade (¢), para tal mudanca, nominamos como Teste 2,
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sendo apresentado também na TABELA 2. Em ambos os casos, as condigoes iniciais e de

contorno foram dadas na segao 4.1.

TABELA 2 - PROPRIEDADES.

Teste 1 (ILLIANO, 2016) | 1 2

Teste 2 1 2
FONTE: A autora (2022).

Ao A K¢ pu pa
1 1
1
(

Para analisar a implementacao do multigrid fizemos uma comparagao com o
singlegrid. Para o singlegrid e multigrid usamos o solver GS acoplado. Além disso, para
o multigrid utilizamos o nimero maximo de niveis (L,,q,) € 0s seguintes operadores de
transferéncia entre malhas: restricao através da média aritmética e prolongacao através
da interpolacdo constante por partes (TROTTENBERG; OOSTERLEE; SCHULLER,
2001). Neste exemplo, usamos os dados da TABELA 3, sendo que v e v representam o
numero de pré e pés-suavizacao; vy, o nimero de suavizagoes na malha mais grossa; TOL,

a tolerancia para os ciclos W ou para o GS; e TOLy;,, a tolerancia para a linearizacao.

TABELA 3 — DADOS DE IMPLEMENTACAO.

vy | Vg | Vg TOL TOLZZ‘”
515 |5 |10e—-5|10e—28
FONTE: A autora (2022).

Picard modificado

Inicialmente reproduzimos a figura 5.1 de Illiano (2016) que apresenta a solugao
numérica e analitica (equagao (4.4)) obtida da saturagao para os dados do Teste 1 da
TABELA 2 para diversos passos no tempo. Os graficos gerados sao apresentados na
FIGURA 19, onde é possivel perceber que todas as nossas solugoes (para alguns tamanhos
de malhas e em varios passos de tempo) estao proximas das solugbes analiticas de Illiano

(2016). Neste caso, o erro entre elas esta na ordem do erro de maquina.

Como na grande parte dos problemas a serem resolvidos, a solu¢ao analitica nao
¢é conhecida e, consequentemente, o erro numérico também nao. Nestes casos, uma forma
de verificar a solugao é mediante um estimador de erro, baseado na ordem aparente (py).
Quando conhecemos a solugao analitica, podemos calcular a ordem efetiva (pg). Essas

ordens sao calculadas da seguinte maneira (MARCHI, 2001):
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FIGURA 19 - SATURAGAO ANALITICA E NUMERICA OBTIDA NO PRIMEIRO PASSO
DE TEMPO COM TOLy;, = 10~ E EM DIFERENTES MALHAS: (A) h =1 =
0,1, (B) h=7=0,05, (C) h =7 =0,025 E (D) h = 7 = 0,0125.

(a) Sy PARA h=7=0,1. (b) S, PARA h = 7 = 0,05.
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s B \ Ay,
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/ \ " .
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B/ N
X S
00004 > A 0,000 2 »
T T T T T T T T T T T T
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(¢c) S, PARA h = 7 = 0,025. (d) S, PARA h = 7 = 0,0125.
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NS Py " —e— 5,ana(t=0,025)
» [N -a-Sy(t=0,05) ©5,(1=0,0375)
0,020 4 i R +Syana(t=0,05) 0,020 —<— 5, ana(1=0,0375)
» > Sy (t=0,075) +5}u 0,05)
0,015 —«Syana(t=0,075) 0015 e Z:l"“(;‘o:;:’
N AdAAL, »>-Sw(t=0,1) R . S':ﬂna(l 0.0625)
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0,005 4 .--"““ e 0,005 4 A 8, ana(1=0,0875)
Y > > 5,(=0,1)
0.000—(3- =% i 0,000 _] S, ana(t=0.1)
00 02 04 06 o8 10 00 0z 04 06 o8 10
X X
FONTE: A autora (2022).
log j5:=72) logj7=20)
_ 41—z _ &~ | (6.3)
bPuv = 1 PE = 1 .
0g(q) 0g(q)

em que ¥ ¢é a solugao analitica, 11, 15 e 13 representam trés solugoes em trés malhas distin-
tas com volumes de tamanho hq, hy e hz, malhas fina, grossa e super grossa, respectivamente,

e g = ho/hy = h3/hs é a razao de refino entre as malhas.

Consideramos a norma infinito do erro numérico como variavel de interesse,
buscamos verificar se as ordens efetiva (pg) e aparente (py) do erro de discretizagao
tendem a ordem assintética, mediante o refino da malha. Para o problema considerado a
ordem assintética é p; = 2, dado que utilizamos as aproximagoes espaciais de segunda
ordem de acurdcia, CDS (VERSTEEG; MALALASEKERA, 2007).

Na FIGURA 20 apresentamos os graficos com os resultados obtidos para py e pg
com o Teste 1, utilizando o singlegrid. Com o intuito de se isolar apenas os efeitos do erro

de discretizagao, utilizamos um método direto na resolugao dos sistemas que surgem das
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lineariza¢oes do método de Picard modificado, onde as simulac¢oes foram executadas até
que o dif f atingisse o erro de maquina (erro de arredondamento). Dessa forma, tentamos
negligenciar o erro de iteracdo. Aqui as variaveis de interesse sdo as normas infinito dos
erros numéricos de p,,, p, e #,. Como podemos observar por esta figura, para as malhas

analisadas, py e pg estao se aproximando de p;, = 2, conforme esperado.

FIGURA 20 - ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM PICARD MODIFICADO PARA O TESTE 1.

2,15 1

2,10 1

2,05 1

2,00

1,95 +

Ordens Aparente e Efetiva

1,90 +

1,85 ———
0,00 0,01 0,02 0,03 0,04 0,05

FONTE: A autora (2022).

Na TABELA 4 apresentamos o tempo de CPU (tcpy) total necessario (que leva
em consideracdo todos os passos de tempo e suas respectivas linearizacoes necessarias)

para cada um dos métodos e seu speedup S. S representa quantas vezes o multigrid é

tcpu-SG
tepu-MG”

espacial, que ja é suficiente para verificar as propriedades desejaveis do multigrid diante do

mais rapido que o singlegrid, ou seja, S = Aqui, optamos apenas pelo refino
singlegrid. Note que S > 1 em todos os casos, ou seja, o multigrid sempre é mais rapido
que o singlegrid. E ainda mais, a medida que refinamos a malha, S vai ficando cada vez
maior, o que significa que o multigrid vai ficando cada vez mais eficiente, caracteristica

altamente desejavel.

Realizamos também um ajuste geométrico do tipo tcpy = ¢(NV,)? (BURDEN;
FAIRES; BURDEN, 2015) para analisar o desempenho do método, onde ¢ é uma constante



Capitulo 6. Ezxperimentos Numéricos 64

TABELA 4 - TEMPO DE CPU E SPEEDUP PARA O MULTIGRID E SINGLEGRID.

Ny | N, | tepu - SG | tepy- MG S

16 | 16 24,860 3,630 6,848
16 | 32 175,394 10,013 17,516
16 | 64 | 1310,780 27,618 47,460

16 | 128 | 9892,466 62,690 157,799
FONTE: Adaptado de Oliveira et al. (2020).

relativa ao método e p representa a ordem de complexidade do algoritmo, que no caso do
multigrid, deve estar préximo da unidade (TROTTENBERG; OOSTERLEE; SCHULLER,
2001). Considerando o primeiro passo de tempo e a primeira linearizagdo em diferentes
malhas, N, = 4,8,16,32, 64,128, 256,512 e 1024, obtemos ¢ = 0,0127 e p = 1,1103, estando

de acordo com a literatura.

L-esquema

Nas FIGURAS 21 e 22 apresentamos os graficos com py e pg obtidos pela equagao
(6.3) referente aos dados do Teste 1 da TABELA 3, utilizando o singlegrid, o método de
linearizagdo L-esquema com L, = 10% e L,(t) = 5maz(|Cy(z,t)|), respectivamente. Note

que estas escolhas de Ly atendem aos critérios estabelecidos por Illiano, Pop e Radu (2020).

Como podemos observar nessas figuras, py e pg tendem a pr = 2, conforme
esperado. Como o comportamento para os dois valores de Ly sdo semelhantes e notamos
que para o Lg(t) a convergéncia foi ligeiramente mais répida, utilizamos apenas o caso
de L(t) para avaliar o Teste 2 (veja dados nas TABELAS 2 e 3), onde novamente py e
pE, tendem a pyp = 2, conforme podemos ver na FIGURA 23. Assim, verificamos que para
ambos os Testes para o problema 1D, as ordens aparentes e efetivas tendem a 2, conforme

esperado.

Realizamos ainda alguns testes variando a escolha do Ly no L-esquema, pois
neste momento o objetivo era analisar o comportamento do método de linearizagao. Por
isso, para os primeiros testes optamos em utilizar o método direto para a resolucao dos
sistemas lineares gerados. Na FIGURA 24, escolhemos um L, = 10* fixo para todos
os volumes de controle e para todos os passos de tempo. Na FIGURA 25, escolhemos
bmax(|Cy(x,t)|) para qualquer volume em cada passo de tempo. Finalmente, na FIGURA
26 foram escolhidos os valores fixos para cada malha, ou seja, Ly = 102,103 e 10* para as
malhas N, = N, = 10,20 e 40, respectivamente. Nessas figuras (FIGURA 24, 25 e 26), é

possivel perceber que o erro diminui com o refino da malha, como é esperado.

Podemos perceber que entre as trés escolhas para Lg, Lg(t) = bmax(|Cy(z,t)])

obteve melhores resultados, pois a ordem do erro é menor (veja FIGURA 25).
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FIGURA 21 - ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM L, = 10* PARA O TESTE 1.
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FONTE: A autora (2022).

FIGURA 22 - ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM Lg(t) = 5max(|Cy(x,t)|) PARA O TESTE 1.
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FONTE: A autora (2022).

Na FIGURA 27 é apresentado o dif f em relagdo ao nimero de linearizagoes (it;;,)
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FIGURA 23 - ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM Lg(t) = 5max(|Cy(x,t)|) PARA O TESTE 2.
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FONTE: A autora (2022).

FIGURA 24 - NORMA INFINITO DO ERRO NUMERICO COM L, = 10* PARA O TESTE
1.

1E-02

o

1E-03

||[Erro Numéricol|

1E-04

70 20 30 40 50 60 70 80 90700

FONTE: A autora (2022).
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FIGURA 25 - NORMA INFINITO DO ERRO NUMERICO COM L,(t) = 5max(|Cy(.t)])
PARA O TESTE 1.
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FONTE: A autora (2022).

para alguns tamanhos de malhas e L, = 10* para o Teste 1. Notamos que na primeira
linearizacao, o dif f diminuiu abruptamente e depois mais suavemente. Em relacao ao
tamanho de malha, podemos perceber que foi necessario mais lineariza¢oes para malhas

mais grosseiras.

Na TABELA 5 é possivel percebermos o niimero de linearizagoes no ultimo passo
de tempo (it;;,) e a média de linearizagoes no tempo (itmey;,) para as diferentes escolhas
de L, no L-esquema para o Teste 1 até que o critério de parada TOL;, = 107 fosse
atingindo. Comparando tais escolhas de L, percebemos que uma boa escolha é utilizar
Ly(t) = bmax(|Cy(x,t)]), pois foi a escolha onde o nimero de iteragoes se manteve mais

estavel e necessitou menor nimero médio de linearizacoes para convergir.

Portanto, apods essas andlises e segundo as pesquisas recentes encontradas na
literatura sobre a escolha de Lg (RADU et al., 2018; ILLTIANO; POP; RADU, 2020;
SABATINTI et al., 2020), optamos por utilizar L; = max(|C,,(x,t)|), pois atende ao critério
de convergéncia indicado por Illiano (2016) (Ls > |Cy(z,t)|), aos testes realizados por
Sabatini et al. (2020) e é uma forma de nao se obter valores tdo grandes para L. Assim,
para obter os proximos resultados, realizamos varias simulagoes, comparamos os métodos
de linearizagoes, Picard modificado e L-esquema com L, = max(|Cy(z,t)]), com o nimero
maximo de linearizagoes itmaxy;, = 500 e o uso do método multigrid com as componentes

algoritmicas apresentadas na secao 3.1. Os demais dados usados estdo na TABELA 3.
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FIGURA 26 - NORMA INFINITO DO ERRO NUMERICO COM L, = 10%,10° E 10* PARA

1E-02
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S
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Z
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£
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N=N,

O TESTE 1.

FONTE: A autora (2022).

TABELA 5 - NUMERO DE ITERACOES DA LINEARIZACAO COM L-ESQUEMA PARA O

TESTE 1.
Ly =10* Ly(t) = bmax(|Cy(z,t)]) | Ls = 10%,10% e 10*
Ny = Ny |— : : : : :
Wiin itmeyn, Wiin tmeyy, iin itmeyn,
10 18.823 | 10.815,7 | 286 288,3 272 10.152
20 19.106 | 10.361,1 | 553 540,85 2.383 1.292,5
40 18.767 | 9.846,58 | 1.041 990,77 18.767 | 9.846,58
80 17.974 | 9.240,51 | 1.907 1.766,63 - -
160 - - 3.391 3.048,48 - -

FONTE: A autora (2022).

Comparagao entre as linearizacoes de Picard modificado e L-esquema

Mostramos na TABELA 6 a média de linearizagoes, itmey,, e a média de ciclos

do multigrid, itmeyg. Assim, podemos notar que o nimero de iteragoes necessarios no

multigrid é sempre pequeno em relacdo aos métodos de linearizagoes. Se compararmos
os resultados da coluna itmey;, de Lg(t) = bmax(|Cy(z,t)|) da TABELA 5 com a coluna
Teste 1 de L-esquema da TABELA 6 é possivel perceber que no segundo caso, o niimero

de iteragoes média para a linearizagao foi menor, isso se deve principalmente ao fato de
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FIGURA 27 — dif f NO 1° PASSO DE TEMPO COM L, = 10* para o Teste 1.

Eord SRS — —0—N=N= 10|

diff

FONTE: A autora (2022).

estarmos utilizando Lg(t) = max(|Cy(x,t)|) e ndo Ls(t) = bmax(|Cy(x,t)|). Percebemos
também que para esse problema, o Picard modificado necessita de um niimero bem menor
de iteragoes que o L-esquema, tornando-se bem mais eficiente. Estes resultados também

podem ser vistos em Oliveira et al. (2020) (Anexo A).

TABELA 6 - ITERACOES DO PICARD MODIFICADO E L-ESQUEMA COM MULTIGRID

Picard modificado L-esquema

N, = N, Teste 1 Teste 2 Teste 1 Teste 2

itmeyn,  itmeya | itmey, itmeye | itmey, itmeya | itmey, ttmeya
5,25 1,50 5,25 1,50 16,25 1,12 16,00 1,13

8 4,63 2,50 4,63 250 | 3413 1,12 | 33,75 1,12
16 4,31 2,50 4,31 250 | 6519 1,06 | 64,69 1,06
32 3,75 2,67 3,72 2,67 | 117,66 1,03 | 117,00 1,03
64 3,22 2,67 3,22 2,67 | 22804 1,02 | 24420 1,02

FONTE: Adaptado de Oliveira et al. (2020).

Na FIGURA 28 apresentamos a norma infinito da diferenca entre as solugoes

analiticas e numéricas de p, versus N, = N, = 4 até 64 para os esquemas de linearizacao
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estudados (Picard modificado e L-esquema com Ly = max|C\,(x,t)|), tanto para o Teste
1 (T1) como para o Teste 2 (T2). Os resultados obtidos mostram que, independente do
esquema de linearizacao usado, o erro sao aproximadamente iguais e diminuem com o

refino da malha.

FIGURA 28 - NORMA INFINITO DO ERRO NUMERICO VERSUS N, = N; PARA OS
TESTES 1 E 2, COM PICARD MODIFICADO E L-ESQUEMA.

2,0E-2
Picard modificado
7T pw-Tl
1,5E-2 *p, T
—~— pw—TZ
. —A— pn-TZ
] 1 0E-2 L-esquema
'é ’ ——p -Tl
2 p, Tl
e —o—p -T2
i 5,0E-3 W
= —ep-T2
0,0 ——K
0 10 20 30 40 50 60 0

Ny=N;

FONTE: Adaptado de Oliveira et al. (2020).

6.1.2 Exemplos 2D

A fim de verificar nosso cddigo em relagdo ao problema 2D, utilizamos o exemplo
com dominio, solugdo analitica conhecida, condigoes iniciais e de contorno definidos na

secao 4.2 (proposta em Kvashchuk (2015)) e que possui os seguintes dados:
oy ] 3, _ 2 _ _
o Teste 3: \y = 3, A\ =5,pe=1-5,, K=1e¢p=p, =1

Realizamos neste momento os testes apenas com o método direto, considerando o
critério de parada T'OL;;, = 1,0e — 09 para o processo iterativo do método de linearizagao

de Picard Modificado.
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Os resultados que obtivemos para a saturacao S, sao apresentados na FIGURA

29, sendo possivel perceber que a nossa solugdo numérica é aproximadamente igual a

solucdo analitica, com erros na ordem 107, resultados muito préximos aos obtidos em
Kvashchuk (2015).

FIGURA 29 - SOLUGAO NUMERICA, ANALITICA E ERRO DE S,, PARA O TEMPO ¢; = 1
COM N, = N, = N, = 20,

FONTE: A autora (2022).

Nas FIGURAS 30 e 31 apresentamos as solu¢oes numéricas e analiticas das

pressoes mida (p,,) e ndo umida (p,,), respectivamente. Aqui podemos perceber também
que as solugoes numéricas estao de acordo com as analiticas.

FIGURA 30 - (a) SOLUCAO NUMERICA E (b) ANALITICA DE p,, OBTIDA NO PASSO
DE TEMPO t; = 1.

(a) pw com hy = hy =7 = 0,05.

(b) pyana.
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FONTE: A autora (2022).

Na FIGURA 32 apresentamos os valores de py e pg obtidos pela equagao (6.3)

para as variaveis p,,, p, € S, referente aos dados do Teste 3. Note que py e pg tendem a
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FIGURA 31 - (a) SOLUCAO NUMERICA E (b) ANALITICA DE p, NO PASSO DE TEMPO
tp=1.

(a) pn com hy = hy =71 = 0,05. (b) ppana.
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FONTE: A autora (2022).

ordem assintotica, p;, = 2 com o refino da malha.

FIGURA 32 - ORDENS APARENTE E EFETIVA VERSUS h PARA A NORMA INFINITO
DO ERRO, COM PICARD MODIFICADO PARA O TESTE 3.
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O 403 —4—P0
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0,00 0,02 0,04 0,06 0,08 0,70 0,12 0,14

FONTE: A autora (2022).
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Na FIGURA 33 apresentamos a norma infinito do erro numérico de p, versus
N, = N, = N; = 4 até 64 para o Teste 3, onde ¢ possivel perceber que o erro diminui com

o refino da malha.

FIGURA 33 - NORMA INFINITO DO ERRO NUMERICO VERSUS N, = Ny, = Ny PARA O

TESTE 3.
107 Pw
-,
ew
_*107
g
5
g
=
Z
£ 1079
=
107

FONTE: Adaptado de Oliveira et al. (2020).

Examinamos também a convergéncia do método de Picard modificado no problema
2D, analisando os erros para diferentes discretizacoes e comparamos com os resultados
apresentados por Kvashchuk (2015), apresentados na TABELA 7 (onde se 1& dt em
Kvashchuk (2015), leia-se 7 no presente trabalho). Aqui apresentamos apenas os resultados
com o uso do método multigrid, com seu respectivo critério de parada TOL ¢ = 1,0e—05 e
o processo iterativo dos métodos de linearizacao com critério de parada T'O Ly, = 1,0e —09.
Devemos reforgar que a pressao (p) que esta na TABELA 7 representa p = (p,+pn)/2. Para
comparagao, os nossos resultados, obtidos com Picard modificado, estao sendo apresentados

na TABELA 8.

Na TABELA 8, mostramos que o erro na norma-2 para as variaveis da saturacao
e em ambas as pressoes (E% | E' e E' | respectivamente), juntamente com a redugio do
w Pw Pn

erro correspondente (Eff1 / Efy, com -y a variavel correspondente). Com isso podemos ver
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que os resultados obtidos estdo de acordo com a estimativa do erro tedrico estabelecido

pela literatura, com segunda ordem de convergéncia.

TABELA 7 - ERROS NA NORMA-2 DA PRESSAO (p) E SATURACAO (S,,) UMIDA PARA
DIFERENTES VALORES DOS PARAMETROS DE DISCRETIZACAO ESPA-
CIAL E TEMPORAL COM ty =1 E OS DADOS DO TESTE 3.

i| h=r1 E: E; | EyY/EL| EGES,
1| 01 |2296e-04| 0,0012

2| 0,05 |4,938e-05 | 2,634e-04 | 4,6491 | 4,4626
3| 2,5e-02 | 1,222e-05 | 6,599¢-05 | 4,0401 | 3,9917
4 | 1,25e-02 | 3,097e-06 | 1,676e-05 | 3,9465 | 3,9367
5| 6,25¢-03 | 7,665¢-07 | 4,159¢-06 | 4,0405 | 4,0309

FONTE: Adaptada de Kvashchuk (2015).

TABELA 8 - ERROS NA NORMA-2 DAS PRESSOES (pu, pn) E SATURAGAO (S,,) PARA
DIFERENTES VALORES DOS PARAMETROS DE DISCRETIZACAO ESPA-
CIAL E TEMPORAL, COM ¢; = 1, PARA O TESTE 3.

i| h=r E! E! E% ECYEL | ESYEL | ESES,
1 0,1 6,884¢-04 | 3,251e-04 | 3,441e-04

21 0,05 |1,729¢e-04 | 8,152e-05 | 8,668¢-05 | 3,9809 3,9876 3,9695
3| 2,5e-02 | 4,328e-05 | 2,040e-05 | 2,171e-05 |  3,9950 3,9961 3,9926
4] 1,25e-02 | 1,082e-05 | 5,102e-06 | 5,430e-06 | 3,9988 3,9987 3,9984
5 | 6,25e-03 | 2,706e-06 | 1,276e-06 | 1,358¢-06 | 3,9997 3,9995 3,9998

FONTE: A autora (2022).

Note que qualitativamente as TABELAS 7 e 8 tém o mesmo padrao. Entretanto,
pequenas diferencas quantitativas sao justificaveis. Kvashchuk (2015) usa p ao invés de
Pw € Dn, como usamos neste trabalho. Além disso, para Kvashchuk (2015) as varidveis
de interesse sao p e S, enquanto que neste trabalho sao p, e p,, o que significa que
as variaveis de interesse, e obviamente, as variaveis solugoes dos sistemas, sao variaveis

distintas.

Na TABELA 9 mostramos itmey,, nimero médio de iteracoes na linearizagao.
Para esse exemplo especifico, realizamos a comparacao dos métodos de Picard modificado e
L-esquema com Ly = max(|Cy(z,t)|). Notamos que Picard modificado necessita de menos

iteragoes que L-esquema para atender o critério de parada, se mostrando mais eficiente.

Se compararmos o numero de iteragoes média necessarias para o exemplo 2D da
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TABELA 9 - ITERACOES DOS METODOS DE PICARD MODIFICADO E L-ESQUEMA
PARA O TESTE 3.

N, = N, = N, . .itmelm
Picard modificado | L-esquema
10 3,00 6,00
20 3,00 6,10
40 3,00 6,00
80 3,00 5,89

FONTE: A autora (2022).

TABELA 9 (Teste 3) com o exemplo 1D da TABELA 6 (Testes 1 e 2), podemos perceber
que o comportamento geral é o mesmo: Picard modificado necessita menos iteragdes que

L-esquema.

Como o Picard modificado tem se mostrado mais eficiente que o L-esquema,

optamos em utilizar apenas o método de Picard modificado para os proximos testes.

6.2 Testes numéricos realisticos

O foco nesta secao foi a construcao de um exemplo de um problema de escoamento
multifasico em meios porosos sem solucao analitica conhecida, para com isso, mostrar o quao
eficiente e robusto é a metodologia proposta nesta tese. Para tanto, apresentamos resultados
obtidos para uma sequéncia de problemas (Testes) 2D com pequenas modificagbes em cada,
um deles até evoluir a um problema mais realistico. Para tal analise realizamos alguns

testes utilizando multigrid (com as componentes algoritmicas ja estabelecidas na segao
3.1).

Nesta secao o multigrid tem como critérios de parada TOLy¢ = 1,0e — 05, o
processo iterativo dos métodos de linearizagdo com critério de parada T'OLy;, = 1,0e — 09

e a porosidade phi = 0,9.

6.2.1 Exemplos 2D

Para andlise dos resultados envolvendo o problema 2D utilizamos alguns dados

abordados por Kvashchuk (2015), conforme seguem os testes a seguir.

Teste /

Diferentemente do Teste 3, para o Teste 4, usamos dados baseados na para-
metrizagdo de Van Genuchten, que é baseada em experimentos praticos. Neste caso,
a permeabilidade relativa de cada fase nao possuem soluc¢ao analitica e dependem da

saturagao do fluido (equacao (2.13)),
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bru(Su) = /Sl = (18,2,
V1= S,(1— S, ™y,

onde o pardmetro de Van Genuchten usado aqui serd igual & n = 2, ou seja, m = 1/2

k’rn(sw) =

(KVASHCHUK, 2015). Adicionalmente, a pressao capilar é dada pela equagao polinomial,
pe=1—52.

Note que neste Teste 4 temos uma situagao um pouco mais realistica, dado que
estas permeabilidades geram mobilidades A\, (o« = w e n) dependentes de S, e ndo mais

valores constantes, como no Teste 3.

Os resultados obtidos por Kvashchuk (2015), para a queda do erro com o refino da
malha medido na norma-2, usando a formulacao p — Sw, sdo apresentados na TABELA
10. Para as nossas simulagoes os resultados obtidos sdao apresentados na TABELA 11. Note

que ha concordancia entre os dados destas tabelas.

TABELA 10 - ERROS NA NORMA-2 DA PRESSAO (p) E SATURACAO (S,) PARA DIFE-
RENTES VALORES DOS PARAMETROS DE DISCRETIZACAO ESPACIAL
E TEMPORAL, COM t; =1 E OS DADOS DO TESTE 4.

i| h=rt E: B E;'/EL | EGEL,
1| 01 |9910e-05]| 1,574e-04

2| 005 |2200e-05| 3,893¢-05 | 4,5046 | 4,0433
3| 2,5e-02 | 5,588e-06 | 9,991e-06 | 3,9372 | 3,8964
4| 1,25e-02 | 1,433e-06 | 2,548e-06 | 3,9007 | 3,9210
5| 6,25e-03 | 3,587e-07 | 6,3823¢-07 | 3,9940 | 3,9923

FONTE: Adaptada de Kvashchuk (2015).

TABELA 11 - ERROS NA NORMA-2 DA PRESSOES (pu, pn) E SATURACAO (S,,) PARA
DIFERENTES VALORES DOS PARAMETROS DE DISCRETIZACAO ESPA-

CIAL E TEMPORAL, COM t; = 1 PARA O TESTE 4.

FONTE: A autora (2022).

il h=7 B El Es | EZYE, | EFYE | ESYEL
1] 01 |2,986e-04 | 3,370e-04 | 2,880e-04

2| 0,05 |8456e-05 | 8,516e-05 | 9,065¢-05 | 3,5312 | 3,9573 3,1776
3| 2,5e-02 | 2,217¢-05 | 2,135¢-05 | 2,425¢-05 | 3,8149 | 3,9892 3,7379
4| 1,25¢-02 | 5,614e-06 | 5,341¢-06 | 6,165¢-06 | 3,9481 3,972 3,9335
5| 6,250-03 | 1,408¢-06 | 1,335¢-06 | 1,547¢-06 | 3,9868 | 3,9992 3,0852
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Na TABELA 12 mostramos o nimero médio de iteragoes na linearizagao (itmey;,)
para o uso do método de Picard modificado para o Testes 4. Podemos notar que a medida
que a malha se torna mais refinada, o nimero médio de iteragdes necessarias diminui,

propriedade altamente desejavel.

TABELA 12 - ITERACOES DO METODO DE PICARD MODIFICADO PARA O TESTE 4.

Ny = Ny = Ny | ttmeyp
10 4,70
20 4,45
40 3,98
80 3,90
160 3,61

FONTE: A autora (2022).

Teste 5

Os dados utilizados no Teste 5 sdo baseados na parametrizacdo de Van Genuchten
tanto para a permeabilidade relativa de cada fase quanto para a pressao capilar. Note
que, diferentemente do Teste 4, aqui estamos supondo também que a pressao capilar nao

possui solucao analitica.

As permeabilidades relativas de Van Genuchten sao apresentadas na equacao

(2.13), e relembradas nos dados do Teste 4, e a pressao capilar dada pela equagao (2.9),

5 —1/m

pc(Sa) = pe(Sa - 1)1/n,

com os parametros de Van Genuchten igual a n = pe = 2.

Apresentamos os resultados apresentados por Kvashchuk (2015) na TABELA 13,

para os dados deste Teste.

Calculamos os erros entre a solugao analitica e numérica para diferentes valores
na discretizagdo no passo de tempo (7) e no espago (h = h, = h,). Na TABELA 14,
mostramos o erro na norma-2 para as variaveis da saturacao e em ambas as pressoes (Efgw,
E e E; , respectivamente), juntamente com a redugdo do erro correspondente (E!™!/E!,
com ~ a variavel correspondente). Com isso podemos ver que os resultados obtidos estao
de acordo com os resultados de Kvashchuk (2015) e de acordo com a estimativa do erro

tedrico estabelecido pela literatura, com segunda ordem de convergéncia.

O numero de ciclos do multigrid no ultimo passo de tempo (ityq), a média de

ciclos necessarios do multigrid (itmey;g), o nimero de linearizagdes no tltimo passo de
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TABELA 13 — ERROS NA NORMA-2 DA PRESSAO (j) E SATURACAO (S,,) PARA DIFE-
RENTES VALORES DOS PARAMETROS DE DISCRETIZAGAO ESPACIAL
E TEMPORAL, COM ¢; = 1 E OS DADOS DO TESTE 5.

FONTE: Adaptada de Kvashchuk (2015).

i) h=7 By Es, | B '/E;| Bs,'/ES,
1 0,1 1,258e-04 | 9,380e-05

2 0,05 3,719e-05 | 2,261e-05 | 3,3823 4,1491
3| 2,5e-02 | 1,085e-05 | 5,961e-06 | 3,4280 3,7928
4| 1,25e-02 | 2,796e-06 | 1,561e-06 | 3,8796 3,8183

TABELA 14 - ERROS NA NORMA-2 DA PRESSOES (pw, pn) E SATURACAO (S,) PARA
DIFERENTES PASSOS NO TEMPO E TAMANHOS DE MALHAS, COM
t; =1 PARA O TESTE 5.

FONTE: A autora (2022).

il h=r1 B Bl Ey | E-YE | ESYE | BCYEL
1] 01 |1,261e-03 | 2,755¢-03 | 1,883¢-04

2| 005 |3,276e-04 | 6,995¢-04 | 4,726e-05 | 3,8483 | 3,9389 3,0847
3| 2,5e-02 | 8,2746-05 | 1,756e-04 | 1,183¢-05 | 3,9599 | 3,9843 3,0943
4| 1,256-02 | 2,073e-05 | 4,393¢-05 | 2,960e-06 | 3,9903 | 3,9960 3,9980
5| 6,25¢-03 | 5,186e-06 | 1,099¢-05 | 7,400e-07 | 3,9979 | 3,9990 3,992

tempo (ity;,) e a média de iteragoes para o esquema de linearizacao (itmey;,) com o método
de Picard modificado para este teste estao na TABELA 15.

TABELA 15 - NUMERO DE ITERACOES DO MULTIGRID E DA LINEARIZACAO DE PI-
CARD MODIFICADO PARA DIFERENTES VALORES DOS PARAMETROS
DE DISCRETIZACAO PARA O TESTE 5.

h=71 |ityg | itmeyg | ttin | itmey,
0,1 34 50,22 6 5,7
0,05 20 20,27 6 5,25
2,5e-02 8 9,63 5 4,78
1,25e-02 5 5,82 5 4,51
6,25e-03 4 4,00 5 4,03

FONTE: A autora (2022).

Podemos observar por esta tabela, que o niimero necessario de linearizacoes do
Picard modificado para a convergéncia do algoritmo é pequena em todos os casos, dando
origem a um algoritmo robusto independente dos valores utilizados como parametros de

discretizacao, tanto espacial, como temporal. Além disso, para valores suficientemente
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pequenos de h e 7, o nmero de iteragdoes do multigrid é sempre pequeno, propriedade

altamente desejavel.

Teste 6

A partir deste momento, os proximos testes foram considerados para problemas
sem solugdes analiticas conhecidas p = (py, + pn)/2 € Sy, no intuito de comprovar a
eficiéncia e robustez do nosso algoritmo. Além disso, consideramos o termo fonte nulo
(F, = F,, = 0), permeabilidades relativas e pressao capilar de Van Genuchten e mantemos

as mesmas condigoes iniciais e de contorno de Dirichlet utilizadas no Teste anterior.

A TABELA 16 apresenta nimero de médio de linearizagoes (Picard modificado)
e numero médio de ciclos de multigrid, com o refino da malha. Nesta tabela notamos o

baixo nimero, tanto para itmey;,, quanto para ttmeyq.

TABELA 16 - NUMERO DE ITERACOES MEDIAS DE LINEARIZACOES E MULTIGRID
PARA O TESTE 6.

h=71 | itmey, | itmeyg
0,1 1 3
0,05 1 4
2,5e-02 1 4
1,25e-02 1 4
6,25e-03 1 4

FONTE: A autora (2022).

Teste 7

Como no Teste 6, aqui continuamos a considerar F,, = F,, = 0, condigoes de
contorno e inicial do Teste 5, pressao capilar de Van Genuchten, porém, vamos admitir
um campo de permeabilidade randémica para k;, € k., em nosso dominio (veja FIGURA

34 para k,w). Neste caso, usamos a fun¢ao random do MATLAB.

Na TABELA 17 encontramos o niimero médio de linearizagoes (Picard modificado)
e nimero médio de ciclos de multigrid conforme o refino da malha. Podemos perceber que
tanto o multigrid quanto o Picard modificado convergem rapidamente, pois necessitam de

poucas iteracgoes.

Teste 8

Diferentemente do Teste 7, fizemos uma pequena modificagdo nas condigoes de

contorno no intuito de inserirmos condi¢cao de Neumann na fronteira sul e mantermos
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FIGURA 34 - CAMPO DE PERMEABILIDADE k,.,, PARA N, x N, = 64 x 64.
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FONTE: A autora (2022).

TABELA 17 - NUMERO DE ITERACOES PARA O TESTE 7.

h=r1 | itmey, | itmeyc
0,1 1 3
0,05 1 4
2,5e-02 1 4.8
1,25e-02 1 4,81
6,25e-03 1 5

FONTE: A autora (2022).

Dirichlet nas demais. As novas condi¢oes adotadas aqui serdao dadas a seguir.

As TABELAS 18 e 19 mostram o ntimero médio de linearizagdes e nimero médio
de ciclos do multigrid com diferentes parametros de discretizacdo. Na TABELA 18 foram
feitas 3 variagdes no Teste 8: no Teste 8.1 consideramos a condigao de contorno de Neumann
nula para a variavel p,, ou seja, %ﬁs’ﬂ =0 com 25 = (1,y); no Teste 8.2 consideramos
a condicao de Neumann nula para a variavel p,,, ou seja, %?’t) = 0; ja no Teste 8.3,

consideramos a condi¢cao de Neumann nula para ambas as variaveis, p, € p,.

Na TABELA 19 foram feitas outras 3 variacoes no Teste 8. No Teste 8.4 usamos a

condi¢ao de contorno de Neumann dada por uma funcao para p,, e uma constante nao nula

%’f’t) conhecida, com p,, dada pelas equacoes (4.5)

e (4.8); e para p,, a média do valor de %ﬁs’t) conhecida, com p, dada pelas equacoes

para p,. Neste caso, para p,, temos

(4.5) e (4.8). No Teste 8.5 fizemos o contrario, a constante nao nula para p,, e a fungao
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TABELA 18 - NUMERO MEDIO DE ITERACOES PARA A CONDICAO DE CONTORNO
DE NEUMANN NULA NA FRONTEIRA SUL PARA OS TESTES 8.1, 8.2 E

8.3.
b~ Teste 8.1 Teste 8.2 Teste 8.3
itmeyn | itmeya | itmey, | itmeya | ttmey, | itmeya

2,5e-01 4 3 4 3.25 1 3
1,25e-01 4 4 4 4 1 4
6,25e-02 4 5,36 4 5,2 1 4,38
3,13e-02 4 5,79 4 5,01 1 4,97
1,56e-02 4 5,07 4 9,5 1 )

FONTE: A autora (2022).

para p,, seguindo a mesma ideia anterior. Ja no Teste 8.6, usamos a constante nao nula

para ambas as variaveis.

TABELA 19 - NUMERO MEDIO DE ITERACOES PARA CONDICAO DE CONTORNO DE
NEUMANN NAO NULA NA FRONTEIRA SUL PARA OS TESTES 8.4, 8.5 E

8.6.
b Teste 8.4 Teste 8.5 Teste 8.6
itmeyn | itmeypa | 1tmey, | itmeya | ttmey, | ttmeya
2,5e-01 4 3 4 3,25 2,75 3,67
1,25e-01 4 4 4 4 2,5 4
6,25e-02 4 5,36 4 5,2 2,5 5,37
3,13e-02 4 5,79 4 5,02 2,44 5,67
1,56e-02 4 5,57 4 5,5 2,25 5,69

FONTE: A autora (2022).

Podemos perceber que para as variagoes do Teste 8, o nimero médio de iteragoes

necessarias tanto para a linearizagdao, quanto para o multigrid foram pequenas. O que

confirma que o nosso algoritmo funciona bem para esses casos também.

Teste 9

No Teste 9 fizemos uma mudanca em relacao a malha. Aqui utilizamos uma malha

anisotropica (anisotropia no sentido geométrico), onde o nimero de volumes da dire¢ao

x ¢ diferente da direcao y, implicando h, # h,. Os outros dados e informacoes sao os

mesmos do Teste 8.6: termo fonte nulo, permeabilidades randomicas, condi¢ao de contorno

de Neumann na fronteira sul e Dirichlet nas demais.

Na TABELA 20 mostramos o nimero de iteragoes médias da linearizagao de Picard
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modificado e ciclos mutligrid com diferentes refinos de malha. Note que os resultados foram
satisfatorios com relagao a linearizagao, mostrando a eficiéncia e robustez do algoritmo
para esse caso também. Entretanto, o nimero médio de ciclos multigrid é maior que
em casos anteriores e cresce a medida que cresce o tamanho do problema (propriedade

indesejada). Voltaremos a discutir esta questao no Teste 11.

TABELA 20 - NUMERO DE ITERACOES MEDIAS DO TESTE 9 - ANISOTROPIA GEO-
METRICA.

Ny x Ny | Ny | hpy=71 hy itmey, | itmeya
4 x 32 4 | 2,5e-01 | 0,031 | 4,25 85,67
8 x 64 8 | 1,25e-01 | 0,016 | 4,13 90,96

16 x 128 | 16 | 6,25e-02 | 0,008 | 4,13 95,27

32 x 256 | 256 | 3,13e-2 | 0,004 | 4,18 98,38
FONTE: A autora (2022).

Teste 10

No Teste 10, mantemos as mesmas informacoes e dados do Teste 9, mudamos
apenas para um dominio retangular 2 = (0,1) x (0,8) com o nimero de volumes na dire¢ao
x diferente da direcao y, N, # N,, mas com h, = h,, ou seja, dominio retangular com
uma malha isotrépica. Vamos admitir um novo campo de permeabilidade randémica para

k. nesse novo dominio retangular (veja FIGURA 35). Neste caso, usamos novamente a

funcao random do MATLAB.

A TABELA 21 mostra o nimero médio de linearizagdes do Picard modificado e o

numero médio de ciclos de multigrid, para diferentes malhas e passos no tempo.

TABELA 21 - NUMERO MEDIO DE LINEARIZACOES E CICLOS DE MULTIGRID PARA
O TESTE 10 - MALHA ISOTROPICA E DOMINIO RETANGULAR.

Ny x N, | Ny h=71 |itme lin | itme MG
4 x 32 4 2,5e-01 4 4,95
8 x 64 8 | 1,25e-01 4 4,59

16 x 128 | 16 | 6,3e-02 4 5,30

32 x 256 | 256 | 3,13e-02 4 5,45

FONTE: A autora (2022).

Teste 11
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FIGURA 35 - CAMPO DE PERMEABILIDADE k;,,, PARA N, x N, = 64 x 64 PARA DOMI-
NIO RETANGULAR.
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FONTE: A autora (2022).

Todos os dados do Teste 10 foram mantidos, exceto o niimero de volumes na
direcao z igual ao da direcao y, N, = N,, com h, # h,, ou seja, dominio retangular com

anisotropia geométrica.

A TABELA 22 mostra o nimero médio de lineariza¢des do Picard modificado e o
numero médio de ciclos de multigrid, para diferentes malhas e passos no tempo para este

teste.

Podemos perceber que a metodologia também funcionou neste caso de anisotropia,
como pode ser visto pelos resultados satisfatorios com relacao a linearidade. Porém, foram
necessarios um numero grande de ciclos do multigrid para este caso (veja também no Teste
9). Note também que o nimero médio de ciclos cresce & medida que cresce o tamanho do
problema (propriedade indesejada). Entretanto, isso gera um possivel tema para trabalhos
futuros, por exemplo, a utilizacao de um solver linha na direcdo da anisotropia, pois este

tipo de solver tem um bom comportamento neste tipo de prolema.

Teste 12

Diferentemente ao caso isotropico tratado no Teste 10, no Teste 12 temos o objetivo

de abordar um problema ainda mais realistico. Para isso, aqui utilizamos todos os dados do

o : Opuw (a5t
Teste 10, mas mudando as condicoes de contorno: Neumann na fronteira sul (% =-1

e %ﬁs’” = 0) e Dirichlet no restante.
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TABELA 22 - NUMERO DE ITERACOES MEDIAS DE LINEARIZACAO E MULTIGRID
PARA ANISOTROPICA GEOMETRICA E DOMINIO RETANGULAR.

Ny =Ny=N; | hpy =71 hy, itmey, | itmeya
4 2,5e-01 | 2,000 3 5,33
8 1,25e-01 | 1,000 | 3,88 15,72
16 6,25e-02 | 0,500 4 36,98
32 3,13e-02 | 0,250 4 58,73
64 1,56e-02 | 0,250 4 73,43

FONTE: A autora (2022).

Além disso, vamos admitir um novo campo de permeabilidades randémicas nesse
dominio retangular para um intervalo real de variagao dessa permeabilidade (veja FIGURA
36 para k). Segundo Knappett e Craig (2019), essa variagdo de permeabilidade abrange

solos desde cascalho, areia limpa, até areia muito fina, argila nao fissurada, entre outros.

FIGURA 36 - CAMPO DE PERMEABILIDADE k,.,, PARA N, x N, = 64 x 512.

1e-7

FONTE: A autora (2022).

Apresentamos na TABELA 23, o nimero médio de linearizagoes de Picard modifi-
cado e ciclos multigrid para diferentes tamanhos de malhas. Além disso, exibimos na ultima
coluna dessa tabela, a média aritmética do fator de convergéncia assintética do multigrid
(pm), calculado da seguinte forma (TROTTENBERG; OOSTERLEE; SCHULLER, 2001),
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LS h onde g, — gl Il (6.4
M = - ), onde pl = MG . :
Ztlin j=1 HROHOO

Como podemos observar, o método proposto necessita de algumas poucas linea-

rizagoes para atingir o critério de parada estipulado, bem como um pequeno nimero de
iteragoes de multigrid em cada etapa de linearizagao. Observe que os resultados apresenta-
dos também sao robustos com relagao aos parametros de discretizacao. Esses resultados

mostram a robustez e eficiéncia da solu¢gdo do método proposto.

TABELA 23 - NUMERO DE ITERACOES PARA O MULTIGRID E PICARD MODIFICADO,
JUNTAMENTE COM O FATOR DE CONVERGENCIA ASSINTOTICO, PARA
DIFERENTES PARAMETROS DE DISCRETIZACAO.

Ny x Ny | Ne | h=1 |ityg | itmeye | in | ttmeyy PM
4 x 32 4 | 2,5e-01 4 3,13 4 4 0,0235
8 x 64 8 | 1,25e-01 5 3,84 4 4 0,0468

16 x 128 | 16 | 6,25e-02 5 3,53 4 4 0,0267

32 x 256 | 32 | 3,13e-02 6 3,8 4 4 0,0483

64 x 512 | 64 | 1,56e-02 5 4,33 4 4 0,0631

FONTE: A autora (2022).

Portanto, podemos notar que em todos os testes aqui realizados (desde o Teste 1
até o Teste 12), a metodologia proposta para os problemas de escoamentos multifdsicos
em meios porosos rigidos, se mostrou eficiente e robusta, com melhor performance em

problemas isotrépicos.
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7 CONSIDERACOES FINAIS

7.1 Conclusoes gerais

Neste trabalho analisamos o problema de escoamento bifasico em meios poro-
sos rigidos, para os casos uni e bidimensionais. Utilizamos alguns exemplos numéricos
da literatura para poder comparar dois métodos de linearizagao, Picard modificado e
L-esquema, juntamente com o multigrid. Inicialmente realizamos alguns testes a fim de
verificar nosso cddigo, comparamos as solugdoes numéricas com solugoes analiticas e poste-
riormente analisamos, no caso 1D, o speedup do multigrid em relagao ao singlegrid, com
bons resultados. Com isso, pudemos entao gerar alguns resultados e perceber que o uso dos
métodos de linearizacao com o método multigrid, geraram bons resultados, pois o niimero
de iteracoes necessarios tanto para a linearizacdo quanto para o multigrid, foram baixas. O
erro numérico teve um bom comportamento, pois a medida que refinamos a malha, o erro
foi diminuindo e na ordem em que isto deveria ocorrer. Portanto, podemos concluir que
a combinacao que propomos, foi eficiente e robusta: formulagao mista pressdo-saturacao,
discretizacao temporal com Euler implicito, discretizagao espacial com MVF usando arranjo
colocalizado, Picard modificado (com melhor desempenho) ou L-esquema nas linearizagoes,

Gauss-Seidel acoplado como solver e multigrid com componentes algoritmicas padrao.
7.2 Principais contribuicoes

1. Aplicacao da formulagao mista pressao-saturagao para um problema bifdsico em
meio poroso rigido, utilizando as pressoes como variaveis principais, na construgao

do sistema de equacoes diferenciais;

2. Anélise dos métodos de linearizagoes, Picard modificado e L-esquema, mostrando a
eficiéncia e robustez de ambos devido ao pouco niimero de iteragdes necessarias para

a convergéncia nos diversos testes propostos;

3. Ao utilizar tais linearizacoes, geramos um sistema linear de equacoes elipticas, em
b )
que o multigrid tem comprovada eficiéncia, e verificadas pela boa convergéncia do

método em nossos testes.
7.3 Propostas de trabalhos futuros

1. Fazer uma anélise sobre os parametros 6timos de Van Genuchten e Brooks-Corey;

2. Comparar e analisar as aproximagoes numéricas das permeabilidades relativas e

pressao capilar dadas por Van Genuchten e por Brooks-Corey;
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3. Aplicar um solver linha para resolver o problema de escoamento bifésico anisotrépico;

4. Desenvolver métodos de resolugao eficientes e robustos, baseados no uso do método
multigrid, para o problema de escoamento multifasico em meios porosos deformaveis
com o objetivo de fazer simulagoes em sistema de grande porte relacionadas com

aplicagoes praticas.
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Abstract. Applications of two-phase problems in porous media are common in Geomechanics, Hydrogeology,
Engineering and Biomedicine. There are different formulations when working on two-phase problems, in this
work we have chosen to use the pressure-pressure formulation. The equations system generated is a strongly non-
linear system of coupled partial differential equations. Thus, the modified Picard and L-scheme to perform its
linearization, the Finite Volume Method for the discretization of the equation in space and implicit Euler scheme
for the discretization of the equation in time were used. The systems of linear equations generated were solved
by the lexicographic Gauss-Seidel solver in a coupled way. In this work, we proposed to use multigrid method
with the Correction Scheme and W-cycle, in order to accelerate the convergence of this solver. Based on the tests
performed using an example with a known analytical solution, it was possible to notice the convergence to the
solution with a few iterations and little computational time.

Keywords: Two-phase flow, Linearization methods, Coupled problem, Finite Volume Method, Implicit Euler.

1 Introduction

Problems with the two-phase flow in porous media are found in Engineering, Geomechanics, Hydrogeology
and Biomedicine applications. For the study of these problems, different mathematical models are generated to
represent them, depending on the pressure, saturation and relative permeability, being subsequently solved by
numerical simulations. Independent of how these models are formulated, coupled differential equations and highly
non-linear systems are generated. Therefore, the challenge is to find robust and efficient methods for the numerical
solution.

Many articles are found in the literature involving two-phase flow in porous media, using different methods
and approaches to variables. A numerical algorithm, based in modified Picard linearization is proposed by Celia
and Binning [1] for simulation of these problems, considering unsaturated soils and pressure-pressure formulation.
Kvashchuk and Radu [2] presented a new implicit scheme based in IMPES (Implicit Pressure Explicit Saturation),
that obtained a superior performance in relation to the standard IMPES.

Considering the two-phase flow in porous media with dynamic capillarity effects, Karpinski et al. [3] pro-
posed a linearization scheme, called L-scheme, that does not require regularization step, besides not using derivate
calculations like the Picard and Newton method. Proved that the scheme is robust and linearly convergent. That
procedure linearization was also presented by Pop et al. [4] to solve non-linear elliptical problems.

Mliano et al. [5] applied three techniques, Newton, modified Picard and L-scheme methods, for linearization
of the surfactant transport in porous media. They concluded that monolithic Newton is the only method with
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quadratic convergence, modified Picard and Newton generated ill-conditioned matrices and that solvers based on
L-scheme were the most robust because produce well-conditioned linear systems.

Because this problem is strongly non-linear, some works consisted of manipulating the expressions that in-
terfere in this fact. Li and Horne [6] compared some methods, for example, Purcell and Brooks-Corey methods,
to calculate the relative permeability of the capillary pressure in a consolidated wetting porous media. Being that,
permeability can be satisfactory if a suitable model is chosen for the problem under study.

Most of the literature found has the main focus on the analysis of different linearization methods. But,
thinking about the solver convergence, Franco et al. [7] used a new approach with the use of space-time multigrid
method for solving poroelasticity equations, obtaining excellent results.

Therefore, in this work, we study a problem involving the flow of two incompressible and immiscible fluids
in rigid porous media. Using pressure-pressure formulation modeling, where the variables of interest are the
pressures of each both phases, thus, relative permeability and saturation were calculated by numerical expressions
that depend on the pressures. Discretizations in time and space were carried out by the Implicit Euler and Finite
Volumes Methods (FVM) (Ferziger et al. [8]), respectively. As we have a non-linear system, so we have chosen to
apply and compare two methods of linearization, modified Picard (Celia and Binning [1]) and L-scheme (Karpinski
et al. [3], Pop et al. [4]), and later to solve the linear system, used iterative method, coupled Gauss-Seidel (Gaspar
et al. [9]). To accelerate the convergence of solver, we proposed to use multigrid method (MG) (Briggs et al. [10]).

The rest of the paper is organized as follows. In Section 2, the one-dimensional porous media equations are
introduced together with their linearization and discretization techniques in time and space. Solver and multigrid
method for the equation of porous media is detailed in Section 3. The code verification and results are demonstrated
in Section 4. Finally, conclusions are drawn in Section 5.

2 Mathematical Model and Discretization

In this section, we present the mathematical model and its discretization, for the two-phase flow in a rigid
porous medium.

2.1 Government equations

The fluids considered were immiscible and incompressible with the flow in a rigid porous medium. For each
« phase of the fluid, the mass equation can be written as:

0 (pab R .
%—Fv-(paqa):fﬁw in Qx[0,7T]. (1)
where o« = w, n represents the fluid phases (w wetting, n non-wetting), 0, = ¢Sy, ¢ is the porosity, S, is the
saturation, p,, is the density, ¢, is the volumetric flux vector and F,, is the source term of phase «. The domain is
Q C Rt and T is the final time. The volumetric flow is given by the generalized Darcy’s Law for the multiphase
case

q_z; = _)\aK (Vpa - pa.ﬁ) ) (2)

where A, is the mobility, Ao, = kra/ltas kra = kra(Sa) is the relative permeability, 1, is the viscosity, K is the
intrinsic permeability tensor (see Bastian [11]), p,, is the pressure, § is the gravitational acceleration vector.

Substitution of eq.(2) into eq.(1), and consider incompressible case and null gravitational acceleration vector,
the equation can be simplified:

00, I,
Ta (K ——
5t Ao V- (K Pa) o 3)

In addition to these differential equations, we have the auxiliary relations (Bastian and Helmig [12]): capillary
pressure p. = p, — P, and saturation S, + .5, = 1, s0, 0, + 0, = ¢.

2.2 Discretization

We begin with a implicit Euler time discretization, use the modified Picard linearization (Celia and Binning
[1]) to linearize the equations and consider pressure-pressure formulation (Ataie-Ashtiani and Raeesi-Ardekani
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[13]). It lets superscripts n and m denote time level and iteration number, respectively. The distance between points
of temporal approximation is 7 = N , where, T is final time and IV, is points number in temporal discretization.
Then discretizing the eq. 3 for wetting and non-wetting phases, we get egs. (4, 5), respectively,

n+1, m51’n+1 mAt 5Pn+1 el _ 0 n+l,m 0 n+1,m+1 _ 0 n+l,m 0 (,n+lm
C T oz [Kw oz (6p )} — Oz [K’w oz (pw )] (4)
nJrl 6:1“4»1 ,m 9?“
FET - e,
1,m dppttmtt —gprttomtt 1 8 1m+1y] _ 1 8 1,
I g (jn (e = [ ()
+1 gntl.m _gn (5)
mn n n
FET = e,
where Kg-&-l,m = K\,, 5pg+1,m+1 _ pg+1 ;m+1 pg-&-l,m and C,, = g% = —g‘zﬁ But, for L-scheme using

Ly, large enough, in place of C,, that is Ls > |C,,| (Illiano et al. [5]).

Subsequently, space discretization was done using the FVM. For that, our domain will be a segment of lenght
L and considering uniform mesh, Dy, = {(x;);2; = (i — 1/2)h,i = 1, ..., N}, with N, volume number in space
and h = NLE distance between volumes of the space approximation, given in Fig. 1.

Figure 1. Space discretization

Thus, the system that we should result in each time step is described in eq. (6).

_ | (©)
B A, Opw In
being that,
[ be 0 | _bc 0
[@alic1 [aali  [Ga)it: 0 0 ¢ O
0 [aa]i_l [aa]i [aa]i 1 0 0 C; 0
Ao = ' B =
0 [aali—1  [aali  [aali+1 0 e O
0 be 0 be
where, bc are boundary conditions and:
[ac); = — [CU+ m] Wz ([Kn+1 "] i+l + [Kathm] i*%) ’
duer =~ (K27
o)y = —72 [ } -1

[E—

C; = [Cg}+1,m i
[foli = 7= [Kgﬂ’m]wrl [ ot m]1+1 — %z ([KQHMLJF% + [Kg+17m]if%) [ ot m]ﬁ'

o [Kathm] oy ety + rFa = (03] + (03],

(e

where [K g“vm] ,_1 and [K g“:m] i1 denote the interblock conductivities of each phase, calculated by arith-
2 2
metic mean.
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3 Solver and Multigrid Method

To solve the system of linear equations that appear in each linearization step, there are direct and iterative
methods. Direct methods are not efficient in cases where matrices are large and sparse (Burden et al. [14]). In this
article, we use the coupled Gauss-Seidel method.

However, these methods present high-frequency error smoothing properties (oscillatory components), while
low-frequency errors are virtually unchanged. Therefore, in the first iterations, the error is reduced quickly and later
very slowly, with a predominance of smooth modes (Briggs et al. [10], Trottenberg et al. [15], Oliveira et al. [16]).
So the MG technique is based on solving the problem in several grids, because after the smoothing the oscillatory
modes in a refined grid, these modes are transferred for a coarse-grid, where they become more oscillatory and the
convergence of the iterative method is efficient. That procedure can be repeated up to coarsest or desired grid. For
the transfer process between grids, restriction and prolongation operators are required with their respective pre-
(v1) and post-smoothing (v2) numbers.

There are several ways to go through the various involved grids, which we call a cycle. In this work, we solve
the eq. 6 with the MG method, using the W-cycle and null initial estimative. The ratio between the size of the
volumes of the fine grid (©2*) and the immediately coarse-grid 2 is defined as the grid coarsening ratio (r). In
this work, we use r = 2 (standard coarsening) (Wesseling [17]). For the stop criterion we use || R™ || /|| R°||00 <
TOL e, where R™ is the residual in the iteration m, RY is the residual in the initial guess and TOL )¢ is the
tolerance for the W-cycle.

4 Results

In this work we use the analytical solution of the problem proposed by Illiano [18] (section 5.1, p.37). In
that work, Illiano [18] considers the pressure-saturation formulation of the p—S5,,, where p = p‘Tﬂ” In this case,
we have the analytical solution f(x,t) = p(x,t) = Sy (x,t) = xt(1 — z), whose spatial x temporal domain is
D =10,L] x [0,T],L = T = 1, with initial and boundary conditions f(z,0) = f(0,t) = f(1,t) = 0. As we
have opted for pressure-pressure formulation of the form p,,—p,, we have to make some adaptations to use p,,
and p,, instead of p. For this, using the capillary pressure equation (p. = p, — pw) and p, we have obtained that
pw =D — & and p, = p+ L, where p.(S,,) = 1 — 252 Additionally, we use 6, = ¢Sy, thus 6, = ¢/2 — 2p.
and 6,, = ¢ — 6,,. As a consequence, we have: C, = o = 772#%, for p. # 1.

Using these expresisons we have found the source terms:

1
Fy = —5pul20(z = D)x + KXwt(—4 + 1 = 6tx + 6ta”)], M
1

According to Illiano [18] data were used to obtain easy calculations, which are presented in test 1 of Table 1.
Table 1 we also find data from test 2.

Table 1. Properties
)\'w )\n K ()b p w p n

Test 1 (Illiano [18]) | 1 2 1 1 1 1
Test 2 1 2 1 09 1 1

We implemented the algorithms in the Scilab 6.1.0 language on a computer with an Intel Core i7 2.6 GHz
processor, 8 GB of RAM, and Windows 10 operating system, with 64 bits.

4.1 Code Verification

In order to verify our code, we reproduce the figure 5.1 of Illiano et al. [5], which presents the numerical
and analytical solution obtained for the saturation for the test 1 data of Table 1 for several steps in time. These
generated graphs are presented in Fig. 2, where is possible to see that all of our solutions (different grids size and
in different time steps) coincide with the Illiano’s analytical solutions (Illiano [18]).
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Figure 2. Analytical and numerical saturation obtained in first step time with different meshes: (a) N, = N, = 20
and (b) N, = N; =40

In order to analyze the MG implementation we made a comparison with Singlegrid (SG) (single grid method).
For the SG and MG, we used the coupled Gauss-Seidel solver. Besides, for MG we used the following transfer
operators between grids: restriction by full weighting and prolongation by linear interpolation (Trottenberg et al.
[15], Rutz et al. [19]). In this work, we have used the maximum number of levels and data from the Table 2, being
that, v; and v is the pre- and post-smoothing number, respectively, vy the number of smoothing in the coarsest
grid, TOL ¢, the tolerance for the W-cycle and T'O L, tolerance for the linearization.

Table 2. Implementation data

Vl‘yg‘yo‘TOL]\/jg‘ TOLL
) ‘ ) ‘ 5 ‘ 1OE75‘10E—8

In Table 3 we presented the required total CPU time (t¢ pyy) (which takes into account all the time steps and
their respective necessary linearizations) for each method and the speedup (S = %, that is, S represents
how many times the MG is faster than the SG). Here, we opted only for spatial refining, which is already sufficient
to verify the desirable properties of MG concerning SG. Note that S > 1 in all cases, that is, MG is always faster

than SG. Even more, as we refine the grid, S gets bigger and MG gets more efficient.

Table 3. CPU time for MG and SG

N | Ny | tepu -SG | tepu- MG S

16 | 16 24.860 3.630 6.848
16 | 32 175.394 10.013 17.516
16 | 64 1310.780 27.618 47.460
16 | 128 | 9892.466 62.690 157.799

We performed a geometrical adjustment of the type tcpy = ¢(IN; )P to analyze the performace of MG, where
cis a constant relative to the method and p represents the order of the algorithm. Considering the first time step and
the first linearization in different loops, N, = 4, 8,16, 32,64, 128,256,512 and 1024, we obtained ¢ = 0.0127
and p = 1.1103 ~ 1, according to the literature (Trottenberg et al. [15]).

4.2 Results in a specific porous medium

In order to obtain the following results, we performed several simulations, comparing the linearization meth-
ods, modified Picard and L-scheme, with Ls(t) = max(|Cy|). The data used were those in the Table 1, others
data in the Table 2 and maximum number of linearization iterations, ¢tmax, = 500.
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Table 4 shows itmey, arithmetic mean linearization iterations and ¢tmej;¢, arithmetic mean of MG cycles.
Thus, we can see that the number of iterations in MG is always a small number, concerning linearization methods.
We also realized that for this specific problem, modified Picard needs fewer iterations that the L-scheme, becoming
the most efficient.

Table 4. Modified Picard and L-scheme with Multigrid

Modified Picard L-scheme

Ny = Ny Test 1 Test 2 Test 1 Test 2

itmer,  itpmg | ttmern  ttuma | ttmer  itvmg | ttmern ituva
5.25 1.50 5.25 1.50 16.25 1.12 16.00 1.13

8 4.63 2.50 4.63 2.50 34.13 1.12 33.75 1.12
16 4.31 2.50 4.31 2.50 65.19 1.06 64.69 1.06
32 3.75 2.67 3.72 2.67 | 117.66 1.03 | 117.00 1.03
64 3.22 2.67 3.22 2.67 | 22894 1.02 | 24420 1.02

Figure 3 presents the infinity norm of the difference between the analytical and numerical solution of p,,
versus N, = N; = 4 up to 64 for linearization schemes studied, the results obtained show that, regardless of the
linearization scheme used, the errors were essentially the same and decrease with the grid refinement.

20E—2 , . T T T T T T T T T v T T
Modified Picard
) Tl
g p,
1.5E-2 4 o |
| —v—p,T2
—A— p, n-Tz
__ 1.0E-2 o |
§ —0—p,-TI
; p, T
5.0E-3 - o |
. *p T2
N\
N\ .
N —%— .
T T T T T ' J . I ' I | I |
0 10 20 30 40 ” ; "’

Ny=N;

Figure 3. Infinity norm of the numerical error vs. N, = N; for Tests 1 and 2, with modified Picard and L-scheme

5 Conclusions

In this work, we have analyzed two linearization methods, together with MG, for a two-phase flow problem
in a rigid porous media. Initially, we carried out some tests to verify our code, compared the numerical with
analytical solutions, then analyzed the speedup of MG in relation to SG, where we obtained good results. With
that, we were able to generate some results and to realize the use of the linearization methods, modified Picard
and L-scheme, with the MG method, generated good results, because the numbers of iterations necessary for both
linearization and MG, were low numbers. The numerical error performed well because as we refined the grid, the
error decreased. Therefore, we can conclude that the combination we have used in this article is efficient. Now,
among the two linearization methods studied, the modified Picard with MG method was the only which presented
the best performance to the problem studied.
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