UNIVERSIDADE FEDERAL DO PARANA

DANIEL RIGONI

VERIFICACAO E ANALISE DE ERROS DA SIMULACAO NUMERICA DO
PROCESSO DE AERACAO DA MASSA DE GRAOS UTILIZANDO O METODO DAS
SOLUCOES FABRICADAS

CURITIBA
2022



DANIEL RIGONI

VERIFICACAO E ANALISE DE ERROS DA SIMULACAO NUMERICA DO
PROCESSO DE AERACAO DA MASSA DE GRAOS UTILIZANDO O METODO DAS
SOLUCOES FABRICADAS

Disserta¢do apresentada como requisito parcial para
a obtencio do titulo de Mestre em Métodos Nu-
méricos em Engenharia pelo Programa de Pés-
Graduagio em Métodos Numéricos em Engenharia
do Setor de Ciéncias Exatas e Tecnologia, Univer-
sidade Federal do Parani.

Orientador: Prof. Dr. Marcio Augusto Villela Pinto

CURITIBA
2022



DADOS INTERNACIONAIS DE CATALOGAGAO NA PUBLICAQAO (CIP)
UNIVERSIDADE FEDERAL DO PARANA
SISTEMA DE BIBLIOTECAS — BIBLIOTECA DE CIENCIA E TECNOLOGIA

Rigoni, Daniel

Verificagdo e analise de erros da simulagdo numérica do processo de
aeracdo da massa de graos utilizando o método das solugdes fabricadas /
Daniel Rigoni. — Curitiba, 2022.

1 recurso on-line : PDF.

Dissertagédo (Mestrado) - Universidade Federal do Parana, Setor de
Ciéncias Exatas, Programa de Pés-Graduagao em Métodos Numéricos em
Engenharia.

Orientador: Marcio Augusto Villela Pinto

1. Grdos — Armazenamento. 2. Graos — Aeragdo da massa. 3. Método de
diferenga finita. 4. Método das solug¢des fabricadas. |. Universidade Federal
do Parana. Il. Programa de Pés-Graduagao em Métodos Numéricos em
Engenharia. Ill. Pinto, Marcio Augusto Villela. IV. Titulo.

Bibliotecario: Elias Barbosa da Silva CRB-9/1894




MINISTERIO DA EDUCACAO

SETOR DE CIENCIAS EXATAS

UNIVERSIDADE FEDERAL DO PARANA

l ' I= P R PRO-REITORIA DE PESQUISA E POS-GRADUAGAO

D IVERSIDADE FEDERAL DO PAMATIA PROGRAMA DE POS-GRADUACAO METODOS NUMERICOS
EM ENGENHARIA - 40001016030P0

TERMO DE APROVACAO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pés-Graduagdo METODOS NUMERICOS EM
ENGENHARIA da Universidade Federal do Parana foram convocados para realizar a arguicdo da Dissertacdo de Mestrado de
DANIEL RIGONI intitulada: VERIFICACAO E ANALISE DE ERROS DA SIMULACAO NUMERICA DO PROCESSO DE
AERACAO DA MASSA DE GRAOS UTILIZANDO O METODO DAS SOLUCOES FABRICADAS, sob orientacdo do Prof. Dr.
MARCIO AUGUSTO VILLELA PINTO, que apods terem inquirido o aluno e realizada a avaliagéo do trabalho, séo de parecer pela
sua APROVACAO no rito de defesa.

A outorga do titulo de mestre esta sujeita a homologacao pelo colegiado, ao atendimento de todas as indicagBes e corregdes

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pés-Graduagéao.

Curitiba, 20 de Maio de 2022.

Assinatura Eletronica
23/05/2022 11:17:18.0
MARCIO AUGUSTO VILLELA PINTO

Presidente da Banca Examinadora

Assinatura Eletronica
24/05/2022 10:19:43.0
DANIELA DE CARVALHO LOPES
Avaliador Externo (UNIVERSIDADE FEDERAL DE SAO JOAO DEL REIl)

Assinatura Eletronica
25/05/2022 11:15:01.0
SEBASTIAO ROMERO FRANCO
Avaliador Externo (UNIVERSIDADE ESTADUAL DO CENTRO-OESTE)

Centro Politécnico - UFPR - Curitiba - Parana - Brasil
CEP 81530-015 - Tel: (41) 0000-0000 - E-mail: ppgmne@ufpr.br
Documento assinado eletronicamente de acordo com o disposto na legislacéo federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificagéo Unica: 187215
Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 187215




Dedico esta dissertagdo a minha mae Soili Rigoni, ao meu pai Orlei Rigoni

e a minha namorada Elizandra.



AGRADECIMENTOS

A Deus, acima de tudo, pela oportunidade de existir e guiar meus passos, iluminando-

me e conduzindo pelos melhores caminhos.
A meus pais Orlei Rigoni e Soili Rigoni por estarem sempre ao meu lado em todos

0S momentos.

A minha namorada Elizandra, pelo suporte e compreensio pelo tempo dedicado aos

estudos.

Ao meu orientador, Prof. Dr. Marcio Augusto Villela Pinto, pela sua dedicac3o,
paciéncia e disponibilidade em me orientar.

Agradeco a0 colega e amigo Prof. Jotair Kwiatkowski Jr, pelos ensinamentos e impor-
tantes contribui¢des.

Agradeco aos membros da banca examinadora, Profa. Dra. Daniela de Carvalho
Lopes, Prof. Dr. Sebastido Romero Franco, Prof. e Prof. Dr. Marcio Augusto Villela Pinto,
pelo tempo dispensado a leitura deste trabalho e pelas sugestdes apontadas.

Agradeco ao Programa de Pés-Graduagio em Métodos Numéricos em Engenharia
(PPGMNE) da Universidade Federal do Parand (UFPR).

Agradeco 4 Coordenagio de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
pelo suporte financeiro.

Por fim, e nio menos importante, aos meus amigos, Leonardo Delanora, Raphael

Pezzi e Lucas Veira, pelo apoio e incentivo durante este percurso.



" The price of success is hard work, dedication to the job at hand...
whether we win or lose, we have applied the best of ourselves to the task at hand."”

Vince Lombardi



RESUMO

O objetivo deste trabalho é apresentar uma solugio analitica, por meio do Método das So-
lu¢des Fabricadas (MSF), para o modelo matemitico que descreve o comportamento do
processo de aera¢io da massa de grios. Em contraste com trabalhos relacionados na literatura,
utilizou-se virias aproximag¢des numéricas para resolver o modelo matemdtico. Utilizou-se
o Método das Diferencas Finitas (MDF) empregando-se a discretiza¢io espacial dado pelos
métodos de Roberts e Weiss, Leith, esquema com um ponto a montante (UDS), esquema
com diferenca central (CDS) e UDS com corre¢do adiada (UDS-C), combinados com as
formulac¢Bes temporais explicita, implicita e Crank-Nicolson. Adicionou-se a viscosidade
artificial para controlar oscilagdes nio-fisicas nas solu¢des numéricas dos métodos de segunda
ordem. Realizou-se uma anilise de erros para todas as aproximac¢des utilizadas, a fim de
verificar a ordem efetiva do erro de discretiza¢io com o refinamento de malha. Além disso, os
resultados obtidos numericamente foram comparados com a solugio analitica e realizou-se
uma comparagio entre os tempos de Unidade Central de Processamento (CPU) em diferentes
niveis de refinamento. Assim, verificou-se que os métodos CDS com formulag¢io temporal
Crank-Nicolson, Roberts e Weiss e Leith tiveram melhor desempenho do que o0 método UDS

com a formulagio explicita, amplamente utilizado na literatura.

Palavras-chaves: Armazenagem de Grios. Pés-colheita. Diferencas Finitas. Viscosidade Artifi-
cial. Roberts e Weiss. Leith. Thorpe.



ABSTRACT

The goal of this work is to present an analytical solution, by means of the Method of Manu-
factured Solutions (MMS), for the mathematical model that describes the behaviour of the
grain mass aeration process. In contrast to related works in the literature, several numerical
approximations were used to solve the mathematical model. The Finite Difference Method
(FDM) was used employing the spatial approximations given by the methods of Roberts and
Weiss, Leith, Upwind Difference Scheme (UDS), Central Difference Scheme (CDS) and UDS
with deferred correction (UDS-C) combined with the explicit, implicit and Crank-Nicolson
temporal formulations. Artificial viscosity was added to control non-physical oscillations in
the numerical solutions of the second-order methods. An error analysis was performed for
all the approximations used, in order to verify the effective order of the discretization error
with mesh refinement. Moreover, the results obtained numerically were compared with the
analytical solution and a comparison between the Central Processing Unit (CPU) times at
different levels of refinement was performed. Thus, it was verified that the methods CDS
with Crank-Nicolson temporal formulation, Roberts and Weiss and Leith performed better

than the UDS method with the explicit formulation, widely used in the literature.

Key-words: Grain Storage. Postharvest. Finite Difference. Artificial Viscosity. Roberts and
Weiss. Leith. Thorpe.
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1 INTRODUCAO

Na atual economia altamente competitiva e baseada no conhecimento, a gestio de
uma vasta quantidade de informacdes e recursos é o pré-requisito fundamental para o sucesso
dos produtores agricolas. Esta gest3o foi facilitada pela continua evolugio e uso das Tecnologias
de Informagio e Comunicagio (TICs). A aplicagio das TICs em diferentes setores da economia
global tornou-se essencial para o aumento da eficiéncia e produtividade do trabalho (FAN
et al., 2021; DONG et al., 2021).

O setor agricola, na economia global, ¢ um dos que mais experimenta a aplicagio
das TICs em todas as esferas de suas operagdes (NYARKO; KOZARI, 2021). Daum (2020)
observou que, nos ultimos anos, as TICs tornaram-se uma das principais ferramentas utilizadas
pelos agricultores para gerenciar os fatores essenciais de produgio, tais como o armazenamento

dos grios.

Durante o armazenamento dos grios, o controle da temperatura e do teor de dgua
¢ crucial para preservar os aspectos econdmico e de qualidade do produto (PANIGRAHI
et al., 2020a). Caso contrario, a produgio de grios pode ser consideravelmente prejudicada ou
mesmo completamente perdida (BINELO et al., 2019). De acordo com Antunes et al. (2016),
atualmente a aera¢do ¢ a técnica de controle mais difundida empregada na conservagio dos

grios armazenados.

A aeragio de grios é uma técnica de gerenciamento que pode ser usada para con-
trolar a temperatura e o teor de dgua do grio armazenado (PANIGRAHI et al., 2020a). O
processo consiste na passagem forcada de ar através da massa de grios, promovendo a redugio
e a uniformiza¢do de sua temperatura, com o objetivo de conservar os grios armazenados
(ZIEGLER et al., 2021).

Mesmo com a larga escala de produgio agricola e a utiliza¢io de técnicas para me-
lhorar a qualidade da massa de grios, os investimentos em tecnologia ainda sio modestos,
principalmente para os pequenos produtores. Segundo Ferrasa et al. (2010), tornar a tecnologia
acessivel a esses produtores, através de solu¢des de baixo custo, ¢ estratégico para melhorar a
produtividade. Neste sentido, s3o relevantes os estudos envolvendo modelos matemiticos e

resolu¢Bes computacionais.

Modelos matemiéticos tém sido utilizados para descrever fendmenos teéricos e ob-
servados. Além disso, eles modelam e possibilitam prever o resultado de virias aplica¢des,
independentemente das condi¢des prevalecentes. O processo de desenvolvimento de um mo-
delo matemitico oferece varios beneficios para os produtores (PANIGRAHI et al., 2020b). Os
modelos podem ser utilizados eficientemente para testar diferentes abordagens, que no campo

podem levar anos e custar uma quantidade significativa de tempo e dinheiro. Os resultados
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mais promissores durante a simula¢io podem entdo ser testados no campo (NUTTALL et al.,
2017).

Diversos modelos matemiticos podem ser encontrados na literatura envolvendo o
processo de aeracio, entre eles, Thompson (1972), Muir et al. (1980), Alagusundaram et
al. (1990), Chang et al. (1993, 1994), Jia et al. (2000), Thorpe (2001b), Liu et al. (2016) e
Novoa-Mufioz (2019).

Segundo Panigrahi ef al. (2020b), idealmente, métodos analiticos devem ser utilizados
para resolver os modelos matemdticos, devido a acurécia da solu¢io. No entanto, suas solu¢des,
para a maioria dos problemas do mundo real, sio dificeis de se obter devido a complexi-
dade do problema. Sendo assim, métodos numéricos com condi¢des de contorno realistas
sio amplamente utilizados para resolver o modelo representativo do ecossistema dos grios

armazenados.

Os métodos numéricos s3o utilizados para transformar modelos matemiticos em
modelos numéricos aproximados. Este processo é chamado de discretizagio do problema
original. Enquanto os termos originais das equag¢@es s3o continuamente avaliados no dominio,
as aproximagdes numéricas s3o avaliadas apenas em pontos especificos do dominio (também
chamados de nés). O conjunto formado por todos esses pontos é chamado de malha com-
putacional e corresponde a uma aproximacio discreta do dominio continuo do problema
original (OLIVEIRA, 2020). Entre os métodos numéricos tradicionalmente utilizados neste
caso, encontra-se o0 Método das Diferencas Finitas (MDF) (FERZIGER; PERIC, 2002).

Neste trabalho utilizou-se 0 modelo matematico proposto por Thorpe (2001b),
muito utilizado na literatura (LOPES et al., 2006; RADTKE, 2009; LOPES et al., 2014, 2015;
RIGONI; KWIATKOWSKIJR, 2020), cuja solugio analitica é desconhecida. Nesses trabalhos,
o MDF com a discretiza¢io espacial com um ponto a montante (UDS) e a formulagio temporal

explicita foram utilizados.

Um dos objetivos deste trabalho é apresentar uma solugio analitica para tal modelo,
por meio do Método das Solugdes Fabricadas (MSF). Para solucionar o modelo numericamente
utilizou-se o MDF e, diferentemente dos artigos citados anteriormente, empregou-se as
aproximaces espaciais dadas pelos métodos de Leith (1965), Roberts e Weiss (1966), UDS,
esquema com diferenca central (CDS) e UDS com corre¢do adiada (UDS-C), combinadas s

formulag¢Bes temporais explicita, implicita e Crank-Nicolson.

Como realizado em uma variedade de problemas, utilizou-se a técnica apresentada
por Von Neumann e Richtmyer (1950), para tratar oscila¢des n3o-fisicas nas aproximagdes de
segunda ordem (CURRAN et al., 1974; XUAN et al., 2017; MOUSA; MA, 2020).

O presente estudo, além de propor uma solugio analitica para o modelo matemitico
e utilizar aproximacdes diferentes das existentes na literatura, apresenta uma andlise de erros

para todas as aproximacdes utilizadas, com o intuito de verificar a ordem efetiva do erro de
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discretizagio com o refino de malha. Além disso, comparou-se os tempos de Unidade Central
de Processamento (CPU) e os resultados obtidos numericamente com a solu¢io analitica em
diferentes niveis de refinamento de malha, a fim de determinar quais aproximagdes apresentam

melhor desempenho.

1.1 Motivagio

Em geral, na descricdo qualitativa de um fenémeno fisico, como o processo de
aeragio da massa de grios, os modelos matemiticos resultantes s3o expressos por Equagdes
Diferenciais Parciais (EDPs). Com exce¢io de casos mais simples, as solu¢des analiticas ndo
s3o conhecidas, ou s3o dificeis de serem determinadas. Thorpe (2001b) realizou um estudo
detalhado e formulou um modelo matemitico referente ao processo de aeragio da massa
de grios, muito utilizado na literatura. Apesar da vasta utiliza¢io desse modelo, sua solugio

analitica ¢ desconhecida, dessa forma, tal modelo ¢ solucionado apenas numericamente.

O principal método de discretizagio descrito na literatura ¢ o MDF com aproximagio
espacial do tipo UDS. Ainda nio consta na literatura um estudo detalhado envolvendo outras

aproximacgdes espaciais na resolu¢io numérica desse modelo matematico.

Quando um modelo matemdtico é solucionado numericamente, a verificagio da
acuricia da solu¢io é um processo essencial na construcio de qualquer novo modelo numérico,
confirmando que nio existem erros ou inconsisténcias na solugio (ARAKI, 2007). A valida¢io
de um modelo proporciona o grau de fidelidade com que o modelo representa um fenémeno
fisico especifico. O trabalho realizado por Thacker et al. (2004) descreve, em detalhes, a
diferenca entre a verificagio e a validagio de um modelo matemitico e como ambos s3o de

extrema importancia.

Na literatura, existem varios trabalhos (LOPES et al., 2006; RADTKE, 2009; KWI-
ATKOWSKI JR, 2011; RIGONIL; KWIATKOWSKI JR, 2020; RIGONI et al., 2021) que
tratam da valida¢io do modelo proposto por Thorpe (2001b). Todavia, ainda nio existe um

estudo sobre a verificagio da solu¢io numérica desse modelo matemitico.

1.2 Objetivos

Considerando as questdes referentes a0 modelo matemadtico proposto por Thorpe
(2001b) destacadas e discutidas na se¢o anterior, os objetivos geral e especificos do presente

trabalho sio definidos nesta se¢io.

1.2.1  Objetivo Geral

O objetivo geral deste trabalho consiste em efetuar uma anilise de erros (com foco

no erro de discretiza¢io) do modelo matemiético proposto por Thorpe (2001b) utilizando o
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MSF e ainda, comparar o desempenho de diversas aproxima¢des numéricas na resolugio do

problema.

1.2.2  Objetivos Especificos

Diretamente vinculados ao objetivo geral da dissertacio, s3o definidos também os

seguintes objetivos especificos:

* Utilizar o MSF para propor uma solug3o analitica para o modelo proposto por Thorpe
(2001b).

* Solucionar o modelo numericamente por meio do MDF, utilizando outras aproximacdes

além das j4 utilizadas na literatura.

* Implementar a viscosidade artificial para amenizar as oscilagdes nio-fisicas nas solugdes

numéricas.
* Efetuar uma verificagdo numérica para as diversas aproximacdes estudadas.

* Analisar o tempo de CPU de cada aproximacio utilizada.

1.3 Conceitos Gerais e Revisio de Literatura

Nesta sec3o, é apresentada uma revis3o bibliografica com o objetivo de fundamentar
e situar o presente trabalho na literatura do problema. Aqui ¢ discutido o armazenamento e
o processo de aeragio da massa de grios; é apresentada uma revisio bibliogréfica referente
aos modelos matemiticos e resolu¢des computacionais na simulagio do processo de aeragio;
¢ apresentada uma revisio sobre o MSF e, finalmente, ¢ feito uma revisio de trabalhos que
utilizaram a viscosidade artificial para tratar oscila¢des nio-fisicas nas solu¢des numéricas em

uma variedade de problemas.

1.3.1 Armazenamento e Aeracio de Grios

Desde os primeiros tempos da histéria da humanidade, a produ¢io de mantimentos é
um fator determinante no desenvolvimento de qualquer sociedade. A produgio, o transporte,
o beneficiamento, o armazenamento, a comercializa¢io e o consumo de alimentos consti-
tuem uma cadeia de atividades vitais as pessoas, as familias e as na¢Bes, motivo pelo qual a
armazenagem agricola é uma atividade das mais antigas e importantes (WEBER, 2005). O
armazenamento dos grios, efetuado na grande maioria dos casos em silos, ¢ uma das etapas

mais relevantes da logistica, pois colabora com a redugio de custos e de tempo, atendendo com
flexibilidade e velocidade as exigéncias da demanda do mercado (AZEVEDO et al., 2008).
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A modificagio das condi¢des do ambiente de armazenamento pode produzir dife-
rentes efeitos, dependendo das caracteristicas do ar de aeracio e das caracteristicas dos grios
armazenados. Estes efeitos s3o entendidos com mais facilidade quando o ambiente de armaze-
namento é considerado como um ecossistema com fatores bidticos e abiéticos (LOPES et al.,
2006). O principal fator bidtico deste ecossistema ¢é o grio, pois todas as a¢Ses envolvidas no
gerenciamento de um sistema de armazenamento sio executadas visando a sua preservagio

(FLEURAT-LESSARD, 2002).

O grio ¢ considerado um organismo vivo com atividade fisiolégica reduzida, podendo
permanecer assim por longos periodos. Este baixo nivel de atividade bioldgica dos grios se deve
aos baixos teores de 4gua necessdrios para se obter uma armazenagem segura. Altos valores
de umidade no ambiente de armazenamento, combinados a valores inadequados, podem
causar a germinag¢io dos grios, resultando em perda do seu valor nutritivo e impedindo o
armazenamento seguro (NAVARRO; NOYES, 2001). Dito isso, é de fundamental importancia
que durante o armazenamento se tenha um controle da temperatura e do teor de 4gua da

massa de grios.

Dentre as op¢des de controle das condi¢des de armazenagem que nio incluem pro-
dutos quimicos e que podem se adaptar as regides tropicais e pequenas propriedades rurais, a
aeracio ¢é a tecnologia mais difundida. Na aeracio, o ar ambiente, ou condicionado, é forcado
a circular através da massa de grios armazenados com a finalidade principal de estabelecer e
manter 2 homogeneidade de temperatura dentro do ambiente de armazenamento e, caso seja
possivel, resfriar o produto armazenado (HARA; CORREA, 1981).

Uma das limita¢Ses da aeraco é o fato desta tecnologia nio eliminar imediatamente
os insetos e microorganismos prejudiciais ao ambiente de armazenamento, mas sim impedir a
sua proliferacio. Entretanto, sua principal vantagem ¢é a possibilidade de n3o utilizar produtos
quimicos. Além disso, esta tecnologia é mais simples, segura e econdmica no controle do
ambiente de armazenamento quando comparada a remog3o fisica de insetos, 4 utiliza¢io de
atmosfera controlada ou 2 utiliza¢io de irradia¢io, dentre outras (NAVARRO; NOYES, 2001).

Como mencionado anteriormente, a técnica de controle mais difundida empregada
na conservagio dos grios armazenados ¢ a aeragio. O processo de aeragio de grios consiste
em ventilar a massa de grios armazenada com um fluxo de ar pré-determinado (FIGURA 1),
promovendo o resfriamento e o equilibrio do grio, criando condi¢Bes favorveis para o

produto ser armazenado com qualidade por um longo periodo, favorecendo a questio logistica
(KHATCHATOURIAN ef al., 2013).

Bilobrovec (2005) expde que os elementos que compdem um sistema de aeragio
visam, principalmente, a distribui¢io uniforme da movimentac¢io do ar através da massa de
grios, de tal forma que todas as camadas de produto sejam aeradas de forma homogénea.
Os principais componentes de um sistema de aeragio s3o: dutos perfurados para conduzir e

distribuir o ar através da massa de grios; tubos de conex3o que ligam os ventiladores aos dutos
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perfurados e o conjunto ventilador-motor para insuflagio ou suc¢io do ar. A FIGURA 1 ilustra
os componentes de um sistema de aeracio e como sio distribuidos no local de armazenamento

da massa de grios.

FIGURA 1 - COMPONENTES DE UM SISTEMA DE AERACAO.
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FONTE: Modificado de Panigrahi et al. (2020b).

1.3.2 Modelagem Matemdtica do Processo de Aeragio e Resolugdes Computacionais

A modelagem do fendmeno de transferéncia de calor e massa no dominio de grios
armazenados é datada desde a década de 1970 (PANIGRAHI et al., 2020b).

Thompson (1972) desenvolveu um modelo para prever as mudangas na temperatura
e umidade durante o processo de aeragio em grios de milho. O modelo foi construido a partir
de modificacdes feitas em um modelo,Thompson et al. (1968), desenvolvido para simular o
processo de secagem. As transferéncias de calor e massa dentro dos grios foram assumidas
como adiabdticas (n3o hi troca de calor com o meio externo), o que facilitou a formulagio
das respectivas equacdes de equilibrio. A simulagio foi realizada assumindo uma série de
finas camadas de grios posicionadas perpendicularmente ao fluxo de ar dentro do silo de

armazenamento.

Muir et al. (1980) desenvolveram um modelo para simular a transferéncia de calor
através do fendmeno de condug¢io na dire¢io vertical e radial em uma caixa cilindrica e
utilizaram o MDF para solucionar numericamente o modelo matemitico. A temperatura

inicial do grio, a temperatura ambiente didria e as velocidades do ar foram usadas como
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parimetros de entrada para prever a mudanca de temperatura em toda a massa de grios. No
entanto, a gera¢io de calor interno devido a respiracdo dos grios foi negligenciada durante a
formulagio do modelo. A validagio do modelo mostrou um erro padrio de estimativa de 1,3

°Ce 1,8 °C, respectivamente, para armazenamento de colza e cevada em dois silos separados.

Alagusundaram et al. (1990) desenvolveram um modelo para prever a distribui¢io
de temperatura devido ao fendmeno de condugio dentro de um recipiente contendo colza
e utilizaram o MDF para solucionar numericamente o modelo matemitico. A equagio de
equilibrio para calcular a transferéncia de calor transiente dentro de cada elemento espacial foi
definida igualando a taxa de fluxo total de calor para o elemento e a taxa de mudanca ocorrida
na acumulac¢io de calor dentro do elemento. Para fins de valida¢io, os dados experimentais
foram retirados de um silo de 5,56 m de didmetro cheio até 2,7 m de altura. Dados de
temperatura em quatro niveis do silo foram coletados e o0 modelo previu as temperaturas com

um erro padrio médio de estimativa de 2,8 °C.

Chang et al. (1993, 1994) usaram o MDF para solucionar um modelo matemitico que
descreve a temperatura e o teor de dgua, particularmente durante os periodos de aeragio. Uma
equagio transiente de transferéncia de calor e massa com condi¢des iniciais e de contorno
relacionadas foi escrita sobre um nimero finito de elementos espaciais. Modelos auxiliares
para prever o efeito da radiago solar e coeficiente de transferéncia de calor por convec¢io na
parede do silo e perfil de temperatura do solo sob o silo foram incluidos para fornecer um
fendmeno de realismo aproximado durante a simula¢io. Além disso, juntamente com os dados
climaticos ambientais, incluindo temperatura e umidade relativa do ar, radia¢io e velocidade
do vento, a taxa de fluxo de ar também foi usada como entrada para simular a temperatura e
o teor de 4gua durante 15 e 32 meses de armazenamento de grios de trigo. Isso foi validado

com erro padrio de 1,1 °C da estimativa.

Jia et al. (2000) apresentaram um modelo para simular as flutua¢des de temperatura
através do modo de convec¢io de transferéncia de calor devido i geragio interna de calor.
Uma equagio em sistema de coordenadas cilindricas foi proposta considerando a transferéncia
de calor entre a superficie superior do grio e o teto do silo e nas paredes do silo devido ao
fluxo de calor gerado. No entanto, a superficie inferior foi assumida adiabitica. O Método dos
Elementos Finitos (MEF) foi utilizado para resolver a equagio com condi¢des de contorno
complexas. O estudo sugeriu que havia uma alta probabilidade de deteriora¢io do grio
préximo 4 fonte de calor interna e era independente da posi¢io devido & baixa condutividade
térmica do trigo. A temperatura medida estava em boa concordincia com as previstas durante

a fase inicial das valida¢des.

Um modelo de equilibrio, governado por EDPs e baseado nas equag¢des de balango
de massa e energia, foi formulado por Thorpe (1997) e apresentado de forma detalhada por
Thorpe (2001b). Lopes ef al. (2006) validaram o modelo utilizando dados experimentais da

aera¢io de grios de milho. Os autores relataram algumas mudangas nas equag¢des originais do
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modelo matemitico para simplificar e diminuir seu tempo computacional, sem diminuir sua
precisio. Neste trabalho, o MDF com a aproximacio espacial UDS e a formulagio temporal
explicita foi utilizado para resolver numericamente o modelo. Os resultados corroboraram
com os dados experimentais registrados. A méxima diferenca observada entre as temperaturas

experimentais e numéricas foi de 3,2 °C.

Radtke (2009) e Kwiatkowski Jr (2011) solucionaram numericamente o modelo
proposto por Thorpe utilizando o MDF. Radtke (2009) utilizou a aproximacio espacial UDS
com a formulag¢io temporal explicita e o autor relatou que o modelo apresentou resultados
satisfatorios quando comparado a dados experimentais. Kwiatkowski Jr (2011) utilizou a
aproximacio espacial UDS e realizou uma comparag¢io entre as aproximagdes temporais
explicita e implicita, o autor relatou que ao comparar dados experimentais com as simula¢des
numéricas, o resultado foi satisfatério tendo uma pequena vantagem para a aproximagio

temporal implicita, pois deste modo a solugio numérica é sempre convergente.

Lopes et al. (2015) compararam os modelos propostos por Thorpe (2001b) e Thomp-
son (1972) com dados experimentais. Novamente, o modelo proposto por Thorpe foi resolvido
numericamente pelo MDF utilizando a aproximacio espacial UDS e a formulac¢io temporal
explicita. Os resultados mostraram que ambos os modelos tiveram boas correlagdes com os
dados experimentais e apresentaram um desempenho muito semelhante. Os autores comentam
que os dois modelos avaliados podem ser facilmente implementados em programas de compu-
tador, contribuindo para melhorias no controle desse processo e garantindo o gerenciamento

da qualidade dos grios durante o periodo de armazenamento.

Todos os estudos citados anteriormente que utilizaram o modelo proposto por Thorpe

(2001b) adotaram as simplificagdes propostas pelo trabalho de Lopes et al. (2006).

Liu et al. (2016) desenvolveram um modelo integrado para simular o armazenamento
de grios em grande escala (arroz em casca) usando ar frio durante a aera¢io. Um algoritmo
de método semi-implicito para equagBes ligadas i pressdo foi usado para resolver as equacdes
governantes que representam as transferéncias de calor, massa e quantidade de movimento. Um
termo fonte foi adicionado 4 equagio do momento para contabilizar a respectiva dissipagdo
resultante da resisténcia ao fluxo de ar. As propriedades termofisicas do ar for¢ado foram
estimadas pelo método proposto por Ranjbaran e Emadi (2015). Os resultados simulados
mostraram uma diferenca substancial nos dados de temperatura previstos e medidos. No
entanto, houve uma ligeira diminui¢io no teor de dgua do grio de arroz ao longo da dire¢io

vertical, pois a operacio foi limitada a 30 horas de aerac3o.

Novoa-Mufioz (2019) utilizou um silo cilindrico de concreto de 6,3 m de didmetro
e 23,5 m de altura para fins de simula¢io. O modelo foi solucionado numericamente pelo
MDF e foi desenvolvido (considerando coordenadas cilindricas) assumindo condugio de calor
constante na dire¢3o circunferencial de um silo para armazenagem de cevada. Além disso, o

fluxo de calor em torno do eixo central vertical foi considerado simétrico, sem calor interno
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da respira¢io dentro do silo. Os valores de temperatura medidos foram incorporados como
condi¢Bes iniciais para a simula¢io manter o fluxo de calor através do grio armazenado como
varidvel em relagio ao tempo. A transferéncia de calor afetada pelo ar de aeragio também foi
incluida na forma de coeficientes de transferéncia de calor por convecgio for¢ada na condig¢io
de contorno. Os resultados da simula¢io mostraram baixo erro padrio de estimativa em
relacio as temperaturas médias. Isso foi obtido por meio de validagio usando um gréfico de
disperso entre o valor medido e o predito. Assim, delineando um valor predito mais préximo
com a leitura do termopar ao longo do eixo central do silo. No entanto, foi encontrado um

erro de temperatura de 6,6% proximo ao piso e em torno de 12% préximo ao telhado.

1.3.3 Método das Solucdes Fabricadas (MSF)

O MSEF foi definido por Oberkampf e Blottner (1998), mas a primeira proposta de
uso do MSF para verificagio do cddigo foi apresentada por Steinberg e Roache (1985).

Segundo Roy e Sinclair (2009), devido i existéncia de solu¢Bes exatas se limitar
somente para as equagdes mais simples, a principal dificuldade em estimar o erro de discre-
tizagio ¢ encontrar uma maneira de estimar a solugio exata para EDPs e assim obter maior

confiabilidade em sua anélise.

A ideia do MSF se baseia em produzir uma solugio exata sem estar interessado na
realidade fisica do problema (ROY, 2005). Uma funcio analitica é definida e inserida no
lugar da varidvel dependente na EDP, e todas as derivadas s3o calculadas analiticamente. A
equagio ¢ criada de tal maneira que todos os termos restantes que n3o satisfazem a EDP sdo
incorporados em um termo fonte. Este termo é, ent3o, simplesmente acrescentado 3 EDP de
forma a satisfazer exatamente a nova EDP (SALARI; KNUPP, 2000).

O cédigo a ser verificado é modificado para suportar o termo fonte adicional e pode ser
verificado comparando o resultado da simula¢io do problema fabricado com a solugio analitica
fabricada. Idealmente, o termo fonte é computado analiticamente; entretanto, quando isto
nio for possivel, o termo fonte precisa ser computado de forma consistente e com no minimo
mesma precisio que os métodos numéricos que estio sendo verificados. Caso contrario, o
erro no termo fonte ird ofuscar o do método numérico contaminando a verificagio (FRENO
et al., 2021c).

As verificagdes de codigos tém sido realizadas em diversas 4reas, incluindo dinimica
de fluidos (ROY et al., 2004; BOND et al., 2007; VELURI et al., 2010; OLIVER et al., 2012;
ECA et al., 2016; FRENO et al., 2021b), mecinica dos s6lidos (CHAMBERLAND et al.,
2010), interacio fluido-estrutura (ETIENNE et al., 2012), transferéncia de calor na interacio
fluido-sélido (VEERARAGAVAN et al., 2016), fluxos multifisicos (BRADY et al., 2012),
hidrodinimica de radiacio (MCCLARREN; LOWRIE, 2008), eletrodinimica (ELLIS; HALL,
2009) e ablacio (AMAR et al., 2008, 2009, 2011; FRENO et al., 2021a). Entretanto, a literatura

existente contém poucas instincias do MSF sendo utilizadas na verificagio de c6digos para
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problemas relacionados 4 aeragio da massa de grios.

1.3.4 Viscosidade Artificial

Originalmente proposta por Von Neumann e Richtmyer (1950), a viscosidade ar-
tificial consiste em um método que controla as oscilagBes espurias ndo-fisicas nas solucdes

numéricas.

Curran ef al. (1974) detalharam um novo e simples método numérico para calcular a
propagacio de ondas unidimensionais de grande amplitude em materiais compostos. O método
trabalha com valores de tens3o, velocidade de particula e deslocamento. A principal vantagem
do método em relagdo as abordagens macroscdpicas anteriores é que ele utiliza a viscosidade

artificial para modelar as dispersdes geométricas e dissipativas do material composto.

Xuan et al. (2017) apresentaram um esquema melhorado do modelo de Lattice
Bolzmann para as equagBes de Navier-Stokes compressiveis com niimero de Mach (razio
entre a velocidade do objeto em um meio fluido e a velocidade da onda sonora nesse meio)
elevado. Foi implementado ao modelo original a viscosidade artificial, resultando na redugio

das oscila¢gBes numéricas e ajudando a satisfazer a condi¢io de estabilidade de Von Neumann.

Mousa e Ma (2020) desenvolveram dois esquemas numéricos para superar o problema
de oscilagdes n3o-fisicas que aparecem nas solu¢des dos modelos de uma/duas camadas de dgua
rasa. Os esquemas numéricos propostos foram baseados no conceito da viscosidade artificial.
A robustez e eficiéncia dos esquemas propostos sio validados em muitas aplica¢des, como o
problema de ruptura de represas e o problema de propagacio de interface do modelo de dgua

rasa de duas camadas.

Esta revisio bibliogrifica embasa e justifica os objetivos desta dissertagio e motiva,
principalmente, a efetuar uma verificagio numérica do modelo proposto por Thorpe (2001b)
e a utilizagio de aproxima¢des numéricas além das existentes na literatura para solucionar

numericamente o modelo.

1.4 Delineamento do Texto

Apresenta-se nessa secio a maneira como o restante do trabalho ¢ dividido. O capitulo
2 apresenta fundamentos tedricos a respeito de métodos de discretizagio, solugio de sistemas
lineares, viscosidade artificial, entre outras; dando énfase aos métodos e técnicas utilizados na
dissertagdo. O capitulo ¢ finalizado com a apresentacio dos critérios utilizados para verificagio
dos erros numéricos e também para o célculo do esfor¢o computacional de um modelo

numérico.

O modelo matemitico utilizado ¢ apresentado no capitulo 3, juntamente com as
condi¢des de contorno, condi¢des iniciais e os parimetros envolvidos. Também ¢ apresentado

o MSF com a solug¢io analitica proposta e o termo fonte.
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No capitulo 4 s3o apresentados os modelos numéricos para cada aproximagio espago-

temporal utilizada.

No capitulo 5, as ordens efetivas e os erros de discretizagio para cada aproximacio
utilizada sio apresentadas e discutidas. Também s3o apresentados e discutidos os resultados
referentes aos modelos numéricos desenvolvidos quando comparados 4 solu¢do analitica pro-
posta. Os resultados também referem-se ao desempenho computacional de cada aproximacio

utilizada.

Finalmente, no capitulo 6, s3o apresentadas as conclusdes referentes a esta dissertac3o.
S3o discutidas suas principais contribui¢des e também os pontos positivos com base nos

objetivos propostos. O capitulo ¢ finalizado com sugestSes para trabalhos futuros.
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2 FUNDAMENTAGCAO TEORICA

Neste capitulo serd descrito o referencial tedrico usado nesta dissertagio. Apresenta-
se 0 MDF e as aproximacdes usadas para discretizar as equag¢Bes diferenciais, métodos de

resolugio de sistemas lineares, viscosidade artificial e os critérios de verificagio numérica.

2.1 Método das Diferencas Finitas (MDF)

Um modelo matemadtico, associado a um determinado fendmeno fisico, compreende
as equacdes que governam tal fendmeno, o dominio matemitico (correspondente ao dominio
tisico) sobre o qual elas estdo definidas e as condi¢des de contorno a elas impostas. O modelo
matematico é também chamado de modelo continuo (OLIVEIRA, 2020).

Para a resolu¢io computacional do problema, o modelo matemitico continuo ¢é
transformado em um modelo discreto, através do qual o dominio continuo inicial passa a ser
representado por um nimero finito de pontos que dio origem a uma malha, chamada de malha
computacional ou discreta, conforme exemplificado na FIGURA 2. As equagdes deixam de ser
avaliadas continuamente e passam a ser avaliadas somente em tais pontos, também chamados
de nds. As derivadas contidas nas equages s3o calculadas, em um dado ponto da malha, por
meio de aproximacgdes que utilizam pontos vizinhos ao ponto em questdo. Para o MDF, tais
aproximacdes sdo geralmente obtidas de expressdes truncadas da série de Taylor. Esse processo
¢é chamado de discretizagio do modelo matemadtico, e através dele o modelo continuo inicial é
transformado no chamado modelo discreto aproximado (OLIVEIRA, 2020).

FIGURA 2 — DOMINIO DISCRETO DE UM SISTEMA QUE REPRESENTA O ARMAZENA-
MENTO DE UMA MASSA DE GRAOS.

« NO (NC)
<« NO(NC-1)

«— NO(1)
<« NO (0)

FONTE: Modificado de Panigrahi et al. (2020b).
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No presente trabalho, o MDF ¢ utilizado para a discretiza¢io das equagdes. O MDF ¢
um método clissico e que, apesar da base matemdtica nio ser nova, pode apresentar diferentes
formula¢@es de aproximagio numérica (FERZIGER; PERIC, 2002).

Apés o processo de discretizagio de uma dada equacio pelo MDF, a avaliagdo das
varidveis e das aproximagdes de suas derivadas nos ndés da malha do origem a um sistema de
equagdes, o qual deve ser entdo solucionado por algum método apropriado para resolugio de

sistemas, comumente chamado de solver.

Utilizou-se os pontos cardeais S (sul) e N (norte) como identificadores da posi¢io
de pontos discretos em relagio a um né central P, e n simboliza a localiza¢io temporal do
nd, como indicado na FIGURA 3.

FIGURA 3 - MALHA PARA A SOLUCAO NUMERICA POR MEIO DO MDF, DE NO CEN-
TRAL P, E SEUS VIZINHOS, EM DOIS PASSOS DE TEMPOS DISTINTOS.

N N
P P
A,
Yy S g
At
n n+1

FONTE: O autor (2022).

Aqui, Ay corresponde ao espagamento espacial entre dois nés consecutivos, definido

por,

L
N, —1’

onde L representa a altura do local de armazenamento da massa de grios (m) e N, éo

Ay = (2.1)

ntmero de nds na direcio y. A diferenca entre o tempo atual de simulago e o tempo anterior

¢ definido por,

ty
At = = 2.2
N,’ ( )

onde t; ¢é o tempo final de simulagio e N; corresponde ao ntimero de passos no tempo.

E desejavel que o modelo discreto convirja para o modelo continuo, quando Ay e
At se aproximam de zero (TANNEHILL et al., 1982).
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2.2 AproximagGes Numéricas

Para ilustrar a discretiza¢io de uma EDP pelo MDF, considerou-se, por exemplo,
a equagdo que expressa a advecgio de uma determinada varidvel A, em regime transiente,

dada por

oA 0N

ooy = (2.3)

No MDF, a aproximacio dos termos envolvendo derivadas de A ¢ feita usando
expansdes de série de Taylor, dada por (KREYSZIG, 2009)

_ OA (y —yp) A (y — yP>2 PA (y — yP)3
Ay =Ap+ <89>P T + e ) o + B ) 3l +... . (24

O valor de A, é exato se forem considerados os infinitos termos da série de Taylor.

Nas proximas subse¢Bes, serdo apresentadas como s3o realizadas as aproximacdes numéricas

das derivadas espacial e temporal da Eq. (2.3) pelos métodos utilizados neste trabalho.

2.2.1 Esquema com Um Ponto a Montante (UDS)

A Eq. (2.4) aplicada ao n6 S, a partir do ponto P da FIGURA 3, resulta em

oA PN (Ay)? PN (Ay)?
Ag=Ap— (a_> Ay + <a 2) ( 2@,) - (a 3) ( é/) +oo o (25)
Y)» ¥ )5 ¥ ),
Isolando a derivada de primeira ordem da Eq. (2.5), tem-se
oA Ap—A PN\ A PN\ (Ay)?
(a—> = PA S+<82> Ty—<m) %—l— . (26)
Y)» Y ¥ s ¥ ) s
Assim, apresenta-se a aproximagio UDS da derivada espacial:
oA Ap — As
— N ————. 2.
( %y ) P Ay 7

A série de Taylor também pode ser expandida, em torno do instante de tempo n e do
né P, ao longo do tempo (VARGAS, 2013).

n+1 n+1 n+1
OA PN\ (A2 (A (A
n n+l _
A= A <_8t> At + <_8t2 )P > (8753) st (28)

P P
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onde n + 1 representa o instante de tempo atual.

Assim, a partir da Eq. (2.8), obtém-se

% n+1 - A?_,'H _ A’}D . 82A n-&-lg B 83/\ n+1 (At)2 . (2 9)
ot N At o2 2 ot3 . 6 T '

P P

portanto, a aproximac¢io da derivada temporal de A é dada por

ot At

P

n+1
A AL — A
(‘9 ) ~L P (2.10)

Com a substituicio das Egs. (2.7) e (2.10) na Eq. (2.3), chega-se a discretizacio da
Eq. (2.3), utilizando UDS:

ABTE— A N A% — A%
At Ay

onde 6 indica um instante de tempo genérico na qual a derivada espacial é avaliada e o erro

+ &ups = 0, (2.11)

de truncamento ( {yps ) ¢ dado por

(@A) Ay (@A) (A 2A\ At (9PN (A2
§ups = <8—y2>P7—<8—y3>P 6 +...+ o2 PT— e i G +... . (2.12)

A relagdo entre § e A é dada por

A = A"+ (AT — A™). (2.13)

Em fun¢io do valor de 6, a TABELA 1 mostra as possiveis formula¢cdes temporais
(TANNEHILL et al., 1982):

TABELA 1 — FORMULACOES TEMPORAIS DE ACORDO COM O VALOR DE 6.

Formula¢io Temporal Valor de 6

Explicita 0
Implicita 1
Crank-Nicolson 0,5

FONTE: Tannehill ef al. (1982)

Nota-se que essa nota¢io nio é rigorosa, podendo causar confusio, mas é amplamente
utilizada na literatura devido a sua simplicidade (TANNEHILL et al., 1982).

A formulagio explicita recebe este nome devido ao valor da variivel de interesse (A)

em cada n6 P da malha, no instante atual, ser calculado por valores conhecidos do instante
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de tempo anterior. Com esta formulagio, tem-se a vantagem de que a solugio do sistema de
equagdes algébricas é direta. A desvantagem ¢é que existe um limite que deve ser satisfeito
para o avanco no tempo nio divergir. Para o exemplo dado pela Eq. (2.11), a condi¢do de

estabilidade ¢ dada por

At
~— =

1
—. N
A 53 (2.14)

Nas formula¢&es implicita e Crank-Nicolson, devido 4 diagonal dominincia, a so-
lu¢io ¢ incondicionalmente estdvel no tempo, ou seja, n3o hd limite como na formulagio
explicita. No entanto, o sistema de equagdes precisa ser resolvido com um solver. Além disso,

tal solver tem que ser empregado a cada avango no tempo.

2.2.2  Esquema com Diferenca Central (CDS)

A Eq. (2.4) aplicada ao né N, a partir do ponto P da FIGURA 3, resulta em

OA 0%\ Ay)? O3\ Ay)?
Av=Ap+ | =] Ay+ (By)” CO (2.15)
y 0y? 2 oy3 6
P P P
Subtraindo a Eq. (2.5) da Eq. (2.15), tem-se
_ 3 2 5 4
(g_A) _ ANM As (g 1;) <Ag) - <g ?) (fgg I (2.16)
Yy P Yy Yy P Yy P
Assim, apresenta-se a aproximacio CDS da derivada espacial:
OA Ay — Ag
gh) AN As 2.1
( dy ) - 2Ay (2.17)

Com a substitui¢cio das Egs. (2.17) e (2.10) na Eq. (2.3), chega-se a discretiza¢io da
Eq. (2.3), utilizando CDS:

A - Ap A% A%

At 2Ay

cujo erro de truncamento ({cps ) é dado por

b = — PA\ (Ay?  [°A (Ay)4+ . PN\ At [PA (At)2+
R W 6 oy | 120 T\ oz ] 2 o3 6
P P P P
(2.19)

+ &cps = 0, (2.18)
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2.2.3 Esquema UDS com Corre¢io Adiada (UDS-C)

Uma outra técnica de aproximag¢io consiste em misturar as aproximacdes UDS e

CDS, assim tem-se UDS com corre¢io adiada, conforme expressio

Ap = Apups + (A;CDS — Apups); (2.20)

onde * representa os valores conhecidos da itera¢io anterior, e sdo aplicados conforme o

esquema dado por

0, UDS
=4 1, CDS , (2.21)
0<pB<1 Mistura

em que [ é o fator de mistura entre os esquemas.

Substituindo as Egs. (2.7) e (2.17) conforme o esquema da Eq. (2.20), tem-se

ONY  Ap—Ag AL — 205 + Ay PN\ Ay [OPA) (Ay)?
<8y>P_ Ay +5< 2Ay +(1-5) 0y? - 2 oy? - 6 +

(2.22)

Assim, apresenta-se a aproximagio UDS-C da derivada espacial:

oA Ap — Ag A —2A% + Ay
— ~ . 2.2
( dy ) - Ay +6 ( 2Ay (2.23)

Com a substituicdo das Egs. (2.23) e (2.10) na Eq. (2.3), chega-se a discretiza¢io da
Eq. (2.3), utilizando UDS-C:

A;;,H—A;g+A§D—Ag+5<A§—2A}+A7v

AL Ay Ay ) + &ups-c = 0, (2.24)

cujo erro de truncamento (Eyps-c ) é da forma
- 2A\ Ay (A (Ay)? A\ (Ay)?
ups-c = (1 = ) (a_y2>P7_ (a—f,)}) 5 +(1-5) t o + ot

A\ At (A (An?
+<W>P7 - <ﬁ>P 6 + e (2.25)
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2.2.4 Esquema de Roberts ¢ Weiss (RWS)

De acordo com Dehghan (2005) e Campbell e Yin (2007) o esquema proposto por
Roberts e Weiss (1966) (RWS) consiste em aproximar a derivada espacial de uma varivel A

da seguinte forma:

n+1 n+1 _ n+1 n o __ n
oA ~ L[ ArT = A + Ay - A% (2.26)
dy » 2 Ay Ay

Com a substituicio das Egs. (2.26) e (2.10) na Eq. (2.3), chega-se a discretiza¢io da
Eq. (2.3), utilizando o RWS:

ARt AR 1 (A}é“ AT AR - A

cujo erro de truncamento ( {rws ) ¢ dado por

CY) i P ALY (O°A
Erws = D 1+Ay 2+Ay o P+

(Ay)? At At At AtN2\ [ A
o (1 + A-y) (2 + A-y) (1 + 6<A—y> +3(A—y) ) (0_3/5’)13 v . (228)

2.2.5 Esquema de Leith (LS)

O esquema proposto por Leith (1965) (LS) consiste em aproximar a derivada espacial
da Eq. (2.3) da seguinte forma (DEHGHAN, 2005):

n+1
OA (AL [ A =AY At ) [ A} — A%
(8y> - (Ay) < Ay > + (1 Ay) ( 2Ay ' (2.29)

P

Com a substituicio das Egs. (2.29) e (2.10) na Eq. (2.3), chega-se a discretiza¢io da
Eq. (2.3), utilizando o LS:

AL — A At AR — AR At \ [ A% — A%
T+A_y A—y + 1_A_y W +§LS—O, (230)

cujo erro de truncamento (s ) ¢ dado por

= S - (5] (5) A5

- (5,)

O*A
(a_y4>P+“‘ . (2.31)



38

2.3 Solugio do Sistema de Equag¢des

Apds o processo de discretizagio, a avaliagio das varidveis dependentes das equagdes
em cada ponto interno (ou nd) da malha computacional, se d4 em fun¢io de seus pontos

vizinhos. Esse processo dd origem a um sistema de equagdes.

E comum escrever a equagio discretizada da seguinte forma:

apAp =anAy + asAs + bp, (2.32)

onde, ap, ay e ag sio coeficientes associados a, respectivamente, Ap, Ay e Ag. bp
corresponde ao termo fonte. Dessa forma, métodos eficientes para resolucio de sistemas sdo

necessarios.

A avaliagio das Egs. (2.11), (2.18), (2.24), (2.27) e (2.30), ou da sua forma equivalente,

Eq. (2.32), em todos os pontos da malha gera um sistema de equagdes da forma

A-A=Db, (2.33)
onde A representa a matriz do sistema e b é o vetor correspondente ao termo fonte.

Desse modo, a Eq. (2.32) corresponde a uma linha genérica do sistema da Eq. (2.33).
Todavia, nota-se que essa linha contém apenas os valores das varidveis vizinhas ao né atual P,
juntamente com seus coeficientes. Isso gera sistemas com matrizes esparsas no processo de
discretizagdo. Nesse tipo de matriz, a maioria dos elementos s3o nulos e os elementos n3o nulos
concentram-se em um nimero limitado de diagonais. Dessa forma, métodos especializados

para esse tipo de matriz devem ser preferencialmente utilizados.

A FIGURA 4 apresenta a estrutura das matrizes obtidas através das aproximagdes

utilizadas neste trabalho. Uma matriz com essa forma é também chamada de matriz tridiagonal.

FIGURA 4 — ESTRUTURA DE UMA MATRIZ TRIDIAGONAL.

FONTE: Modificado de
Oliveira (2020).

Os métodos de resolucgio de sistemas lineares, ou solvers, s3o classificados basicamente

em duas categorias: métodos diretos e iterativos. Os métodos diretos procuram resolver o
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sistema de equag¢des através de uma sequéncia finita de opera¢des e, exceto por erros de
arredondamento e discretiza¢do, fornecem sua solu¢do exata. Tais caracteristicas podem ser

interpretadas como vantagens dessa classe de métodos.

Pode-se afirmar que o método fundamental para o desenvolvimento e estudo dos
métodos diretos é o método de elimina¢io de Gauss (PATANKAR, 1980). Nesse método,
o sistema original é transformado em um sistema triangular equivalente, a partir do qual a

solugio ¢é facilmente obtida.

Outro método direto bastante utilizado, é o Algoritmo para Matriz Tridiagonal
(TDMA) (THOMAS, 1949; PATANKAR, 1980), que também ¢é baseado no método de
eliminagio de Gauss, e é especifico para resolucio de sistemas envolvendo matrizes tridiagonais.
O baixo custo desse método tornou sua utilizagio bastante popular para os casos em que

matrizes tridiagonais s3o obtidas.

Neste trabalho, para todas as aproximacdes, utilizou-se o TDMA para solucionar o

sistema resultante da discretizacio.

2.4 Viscosidade Artificial

Originalmente proposta por Von Neumann e Richtmyer (1950), a viscosidade ar-
tificial consiste em um método que controla as oscilagBes espurias ndo-fisicas nas solugdes
numéricas. No problema em estudo utilizou-se a viscosidade artificial para eliminar os proble-

mas de oscilagdes excessivas nas aproximacdes de segunda ordem.

De acordo com Tryggvason (2017), a viscosidade artificial pode ser obtida da seguinte
forma. Considere a EDP,

of OF
2Ly 2.
oty O (2.34)
Definindo F” de tal sorte que,
For-o2l (2.35)
dy

onde o = D(Ayﬂ%‘ e D corresponde a uma constante adimensional ajustivel (CAMP-
BELL; VIGNJEVIC, 2009).

Substituindo F' por F” na Eq. (2.34), tem-se

y

or, or _ a[ a—f} a[D(Ay)2

_ of 0t
5 T3y = oyl %5 ] (2.36)

Oy 1 0y

Note que, a medida que Ay — 0,
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D(Ay)® 0, (2.37)

9 ofof
dy dy | 0y

7

ViscosidagerArtiﬁcial
fazendo com que a Eq. (2.36) — Eq.(2.34). O termo dado pela Eq. (2.37) recebe o nome de

viscosidade artificial.
A viscosidade artificial pode ser adicionada a Eq. (2.3), assim tem-se
ON OAN 0

E—Fa—y-i-a—y

A | DA

D(Ay)® ERER =0 (2.38)

De acordo com Tryggvason (2017), pode-se efetuar a discretiza¢io da viscosidade
artificial pelo método de Lax e Wendroft (1960), obtendo-se

) o OA | OA 1 o ON | OA o OA | OA
DAY 22| 22| = | [ DAY == == — | D(Ay)?|=—|=— . (2.39
3y[ (Ay) 9y 9y Ay( (Ay) ooy, [ (Ay) o 5?JLl> (2.39)
Aproximando:
D(Ay)? 0A10A ~ D|A} — Ap|(Ay — AD) (2.40)
Oy | Oy pr
D(Ay)® oA 0A ~ D|A} — A%| (A% — A%) (2.41)
Oy | dy bt

e substituindo as Egs. (2.40) e (2.41) na Eq. (2.39), tem-se o termo discretizado da viscosidade

artificial:

oA oA
dy | Oy

~
~

D
(Ay) [

A% — AT,

(A% - A3) -

A% — A

(Ap - AZ)]. @42)

0 5
ay [D(Ay)

2.5 Critérios de Verificagio Numérica

Verificagio da acuricia de solu¢Bes é um processo essencial na construgio de qualquer
novo modelo numérico. Segundo Oberkampf e Trucano (2002), a verificagio ¢é a avaliagio
da acuricia da solugio para um modelo computacional através de comparagio com solucdes
conhecidas. Ainda de acordo com os autores, essas solu¢des conhecidas tém basicamente duas
origens: solu¢des analiticas e solu¢cBes numéricas com alto grau de acurécia (conhecidas como

Benchmark). A avaliagio da acuricia da solu¢io numérica é geralmente realizada a partir de
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compara¢Bes com dados de grificos e tabelas, mas principalmente por meio da quantificagio

e anilise dos erros envolvidos.

Nesta se¢io, s3o apresentados alguns tépicos tedricos referentes aos critérios que serio

utilizados para a verifica¢io das solugdes obtidas neste trabalho.

2.5.1 Erros de Discretiza¢io e Ordem Assintdtica

Através da utilizagio de métodos numeéricos, sdo obtidas solu¢Bes numéricas aproxi-
madas para as varidveis de um dado problema. Seja ® o valor da solugio analitica de uma
certa varidvel. A cada solu¢io numérica aproximada obtida, indicada por ¢, estd associado

também um erro numérico, o qual é calculado como

E(¢) =P — ¢. (2.43)

De acordo com Marchi (2001), o erro numérico E possui quatro fontes principais:
erros de truncamento, erros de iteragio, erros de arredondamento e erros de programacio. O
erro numérico ¢ denominado de erro de discretizagio quando sua tinica fonte s3o os erros
de truncamento, ou seja, quando os erros de arredondamento, de itera¢io e de programacio
podem ser desprezados (FERZIGER; PERIC, 2002). Nesse caso, o erro de discretiza¢io ( £)

pode ser escrito como

E(¢) = C1hP* + CohP> + Csh? + ..., (2.44)

onde h ¢ o tamanho representativo de malha, C;, i = 1,2;3,..., s3o coeficientes que
independem de h, mas dependem da varidvel em questdo, e p;, com p; < ps < p3 < ..., s30
inteiros positivos denominados ordens verdadeiras do erro. A primeira ordem verdadeira é
chamada de ordem assintética e ¢ indicada também por p;, = p;. A ordem assintdtica é um
resultado tedrico que pode ser obtido "a priori" das solu¢es numeéricas a partir dos tipos de

aproximacdes utilizadas na discretiza¢io do problema (OLIVEIRA, 2020).

O erro de discretiza¢io da aproximag¢io CDS, é de 2* ordem, ou seja, p;, = 2. Porém,
a aproximacio numérica da derivada temporal utilizando a formulagio explicita ou implicita
¢ de 1° ordem, ou seja, p;, = 1. A ordem assintdtica resultante da combinagio, quando ocorre
uma mistura de aproximacdes no tempo e no espago, ¢ igual 4 ordem da aproximacio que

apresenta a menor ordem assintdtica.

No caso da combinagio entre CDS, tanto para a formulagio explicita quanto implicita,
a ordem assintética resultante é igual 4 unidade. Uma maneira de se obter p;, = 2 é utilizando a
formula¢io Crank-Nicolson, dado que tal formulagio é de 2* ordem no tempo (TANNEHILL
et al., 1982).
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Na TABELA 2 sio apresentadas as ordens assintéticas de cada aproximacio utilizada
neste trabalho (DEHGHAN, 2005; CAMPBELL; YIN, 2007; FERZIGER; PERIC, 2002;
TANNEHILL et al., 1982).

TABELA 2 — ORDENS ASSINTOTICAS DAS APROXIMACOES NUMERICAS UTILIZADAS.

Método Ordem Assintdtica (py)
UDS - Explicito 1
UDS - Implicito
UDS - Crank-Nicolson
CDS - Explicito
CDS - Implicito
CDS - Crank-Nicolson
UDS-C - Explicito (5 = 3)
UDS-C - Implicito (5 = 3)
UDS-C - Crank-Nicolson (3 = 3)
Roberts e Weiss (RWS)
Leith (LS)

D0 |

[NSY I O IS ST I NG S G S N

FONTE: Dehghan (2005), Campbell e Yin (2007), Ferziger e Peric
(2002) e Tannehill et al. (1982).

2.5.2 Ordem Efetiva

Através das chamadas estimativas "a posteriori", pode-se verificar se a ordem assintdtica
do erro de discretizagio, calculada "a priori", é obtida pelo modelo numérico desenvolvido. Se
a solugio analitica do problema é conhecida, pode-se utilizar a ordem efetiva, pg , do erro de
discretizagdo para estimar a ordem assintdtica. De acordo com Marchi (2001), a ordem efetiva

é calculada fazendo-se uso de duas malhas, uma fina e uma grossa, através de

log(ii—ij)
log(q)

onde ® ¢ a solu¢io analitica exata, ¢ e ¢, hy € ha, s30 as solu¢cBes numéricas e os tamanhos

PE = (2.45)

representativos das malhas fina e grossa, respectivamente, e ¢ = hy/hy é arazio de refinamento
de malhas. Teoricamente, a ordem efetiva tende 3 ordem assintética com o refinamento da
malha, ou seja, pg — pr, quando h — 0 (MARCHI, 2001).

2.5.3 Esforco Computacional

Seguindo a abordagem de Roy et al. (2015), o esforco computacional de um método
numérico ¢ avaliado através da anélise do comportamento dos tempos de execugio (¢, em
segundos), ou de CPU (topy ), em fungio do ndmero de incdgnitas ( NV ) de cada malha.
Para tanto, é realizado um ajuste (GONCALVES, 2013) da forma
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tCPU = CNp, (246)

onde p éainclinagio da curva de crescimento do tempo em relagio a NV (em escala logaritmica),
também chamada de ordem de complexidade do método, e ¢ é uma constante dependente

do método.
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3 MODELO MATEMATICO

O modelo que descreve a temperatura (7') e a umidade dos grios (U) utilizado neste
trabalho foi proposto por Thorpe (1997) e apresentado de forma detalhada em Thorpe (2001b).
De acordo com Lopes et al. (2006), algumas simplificacdes podem ser feitas no modelo original,

sem perda de acuricia. Dessa forma, o modelo simplificado, que aqui serd adotado, é dado por

oT Oh,
E{pg[cg + ewU] + ep, {ca —i—R(cW + 8T)] } =

oU Oh,\ | 0T dm
pohsa — UgPa |:Ca + R(CW + oT )] a—y + pg%(Qr - 0,6hv>, (31)
oU OR dm
- — 4 2

onde: ¢ -tempo (s), y - eixo na dire¢3o vertical (orientado de baixo para cima) (m), U -
umidade dos grios (kg (dgua) kg~' (grio seco)), u, - velocidade do ar de aeragio (ms™!),
¢, - calor especifico dos grios (Jkg=' °C™1), ey - calor especifico da dgua (Jkg! °C™1),
cq - calor especifico do ar (Jkg=! °C™1'), R - razio de mistura (g (vapor da dgua) g (ar
seco)), p. - densidade do ar intragranular (kgm™3), p, - densidade dos grios (kgm—3),
h, - entalpia especifica de vaporiza¢io da dgua (Jkg™'), hs - entalpia diferencial de sor¢io
(Jkg™'), T - temperatura dos grios (°C), € - porosidade da massa de grios (decimal), Ciz_T -
derivada da perda de matéria seca em relagio ao tempo (kgs™!), @, - calor de oxidagio dos

grios (Js~'m™3).

Considerou-se o fluxo de ar através da massa de grios na dire¢io vertical, ou seja:
y € [0, L], onde L representa a altura do local de armazenamento da massa de grios, conforme

a FIGURA 5. Portanto, considerou-se uma simplifica¢io unidimensional do modelo.

FIGURA 5 — DOMINIO DE CALCULO.

FONTE: Modificado de Panigrahi et al. (2020b).
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3.1 Parimetros do Modelo Matemitico

O modelo matemdtico utilizado neste trabalho é composto por constantes, constantes
que dependem do tipo de grio e parimetros que s3o obtidos por meio de solu¢des analiticas

conhecidas da literatura.

3.1.1 Constantes

A velocidade do ar de aera¢io (u,) consiste na velocidade na qual o ar flui através da
massa de grios armazenada. Segundo Brooker et al. (1992) o calor especifico da dgua (cw) e
o calor especifico do ar (c,) s3o quantidades bem definidas e respectivamente iguais a 4186
(J/(kg°C)) e 1000 (J/(kg°C)). De acordo com Fleurat-Lessard (2002), o calor de oxidagio
dos grios (Q,) é igual a 15778 (J/(sm?)).

3.1.2 Constantes Dependentes do Tipo de Grio

Segundo Silva e Corréa (2000), a porosidade (¢) pode ser definida como a relagio
entre o volume ocupado pelo ar existente na massa granular e o volume total ocupado por
esta massa, tendo grande influéncia sobre a pressio de um fluxo de ar que atravessa a massa de

grios. A porosidade pode ser obtida de acordo com o tipo de grio, conforme a TABELA 3.

TABELA 3 — VALORES PARA A POROSIDADE DA MASSA DE GRAOS.
Tipo de Grio Porosidade () (%)

Soja 0,361
Arroz 0,584
Milho 0,435
Trigo 0,453
Aveia 0,555

FONTE: Brooker et al. (1992).

A densidade dos grios (p,,) varia de acordo com a TABELA 4 e determina o volume
requerido para armazenar uma determinada quantidade de produto. Esta propriedade influ-
encia diretamente a vaz3o de ar requerida para a aeragdo e os processos de transferéncia de

calor e de massa no ambiente de armazenamento (LOPES, 2006).

TABELA 4 — VALORES PARA A DENSIDADE DA MASSA DE GRAOS.

Tipo de Grio Densidade (p,) (%)
Soja 737
Arroz 576
Milho 640
Trigo 762
Aveia 480

FONTE: Thorpe (2001b).
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O calor especifico dos grios, segundo Lopes (2006), representa a quantidade de
energia térmica requerida para aumentar a temperatura de 1 kg de produto em 1°C. Esta
propriedade também influencia os processos de transferéncia de calor e de massa durante a
aeragio (NAVARRO; NOYES, 2001). A TABELA 5 mostra o calor especifico (¢ ) para alguns

tipos de grios.

TABELA 5 — VALORES PARA O CALOR ESPECIFICO DA MASSA DE GRAOS.
Tipo de Grio Calor Especifico (c,) (Jkg~! °C™1)

Soja 1637,0
Arroz 1197,0
Milho 1534,8
Trigo 1184,0
Aveia 1277,0

FONTE: Jayas e Cenkowski (2006).

3.1.3 Parimetros com Solu¢des Analiticas Conhecidas

A entalpia diferencial de sor¢io (h;), assim como a entalpia especifica de vaporizagio
da dgua (h,), s3o propriedades importantes, consideradas nas simula¢des do processo de aeragio,
pois interferem nas transferéncias de calor e massa dentro do ambiente de armazenamento
(LOPES, 2006). Segundo Thorpe (2001b), a entalpia diferencial de sor¢do ¢ a energia total

necessiria para remover uma unidade de massa de d4gua da massa de grios.

A entalpia diferencial de sor¢io (hs) pode ser calculada pela equagio de Chung-Pfost
(PFOST et al., 1976)

AeBU(T + 273,15)

(T+C)? =5+ 7590 |

he = hy |1+ (3.3)

onde A, B e C sio constantes que variam de acordo com o tipo de grio, conforme a
TABELA 6.

TABELA 6 — VALORES DAS CONSTANTES DA EQUACAO DE CHUNG-PFOST.

Tipo de Grio A B C
Soja 138,45 14,967 24576
Arroz 594,65 21,733 35,703
Milho 312,31 16,958 30,205
Trigo 725,59 23,607 35,662

FONTE: Pfost et al. (1976).

De acordo com Thorpe (2001b), o calor aplicado 4 4gua que a faz mudar de liquido
para vapor é chamado de entalpia especifica de vaporizacio da dgua (h,) e fornece a energia

necessaria para superar a atragio mutua das moléculas no estado liquido, e pode ser calculada

por
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h, = 2501,33 — 2,363T.. (3.4)

Esta equagio foi obtida por Thorpe (2001b) ajustando-se uma equagio linear a dados

termodinimicos obtidos por Cengel e Boles (1998). Derivando-se a Eq. (3.4) em relagdo a

dhy
dr’/*

temperatura, encontra-se a derivada da entalpia de vaporizag¢io da dgua (

Visando corrigir os possiveis efeitos da altitude, a densidade do ar (p,) pode ser
calculada por (ALE, 2001)

B 258,8 Pyt
~101,325(T + 273,15)

em que P, corresponde i press3o atmosférica em kPa.

Pa (3.5)

A perda de matéria seca pode ser estimada por meio de modelos obtidos ajustando-se

relagdes matemadticas a dados experimentais. O modelo mais utilizado é o apresentado por

Thompson (1972), ondea derivada da perda de matéria seca em relagio ao tempo (%) ¢ dada

por

d
d_? — 8,83 x 10—4{ exp {1,667 x 1076

t
] — 1} +2,833x 10—+,  (3.6)

UiT MUMT’

onde My e My sio parimetros utilizados para ajustar o tempo de aeragio de acordo com o

teor de 4gua e temperatura dos grios. O parimetro My pode ser obtido por

455

MU = 0,103(€Xp {W

] — 00,8450 + 1,558), (3.7)
e My pode ser obtido de acordo com a faixa de temperatura e umidade:

Mpr=3S, seT <150u U <19, (3.82)
100U _

100U _ g
My = § + T exp [0,0183T - 0,2847], seT>15e19< U <28,  (3.8b)

My = S + 0,09 exp [0,0183T . 0,2847}, seT>15e¢U >28,  (3.8¢)

onde S = 322exp [— 0,1044T — 1,856}.

A razio de mistura (R) é a raz3o entre a massa de vapor de dgua e a massa de ar
seco em um dado volume de ar imido. A razio de mistura é uma propriedade do ar, nio

estando diretamente relacionada 4 estimativa do teor de 4gua dos grios, e pode ser calculada
por (THORPE, 2001a)

TuPs

R =0,622
7 Patm_rups7

(3.9)
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onde p, ¢ a pressdo de vapor de saturagio do ar (kPa) dada por (HUNTER, 1987)

6 x 10%
|

B 6300 ]
P =T 1273 15) ’

_ oW 3.10
T + 273,15 (3.10)

e r, corresponde a umidade relativa de equilibrio e pode ser calculada por (CHUNG; PFOST,
1967)

Tw = exp . (3.11)

T+C0P [_BU}

Nesta dissertagio utilizaram-se as referéncias apontadas nesta se¢3o para calcular os
parimetros do modelo matemadtico, no entanto, na literatura do problema, hd uma grande

variedade de op¢des para calcular estes pardmetros.

3.2 Condigdes Iniciais

Antes de serem armazenados, os grios s3o submetidos a secagem, visando atingir um
teor de dgua ideal para o armazenamento seguro. Este procedimento aquece os grios de forma
indesejivel, sendo requerido um resfriamento da massa de grios com a aera¢o. Portanto, em

todo dominio, a condigio inicial de temperatura é dada por (717 ).

T(y,0) = T. (3.12)

A umidade inicial (U; ) pode ser obtida conforme Thorpe (2001b), por

U,
Uly,0) = ———+—— = U, (3.13)

onde U, corresponde ao teor de dgua inicial dos grios (% b.u.).

Obtém-se a razio de mistura inicial ( R; ) utilizando-se a Eq. (3.9) e empregando-se

T7 e Uy como pardmetros nas Eqs (3.10 e 3.11)

3.3 Condi¢des de Contorno

Em y = 0 supds-se que os grios localizados na base do local de armazenamento

entram em equilibrio com o ar de aeragio, dessa forma

7(0,t) = Te, (3.14)
onde T representa a temperatura do ar de aeragio.

A umidade em y = 0 (U ) consiste em uma adaptagio da equagio de Chung-Pfost

(Eq. (3.11)) e pode ser calculada por



49

B 100 A

onde A, B e C variam de acordo com a TABELA 6 ¢ r, representa a umidade relativa do ar

U(0,1) = —~in [ln( _ L )(— To+ C)} — U, (3.15)

de aeragio e é dada por

6x102° . 6800
_ (Ta7rLb+273715)5 eXp |: Ta7nb+273715:|
fa =1 6x1025 6800 ’ (3.16)
(Tc+273,15)5 OXP [ - TC+273,15]

onde wu, corresponde a umidade relativa do ar ambiente e 7,,,, ¢ a temperatura ambiente.

A razio de misturaem y = 0 ( R¢ ), é dado por

Tapsa

atm — TaPsa

R(0,t) = 0,622 = Re, (3.17)

onde py, corresponde a pressio de vapor de saturagio, Eq. (3.10) utilizando Tt como

parametro.

Em y = L, tem-se para a temperatura e umidade, as condi¢des de contorno de

oT
(8_y)y:L —0, (3.18)

ou
<8—y>y:L = 0. (3.19)

3.4 Método das Solugdes Fabricadas (MSF)

Neumann.

Esta se¢3o constitui o desenvolvimento da solu¢io analitica para a temperatura da

massa de grios, Eq. (3.1), e do termo fonte associado, utilizando o MSF.

3.4.1 Solugio Analitica

Como discutido anteriormente, mesmo com a vasta utiliza¢io do modelo proposto
por Thorpe (2001b), ainda nio existe uma investigacio sobre a solu¢do analitica do modelo
matemitico. A fim de encontrar uma solugio analitica para a temperatura da massa de grios,
Eq. (3.1), considerou-se como base, dados experimentais apresentados por Khatchatourian e
Oliveira (2006) e Oliveira et al. (2007).

Estes dados foram obtidos no laboratério de medidas fisicas e modelagem matematica
da Universidade Regional do Noroeste do Rio Grande do Sul (UNIJUI), em um protétipo de
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silo composto por um tubo PVC com isolamento térmico nas laterais, altura de 1,0 m (L =1

m) e didmetro de 0,15 m.

Para realizagio dos experimentos, os grios de soja com teor de dgua médio de 12 % b.u.
foram previamente selecionados, limpos e aquecidos em estufa até temperatura aproximada
de 52,9 °C e a temperatura do ar de aeragio era 31,1 °C. Ou seja, Ty = 52,9 °Ce T = 31,1
°C. A temperatura dos grios foi medida por termopares, inseridos dentro da massa de gros
a0 longo do tubo, nas seguintes secBes da coluna de grios: y = 0,15 m; y = 0,27 m; y = 0,40 m

e y = 0,54 m durante uma hora.

A FIGURA 6 mostra o comportamento da temperatura dos grios, obtida experimen-

talmente, nas alturas y = 0,15 m, y = 0,27 m, y = 0,40 m e y = 0,54 m em relacio a uma hora

de aeragio.

FIGURA 6 — DADOS EXPERIMENTAIS DA TEMPERATURA DOS GRAOS.
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FONTE: Khatchatourian e Oliveira (2006) e Oliveira et al. (2007).

A solugio analitica para a Eq. (3.1) proposta neste trabalho foi fabricada a partir de

modifica¢Bes feitas em uma solu¢io de um problema apresentado por Van Genuchten e Alves
(1982), e ela é dada por

~ 1
T(y,t) =T + 5 (TC - TI)

y—2,2 % 10‘4t>
V8 x 1076¢

mfc(

emp(

2,2 x 1074 2,2 x 1074
) X y> f<y+ ’ X )]7 (320)

8 x 107° V8 x 10-6¢
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onde erfc representa a func¢io erro complementar (VAN GENUCHTEN; ALVES, 1982),
definida por

2 [*
erfe(x) =1 — erf(z) = ﬁ/z e " dt. (3.21)

A FIGURA 7 mostra a Eq. (3.20) aplicada nos mesmos pontos dos dados experimen-
tais, utilizando 77 = 52,9 °Ce T = 31,1°C.

FIGURA 7 — SOLUCAO ANALITICA PROPOSTA E OS DADOS EXPERIMENTALIS.
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FONTE: O autor (2022).

Pode-se notar na FIGURA 7 que a solugio analitica proposta neste trabalho apresenta
uma boa concordancia e acuricia quando comparada aos dados experimentais. A solugio dada
pela Eq. (3.20) foi fabricada para satisfazer um experimento realizado por Khatchatourian e
Oliveira (2006) e Oliveira ef al. (2007) com grios de soja, muito citado na literatura. Observa-
se que a solugio analitica adota como pardmetros: o tamanho do local de armazenamento (),
o tempo de aeragio (t), a temperatura do ar de aera¢io (T¢) e a temperatura inicial da massa
do grios (17).

Considerando sistemas de aeragio realistas, que requerem aproximadamente entre 300
e 600 horas, diferentes geometrias, diferentes temperaturas iniciais e diferentes temperaturas
do ar de aeragio, a solugio proposta neste trabalho, dada pela Eq. (3.20), satisfaz as condi¢des
mencionadas com ligeiras adaptagdes. Quanto 2 mudanca do tipo de grio, s3o necessarias

modificacBes mais elaboradas e estas adaptacBes s3o objeto de estudos.
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3.4.2 Termo Fonte

Para a funcio definida anteriormente ser considerada soluc¢io analitica da Eq. (3.1),

um termo fonte ( Sy ) deve ser adicionado a equagio governante:

or Oh,
E{pa[cg + CWU] + Epa[ca + R(CW + aT )]} =
ou Oh, . | 0T dm

onde o termo fonte Sy pode ser calculado da seguinte forma:

oT Oh,
Sp = E{pa[cg + ewU] + epalca + R(ew + 5T )]}
ou Oh, ] 0T dm
—pghsg + UgPq |:Ca + R(CW + oT ):| a—y - pJE(QT — O,Ghv). (323)

A derivada %—f ¢ dada por:

A~

or 1
o = 3te= T

—125000(y—2,2x10%¢)? _176,777(y—2,2x107%4t)  0,0777817
2exp [ . } 3 7
VT
125000(2,2x 10%t+y)? 7 { 0,0777817 176,777(2,2x 10~ %t
2exp [27,5y — L2E2AC] (0 _ 176.777(2.2x10" t4y) ]

3 Vit 3
N3

(3.24)

E a derivada g—f ¢ dada por:

oT 1
Ty §(TC —17)

353,553(2,2 x 1074 + y))
Vit

398,942 exp | 20220 ] 308,049 exp 27,5y — 1200200 ey

27,5 exp [27,59] erfc(

t t

- ] ] . (3.25)

Vi Vit

Substituindo as Egs. (3.24) e (3.25) na Eq. (3.23), obtém-se o termo fonte:
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—125000(y—2,2x 10%¢)* 176,777(y—2,2x 10~ %t
2exp | (y=2, ) }(_ TTT(y=2, ) _ 00777817

t i3 Vi
NZ3

2 exp [27751/ 125000(2, 2><104t+y ] <0 0777817 176,777(2,310*4#;/))

- - ] }{pa[cg +ewl]
8hv
8T

Sp = {%(TC _1y)

~J

§

Oh,
+ UaPa [ca + R( 5T )]

+ €palca + Rlcw +
1 353,553(2,2 x 1074t +
(TC_T[ ( y))
. Vi

308,942 exp[ 125000(y—22x10~ 4”2] 308,942 exp [27,5y = 125000(2’2?0_4””2}
~ — .

dm

—Po— dt (Qr - 0,6hv> (326)

27,5 exp [27,5y] erfc(

Ademais, efetuando algumas simplifica¢des e denotando 4, B e 7, como

A = pyleg + ewU] + €p, [Ca+R< 8@?)}’ (3.27)
B = uyp, [ca n R( gf})} , (3.28)

—125000(y—2,2x 10%t)2 176,777(y—2,2x 10~ 4¢
2exp[ (y—2,2x )}(_ TTT(y—2,2% ) 0,0777817

1 t 3 o \/E
=4 =(Te — T, £
F {2(0 7) JT

2 exp [27,5y _ 125000(2,2x104t+y)2] (0,0777817 _ 176,777(2,2><104t+y))] }

t Vit .5
N3

353,553(2,2 x 104 + y))
Vit

308,942 exp [‘125000@‘2’2“0*4”2] 308,942 exp [27,5y - 125000(2’2“074””2} ] }

+B{%(TC —T7)|27,5exp (27,5y)e;fc<

t t

Vi - Vi

(3.29)
tem-se a equagio que descreve a temperatura (7') da massa de grios:
oT  oT
228 | g1 _ 3.30
ot TPy =7 (3.30)

cuja solugio analitica é dada pela Eq. (3.20) por meio do MSF.
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4 MODELO NUMERICO

Neste capitulo s3o apresentados os modelos numéricos resultantes da discretizagio
do modelo matemitico apresentado no capitulo 3. Os modelos numéricos s3o desenvolvidos
através das aproximagdes apresentadas no capitulo 2: UDS; CDS; UDS-C; RWS e LS. O
capitulo contém também a implementacio da viscosidade artificial nos métodos de segunda
ordem, ou seja, a modificagio dos coeficientes desses métodos. Finalmente, este capitulo é

encerrado apresentando um algoritmo da implementa¢io computacional.

4.1 Esquema com Um Ponto a Montante (UDS)

Aproximando a derivada espacial de 7" por UDS (Eq. (2.7)) e a derivada temporal de
T utilizando a Eq. (2.10), tem-se a discretizagio da Eq. (3.30):

Tn+1 _Tn TH _TG
0| +P P :_ge P S 0 1
A |+ Ay + 77, (4.1)
At At
O+l _ g0qm _ p0 [ 22U\ e 62 \ro 6
AT = 2°T" — 3 (Ay>TP+$ (Ay>T5+f At, (4.2)
onde:
0 0 0 Oh,
A :pg[Cg+CWUP] +€pa Ca+RP cw + oT ) (43)
oh
$9: aPa | Ca Re - 4.4
up{ch P<CW+8T>:|7 (4.4)

—125000(y—2,2x10*0)* 1 ( 176,777(y—2,2x10~%) _ 0,0777817
2 exp [ . } 3 G
— +

N
}+

2 exp [27’51/ B 125000(2,2x104t+y)2] (0,0777817 _ 176,777(2,2; 10—4t+y)>
353,553(2,2 x 1074 + y) ) n

t Vit t2
N
Vit

27,5 exp (27,5y) erfc(
398,942 exp [7125000(y72,2><10_4t)21| 398,042 exp [27,53/ _ 125000(2,2><10_4t+y)2i| ] }
_ _ . (4.5)

1
7o — 29{5(% —1T7)

1
+$9{§(TC —T7)

t t

Vi Vit

Aproximando a derivada espacial de R por UDS (Eq. (2.7)) e a derivada temporal de
U utilizando a Eq. (2.10), tem-se a discretiza¢io da Eq. (3.2):



[

Uptt —Up| RS, — RS | dm )
T A | T | Ty | T 06U
At UgPa [ AL Atdm 0,6 Atdm
[l g UaPa (—)RG | UaPa <_)Re i di r0 = di_
r P \Ay/) T p \Ay) r
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(4.6)

(4.7)

As condigdes de contorno de Neumann, Egs. (3.18) e (3.19), podem ser aproximadas

por UDS (Eq. (2.7)), dessa forma a temperatura 7' e a umidade U em y = L podem ser

calculadas, respectivamente, por

n+1 _ m
TNC - Tchlﬂ

n+1 __ n
UNC - UNCfD

onde NC' representa o né localizado no contorno, conforme a FIGURA 2.

4.1.1 UDS com Formulagio Explicita (UDS - Explicito)

No caso de se usar § = 0, a Eq. (4.2) resulta em:

aMTEt = {ﬂ” - @"(2—5)} T3 + 8" (i—Z)Tg + F A,

onde:

Oh,
A" = pylcy + ewUp| + €pq [ca + R% (cw + )] ,

oT
n " Oh,,
B" = UaPa|Ca T+ RP cw + oT )

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

—125000(y—2,2x 10%t)2 176,777(y—2,2x 10~ %t
2 exp [ ( ) ] _ ( E )

_ 0,0777817)

1
F'= ﬂl"{i(Tc —1T7)

t 5
VLS

125000(2,2x 104t +y)? 1 176,777(2,2x10~4¢
2 exp [27,5y B (2,2x10%+y) ](0,07778 7 176,777(2,2% +y)

t Vit t%
VLS

353,553(2,2 x 104 + 1)

+EB"{%(TC —T7)|27,5exp (27,5y) mfc(

Vit

_|_



56

t t

Vit Vi

Ao escrever a Eq. (4.10) no formato da Eq. (2.32), os seguintes coeficientes s3o obtidos:

398,942 exp —125000(y—2,2x10"*t) 398,942 exp [27,5y — 125000(2,2><104t+y)2]] }
. (4.13)

as =0, (4.14a)

ax =0, (4.14b)

ap = 4", (4.14c)

bp = [ﬂ — 3 (A—yﬂTP 3 (A—y)TS +FAL (4.14d)

No caso de usar § = 0, a Eq. (4.7) resulta em:

Atdm UgPa (AL (TR AN 0,6AtLm
it — [1_1_ dt}Un_ a a(_>Rn+ a a(_)Rn+’—dt_ 4.15
v Ppe \Ay/ " Ay) 0 ps (+13)

o g

4.1.2 UDS com Formulag¢io Implicita (UDS - Implicito)

No caso de usar § = 1, a Eq. (4.2) resulta em:

At At
n+l [ =" n+1 n+1 — n+1gm n+l( =~ n+1 n+1
{a; (Ay>+ﬂ }TP 4" 43 <Ay>TS NG (4.16)
onde:
oh,
4t =p, [cg + ewUR + ep,g {ca + R (cw + o7 )} , (4.17)
Oh,

B = u,p, {ca + R%“ (CW + o7 )} , (4.18)

1

2 exp [—125000(y—2,2>< 104t)2] ( _176,777(y—2,2x107%) 0,0777817)
:}-n-i,-l = ﬂn+1{§(TC — T[)

t t3 Vi

NZ3
4 2 _
2 exp [27,5y . 125000(2,2;10 t+y) } (0,07\7/;817 . 176,777(2,2%><10 4t+y)>
_ t +
NZS
1 353,553(2,2 x 107%
+$"+1{§(TC —Ty)|27,5exp (27,5y)erfc< 553(2 7 i y))+

t t

Vi Vi

308,942 exp [‘125000@‘2’2“0_4“2] 308,942 exp [27,5y = 125000(2’2“0_4””1 ] }

(4.19)
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resultando nos seguintes coeficientes:

At
ag = B! (A—y) (4.20a)
ay =0, (4.20b)
ap = ag + A" gt (4.20¢)
bp = A" Th + g AL (4.20d)
No caso de usar § = 1, a Eq. (4.7) resulta em:
At UapPa [ At 0,6 At4m
Un+1 — Po n Uq Pa (_)Rn—l—l + ala <_>Rn+1 + ) dt ) 4.21
" po — At [P pe \Ay/ T py \Ay/ T : 21
4.1.3 UDS com Formula¢io Crank-Nicolson (UDS - Crank-Nicolson)
No caso de usar § = 0,5, a Eq. (4.2) resulta em:
BN At oN BON At
= Tt = [ gO9N — —<—> 7
[ 2 <Ay> A P A 2 \Ay Pt
BN At BON At
— (= )71t — (—)T" CNAt 4.22
+2(Ay>5+2 Ay st+7 ’ (+.22)

onde:

aN = p, [cg + CW% (U}_QL,Jr1 + Uﬁ)] + €pq |:Ca + %(R;ffl + R}é) (CW + g};)] . (4.23)

BN = wu,p, {ca + %(Rﬁ“ + R}é) (cW + g};ﬂ , (4.24)

—125000(y—2,2x10%¢)2 _176,777(y—2,2x10~%)  0,0777817
2 exp [ ; } 3 G
— +

N3

1
:}-CN — /qCN{é(TC o TI)

125000(2,2><104t+y)2] (0,0777817 _ 176,777(2,2x1o—4t+y)>

_2exp [27,5y — ; i 3 N
NZS
1 353,553(2,2 x 1074
+QSCN{§(TC —Ty) | 27,5 exp (27,5y) erfc( ,953(2, i + y))+

t

Vi Vi

308,942 exp [‘125000@‘2’2“0_4“2] 308,942 exp [27,5y = 125000(2’2?0_4””1 ] }

(4.25)
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resultando nos seguintes coeficientes:

BON At
ag = T (A_y) s (4263)
an =0, (4.26b)
ap = ag + AN, (4.26¢)
BN At BON At
_ CN - n - n CN
bp = |4 5 (Ay> T+ (Ay>TS + FONAL, (4.26d)

No caso de usar 6 = 0,5, a Eq. (4.7) resulta em:

2p
Un+1 — g _
r [ 2ps 2p, \Ay

dm
2[)0 — Atﬁ

Atdm
<1+ dt)U;; “apa(ﬁ)(}zywzzw

wPa [ AL 0,6Atdm
+up ( )<R7§+1+ n)+ d |

(3, n (4.27)

Po

4.2 Esquema com Diferenca Central (CDS)

Aproximando a derivada espacial de 7" por CDS (Eq. (2.17)) e a derivada temporal
de T utilizando a Eq. (2.10), tem-se a discretizagio da Eq. (3.30):

Tn+1 _Tn TG _ TG
L [t S N Pl = _gf —NQAyS + 7 (4.28)
BY 1 At BY s At
R (A—y)Tﬁv + 5 (A—y)Tg +FOAL (4.29)

onde 2%, 8% e 77, sio definidos da mesma forma que as Eqs. (4.3), (4.4) € (4.5), respectivamente.

Aproximando a derivada espacial de R por CDS (Eq. (2.17)) e a derivada temporal
de U utilizando a Eq. (2.10), tem-se a discretizagio da Eq. (3.2):

Uptt —us RS — R% |  dm 0
ol =7 | = “UaPa| oA — —(0,6 + Up), 4.30
p Y b | =5n, | T (0,6 + Up) (4.30)
At UapPa (AL At Atdm
Un+1 —Un — Uq Pa ( ) 9 al’a ( )RG dt U9 0.6 dt ] 4.31
P P op, \Bg) N T gy \ay ) T, e 00T, (431)

As condi¢Bes de contorno de Neumann, Egs. (3.18) e (3.19), podem ser aproximadas
por CDS utilizando a técnica de ponto ficticio (MALISKA, 2004), dessa forma a temperatura

T e aumidade U em y = L podem ser calculadas, respectivamente, por
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n n —{]:GAt
Tye' = The + 0 (4.32)
Atdm Atdm
Ut = Une + —4UY +0,6—4. (4.33)
g pO'
4.2.1 CDS com Formula¢io Explicita (CDS - Explicito)
No caso de se usar § = 0, a Eq. (4.29) resulta em:
B" s At B" s At
ATt = ATy - - () Th+ o (0 ) TE + 7 4.34
P P \Ay) 'y TS Ay)'s + F AL, (4.34)

onde 4", B" e " podem ser calculados através das Eqs. (4.11), (4.12) e (4.13), respectivamente.

Resultando nos seguintes coeficientes:

ag =0, (4.35a)
ay =0, (4.35b)
ap = 4", (4.35¢)
nron B At . B" AN " n
bp = AT — 7(A—y) = <A—y>TS AL (4.35d)

No caso de usar § = 0, a Eq. (4.31) resulta em:

Atdm
gt (4.36)
P

(e

UqPa (At>Rn 4 YaPa (ﬁ

Atdm
U;“:[ljt—pdt}Ug—% Ay, Ay) ¢+0,6

e no contorno (y = L), a temperatura e a umidade s3o obtidas, respectivamente, por

At
TG = The + —Tﬂn , (4.37)
Atdm Atdm
Ut = [1 Pl }U}@C 4 0,6—d (4.38)
4.2.2  CDS com Formulag¢io Implicita (CDS - Implicito)
No caso de se usar § = 1, a Eq. (4.29) resulta em:
$TL+1 At g?’H—l At
AT = ATy - = (A—y>T]\}“ + = (A—y)m“ + AL (439)

onde 4™, ™! e 77+ podem ser calculados através das Eqs. (4.17), (4.18) e (4.19), respecti-

vamente.
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Resultando nos seguintes coeficientes:

$n+1 At

= = 4.40

as = ——( Ay), (4.40a)
B At
ay = —— (A—y), (4.40b)
ap=Aa", (4.40¢)
bp = A" e + g AL (4.40d)
No caso de usar § = 1, a Eq. (4.31) resulta em:
At UapPa [ At Atdm
Un+1 _ Po U” _ UgPaq (_)Rn—l-l + alMa <_>Rn+1 + 0,6 dt ’ (441)
r pe — Atdm [ P20, \Ay)TN T 2p, \AYy/ TS Po

e no contorno (y = L), a temperatura e a umidade s3o obtidas, respectivamente, por

n n —anJrlAt
TvE = Tee + AT (4.42)
Atdm
Urtl — | P 1lpn 40604 | 4.43
4.2.3 CDS com Formula¢io Crank-Nicolson (CDS - Crank-Nicolson)
No caso de usar 6 = 0,5, a Eq. (4.29) resulta em:
" W BN AN N BN AN .
AONTEH = AN T (A—y) (TN+1+TN)+T (A—y> (Ta' 473 ) +7ON AL, (4.44)
BN 1 At BN 1 At BN 1 At
CONpn+l _ gCNpm (_)Tn-H <_)Tn+1 _ (_)Tn
P P 4 \Ay/)" N * 4 \Ay/" % 4 \Ay Nt
BN/ At
— (= )T 4+ FONAL 4.45
* 4 (Ay) st7 ’ (445)

onde 29V, BN e FON podem ser calculados através das Eqgs. (4.23), (4.24) e (4.25), respecti-

vamente.

Resultando nos seguintes coeficientes:
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G ( At) (4.462)
ag = — | — 46a
S 4 Ay )
BON At
= (== 4.46b
an 4 (Ay)’ ( )
ap =N, (4.46¢)
BN At BN At
bp = aNTE 2 (—)T” = (—)T” ON A, 4.46d
P 1 \Ay/)'ny + 1 \ag/)ts +F ( )
No caso de usar § = 0,5, a Eq. (4.31) resultam em:
2p, Atdm UgPa [ Al
Uptt = | —7 [1+ ‘“}U"— ““(—) R+ RY)+
g [2/)0 - Ard 39, |VF T, (5y) B+ 8

dm

UgPa (At) Rl pn 0,6t
= — 4.47
T, Ay(S+S)+ pr | (4:47)

e no contorno (y = L), a temperatura e a umidade s3o obtidas, respectivamente, por
. L FONAt
TNgl = TNC + /qCN ) (448)
2p Atdm 0,6t

UnJrl — a |:1 + dt :|U7L 4 ) dt ) 449

4.3 UDS com Corre¢io Adiada (UDS-C)

Aproximando a derivada espacial de 7' por UDS-C (Eq. (2.23)) e a derivada temporal
de T utilizando a Eq. (2.10), tem-se a discretiza¢io da Eq. (3.30):

Tntl _n T _ T T* — 9T* 4 T*
At At BB s At
20T — ,q@Tg—@e(A—y)T,@Jr@a(A—y)Tg—TB<A—y> [T§—2T;+Tj(,] L+ FOAL, (4.51)

onde 2%, 8% e 7% sio definidos da mesma forma que as Egs. (4.3), (4.4) e (4.5), respectivamente.

Aproximando a derivada espacial de R por UDS-C (Eq. (2.23)) e a derivada temporal
de U utilizando a Eq. (2.10), tem-se a discretiza¢io da Eq. (3.2):
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+ Cil—m(o 6+U%), (4.52)

Uptt —Un
At

Ry~ R
Ay +5[

R% — 2R% + R}“V}

— el 2Ay

o

Untt = U — UgPa (At)Re UaPa <£)R§  Uapaf <Ay) [Rs 2R+ R}}]Jr

po \Ay po \Ay 2p,
Atdm 0,6At4n
+ p dt 179 4 p—dt. (4.53)

As condi¢Bes de contorno de Neumann, Egs. (3.18) e (3.19), podem ser aproximadas
utilizando as Egs. (4.8) e (4.9).

4.3.1 UDS-C com Formula¢io Explicita (UDS-C - Explicito)
No caso de se usar § = 0, a Eq. (4.51) resulta em:

arTett = [,q"—qs" <§—;)]Tﬁ+$”(§—;>T§‘ @;5<Ay> [TS 2T;+T*]+7"At (4.54)

onde 4", B", 7" podem ser calculados através das Egs. (4.11, 4.12 e 4.13), respectivamente.

Resultando nos seguintes coeficientes:

as =0, (4.55a)
ay =0, (4.55b)
ap =", (4.55¢)
= - (3w (B - T80 1 3]
(4.55d)

No caso de usar § = 0, a Eq. (4.53) resulta em:

Atdm UgPa [ Al UgPa [ AL
n+l 1 i| alFa (_) n alFa (_ n
e [ b up = S (T R Ay) ny

0,6Atdm
——dt (4.56)

“;Z Zﬂ ( Ay) [RS 2R} + R;ﬂ +

Po
4.3.2 UDS-C com Formulag¢io Implicita (UDS-C - Implicito)
No caso de usar § = 1, a Eq. (4.51) resulta em:

[anH(At) +ﬂn+1:|Tn+1 — a7 +an+1<£

Ay Ay)TgH
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BB <At
2 Ay
onde 2", "t leF 1 podem ser calculados através das Eqs. (4.17), (4.18) e (4.19), respecti-

) [TS 9T+ TS|+ AL (4.57)

vamente.

Resultando nos seguintes coeficientes:

At
ag = B! (A—y), (4.58a)
ap = ag -+ z"“ (4.58¢)
$n+1 At
bp = AT — = P ( Ay) [TS 2T + Tj{,] 4 FHAL (4.58d)
No caso de usar § = 1, a Eq. (4.53) resulta em:
At UgPq [ AL
Un+1 — Po Un — UgPa (_) Rn+1 4 a UL< )Rn-l—l
: ps — At [P pe \Ay/TT T py \Ay
wPa 0,6Atdm

v g ﬁ<Ay) [RS 2R, +R*N} e | (4.59)

4.3.3 UDS-C com Formula¢io Crank-Nicolson (UDS-C - Crank-Nicolson)

No caso de usar 6 = 0,5, a Eq. (4.51) resulta em:

2280w - a2 (B 2 (s 2 (B
Q;C;Vﬁ ( 2;) [TS 9T+ T*} +FONAL, (4.60)

onde 29N, BN e FEN podem ser calculados através das Eqs. (4.23), (4.24) e (4.25), respecti-

vamente.

Resultando nos seguintes coeficientes:

ag = ?(2—9, (4.61a)
ay =0, (4.61Db)
ap = [? (2—;) + ﬂCN}, (4.61c)
bp = [ﬂCN ?(2—2) T + ?(%)Tg QBCZNB (Ay) [TS 9T+ T | + FONAL

(4.61d)
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No caso de usar 6 = 0,5, a Eq. (4.53) resulta em:

2p [ Atdm UaPa [ At
ntl _ o 1+ dt i|Un _ Yala (_> Rn—H + R™)+
r 2p, — Atdm 20, 177 2p, \Ay (125 ?)

0,6At4n
At (4.62)

+1;‘;i“ (2—;) (Ru + R2) — ““’2)“5 (2—;) |Ri— 2R} + Ry | +

(e

4.4 Esquema de Roberts e Weiss (RWS)

Aproximando a derivada espacial de 7' com a Eq. (2.26) e a derivada temporal de T
pela Eq. (2.10), tem-se a discretiza¢io da Eq. (3.30):

At 2 Ay Ay ’
BEN At BEN At BEN At BEN At
24N 4 = | T = 249N+ Ay T£+< Ay )Tgf“—( Ay >T}3,+2?CNAt

(4.64)
onde 2V, BN e F¢N 530 definidos da mesma forma que nas Eqs. (4.23), (4.24) e (4.25),

respectivamente.

Resultando nos seguintes coeficientes:

BON At
as = ~x (4.652)
ay =0, (4.65b)
ap =24Y 4 ag, (4.65¢)
BON At BON At
_ CN n n CN
bp = [m te, |1 <—Ay >TN + 27N AL, (4.65d)

Aproximando a derivada espacial de R pela Eq. (2.26) e a derivada temporal de U
pela Eq. (2.10), tem-se a discretiza¢io da Eq. (3.2):

dm 1ldm

Uptt —up N
' 2 dt

At

_ Uq Pa

R — REH N RY — R%
2

Ay Ay +0,6

(Ut +Up),

(4.66)

g
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20 Atdm
U’n,+1 — . ~-re |:1 + dt i|Un+7
P [zpo — Atz 2p, 177
oPa At O,GAtd_m
(] e

As condi¢des de contorno de Neumann, Egs. (3.18) e (3.19), podem ser aproximadas
utilizando a técnica de ponto ficticio (MALISKA, 2004), dessa forma a temperatura 7 e a
umidade U em y = L podem ser calculadas pelas Eqgs. (4.48) e (4.49), respectivamente.

4.5 Esquema de Leith (LS)

Aproximando a derivada espacial de 7' com a Eq. (2.29) e a derivada temporal de T
pela Eq. (2.10), tem-se a discretiza¢io da Eq. (3.30):

n+l _ pn n n n _ m n n _ m n
Bl - m (GG BSR-G| [B5E])+
(4.68)
ou ainda,
n+1l _ gm n n __ qm n n n __mn
e ROl e B R N R S B
(4.69)
ou ainda,
- r () ] - [ (3) - A - a2
(4.70)
e, finalmente,
= [i- (G55,) 1043l (Gs,) + Gesg)lmee
AR - Gl s o
resultando nos seguintes coeficientes:
ag =0, (4.72a)
ay = 0, (4.72b)
ap =1, (4.72¢)
== (s 5l (5,) + Gog )l

AR - GRn - o
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O mesmo trabalho pode ser feito na Eq. (3.2), resultando na seguinte discretizago:

dm

2pc7 - dstnAt 2pcr Pa Ay 2

ps Ay

+<uapaﬁﬂﬁm 1 Kuapag)? B (uapa AtﬂR% N 0,6A % '

$1 3

ps Ay ps Ay

g

1+ B2 - (580 (e

)+

(4.73)

As condi¢des de contorno de Neumann, Egs. (3.18) e (3.19) podem ser aproximadas

utilizando a técnica de ponto ficticio (MALISKA, 2004), dessa forma a temperatura 7 e a

umidade U em y = L podem ser calculadas pelas Egs. (4.48) e (4.49), respectivamente.

4.6 Viscosidade Artificial

Neste trabalho, pretende-se utilizar a viscosidade artificial nos métodos de segunda

ordem com o intuito de minimizar suas oscila¢des nio-fisicas. Conforme a TABELA 2, os

métodos de segunda ordem s3o: CDS - Crank-Nicolson, RWS e LS. Portanto, pequenas

alteracdes nos coeficientes devem ser feitas, basta adicionar a forma discretizada da viscosidade

artificial (Eq. (2.42)) no termo fonte (bp) dos métodos.

feitas:

Para a aproximac¢io CDS - Crank-Nicolson, as seguintes modificacBes devem ser

BON /At
os = (5)
BON At
ov == (&)
ap = /‘ZlCN,
CN CN
bp = A°NTR — %(%)Tﬁ + BT@—;)Tg + FONAL

D
+, HT]\‘, —7al(r — ) - ‘T].} _ T

(13 - 13)|.

Para a aproximagio RWS, as seguintes altera¢es devem ser feitas:
BONAt
a =
S Ay Y

CLNIO,

ap = QﬂCN +ag,

BEN At
Ay

mn

2/qCN+ m—

bp =

CNA
<$Ay t

)T]\} + 2F N AL+, +

(T —T7) - |13~ %

D
+A—yHT]\§—T}§ (T3 - 13)].

(4.74a)

(4.74b)

(4.74¢)

(4.74d)

(4.75a)

(4.75b)
(4.75¢)

(4.75d)
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Para a aproximagio LS, as seguintes modifica¢cBes devem ser feitas:

ag = 0, (476&)
ay = 0, (4.76b)
ap = 1, (476C)

o= - Gy S G

lGs,) - Ga)lm o

(Tx = Tp) = |Tp = T

+A% HTJG —Tr (T — TQ)]- (4.76d)

4.7 Algoritmo Base para a Implementa¢io Computacional

Os passos basicos do algoritmo utilizado neste trabalho, para a implementagio com-
putacional do problema, s3o descritos no Algoritmo 1. Tal algoritmo leva em consideragio
a aproximacio LS (e que aqui serd indicada por LS em vermelho nos pontos especificos no

algoritmo), mas para as demais discretiza¢des, basta fazer uma pequena adaptagio.
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Algoritmo 1: CALCULO DA TEMPERATURA E UMIDADE - (LS)

Entrada: uq, cw, Cq, Qr, €, po, ¢, A, B, C, uy, Wi, Pogm, To, Tr, L, tg, Ny, Ny
Calcula-se os valores de Ay e At. [Egs. (2.1) e (2.2)]

Inicializa-se T'(1 : Ny, 1: Ny), U(1: Ny, 1: Ny))e R(1: Ny, 1: Ny).
forn=1)e (i =1:N,)do

(i,
L UG,

for(i=1:Ny)e(n=1)do
Calcula-se a pressio de vapor de saturagio (ps). [Eq. (3.10)]

1) =T} [Eq. (3.12)]
1) =U; [Eq. (3.13)]

Calcula-se a umidade relativa de equilibrio (r,). [Eq. (3.11)]
| Calcula-se a razio de mistura inicial R(7,1). [Eq. (3.9)]
form=2:Ny)e(i=1:N,)do

if (i = 1) then

Calcula-se a densidade do ar (p,). [Eq. (3.5)]

Calcula-se a umidade relativa do ar de aeracio (r,). [Eq. (3.16)]

Calcula-se a pressio de vapor de saturagio (utilizando ) (pse). [Eq. (3.10)]
Calcula-se a razio de mistura em y = 0 (R(1, n)). [Eq. (3.17)]

Calcula-se a umidade em y = 0 (U(1,n))). [Eq. (3.15)]

Calcula-se a temperatura em y = 0 (I'(1,n)). [Eq. (3.14)]

for(i=2:N,—1)do

Calcula-se a perda de matéria seca em relagio ao tempo (42). [Eq. (3.6)]

Calcula-se a pressio de vapor de saturagio (ps). [Eq. (3.10)]

Calcula-se a pressio de umidade relativa de equilibrio (r,). [Eq. (3.11)]

Calcula-se a razio de mistura (R(4, n)). [Eq. (3.9)]

Calcula-se a umidade (U (4, n)). [Eq. (4.73)] LS

Calcula-se a perda de matéria seca em relagio ao tempo (42). [Eq. (3.6)]

Calcula-se entalpia especifica de vaporizagio da dgua (h,). [Eq. (3.4)]

Calcula-se a derivada da entalpia de vaporizagio da 4gua em relagio a temperatura
o). [Eq. (B4

Calcula-se entalpia diferencial de sor¢io hs. [Eq. (3.3)]

| Calcula-se a temperatura (T'(4,n)). [Eq. (4.71)] LS
if (¢ = N,) then

Calcula-se a pressio de vapor de saturagio em y = L (ps). [Eq. (3.10)]

Calcula-se a umidade relativa de equilibrio em y = L (r,,). [Eq. (3.11)]

Calcula-se a razdo de mistura em y = L (R(N,, n)). [Eq. (3.9)]

Calcula-se a umidade em y =L (U(N,, n)). [Eq. (4.49)] LS

Calcula-se a perda de matéria seca em relagio ao tempoem y = L (%—T). [Eq. (3.6)]
Calcula-se entalpia especifica de vaporizagio da dgua em y = L (h,). [Eq. (3.4)]
Calcula-se entalpia diferencial de sor¢io em y = L hs. [Eq. (3.3)]

Calcula-se a temperatura em y = L (T'(Ny,n)). [Eq. (4.48)] LS

a

Corresponde a derivada da Eq. (3.4) em relagio  temperatura.
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5 RESULTADOS

Neste capitulo apresenta-se a verificagio numérica de todos os métodos apresentados
nos capitulos anteriores e efetua-se as comparac¢des entre os métodos. Além disso, diversas
simulacBes computacionais foram realizadas a fim de investigar as resolu¢des numéricas quando

comparadas com a solugio analitica proposta neste trabalho.

5.1 Verificagdo Numérica

Realizou-se a verificagio dos modelos numéricos por meio de comparagdes das
suas solucBes e por meio da andlise dos erros envolvidos, a qual, por sua vez, estd associada
principalmente ao monitoramento das ordens efetivas dos erros (ver se¢io 2.5), além da anilise

de seus decaimentos em relacio ao refino de malha.

Para cada aproximacio utilizada s3o apresentados os resultados referentes as ordens

efetivas e os erros de discretizagio para a temperatura (7°), nos seguintes pontos:

* To15 = 1(0,15;450) - 0,15 m apds 450 segundos;
* Toa7 =1(0,27;950) - 0,27 m apds 950 segundos;

* To40 =1(0,40; 1500) - 0,40 m apds 1500 segundos.

Obteve-se resultados andlogos para estes pontos pré-definidos utilizando-se outros
tempos de simula¢io. Em todos os testes, calculou-se o tamanho representativo de malha, h,
como h = 2Ay = At, onde Ay e At foram definidos, respectivamente, pelas Egs. (2.1) e (2.2).
Realizou-se os testes de verificacdo utilizando as seguintes malhas (V,xV;): 32x64, 64x128,
128x256, 256x512 e 512x1024.

Segundo Dehghan (2005), a combinag¢io da aproximagio espacial CDS com a apro-
ximag3o temporal explicita é instivel para este tipo de problema, e esta combina¢io nio tem
utilidade pratica. Sendo assim, os métodos CDS - Explicito e UDS-C - Explicito (combina¢io
entre UDS - Explicito e CDS - Explicito) nio foram utilizados.

A seguir, os testes de verificagio numérica s3o apresentados. Os comportamentos dos
erros de discretizagio com o refino de malha, para todos os métodos utilizados em 75 15, 70 27

e Tp 40, podem ser analisados, respectivamente, nas FIGURAS 8, 9 e 10.
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FIGURA 8 — DECAIMENTO DOS ERROS DE DISCRETIZACAO COM O REFINO DE MA-
LHA PARA TODAS AS APROXIMACOES EM Tj 15.

==
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FONTE: O autor(2022).

FIGURA 9 — DECAIMENTO DOS ERROS DE DISCRETIZACAO COM O REFINO DE MA-
LHA PARA TODAS AS APROXIMACOES EM Tj o7.

3E+00 A

7E-01

2E-01 A —e— UDS - Explicito
—— UDS - Implicito
UDS - Crank-Nicolson
—— CDS - Implicite
—$- CDS - Crank-Nicolson
UDS-C - Implicito
4E-02 4 UDS-C - Crank-Nicolson
-&- Roberts e Weiss
—a— Leith

2E03 4E-03 1E-02 2E02  3E02
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FONTE: O autor(2022).

Observa-se nas FIGURAS 8, 9 e 10 que, com o refinamento da malha, para todos os
pontos em anélise (7 15, To.27 € To.40), 0 erro de discretizagio diminuiu para todos os métodos

em estudo.

Além disso, as inclina¢Bes das curvas dos métodos de primeira ordem sio aproxima-
damente iguais, indicando que os erros decaem sob as mesmas taxas. E possivel ver a diferenca

de inclinago entre as curvas das aproximag¢des de primeira ordem e as curvas das aproxima-
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FIGURA 10 — DECAIMENTO DOS ERROS DE DISCRETIZACAO COM O REFINO DE MA-
LHA PARA TODAS AS APROXIMACOES EM Tj 4.
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FONTE: O autor(2022).

¢Bes de segunda ordem, indicando que os métodos de segunda ordem apresentam melhor

desempenho, conforme esperado.

As FIGURAS 11, 12 e 13 ilustram, respectivamente, as ordens efetivas (pg) com o

refino de malha para todos os métodos em estudo nos pontos 7j 15, 7,27 € 10 40-

FIGURA 11 — COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
CAO COM O REFINO DE MALHA EM T 15 PARA TODAS OS METODOS EM

ESTUDO.
2.5
—e— UDS - Explicito
—i— UDS - Implicito
UDS - Crank-Nicolson
2.0 4 SEm T —4- CDs - Implicito
T TEesIS —$8- CDS - Crank-Nicolson
= UDS-C - Implicito
UDS-C - Crank-Nicolson
Roberts e Weiss
154
w
a
1_0, ....................... 3 ....................... ...................................
0.5 e
L
0.0 T T T T T
2E-03 4E-03 1E-02 2E-02 3E-02

h

FONTE: O autor(2022).
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FIGURA 12 — COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
CAO COM O REFINO DE MALHA EM T 57 PARA TODAS OS METODOS EM

ESTUDO.
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FONTE: O autor(2022).

FIGURA 13 — COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
CAO COM O REFINO DE MALHA EM Ty 490 PARA TODAS OS METODOS EM
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FONTE: O autor(2022).

A TABELA 7 apresenta as ordens efetivas (pg), obtidas em uma malha de dimensio
512x1024, ou seja, correspondem aos pontos com h = 1/1024 (a malha mais refinada) das
FIGURAS 11, 12 e 13 comparadas com as respectivas ordens assintdticas (p;) da TABELA 2.



73

TABELA 7 — ORDENS EFETIVAS DAS APROXIMACOES NUMERICAS UTILIZADAS.

Aproximagio Numérica pE(To15) | pE(To27) | PE(To40) | PL
UDS - Explicito 0,955131 | 1,000654 | 0,970914 1

UDS - Implicito 0,878338 | 0,925327 | 0,8871622 | 1

UDS - Crank-Nicolson 0,917002 | 0,963722 | 0,928635 1
CDS - Implicito 0,978672 | 1,060261 1,040256 1

CDS - Crank-Nicolson 2,085905 | 1,951828 | 1,950503 2
UDS-C Implicito (8 = %) 0,914213 | 0,980993 | 0,952797 1
UDS-C Crank-Nicolson (6 = %) 0,945063 | 1,014166 | 0,990999 1
Roberts e Weiss (RWS) 2,035717 | 1,940688 | 2,126867 2
Leith (LS) 2,099425 | 2,050493 | 2,061124 2

FONTE: O autor (2022).
Nota-se nas FIGURAS 11, 12 e 13 e na TABELA 7 que, com o refino de malha, as

ordens efetivas de cada método tendem ao valor mostrado na TABELA 2, para todos os pontos

em andlise (7015, 1o 27 € To.40), corroborando seus resultados.

5.2 Resultados Numéricos

As resolugdes numéricas foram obtidas usando programas computacionais escritos
em Fortran 95, usando o Microsoft Visual Studio Code v. 1.62.0 com precisio quadrupla e
foram compilados em um computador com processador Intel Core 15 Quad-Core (3.4 GHz)
com 8 GB DDR3 de meméria RAM (1333 MHz) e uma placa de video AMD Radeon 7850
2GB. Foram realizadas simula¢gdes variando o nimero de nds e passos no tempo para cada
aproximacio utilizada. Para calcular o erro entre as simula¢des numéricas e a solugio analitica
proposta, utilizou-se a norma L, do erro numérico, definida por

Lo() = || T () = Thav)|| - 6.1

onde ||.||2 representa a norma Ly do erro para cada y fixo e n variando, Tnym(y) € Tan(y)

representam as temperaturas obtidas numericamente e analiticamente, respectivamente. Nas
préximas se¢des serdo apresentadas as comparagdes entre os desempenhos dos métodos com o
refinamento de malha quando comparados 4 solu¢o analitica durante uma hora de aera¢io
(t; = 3600s).

5.2.1 Efeitos da Viscosidade Artificial

As FIGURAS 14, 15 ¢ 16 ¢ TABELAS 8, 9 e 10 mostram, com detalhes, o efeito do
uso ou nio da viscosidade artificial nos métodos de segunda ordem (CDS-Crank-Nicolson,
RWS e LS).

As FIGURAS 14a e 14b mostram o comportamento da aproximacio espacial CDS
com a aproximacio temporal Crank-Nicolson, respectivamente, sem a viscosidade artificial
(Eq. (4.46d)) e com a utilizagio da viscosidade artificial (Eq. (4.74d)), utilizando-se N,, = 256
e N, = 512.
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FIGURA 14 — EFEITOS DA VISCOSIDADE ARTIFICIAL NO METODO CDS - CRANK-

NICOLSON.
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Fonte: O autor (2022).

A TABELA 8 mostra a norma Ly (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40

m e 0,54 m do método CDS - Crank-Nicolson com e sem a utilizacio da viscosidade artificial.

TABELA 8 —- NORMA L, DO ERRO NUMERICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO A VISCOSIDADE ARTIFICIAL NO METODO CDS - CRANK-

NICOLSON E NAO UTILIZANDO A VISCOSIDADE ARTIFICIAL COM N,, =
256 e Ny = 512.

CDS - Crank-Nicolson 0,15 m 0,27 m 0,40 m 0,54 m
SEM V. A. 0,46234E+02 0,37943E+02 0,33183E+02 0,29610E+02
COM V. A. 0,90104E+00 0,72498E+00 0,63062E+00 0,56777E+00

Fonte: O autor (2022).

As FIGURAS 15a e 15b mostram o comportamento do método RWS, respectiva-
mente, sem a viscosidade artificial (Eq. (4.65d)) e com a utilizagio da viscosidade artificial
(Eq. (4.75d)), utilizando-se N, = 256 e N; = 512.

FIGURA 15 — EFEITOS DA VISCOSIDADE ARTIFICIAL NO METODO RWS.
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Fonte: O autor (2022).
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A TABELA 9 mostra a norma L, (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m do método RWS com e sem a utilizacio da viscosidade artificial.

TABELA 9 — NORMA L, DO ERRO NUMERICO APLICADA AOS PONTOS DE INTERESSE

UTILIZANDO A VISCOSIDADE ARTIFICIAL NO METODO RWS E NAO UTI-
LIZANDO A VISCOSIDADE ARTIFICIAL COM N, = 256 ¢ N; = 512.

RWS 0,15 m 0,27 m 0,40 m 0,54 m
SEMV.A. 0,39721E+02 0,32612E+02 0,28411E+02 0,25212E+02
COMV.A. 0,79835E+00 0,69449E+00 0,64035E+00 0,60269E+00

Fonte: O autor (2022).

As FIGURAS 16a e 16b mostram o comportamento do método LS, respectivamente,

sem a viscosidade artificial (Eq. (4.72d)) e com a utiliza¢io da viscosidade artificial (Eq. (4.76d)),
utilizando-se N, = 256 e N; = 512.

FIGURA 16 — EFEITOS DA VISCOSIDADE ARTIFICIAL NO METODO LS
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Fonte: O autor (2022).

A TABELA 10 mostra a norma Lo (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m do método LS com e sem a utilizagio da viscosidade artificial.

TABELA 10 — NORMA L; DO ERRO NUMERICO APLICADA AOS PONTOS DE INTERESSE

UTILIZANDO A VISCOSIDADE ARTIFICIAL NO METODO LS E NAO UTI-
LIZANDO A VISCOSIDADE ARTIFICIAL COM N, = 256 e N; = 512.

LS 0,15 m 0,27 m 0,40 m 0,54 m
SEMV.A. 0,19426E+02 0,15137E+02 0,12822E+02 0,11252E+02
COMV.A. 0,38558E+00 0,27057E+00 0,21759E+00 0,18492E+00

Fonte: O autor (2022).

Observa-se que nos métodos CDS - Crank-Nicolson, RWS e LS, a viscosidade
artificial tem um efeito fundamental no controle das oscila¢gdes nas solu¢des numéricas. Em
virtude disso, na sequéncia da dissertagdo, os dados referentes aos métodos CDS - Crank-

Nicolson, RWS e LS, levam em consideracio o uso da viscosidade artificial.
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5.2.2 Esquema com Um Ponto a Montante (UDS)

As FIGURAS 17, 18 e 19 mostram o comportamento da aproximacio espacial UDS
com as aproximacgdes temporais: explicita (FIGURA 17), implicita (FIGURA 18) e Crank-
Nicolson (FIGURA 19), utilizando-se (a) N, = 64 e N, = 128 ¢ (b) N, = 256 ¢ N, = 512.

FIGURA 17 — COMPARATIVO ENTRE AS SOLUCOES NUMERICAS E ANALITICAS UTILI-
ZANDO UDS - EXPLICITO.
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Fonte: O autor (2022).

FIGURA 18 — COMPARATIVO ENTRE AS SOLUCOES NUMERICAS E ANALITICAS UTILI-
ZANDO UDS - IMPLICITO.
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Fonte: O autor (2022).
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FIGURA 19 — COMPARATIVO ENTRE AS SOLUCOES NUMERICAS E ANALITICAS UTILI-

ZANDO UDS - CRANK-NICOLSON.
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Fonte: O autor (2022).

A TABELA 11 mostra a norma L, (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m das aproximag¢des: UDS - Explicito, UDS - Implicito e UDS - Crank-Nicolson.

TABELA 11 — NORMA L, DO ERRO NUMERICO APLICADA AOS PONTOS DE INTE-
RESSE UTILIZANDO UDS - EXPLICITO, UDS - IMPLICITO E UDS - CRANK-

NICOLSON.
Aproximagio Ny x Ny 0,15m 0,27 m 0,40 m 0,54 m

, . 64x128  0,79739E+01 0,11484E+02 0,13623E+02 0,15364E+02

UDS - Explicito
256x512 0,17062E+01 0,24806E+01 0,30938E+01 0,36074E+01
.. 64x128 0,32112E+02 0,38754E+02 0,43225E+02 0,47039E+02

UDS - Implicito
256x512 0,98588E+01 0,12216E+02 0,13951E+02 0,15386E+02
UDS - Crank-Nicolson 64x128  0,19445E+02 0,24758E+02 0,28163E+02 0,31010E+02
256x512 0,51925E+01 0,68008E+01 0,79779E+01 0,89451E+01

Fonte: O autor (2022).

Pode-se observar que com o refino da malha os resultados numéricos se aproximam

do resultado analitico. Nota-se também que, devido ao fato das malhas utilizadas respeitarem a

condi¢io de estabilidade da formulacio explicita, o método UDS - Explicito foi mais eficiente
que os métodos UDS - Implicito e UDS - Crank-Nicolson.

5.2.3 Esquema com Diferenca Central (CDS)

As FIGURAS 20 e 21 mostram o comportamento da aproximag¢io espacial CDS
com as aproximagdes temporais implicita (FIGURA 20) e Crank-Nicolson (FIGURA 21),

utilizando-se (a) N, =64 e N, = 128 ¢ (b) N, = 256 e N, = 512.
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FIGURA 20 — COMPARATIVO ENTRE AS SOLUCOES NUMERICAS E ANALITICAS UTILI-
ZANDO CDS - IMPLICITO.
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Fonte: O autor (2022).

(b) N, = 256 ¢ N, = 512

FIGURA 21 — COMPARATIVO ENTRE AS SOLUCOES NUMERICAS E ANALITICAS UTILI-
ZANDO CDS - CRANK-NICOLSON.
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(a) N, = 64 ¢ N; = 128
Fonte: O autor (2022).

(b) N, = 256 ¢ N; = 512

A TABELA 12 mostra a norma L, (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m das aproximac¢Bes: CDS - Implicito e CDS - Crank-Nicolson.

TABELA 12 — NORMA L; DO ERRO NUMERICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO CDS - IMPLICITO E CDS - CRANK-NICOLSON.

Aproximagio Ny, x Ny 0,15 m 0,27 m 0,40 m 0,54 m
CDS - Implicito 64x128 0,15214E+02 0,15019E+02 0,14964E+02 0,15020E+02
256x512 0,16843E+02 0,12500E+02 0,10486E+02 0,92868E+01
CDS - Crank-Nicolson 64x128  0,24121E+02 0,18853E+02 0,16212E+02 0,14350E+02
256x512 0,90104E+00 0,72498E+00 0,63062E+00 0,56777E+00

Fonte: O autor (2022).



Visualiza-se que para a camada de 0,15 m, o método CDS - Implicito nio apresentou
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melhora com o refino de malha. Isto se deve ao fato do método, embora de primeira ordem,
apresentar oscila¢cdes ndo-fisicas na solu¢io numérica.

5.2.4 UDS com Corre¢io Adiada (UDS-C)

As FIGURAS 22 e 23 mostram o comportamento da aproximacgio espacial UDS-C

com as aproximagdes temporais implicita (FIGURA 22) e Crank-Nicolson (FIGURA 23),
utilizando-se (a) N, = 64 e N, = 128 ¢ (b) N, = 256 ¢ N, = 512.

ZANDO UDS-C - IMPLICITO.

FIGURA 22 — COMPARATIVO ENTRE AS SOLUCOES NUMERICAS E ANALITICAS UTILI-
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Fonte: O autor (2022).

(b) N, = 256 ¢ N; = 512

FIGURA 23 — COMPARATIVO ENTRE AS SOLUCOES NUMERICAS E ANALITICAS UTILI-
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Fonte: O autor (2022).

(b) N, = 256 e N, = 512

A TABELA 13 mostra a norma L, (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m das aproximagdes: UDS-C - Implicito e UDS-C - Crank-Nicolson.
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TABELA 13 — NORMA L, DO ERRO NUMERICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO UDS-C - IMPLICITO E UDS-C - CRANK-NICOLSON.

Aproximagio Ny x N; 0,15m 0,27 m 0,40 m 0,54 m
UDS-C - Implicito 64x128  0,19535E+02 0,23449E+02 0,26123E+02 0,28420E+02
256x512 0,69867E+01 0,76702E+01 0,83632E+01 0,89985E+01
UDS-C - Crank-Nicolson 64x128 0,78813E+01 0,10224E+02 0,11722E+02 0,12971E+02
256x512 0,48818E+01 0,42649E+01 0,42108E+01 0,43017E+01

Fonte: O autor (2022).

5.2.5 Esquema de Roberts e Weiss (RWS)
A FIGURA 24 mostra o comportamento da aproximac¢io RWS utilizando-se (a)

N,=64e N, =128 ¢ (b) N, = 256 ¢ N, = 512.

FIGURA 24 — COMPARATIVO ENTRE AS SOLUCOES NUMERICAS E ANALITICAS UTILI-
ZANDO RWS.
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Fonte: O autor (2022).

A TABELA 14 mostra a norma L, (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m da aproximagio RWS.

TABELA 14 — NORMA L, DO ERRO NUMERICO APLICADA AOS PONTOS DE INTERESSE

UTILIZANDO RWS.
Aproximagio Ny x IV 0,15 m 0,27 m 0,40 m 0,54 m
64x128 0,17201E+02 0,16575E+02 0,15772E+02 0,14538E+02

RWS 256x512 0,79835E+00 0,69449E+00 0,64035E+00 0,60269E+00

Fonte: O autor (2022).
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5.2.6 Esquema de Leith (LS)

A FIGURA 25 mostra o comportamento da aproximagio LS utilizando-se (a) N, =
64e N, =128 ¢ (b) N, = 256 e N, = 512.

FIGURA 25 — COMPARATIVO ENTRE AS SOLUCOES NUMERICAS E ANALITICAS UTILI-
ZANDO LS.
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Fonte: O autor (2022).

A TABELA 15 mostra a norma L, (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
me 0,54 m da aproximacio LS.

TABELA 15 — NORMA L; DO ERRO NUMERICO APLICADA AOS PONTOS DE INTERESSE

UTILIZANDO LS.
Aproximagio [N, x Ny 0,15 m 0,27 m 0,40 m 0,54 m
LS 64x128  0,86454E+01 0,69525E+01 0,60400E+01 0,53747E+01

256x512  0,38558E+00 0,27057E+00 0,21759E+00 0,18492E+00

Fonte: O autor (2022).

5.3 Comparativo Entre as Aproximagdes

Nesta secio apresenta-se as comparagdes entre o desempenho das aproximagdes
numéricas, com foco especial na comparagio entre o método preferido pela literatura, UDS -
Explicito, e os demais métodos. Primeiramente s3o comparados os erros em relagio ao nimero

de incognitas usados. Em seguida, os tempos computacionais s3o exibidos e discutidos.

Com o objetivo de comparar os métodos utilizados, a TABELA 16 mostra as normas
Ly das normas Ly(y) definida como

Ly = ||| . (5.2)

2
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para todos os métodos em relagio ao ntimero de incdgnitas (N = N, xNN;) utilizadas, onde
||.||2 representa a norma Ly para y variando, ou seja, y; = 0,15 m, yo = 0,27 m, y3 = 0,40 m e
ys = 0,54 m.

TABELA 16 — NORMAS L, DO ERRO NUMERICO EM RELACAO AO NUMERO DE IN-
COGNITAS PARA CADA METODO UTILIZADO.

N 2048 8192 32768 131072
UDS - Explicito 0,423953E+02 0,246870E+02 0,120533E+02 0,562578E+01
UDS - Implicito 0,115970E+03 0,813272E+02 0,488517E+02 0,260343E+02
UDS - Crank-Nicolson ~ 0,788805E+02 0,524008E+02 0,292950E+02  0,147267E+02
CDS - Implicito 0,329772E+03 0,580427E+02 0,146876E+02 0,116746E+02
CDS - Crank-Nicolson  0,974650E+02 0,374968E+02 0,104454E+02 0,143440E+01
UDS-C - Implicito 0,766608E+02  0,492095E+02 0,282868E+02 0,160799E+02
UDS-C - Crank-Nicolson 0,379368E+02 0,217324E+02 0,121467E+02 0,884629E+01
RWS 0,764881E+02 0,295019E+02 0,772825E+01 0,137585E+01
LS 0,424803E+02 0,137277E+02 0,229758E+01 0,550837E+00

Fonte: O autor (2022).

A FIGURA 26 mostra os dados da TABELA 16 em um grifico Lo versus o nimero

de incdgnitas para todos os métodos utilizados.

FIGURA 26 — NORMA Ly DO ERRO VERSUS O NUMERO DE INCOGNITAS.
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FONTE: O autor (2022).

Verifica-se inicialmente que a norma L, do erro decai com o aumento no niimero
de incdgnitas para todos os métodos usados, como esperado. Além disso, observa-se com a
TABELA 16 e a FIGURA 26 que os métodos que apresentam os menores erros em relacio a
solu¢do analitica sio: UDS - Explicito, CDS - Crank-Nicolson, RWS e LS.
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Para 0 maior nimero de incdgnitas testado (N = 131072), a diferenca entre o método
UDS - Explicito (melhor método de primeira ordem e preferido pela literatura) com CDS
- Crank-Nicolson, RWS e LS ¢ de, respectivamente, 4,19138 °C, 4,24993 °C e 5,074943
°C; mostrando que os métodos de segunda ordem apresentam resultados consideravelmente

melhores se comparado ao melhor método de primeira ordem.

A FIGURA 27 ilustra o efeito do ntimero de incognitas (V) sobre o tempo de CPU,
para cada aproximacio utilizada.

FIGURA 27 — EFEITO DO NUMERO DE INCOGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMACAO UTILIZADA
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FONTE: O autor (2022)

Pode-se observar na FIGURA 27 que o tempo de CPU dos métodos UDS - Expli-
cito,UDS - Implicito, UDS - Crank-Nicolson, CDS - Implicito, CDS - Crank-Nicolson,
RWS e LS sio menores com o aumento no nimero de incdgnitas do que os métodos UDS-C
- Implicito e UDS-C Crank-Nicolson.

A TABELA 17 resume os tempos de CPU obtidos para os métodos que apresentaram
melhores comportamentos na FIGURA 26 (UDS - Explicito, CDS - Crank-Nicolson, RWS
e LS) para diversos valores de N = N,xNV;.

TABELA 17 — TEMPO DE CPU (SEGUNDOS) DAS APROXIMACOES UTILIZADAS EM RE-
LACAO AO NUMERO DE INCOGNITAS.

N UDS - Explicito CDS - Crank-Nicolson RWS LS
2048 8,73209E-02 9,17998E-02 9,12019E-02 9,64619E-02
8192 0,347722 0,35931 0,35766 0,36324
32768 1,3726 1,40793 1,41547 1,42788

131072 5,48489 5,59400 5,60301 5,68517

Fonte: O autor (2022).
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Observa-se que o método UDS - Explicito apresenta um tempo de CPU menor
que os demais métodos, porém com a mdxima diferenca 0,10911s, 0,11812s e 0,20028s,

respectivamente para CDS - Crank-Nicolson, RWS e LS.

Nota-se que os tempos de CPU estdo muito préximos, isto se deve ao fato do
método TDMA ser muito eficiente e apresentar excelente complexidade. Além disso, existe
um elevado nimero de elementos nos coeficientes e termo fonte de todos os métodos, o que

acaba nivelando a complexidade da resolucio do sistema.

Levando em consideragio as seguintes expressdes:

L3 (UDS - Explicito)

E
M L2 )

(5.3)

tcpu (UDS - Explicito) (5 4)

M
topy = ’

topu
na TABELA 18, compara-se o desempenho do método UDS - Explicito (amplamente utilizado
na literatura) com os métodos CDS - Crank-Nicolson, RWS e LS. E possivel observar que,
se o valor obtido for maior que a unidade, o método teve desempenho melhor que UDS -

Explicito.

TABELA 18 — COMPARATIVO ENTRE OS MELHORES METODOS

M¢étodo En tMon
UDS - EXpliCito 1,00000 1,00000
CDS - Crank-Nicolson 3,87797 0,98049
RWS 4,04300 0,97891
LS 10,0985 0,96477

FONTE: O autor (2022)

Dado a grande diferenca entre as normas L, (coluna E}), e a pequena diferenca de
tempos de CPUs (coluna t¥5;), os métodos CDS - Crank-Nicolson, RWS e LS mostraram
ser melhores que o método UDS - Explicito, amplamente utilizado na literatura (THORPE,
2001b; LOPES et al., 2006; RADTKE, 2009; KWIATKOWSKI JR, 2011; LOPES et al., 2014,
2015; RIGONIL KWIATKOWSKI JR, 2020).

Portanto, este trabalho propde a utilizagio destes trés métodos, ainda nio utilizados
na literatura, CDS - Crank-Nicolson, RWS e LS, para solucionar numericamente o modelo

proposto por Thorpe (2001b), com foco especial sobre o método LS (veja FIGURA 26).
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6 CONCLUSOES

6.1 Conclusdes Gerais

Neste trabalho foi proposta uma solug¢io analitica usando o MSF, fidedigna a dados
experimentais, para o modelo matematico proposto por Thorpe (2001b) referente ao problema
de aeracio da massa de grios. Tal solu¢io, com pequenas modificacBes, atende a sistemas
com diferentes geometrias, longos periodos de aera¢io e condi¢des iniciais e de contorno
distintas. Com relag¢io a outros tipos de grios, mudangas mais elaboradas s3o exigidas e essas

modifica¢des sdo objeto de estudos.

Utilizou-se o MDF para solucionar numericamente o modelo matematico, e foram
realizados estudos sobre o comportamento de diversos tipos de aproximagdes numéricas, ainda
nio exploradas na literatura para este problema. Para os métodos de segunda ordem, CDS
- Crank-Nicolson, RWS e LS, utilizou-se a viscosidade artificial a fim de evitar oscilacdes

n3o-fisicas nas solu¢Bes numéricas.

Verificou-se que os métodos CDS - Crank-Nicolson, RWS e LS, obtiveram menores
erros se comparados ao método amplamente utilizado, UDS - Explicito. Observou-se também
que a diferenca de tempo de CPU entre os métodos propostos e o utilizado na literatura é

muito pequena.

Portanto, este trabalho propde a utilizagio dos trés métodos, CDS - Crank-Nicolson,
RWS e LS, para solucionar numericamente o modelo de aera¢io da massa de grios proposto

por Thorpe (2001b), com foco especial sobre o método LS.

6.2 Principais Contribuicdes

As principais contribui¢Bes desta dissertacio sdo:
* Propds-se uma solugio analitica, com comportamento fidedigno a dados experimentais
retirados da literatura, para o processo de aeragio da massa de grios.

* Solucionou-se o0 modelo matem4tico numericamente utilizando outras aproximacdes

numéricas que se mostraram melhores que o método amplamente utilizado na literatura.

* Implementou-se a viscosidade artificial nos métodos de segunda ordem para tratar

oscilagBes n3o-fisicas nas solu¢des numeéricas no modelo proposto por Thorpe (2001b).

* O trabalho é pioneiro em realizar uma verificagio numérica das resolu¢des computacio-

nais do modelo estudado.



86

6.3 Proposta de Trabalhos Futuros

Com a finalidade de complementar e expandir os estudos deste trabalho, s3o sugeridas

as seguintes propostas de trabalhos futuros:
* Implementar a solugio analitica proposta nesta dissertagio em outros modelos matema-
ticos relacionados a aeragio da massa de grios.

* Investigar o efeito de diferentes métodos de discretizacdo, por exemplo o método dos

volumes finitos, para solucionar o modelo matemitico.
* Considerar o modelo matemdtico sem as simplifica¢des adotadas e comparar os modelos.
* Investigar e implementar o modelo matemitico em 2D e 3D.

* Aplicar outros solvers para solucionar o sistema, como o método multigrid.
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