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RESUMO

O objetivo deste trabalho é apresentar uma solução analítica, por meio do Método das So-
luções Fabricadas (MSF), para o modelo matemático que descreve o comportamento do
processo de aeração da massa de grãos. Em contraste com trabalhos relacionados na literatura,
utilizou-se várias aproximações numéricas para resolver o modelo matemático. Utilizou-se
o Método das Diferenças Finitas (MDF) empregando-se a discretização espacial dado pelos
métodos de Roberts e Weiss, Leith, esquema com um ponto a montante (UDS), esquema
com diferença central (CDS) e UDS com correção adiada (UDS-C), combinados com as
formulações temporais explícita, implícita e Crank-Nicolson. Adicionou-se a viscosidade
artificial para controlar oscilações não-físicas nas soluções numéricas dos métodos de segunda
ordem. Realizou-se uma análise de erros para todas as aproximações utilizadas, a fim de
verificar a ordem efetiva do erro de discretização com o refinamento de malha. Além disso, os
resultados obtidos numericamente foram comparados com a solução analítica e realizou-se
uma comparação entre os tempos de Unidade Central de Processamento (CPU) em diferentes
níveis de refinamento. Assim, verificou-se que os métodos CDS com formulação temporal
Crank-Nicolson, Roberts e Weiss e Leith tiveram melhor desempenho do que o método UDS
com a formulação explícita, amplamente utilizado na literatura.

Palavras-chaves: Armazenagem de Grãos. Pós-colheita. Diferenças Finitas. Viscosidade Artifi-
cial. Roberts e Weiss. Leith. Thorpe.



ABSTRACT

The goal of this work is to present an analytical solution, by means of the Method of Manu-
factured Solutions (MMS), for the mathematical model that describes the behaviour of the
grain mass aeration process. In contrast to related works in the literature, several numerical
approximations were used to solve the mathematical model. The Finite Difference Method
(FDM) was used employing the spatial approximations given by the methods of Roberts and
Weiss, Leith, Upwind Difference Scheme (UDS), Central Difference Scheme (CDS) and UDS
with deferred correction (UDS-C) combined with the explicit, implicit and Crank-Nicolson
temporal formulations. Artificial viscosity was added to control non-physical oscillations in
the numerical solutions of the second-order methods. An error analysis was performed for
all the approximations used, in order to verify the effective order of the discretization error
with mesh refinement. Moreover, the results obtained numerically were compared with the
analytical solution and a comparison between the Central Processing Unit (CPU) times at
different levels of refinement was performed. Thus, it was verified that the methods CDS
with Crank-Nicolson temporal formulation, Roberts and Weiss and Leith performed better
than the UDS method with the explicit formulation, widely used in the literature.

Key-words: Grain Storage. Postharvest. Finite Difference. Artificial Viscosity. Roberts and
Weiss. Leith. Thorpe.
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1 INTRODUÇÃO

Na atual economia altamente competitiva e baseada no conhecimento, a gestão de
uma vasta quantidade de informações e recursos é o pré-requisito fundamental para o sucesso
dos produtores agrícolas. Esta gestão foi facilitada pela contínua evolução e uso das Tecnologias
de Informação e Comunicação (TICs). A aplicação das TICs em diferentes setores da economia
global tornou-se essencial para o aumento da eficiência e produtividade do trabalho (FAN
et al., 2021; DONG et al., 2021).

O setor agrícola, na economia global, é um dos que mais experimenta a aplicação
das TICs em todas as esferas de suas operações (NYARKO; KOZÁRI, 2021). Daum (2020)
observou que, nos últimos anos, as TICs tornaram-se uma das principais ferramentas utilizadas
pelos agricultores para gerenciar os fatores essenciais de produção, tais como o armazenamento
dos grãos.

Durante o armazenamento dos grãos, o controle da temperatura e do teor de água
é crucial para preservar os aspectos econômico e de qualidade do produto (PANIGRAHI
et al., 2020a). Caso contrário, a produção de grãos pode ser consideravelmente prejudicada ou
mesmo completamente perdida (BINELO et al., 2019). De acordo com Antunes et al. (2016),
atualmente a aeração é a técnica de controle mais difundida empregada na conservação dos
grãos armazenados.

A aeração de grãos é uma técnica de gerenciamento que pode ser usada para con-
trolar a temperatura e o teor de água do grão armazenado (PANIGRAHI et al., 2020a). O
processo consiste na passagem forçada de ar através da massa de grãos, promovendo a redução
e a uniformização de sua temperatura, com o objetivo de conservar os grãos armazenados
(ZIEGLER et al., 2021).

Mesmo com a larga escala de produção agrícola e a utilização de técnicas para me-
lhorar a qualidade da massa de grãos, os investimentos em tecnologia ainda são modestos,
principalmente para os pequenos produtores. Segundo Ferrasa et al. (2010), tornar a tecnologia
acessível a esses produtores, através de soluções de baixo custo, é estratégico para melhorar a
produtividade. Neste sentido, são relevantes os estudos envolvendo modelos matemáticos e
resoluções computacionais.

Modelos matemáticos têm sido utilizados para descrever fenômenos teóricos e ob-
servados. Além disso, eles modelam e possibilitam prever o resultado de várias aplicações,
independentemente das condições prevalecentes. O processo de desenvolvimento de um mo-
delo matemático oferece vários benefícios para os produtores (PANIGRAHI et al., 2020b). Os
modelos podem ser utilizados eficientemente para testar diferentes abordagens, que no campo
podem levar anos e custar uma quantidade significativa de tempo e dinheiro. Os resultados
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mais promissores durante a simulação podem então ser testados no campo (NUTTALL et al.,
2017).

Diversos modelos matemáticos podem ser encontrados na literatura envolvendo o
processo de aeração, entre eles, Thompson (1972), Muir et al. (1980), Alagusundaram et
al. (1990), Chang et al. (1993, 1994), Jia et al. (2000), Thorpe (2001b), Liu et al. (2016) e
Novoa-Muñoz (2019).

Segundo Panigrahi et al. (2020b), idealmente, métodos analíticos devem ser utilizados
para resolver os modelos matemáticos, devido à acurácia da solução. No entanto, suas soluções,
para a maioria dos problemas do mundo real, são difíceis de se obter devido à complexi-
dade do problema. Sendo assim, métodos numéricos com condições de contorno realistas
são amplamente utilizados para resolver o modelo representativo do ecossistema dos grãos
armazenados.

Os métodos numéricos são utilizados para transformar modelos matemáticos em
modelos numéricos aproximados. Este processo é chamado de discretização do problema
original. Enquanto os termos originais das equações são continuamente avaliados no domínio,
as aproximações numéricas são avaliadas apenas em pontos específicos do domínio (também
chamados de nós). O conjunto formado por todos esses pontos é chamado de malha com-
putacional e corresponde a uma aproximação discreta do domínio contínuo do problema
original (OLIVEIRA, 2020). Entre os métodos numéricos tradicionalmente utilizados neste
caso, encontra-se o Método das Diferenças Finitas (MDF) (FERZIGER; PERIC, 2002).

Neste trabalho utilizou-se o modelo matemático proposto por Thorpe (2001b),
muito utilizado na literatura (LOPES et al., 2006; RADTKE, 2009; LOPES et al., 2014, 2015;
RIGONI; KWIATKOWSKI JR, 2020), cuja solução analítica é desconhecida. Nesses trabalhos,
o MDF com a discretização espacial com um ponto a montante (UDS) e a formulação temporal
explícita foram utilizados.

Um dos objetivos deste trabalho é apresentar uma solução analítica para tal modelo,
por meio do Método das Soluções Fabricadas (MSF). Para solucionar o modelo numericamente
utilizou-se o MDF e, diferentemente dos artigos citados anteriormente, empregou-se as
aproximações espaciais dadas pelos métodos de Leith (1965), Roberts e Weiss (1966), UDS,
esquema com diferença central (CDS) e UDS com correção adiada (UDS-C), combinadas às
formulações temporais explícita, implícita e Crank-Nicolson.

Como realizado em uma variedade de problemas, utilizou-se a técnica apresentada
por Von Neumann e Richtmyer (1950), para tratar oscilações não-físicas nas aproximações de
segunda ordem (CURRAN et al., 1974; XUAN et al., 2017; MOUSA; MA, 2020).

O presente estudo, além de propor uma solução analítica para o modelo matemático
e utilizar aproximações diferentes das existentes na literatura, apresenta uma análise de erros
para todas as aproximações utilizadas, com o intuito de verificar a ordem efetiva do erro de
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discretização com o refino de malha. Além disso, comparou-se os tempos de Unidade Central
de Processamento (CPU) e os resultados obtidos numericamente com a solução analítica em
diferentes níveis de refinamento de malha, a fim de determinar quais aproximações apresentam
melhor desempenho.

1.1 Motivação

Em geral, na descrição qualitativa de um fenômeno físico, como o processo de
aeração da massa de grãos, os modelos matemáticos resultantes são expressos por Equações
Diferenciais Parciais (EDPs). Com exceção de casos mais simples, as soluções analíticas não
são conhecidas, ou são difíceis de serem determinadas. Thorpe (2001b) realizou um estudo
detalhado e formulou um modelo matemático referente ao processo de aeração da massa
de grãos, muito utilizado na literatura. Apesar da vasta utilização desse modelo, sua solução
analítica é desconhecida, dessa forma, tal modelo é solucionado apenas numericamente.

O principal método de discretização descrito na literatura é o MDF com aproximação
espacial do tipo UDS. Ainda não consta na literatura um estudo detalhado envolvendo outras
aproximações espaciais na resolução numérica desse modelo matemático.

Quando um modelo matemático é solucionado numericamente, a verificação da
acurácia da solução é um processo essencial na construção de qualquer novo modelo numérico,
confirmando que não existem erros ou inconsistências na solução (ARAKI, 2007). A validação
de um modelo proporciona o grau de fidelidade com que o modelo representa um fenômeno
físico específico. O trabalho realizado por Thacker et al. (2004) descreve, em detalhes, a
diferença entre a verificação e a validação de um modelo matemático e como ambos são de
extrema importância.

Na literatura, existem vários trabalhos (LOPES et al., 2006; RADTKE, 2009; KWI-
ATKOWSKI JR, 2011; RIGONI; KWIATKOWSKI JR, 2020; RIGONI et al., 2021) que
tratam da validação do modelo proposto por Thorpe (2001b). Todavia, ainda não existe um
estudo sobre a verificação da solução numérica desse modelo matemático.

1.2 Objetivos

Considerando as questões referentes ao modelo matemático proposto por Thorpe
(2001b) destacadas e discutidas na seção anterior, os objetivos geral e específicos do presente
trabalho são definidos nesta seção.

1.2.1 Objetivo Geral

O objetivo geral deste trabalho consiste em efetuar uma análise de erros (com foco
no erro de discretização) do modelo matemático proposto por Thorpe (2001b) utilizando o
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MSF e ainda, comparar o desempenho de diversas aproximações numéricas na resolução do
problema.

1.2.2 Objetivos Específicos

Diretamente vinculados ao objetivo geral da dissertação, são definidos também os
seguintes objetivos específicos:

• Utilizar o MSF para propor uma solução analítica para o modelo proposto por Thorpe
(2001b).

• Solucionar o modelo numericamente por meio do MDF, utilizando outras aproximações
além das já utilizadas na literatura.

• Implementar a viscosidade artificial para amenizar as oscilações não-físicas nas soluções
numéricas.

• Efetuar uma verificação numérica para as diversas aproximações estudadas.

• Analisar o tempo de CPU de cada aproximação utilizada.

1.3 Conceitos Gerais e Revisão de Literatura

Nesta seção, é apresentada uma revisão bibliográfica com o objetivo de fundamentar
e situar o presente trabalho na literatura do problema. Aqui é discutido o armazenamento e
o processo de aeração da massa de grãos; é apresentada uma revisão bibliográfica referente
aos modelos matemáticos e resoluções computacionais na simulação do processo de aeração;
é apresentada uma revisão sobre o MSF e, finalmente, é feito uma revisão de trabalhos que
utilizaram a viscosidade artificial para tratar oscilações não-físicas nas soluções numéricas em
uma variedade de problemas.

1.3.1 Armazenamento e Aeração de Grãos

Desde os primeiros tempos da história da humanidade, a produção de mantimentos é
um fator determinante no desenvolvimento de qualquer sociedade. A produção, o transporte,
o beneficiamento, o armazenamento, a comercialização e o consumo de alimentos consti-
tuem uma cadeia de atividades vitais às pessoas, às famílias e às nações, motivo pelo qual a
armazenagem agrícola é uma atividade das mais antigas e importantes (WEBER, 2005). O
armazenamento dos grãos, efetuado na grande maioria dos casos em silos, é uma das etapas
mais relevantes da logística, pois colabora com a redução de custos e de tempo, atendendo com
flexibilidade e velocidade às exigências da demanda do mercado (AZEVEDO et al., 2008).
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A modificação das condições do ambiente de armazenamento pode produzir dife-
rentes efeitos, dependendo das características do ar de aeração e das características dos grãos
armazenados. Estes efeitos são entendidos com mais facilidade quando o ambiente de armaze-
namento é considerado como um ecossistema com fatores bióticos e abióticos (LOPES et al.,
2006). O principal fator biótico deste ecossistema é o grão, pois todas as ações envolvidas no
gerenciamento de um sistema de armazenamento são executadas visando a sua preservação
(FLEURAT-LESSARD, 2002).

O grão é considerado um organismo vivo com atividade fisiológica reduzida, podendo
permanecer assim por longos períodos. Este baixo nível de atividade biológica dos grãos se deve
aos baixos teores de água necessários para se obter uma armazenagem segura. Altos valores
de umidade no ambiente de armazenamento, combinados a valores inadequados, podem
causar a germinação dos grãos, resultando em perda do seu valor nutritivo e impedindo o
armazenamento seguro (NAVARRO; NOYES, 2001). Dito isso, é de fundamental importância
que durante o armazenamento se tenha um controle da temperatura e do teor de água da
massa de grãos.

Dentre as opções de controle das condições de armazenagem que não incluem pro-
dutos químicos e que podem se adaptar às regiões tropicais e pequenas propriedades rurais, a
aeração é a tecnologia mais difundida. Na aeração, o ar ambiente, ou condicionado, é forçado
a circular através da massa de grãos armazenados com a finalidade principal de estabelecer e
manter a homogeneidade de temperatura dentro do ambiente de armazenamento e, caso seja
possível, resfriar o produto armazenado (HARA; CORRÊA, 1981).

Uma das limitações da aeração é o fato desta tecnologia não eliminar imediatamente
os insetos e microorganismos prejudiciais ao ambiente de armazenamento, mas sim impedir a
sua proliferação. Entretanto, sua principal vantagem é a possibilidade de não utilizar produtos
químicos. Além disso, esta tecnologia é mais simples, segura e econômica no controle do
ambiente de armazenamento quando comparada à remoção física de insetos, à utilização de
atmosfera controlada ou à utilização de irradiação, dentre outras (NAVARRO; NOYES, 2001).

Como mencionado anteriormente, a técnica de controle mais difundida empregada
na conservação dos grãos armazenados é a aeração. O processo de aeração de grãos consiste
em ventilar a massa de grãos armazenada com um fluxo de ar pré-determinado (FIGURA 1),
promovendo o resfriamento e o equilíbrio do grão, criando condições favoráveis para o
produto ser armazenado com qualidade por um longo período, favorecendo a questão logística
(KHATCHATOURIAN et al., 2013).

Bilobrovec (2005) expõe que os elementos que compõem um sistema de aeração
visam, principalmente, a distribuição uniforme da movimentação do ar através da massa de
grãos, de tal forma que todas as camadas de produto sejam aeradas de forma homogênea.
Os principais componentes de um sistema de aeração são: dutos perfurados para conduzir e
distribuir o ar através da massa de grãos; tubos de conexão que ligam os ventiladores aos dutos



25

perfurados e o conjunto ventilador-motor para insuflação ou sucção do ar. A FIGURA 1 ilustra
os componentes de um sistema de aeração e como são distribuídos no local de armazenamento
da massa de grãos.

FIGURA 1 – COMPONENTES DE UM SISTEMA DE AERAÇÃO.

FONTE: Modificado de Panigrahi et al. (2020b).

1.3.2 Modelagem Matemática do Processo de Aeração e Resoluções Computacionais

A modelagem do fenômeno de transferência de calor e massa no domínio de grãos
armazenados é datada desde a década de 1970 (PANIGRAHI et al., 2020b).

Thompson (1972) desenvolveu um modelo para prever as mudanças na temperatura
e umidade durante o processo de aeração em grãos de milho. O modelo foi construído a partir
de modificações feitas em um modelo,Thompson et al. (1968), desenvolvido para simular o
processo de secagem. As transferências de calor e massa dentro dos grãos foram assumidas
como adiabáticas (não há troca de calor com o meio externo), o que facilitou a formulação
das respectivas equações de equilíbrio. A simulação foi realizada assumindo uma série de
finas camadas de grãos posicionadas perpendicularmente ao fluxo de ar dentro do silo de
armazenamento.

Muir et al. (1980) desenvolveram um modelo para simular a transferência de calor
através do fenômeno de condução na direção vertical e radial em uma caixa cilíndrica e
utilizaram o MDF para solucionar numericamente o modelo matemático. A temperatura
inicial do grão, a temperatura ambiente diária e as velocidades do ar foram usadas como
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parâmetros de entrada para prever a mudança de temperatura em toda a massa de grãos. No
entanto, a geração de calor interno devido à respiração dos grãos foi negligenciada durante a
formulação do modelo. A validação do modelo mostrou um erro padrão de estimativa de 1,3
°C e 1,8 °C, respectivamente, para armazenamento de colza e cevada em dois silos separados.

Alagusundaram et al. (1990) desenvolveram um modelo para prever a distribuição
de temperatura devido ao fenômeno de condução dentro de um recipiente contendo colza
e utilizaram o MDF para solucionar numericamente o modelo matemático. A equação de
equilíbrio para calcular a transferência de calor transiente dentro de cada elemento espacial foi
definida igualando a taxa de fluxo total de calor para o elemento e a taxa de mudança ocorrida
na acumulação de calor dentro do elemento. Para fins de validação, os dados experimentais
foram retirados de um silo de 5,56 m de diâmetro cheio até 2,7 m de altura. Dados de
temperatura em quatro níveis do silo foram coletados e o modelo previu as temperaturas com
um erro padrão médio de estimativa de 2,8 °C.

Chang et al. (1993, 1994) usaram o MDF para solucionar um modelo matemático que
descreve a temperatura e o teor de água, particularmente durante os períodos de aeração. Uma
equação transiente de transferência de calor e massa com condições iniciais e de contorno
relacionadas foi escrita sobre um número finito de elementos espaciais. Modelos auxiliares
para prever o efeito da radiação solar e coeficiente de transferência de calor por convecção na
parede do silo e perfil de temperatura do solo sob o silo foram incluídos para fornecer um
fenômeno de realismo aproximado durante a simulação. Além disso, juntamente com os dados
climáticos ambientais, incluindo temperatura e umidade relativa do ar, radiação e velocidade
do vento, a taxa de fluxo de ar também foi usada como entrada para simular a temperatura e
o teor de água durante 15 e 32 meses de armazenamento de grãos de trigo. Isso foi validado
com erro padrão de 1,1 °C da estimativa.

Jia et al. (2000) apresentaram um modelo para simular as flutuações de temperatura
através do modo de convecção de transferência de calor devido à geração interna de calor.
Uma equação em sistema de coordenadas cilíndricas foi proposta considerando a transferência
de calor entre a superfície superior do grão e o teto do silo e nas paredes do silo devido ao
fluxo de calor gerado. No entanto, a superfície inferior foi assumida adiabática. O Método dos
Elementos Finitos (MEF) foi utilizado para resolver a equação com condições de contorno
complexas. O estudo sugeriu que havia uma alta probabilidade de deterioração do grão
próximo à fonte de calor interna e era independente da posição devido à baixa condutividade
térmica do trigo. A temperatura medida estava em boa concordância com as previstas durante
a fase inicial das validações.

Um modelo de equilíbrio, governado por EDPs e baseado nas equações de balanço
de massa e energia, foi formulado por Thorpe (1997) e apresentado de forma detalhada por
Thorpe (2001b). Lopes et al. (2006) validaram o modelo utilizando dados experimentais da
aeração de grãos de milho. Os autores relataram algumas mudanças nas equações originais do
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modelo matemático para simplificar e diminuir seu tempo computacional, sem diminuir sua
precisão. Neste trabalho, o MDF com a aproximação espacial UDS e a formulação temporal
explícita foi utilizado para resolver numericamente o modelo. Os resultados corroboraram
com os dados experimentais registrados. A máxima diferença observada entre as temperaturas
experimentais e numéricas foi de 3,2 °C.

Radtke (2009) e Kwiatkowski Jr (2011) solucionaram numericamente o modelo
proposto por Thorpe utilizando o MDF. Radtke (2009) utilizou a aproximação espacial UDS
com a formulação temporal explícita e o autor relatou que o modelo apresentou resultados
satisfatórios quando comparado a dados experimentais. Kwiatkowski Jr (2011) utilizou a
aproximação espacial UDS e realizou uma comparação entre as aproximações temporais
explícita e implícita, o autor relatou que ao comparar dados experimentais com as simulações
numéricas, o resultado foi satisfatório tendo uma pequena vantagem para a aproximação
temporal implícita, pois deste modo a solução numérica é sempre convergente.

Lopes et al. (2015) compararam os modelos propostos por Thorpe (2001b) e Thomp-
son (1972) com dados experimentais. Novamente, o modelo proposto por Thorpe foi resolvido
numericamente pelo MDF utilizando a aproximação espacial UDS e a formulação temporal
explícita. Os resultados mostraram que ambos os modelos tiveram boas correlações com os
dados experimentais e apresentaram um desempenho muito semelhante. Os autores comentam
que os dois modelos avaliados podem ser facilmente implementados em programas de compu-
tador, contribuindo para melhorias no controle desse processo e garantindo o gerenciamento
da qualidade dos grãos durante o período de armazenamento.

Todos os estudos citados anteriormente que utilizaram o modelo proposto por Thorpe
(2001b) adotaram as simplificações propostas pelo trabalho de Lopes et al. (2006).

Liu et al. (2016) desenvolveram um modelo integrado para simular o armazenamento
de grãos em grande escala (arroz em casca) usando ar frio durante a aeração. Um algoritmo
de método semi-implícito para equações ligadas à pressão foi usado para resolver as equações
governantes que representam as transferências de calor, massa e quantidade de movimento. Um
termo fonte foi adicionado à equação do momento para contabilizar a respectiva dissipação
resultante da resistência ao fluxo de ar. As propriedades termofísicas do ar forçado foram
estimadas pelo método proposto por Ranjbaran e Emadi (2015). Os resultados simulados
mostraram uma diferença substancial nos dados de temperatura previstos e medidos. No
entanto, houve uma ligeira diminuição no teor de água do grão de arroz ao longo da direção
vertical, pois a operação foi limitada a 30 horas de aeração.

Novoa-Muñoz (2019) utilizou um silo cilíndrico de concreto de 6,3 m de diâmetro
e 23,5 m de altura para fins de simulação. O modelo foi solucionado numericamente pelo
MDF e foi desenvolvido (considerando coordenadas cilíndricas) assumindo condução de calor
constante na direção circunferencial de um silo para armazenagem de cevada. Além disso, o
fluxo de calor em torno do eixo central vertical foi considerado simétrico, sem calor interno
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da respiração dentro do silo. Os valores de temperatura medidos foram incorporados como
condições iniciais para a simulação manter o fluxo de calor através do grão armazenado como
variável em relação ao tempo. A transferência de calor afetada pelo ar de aeração também foi
incluída na forma de coeficientes de transferência de calor por convecção forçada na condição
de contorno. Os resultados da simulação mostraram baixo erro padrão de estimativa em
relação às temperaturas médias. Isso foi obtido por meio de validação usando um gráfico de
dispersão entre o valor medido e o predito. Assim, delineando um valor predito mais próximo
com a leitura do termopar ao longo do eixo central do silo. No entanto, foi encontrado um
erro de temperatura de 6,6% próximo ao piso e em torno de 12% próximo ao telhado.

1.3.3 Método das Soluções Fabricadas (MSF)

O MSF foi definido por Oberkampf e Blottner (1998), mas a primeira proposta de
uso do MSF para verificação do código foi apresentada por Steinberg e Roache (1985).

Segundo Roy e Sinclair (2009), devido à existência de soluções exatas se limitar
somente para as equações mais simples, a principal dificuldade em estimar o erro de discre-
tização é encontrar uma maneira de estimar a solução exata para EDPs e assim obter maior
confiabilidade em sua análise.

A ideia do MSF se baseia em produzir uma solução exata sem estar interessado na
realidade física do problema (ROY, 2005). Uma função analítica é definida e inserida no
lugar da variável dependente na EDP, e todas as derivadas são calculadas analiticamente. A
equação é criada de tal maneira que todos os termos restantes que não satisfazem a EDP são
incorporados em um termo fonte. Este termo é, então, simplesmente acrescentado à EDP de
forma a satisfazer exatamente à nova EDP (SALARI; KNUPP, 2000).

O código a ser verificado é modificado para suportar o termo fonte adicional e pode ser
verificado comparando o resultado da simulação do problema fabricado com a solução analítica
fabricada. Idealmente, o termo fonte é computado analiticamente; entretanto, quando isto
não for possível, o termo fonte precisa ser computado de forma consistente e com no mínimo
mesma precisão que os métodos numéricos que estão sendo verificados. Caso contrário, o
erro no termo fonte irá ofuscar o do método numérico contaminando a verificação (FRENO
et al., 2021c).

As verificações de códigos têm sido realizadas em diversas áreas, incluindo dinâmica
de fluidos (ROY et al., 2004; BOND et al., 2007; VELURI et al., 2010; OLIVER et al., 2012;
EÇA et al., 2016; FRENO et al., 2021b), mecânica dos sólidos (CHAMBERLAND et al.,
2010), interação fluido-estrutura (ÉTIENNE et al., 2012), transferência de calor na interação
fluido-sólido (VEERARAGAVAN et al., 2016), fluxos multifásicos (BRADY et al., 2012),
hidrodinâmica de radiação (MCCLARREN; LOWRIE, 2008), eletrodinâmica (ELLIS; HALL,
2009) e ablação (AMAR et al., 2008, 2009, 2011; FRENO et al., 2021a). Entretanto, a literatura
existente contém poucas instâncias do MSF sendo utilizadas na verificação de códigos para
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problemas relacionados à aeração da massa de grãos.

1.3.4 Viscosidade Artificial

Originalmente proposta por Von Neumann e Richtmyer (1950), a viscosidade ar-
tificial consiste em um método que controla as oscilações espúrias não-físicas nas soluções
numéricas.

Curran et al. (1974) detalharam um novo e simples método numérico para calcular a
propagação de ondas unidimensionais de grande amplitude em materiais compostos. O método
trabalha com valores de tensão, velocidade de partícula e deslocamento. A principal vantagem
do método em relação às abordagens macroscópicas anteriores é que ele utiliza a viscosidade
artificial para modelar as dispersões geométricas e dissipativas do material composto.

Xuan et al. (2017) apresentaram um esquema melhorado do modelo de Lattice
Bolzmann para as equações de Navier-Stokes compressíveis com número de Mach (razão
entre a velocidade do objeto em um meio fluido e a velocidade da onda sonora nesse meio)
elevado. Foi implementado ao modelo original a viscosidade artificial, resultando na redução
das oscilações numéricas e ajudando a satisfazer a condição de estabilidade de Von Neumann.

Mousa e Ma (2020) desenvolveram dois esquemas numéricos para superar o problema
de oscilações não-físicas que aparecem nas soluções dos modelos de uma/duas camadas de água
rasa. Os esquemas numéricos propostos foram baseados no conceito da viscosidade artificial.
A robustez e eficiência dos esquemas propostos são validados em muitas aplicações, como o
problema de ruptura de represas e o problema de propagação de interface do modelo de água
rasa de duas camadas.

Esta revisão bibliográfica embasa e justifica os objetivos desta dissertação e motiva,
principalmente, a efetuar uma verificação numérica do modelo proposto por Thorpe (2001b)
e a utilização de aproximações numéricas além das existentes na literatura para solucionar
numericamente o modelo.

1.4 Delineamento do Texto

Apresenta-se nessa seção a maneira como o restante do trabalho é dividido. O capítulo
2 apresenta fundamentos teóricos a respeito de métodos de discretização, solução de sistemas
lineares, viscosidade artificial, entre outras; dando ênfase aos métodos e técnicas utilizados na
dissertação. O capítulo é finalizado com a apresentação dos critérios utilizados para verificação
dos erros numéricos e também para o cálculo do esforço computacional de um modelo
numérico.

O modelo matemático utilizado é apresentado no capítulo 3, juntamente com as
condições de contorno, condições iniciais e os parâmetros envolvidos. Também é apresentado
o MSF com a solução analítica proposta e o termo fonte.
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No capítulo 4 são apresentados os modelos numéricos para cada aproximação espaço-
temporal utilizada.

No capítulo 5, as ordens efetivas e os erros de discretização para cada aproximação
utilizada são apresentadas e discutidas. Também são apresentados e discutidos os resultados
referentes aos modelos numéricos desenvolvidos quando comparados à solução analítica pro-
posta. Os resultados também referem-se ao desempenho computacional de cada aproximação
utilizada.

Finalmente, no capítulo 6, são apresentadas as conclusões referentes a esta dissertação.
São discutidas suas principais contribuições e também os pontos positivos com base nos
objetivos propostos. O capítulo é finalizado com sugestões para trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo será descrito o referencial teórico usado nesta dissertação. Apresenta-
se o MDF e as aproximações usadas para discretizar as equações diferenciais, métodos de
resolução de sistemas lineares, viscosidade artificial e os critérios de verificação numérica.

2.1 Método das Diferenças Finitas (MDF)

Um modelo matemático, associado a um determinado fenômeno físico, compreende
as equações que governam tal fenômeno, o domínio matemático (correspondente ao domínio
físico) sobre o qual elas estão definidas e as condições de contorno a elas impostas. O modelo
matemático é também chamado de modelo contínuo (OLIVEIRA, 2020).

Para a resolução computacional do problema, o modelo matemático contínuo é
transformado em um modelo discreto, através do qual o domínio contínuo inicial passa a ser
representado por um número finito de pontos que dão origem a uma malha, chamada de malha
computacional ou discreta, conforme exemplificado na FIGURA 2. As equações deixam de ser
avaliadas continuamente e passam a ser avaliadas somente em tais pontos, também chamados
de nós. As derivadas contidas nas equações são calculadas, em um dado ponto da malha, por
meio de aproximações que utilizam pontos vizinhos ao ponto em questão. Para o MDF, tais
aproximações são geralmente obtidas de expressões truncadas da série de Taylor. Esse processo
é chamado de discretização do modelo matemático, e através dele o modelo contínuo inicial é
transformado no chamado modelo discreto aproximado (OLIVEIRA, 2020).

FIGURA 2 – DOMÍNIO DISCRETO DE UM SISTEMA QUE REPRESENTA O ARMAZENA-
MENTO DE UMA MASSA DE GRÃOS.

FONTE: Modificado de Panigrahi et al. (2020b).
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No presente trabalho, o MDF é utilizado para a discretização das equações. O MDF é
um método clássico e que, apesar da base matemática não ser nova, pode apresentar diferentes
formulações de aproximação numérica (FERZIGER; PERIC, 2002).

Após o processo de discretização de uma dada equação pelo MDF, a avaliação das
variáveis e das aproximações de suas derivadas nos nós da malha dão origem a um sistema de
equações, o qual deve ser então solucionado por algum método apropriado para resolução de
sistemas, comumente chamado de solver.

Utilizou-se os pontos cardeais S (sul) e N (norte) como identificadores da posição
de pontos discretos em relação a um nó central P, e n simboliza a localização temporal do
nó, como indicado na FIGURA 3.

FIGURA 3 – MALHA PARA A SOLUÇÃO NUMÉRICA POR MEIO DO MDF, DE NÓ CEN-
TRAL P, E SEUS VIZINHOS, EM DOIS PASSOS DE TEMPOS DISTINTOS.

FONTE: O autor (2022).

Aqui, ∆y corresponde ao espaçamento espacial entre dois nós consecutivos, definido
por,

∆y =
L

Ny − 1
, (2.1)

onde L representa a altura do local de armazenamento da massa de grãos (m) e Ny é o
número de nós na direção y. A diferença entre o tempo atual de simulação e o tempo anterior
é definido por,

∆t =
tf
Nt

, (2.2)

onde tf é o tempo final de simulação e Nt corresponde ao número de passos no tempo.

É desejável que o modelo discreto convirja para o modelo contínuo, quando ∆y e
∆t se aproximam de zero (TANNEHILL et al., 1982).
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2.2 Aproximações Numéricas

Para ilustrar a discretização de uma EDP pelo MDF, considerou-se, por exemplo,
a equação que expressa a advecção de uma determinada variável Λ , em regime transiente,
dada por

∂Λ

∂t
+

∂Λ

∂y
= 0. (2.3)

No MDF, a aproximação dos termos envolvendo derivadas de Λ é feita usando
expansões de série de Taylor, dada por (KREYSZIG, 2009)

Λy = ΛP +

(
∂Λ

∂y

)
P

(y − yP )

1!
+

(
∂2Λ

∂y2

)
P

(y − yP )
2

2!
+

(
∂3Λ

∂y3

)
P

(y − yP )
3

3!
+ ... . (2.4)

O valor de Λy é exato se forem considerados os infinitos termos da série de Taylor.
Nas próximas subseções, serão apresentadas como são realizadas as aproximações numéricas
das derivadas espacial e temporal da Eq. (2.3) pelos métodos utilizados neste trabalho.

2.2.1 Esquema com Um Ponto a Montante (UDS)

A Eq. (2.4) aplicada ao nó S, a partir do ponto P da FIGURA 3, resulta em

ΛS = ΛP −

(
∂Λ

∂y

)
P

∆y +

(
∂2Λ

∂y2

)
P

(∆y)2

2
−

(
∂3Λ

∂y3

)
P

(∆y)3

6
+ ... . (2.5)

Isolando a derivada de primeira ordem da Eq. (2.5), tem-se

(
∂Λ

∂y

)
P

=
ΛP − ΛS

∆y
+

(
∂2Λ

∂y2

)
P

∆y

2
−

(
∂3Λ

∂y3

)
P

(∆y)2

6
+ ... . (2.6)

Assim, apresenta-se a aproximação UDS da derivada espacial:

(
∂Λ

∂y

)
P

≈ ΛP − ΛS

∆y
. (2.7)

A série de Taylor também pode ser expandida, em torno do instante de tempo n e do
nó P , ao longo do tempo (VARGAS, 2013).

Λn
P = Λn+1

P −

(
∂Λ

∂t

)n+1

P

∆t+

(
∂2Λ

∂t2

)n+1

P

(∆t)2

2
−

(
∂3Λ

∂t3

)n+1

P

(∆t)3

6
+ ... , (2.8)
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onde n+ 1 representa o instante de tempo atual.

Assim, a partir da Eq. (2.8), obtém-se

(
∂Λ

∂t

)n+1

P

=
Λn+1

P − Λn
P

∆t
+

(
∂2Λ

∂t2

)n+1

P

∆t

2
−

(
∂3Λ

∂t3

)n+1

P

(∆t)2

6
+ ... , (2.9)

portanto, a aproximação da derivada temporal de Λ é dada por

(
∂Λ

∂t

)n+1

P

≈ Λn+1
P − Λn

P

∆t
. (2.10)

Com a substituição das Eqs. (2.7) e (2.10) na Eq. (2.3), chega-se a discretização da
Eq. (2.3), utilizando UDS:

Λn+1
P − Λn

P

∆t
+

Λθ
P − Λθ

S

∆y
+ ξUDS = 0, (2.11)

onde θ indica um instante de tempo genérico na qual a derivada espacial é avaliada e o erro
de truncamento ( ξUDS ) é dado por

ξUDS =

(
∂2Λ

∂y2

)
P

∆y

2
−

(
∂3Λ

∂y3

)
P

(∆y)2

6
+...+

(
∂2Λ

∂t2

)
P

∆t

2
−

(
∂3Λ

∂t3

)
P

(∆t)2

6
+... . (2.12)

A relação entre θ e Λ é dada por

Λθ = Λn + θ(Λn+1 − Λn). (2.13)

Em função do valor de θ , a TABELA 1 mostra as possíveis formulações temporais
(TANNEHILL et al., 1982):

TABELA 1 – FORMULAÇÕES TEMPORAIS DE ACORDO COM O VALOR DE θ.
Formulação Temporal Valor de θ

Explícita 0
Implícita 1

Crank-Nicolson 0,5

FONTE: Tannehill et al. (1982)

Nota-se que essa notação não é rigorosa, podendo causar confusão, mas é amplamente
utilizada na literatura devido a sua simplicidade (TANNEHILL et al., 1982).

A formulação explícita recebe este nome devido ao valor da variável de interesse (Λ)
em cada nó P da malha, no instante atual, ser calculado por valores conhecidos do instante
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de tempo anterior. Com esta formulação, tem-se a vantagem de que a solução do sistema de
equações algébricas é direta. A desvantagem é que existe um limite que deve ser satisfeito
para o avanço no tempo não divergir. Para o exemplo dado pela Eq. (2.11), a condição de
estabilidade é dada por

∆t

∆y
≤ 1

2
. (2.14)

Nas formulações implícita e Crank-Nicolson, devido à diagonal dominância, a so-
lução é incondicionalmente estável no tempo, ou seja, não há limite como na formulação
explícita. No entanto, o sistema de equações precisa ser resolvido com um solver. Além disso,
tal solver tem que ser empregado a cada avanço no tempo.

2.2.2 Esquema com Diferença Central (CDS)

A Eq. (2.4) aplicada ao nó N , a partir do ponto P da FIGURA 3, resulta em

ΛN = ΛP +

(
∂Λ

∂y

)
P

∆y +

(
∂2Λ

∂y2

)
P

(∆y)2

2
+

(
∂3Λ

∂y3

)
P

(∆y)3

6
+ ... . (2.15)

Subtraindo a Eq. (2.5) da Eq. (2.15), tem-se

(
∂Λ

∂y

)
P

=
ΛN − ΛS

2∆y
−

(
∂3Λ

∂y3

)
P

(∆y)2

6
−

(
∂5Λ

∂y5

)
P

(∆y)4

120
+ ... . (2.16)

Assim, apresenta-se a aproximação CDS da derivada espacial:

(
∂Λ

∂y

)
P

≈ ΛN − ΛS

2∆y
. (2.17)

Com a substituição das Eqs. (2.17) e (2.10) na Eq. (2.3), chega-se a discretização da
Eq. (2.3), utilizando CDS:

Λn+1
P − Λn

P

∆t
+

Λθ
N − Λθ

S

2∆y
+ ξCDS = 0, (2.18)

cujo erro de truncamento ( ξCDS ) é dado por

ξCDS = −

(
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∂y3
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P
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)
P
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6
+ ... .

(2.19)



36

2.2.3 Esquema UDS com Correção Adiada (UDS-C)

Uma outra técnica de aproximação consiste em misturar as aproximações UDS e
CDS, assim tem-se UDS com correção adiada, conforme expressão

ΛP = ΛP,UDS + β(Λ∗
P,CDS − Λ∗

P,UDS), (2.20)

onde * representa os valores conhecidos da iteração anterior, e são aplicados conforme o
esquema dado por

β =


0, UDS
1, CDS ,

0 ≤ β ≤ 1 Mistura
(2.21)

em que β é o fator de mistura entre os esquemas.

Substituindo as Eqs. (2.7) e (2.17) conforme o esquema da Eq. (2.20), tem-se

(
∂Λ

∂y

)
P

=
ΛP − ΛS

∆y
+β

(
Λ∗

S − 2Λ∗
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N
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)
P
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2
−

(
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∂y3

)
P

(∆y)2

6
+ ... .

(2.22)

Assim, apresenta-se a aproximação UDS-C da derivada espacial:

(
∂Λ

∂y

)
P

≈ ΛP − ΛS

∆y
+ β

(
Λ∗

S − 2Λ∗
P + Λ∗

N

2∆y

)
. (2.23)

Com a substituição das Eqs. (2.23) e (2.10) na Eq. (2.3), chega-se a discretização da
Eq. (2.3), utilizando UDS-C:

Λn+1
P − Λn

P

∆t
+

Λθ
P − Λθ

S

∆y
+ β

(
Λ∗

S − 2Λ∗
P + Λ∗

N

2∆y

)
+ ξUDS-C = 0, (2.24)

cujo erro de truncamento ( ξUDS-C ) é da forma

ξUDS-C = (1− β)
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∂2Λ
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)
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2.2.4 Esquema de Roberts e Weiss (RWS)

De acordo com Dehghan (2005) e Campbell e Yin (2007) o esquema proposto por
Roberts e Weiss (1966) (RWS) consiste em aproximar a derivada espacial de uma variável Λ
da seguinte forma:

(
∂Λ

∂y

)n+1

P

≈ 1

2

(
Λn+1

P − Λn+1
S

∆y
+

Λn
N − Λn

P

∆y

)
. (2.26)

Com a substituição das Eqs. (2.26) e (2.10) na Eq. (2.3), chega-se a discretização da
Eq. (2.3), utilizando o RWS:

Λn+1
P − Λn

P

∆t
+

1

2

(
Λn+1

P − Λn+1
S

∆y
+

Λn
N − Λn

P

∆y

)
+ ξRWS = 0, (2.27)

cujo erro de truncamento ( ξRWS ) é dado por
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+ ... . (2.28)

2.2.5 Esquema de Leith (LS)

O esquema proposto por Leith (1965) (LS) consiste em aproximar a derivada espacial
da Eq. (2.3) da seguinte forma (DEHGHAN, 2005):

(
∂Λ

∂y

)n+1

P

≈
(∆t

∆y

)(Λn
P − Λn

S

∆y

)
+

(
1− ∆t

∆y

)(
Λn

N − Λn
S

2∆y

)
. (2.29)

Com a substituição das Eqs. (2.29) e (2.10) na Eq. (2.3), chega-se a discretização da
Eq. (2.3), utilizando o LS:

Λn+1
P − Λn

P

∆t
+

∆t

∆y

(
Λn

P − Λn
S

∆y

)
+

(
1− ∆t

∆y

)(
Λn

N − Λn
S

2∆y

)
+ ξLS = 0, (2.30)

cujo erro de truncamento ( ξLS ) é dado por

ξLS =
(∆y)2

6

[
1−
(∆t

∆y

)2](∂3Λ

∂y3

)
P

+
(∆y)3

8

(∆t

∆y

)[
1−
(∆t

∆y

)2](∂4Λ

∂y4

)
P

+ ... . (2.31)
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2.3 Solução do Sistema de Equações

Após o processo de discretização, a avaliação das variáveis dependentes das equações
em cada ponto interno (ou nó) da malha computacional, se dá em função de seus pontos
vizinhos. Esse processo dá origem a um sistema de equações.

É comum escrever a equação discretizada da seguinte forma:

apΛP = aNΛN + aSΛS + bP , (2.32)

onde, aP , aN e aS são coeficientes associados a, respectivamente, ΛP , ΛN e ΛS . bP

corresponde ao termo fonte. Dessa forma, métodos eficientes para resolução de sistemas são
necessários.

A avaliação das Eqs. (2.11), (2.18), (2.24), (2.27) e (2.30), ou da sua forma equivalente,
Eq. (2.32), em todos os pontos da malha gera um sistema de equações da forma

A · Λ = b, (2.33)

onde A representa a matriz do sistema e b é o vetor correspondente ao termo fonte.

Desse modo, a Eq. (2.32) corresponde a uma linha genérica do sistema da Eq. (2.33).
Todavia, nota-se que essa linha contém apenas os valores das variáveis vizinhas ao nó atual P,
juntamente com seus coeficientes. Isso gera sistemas com matrizes esparsas no processo de
discretização. Nesse tipo de matriz, a maioria dos elementos são nulos e os elementos não nulos
concentram-se em um número limitado de diagonais. Dessa forma, métodos especializados
para esse tipo de matriz devem ser preferencialmente utilizados.

A FIGURA 4 apresenta a estrutura das matrizes obtidas através das aproximações
utilizadas neste trabalho. Uma matriz com essa forma é também chamada de matriz tridiagonal.

FIGURA 4 – ESTRUTURA DE UMA MATRIZ TRIDIAGONAL.

FONTE: Modificado de
Oliveira (2020).

Os métodos de resolução de sistemas lineares, ou solvers, são classificados basicamente
em duas categorias: métodos diretos e iterativos. Os métodos diretos procuram resolver o
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sistema de equações através de uma sequência finita de operações e, exceto por erros de
arredondamento e discretização, fornecem sua solução exata. Tais características podem ser
interpretadas como vantagens dessa classe de métodos.

Pode-se afirmar que o método fundamental para o desenvolvimento e estudo dos
métodos diretos é o método de eliminação de Gauss (PATANKAR, 1980). Nesse método,
o sistema original é transformado em um sistema triangular equivalente, a partir do qual a
solução é facilmente obtida.

Outro método direto bastante utilizado, é o Algoritmo para Matriz Tridiagonal
(TDMA) (THOMAS, 1949; PATANKAR, 1980), que também é baseado no método de
eliminação de Gauss, e é específico para resolução de sistemas envolvendo matrizes tridiagonais.
O baixo custo desse método tornou sua utilização bastante popular para os casos em que
matrizes tridiagonais são obtidas.

Neste trabalho, para todas as aproximações, utilizou-se o TDMA para solucionar o
sistema resultante da discretização.

2.4 Viscosidade Artificial

Originalmente proposta por Von Neumann e Richtmyer (1950), a viscosidade ar-
tificial consiste em um método que controla as oscilações espúrias não-físicas nas soluções
numéricas. No problema em estudo utilizou-se a viscosidade artificial para eliminar os proble-
mas de oscilações excessivas nas aproximações de segunda ordem.

De acordo com Tryggvason (2017), a viscosidade artificial pode ser obtida da seguinte
forma. Considere a EDP,

∂f

∂t
+

∂F

∂y
= 0. (2.34)

Definindo F ′ de tal sorte que,

F ′ = F − α
∂f

∂y
, (2.35)

onde α = D(∆y)2
∣∣∣∂f∂y ∣∣∣ e D corresponde a uma constante adimensional ajustável (CAMP-

BELL; VIGNJEVIC, 2009).

Substituindo F por F ′ na Eq. (2.34), tem-se

∂f

∂t
+

∂F

∂y
= − ∂

∂y

[
− α

∂f

∂y

]
=

∂

∂y

[
D(∆y)2

∣∣∣∂f
∂y

∣∣∣∂f
∂y

]
. (2.36)

Note que, a medida que ∆y −→ 0,
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∂

∂y

[
D(∆y)2

∣∣∣∂f
∂y

∣∣∣∂f
∂y

]
︸ ︷︷ ︸

Viscosidade Artificial

−→ 0, (2.37)

fazendo com que a Eq. (2.36) −→ Eq.(2.34). O termo dado pela Eq. (2.37) recebe o nome de
viscosidade artificial.

A viscosidade artificial pode ser adicionada a Eq. (2.3), assim tem-se

∂Λ

∂t
+

∂Λ

∂y
+

∂

∂y

[
D(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
= 0 (2.38)

De acordo com Tryggvason (2017), pode-se efetuar a discretização da viscosidade
artificial pelo método de Lax e Wendroff (1960), obtendo-se

∂

∂y

[
D(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
≈ 1

∆y

([
D(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
P+ 1

2

−

[
D(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
P− 1

2

)
. (2.39)

Aproximando:

[
D(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
P+ 1

2

≈ D
∣∣∣Λn

N − Λn
P

∣∣∣(Λn
N − Λn

P

)
(2.40)

e [
D(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
∂y

]
P− 1

2

≈ D
∣∣∣Λn

P − Λn
S

∣∣∣(Λn
P − Λn

S

)
(2.41)

e substituindo as Eqs. (2.40) e (2.41) na Eq. (2.39), tem-se o termo discretizado da viscosidade
artificial:

∂

∂y

[
D(∆y)2

∣∣∣∂Λ
∂y

∣∣∣∂Λ
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−
∣∣∣Λn

P − Λn
S

∣∣∣(Λn
P − Λn

S

)]
. (2.42)

2.5 Critérios de Verificação Numérica

Verificação da acurácia de soluções é um processo essencial na construção de qualquer
novo modelo numérico. Segundo Oberkampf e Trucano (2002), a verificação é a avaliação
da acurácia da solução para um modelo computacional através de comparação com soluções
conhecidas. Ainda de acordo com os autores, essas soluções conhecidas têm basicamente duas
origens: soluções analíticas e soluções numéricas com alto grau de acurácia (conhecidas como
Benchmark). A avaliação da acurácia da solução numérica é geralmente realizada a partir de
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comparações com dados de gráficos e tabelas, mas principalmente por meio da quantificação
e análise dos erros envolvidos.

Nesta seção, são apresentados alguns tópicos teóricos referentes aos critérios que serão
utilizados para a verificação das soluções obtidas neste trabalho.

2.5.1 Erros de Discretização e Ordem Assintótica

Através da utilização de métodos numéricos, são obtidas soluções numéricas aproxi-
madas para as variáveis de um dado problema. Seja Φ o valor da solução analítica de uma
certa variável. A cada solução numérica aproximada obtida, indicada por ϕ , está associado
também um erro numérico, o qual é calculado como

E(ϕ) = Φ− ϕ. (2.43)

De acordo com Marchi (2001), o erro numérico E possui quatro fontes principais:
erros de truncamento, erros de iteração, erros de arredondamento e erros de programação. O
erro numérico é denominado de erro de discretização quando sua única fonte são os erros
de truncamento, ou seja, quando os erros de arredondamento, de iteração e de programação
podem ser desprezados (FERZIGER; PERIC, 2002). Nesse caso, o erro de discretização ( E )
pode ser escrito como

E(ϕ) = C1h
p1 + C2h

p2 + C3h
p3 + ..., (2.44)

onde h é o tamanho representativo de malha, Ci , i = 1,2,3,..., são coeficientes que
independem de h, mas dependem da variável em questão, e pi, com p1 < p2 < p3 < ..., são
inteiros positivos denominados ordens verdadeiras do erro. A primeira ordem verdadeira é
chamada de ordem assintótica e é indicada também por pL = p1. A ordem assintótica é um
resultado teórico que pode ser obtido "a priori" das soluções numéricas a partir dos tipos de
aproximações utilizadas na discretização do problema (OLIVEIRA, 2020).

O erro de discretização da aproximação CDS, é de 2ª ordem, ou seja, pL = 2. Porém,
a aproximação numérica da derivada temporal utilizando a formulação explícita ou implícita
é de 1ª ordem, ou seja, pL = 1. A ordem assintótica resultante da combinação, quando ocorre
uma mistura de aproximações no tempo e no espaço, é igual à ordem da aproximação que
apresenta a menor ordem assintótica.

No caso da combinação entre CDS, tanto para a formulação explícita quanto implícita,
a ordem assintótica resultante é igual à unidade. Uma maneira de se obter pL = 2 é utilizando a
formulação Crank-Nicolson, dado que tal formulação é de 2ª ordem no tempo (TANNEHILL
et al., 1982).
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Na TABELA 2 são apresentadas as ordens assintóticas de cada aproximação utilizada
neste trabalho (DEHGHAN, 2005; CAMPBELL; YIN, 2007; FERZIGER; PERIC, 2002;
TANNEHILL et al., 1982).

TABELA 2 – ORDENS ASSINTÓTICAS DAS APROXIMAÇÕES NUMÉRICAS UTILIZADAS.
Método Ordem Assintótica (pL)

UDS - Explícito 1
UDS - Implícito 1

UDS - Crank-Nicolson 1
CDS - Explícito 1
CDS - Implícito 1

CDS - Crank-Nicolson 2
UDS-C - Explícito (β = 1

2 ) 1
UDS-C - Implícito (β = 1

2 ) 1
UDS-C - Crank-Nicolson (β = 1

2 ) 1
Roberts e Weiss (RWS) 2

Leith (LS) 2

FONTE: Dehghan (2005), Campbell e Yin (2007), Ferziger e Peric
(2002) e Tannehill et al. (1982).

2.5.2 Ordem Efetiva

Através das chamadas estimativas "a posteriori", pode-se verificar se a ordem assintótica
do erro de discretização, calculada "a priori", é obtida pelo modelo numérico desenvolvido. Se
a solução analítica do problema é conhecida, pode-se utilizar a ordem efetiva, pE , do erro de
discretização para estimar a ordem assintótica. De acordo com Marchi (2001), a ordem efetiva
é calculada fazendo-se uso de duas malhas, uma fina e uma grossa, através de

pE =
log
(

Φ−ϕ2

Φ−ϕ1

)
log(q)

, (2.45)

onde Φ é a solução analítica exata, ϕ1 e ϕ2, h1 e h2, são as soluções numéricas e os tamanhos
representativos das malhas fina e grossa, respectivamente, e q = h2/h1 é a razão de refinamento
de malhas. Teoricamente, a ordem efetiva tende à ordem assintótica com o refinamento da
malha, ou seja, pE −→ pL quando h −→ 0 (MARCHI, 2001).

2.5.3 Esforço Computacional

Seguindo a abordagem de Roy et al. (2015), o esforço computacional de um método
numérico é avaliado através da análise do comportamento dos tempos de execução (t, em
segundos), ou de CPU ( tCPU ), em função do número de incógnitas ( N ) de cada malha.
Para tanto, é realizado um ajuste (GONÇALVES, 2013) da forma
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tCPU = cNp, (2.46)

onde p é a inclinação da curva de crescimento do tempo em relação aN (em escala logarítmica),
também chamada de ordem de complexidade do método, e c é uma constante dependente
do método.
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3 MODELO MATEMÁTICO

O modelo que descreve a temperatura (T ) e a umidade dos grãos (U ) utilizado neste
trabalho foi proposto por Thorpe (1997) e apresentado de forma detalhada em Thorpe (2001b).
De acordo com Lopes et al. (2006), algumas simplificações podem ser feitas no modelo original,
sem perda de acurácia. Dessa forma, o modelo simplificado, que aqui será adotado, é dado por

∂T

∂t

{
ρσ[cg + cWU ] + ϵρa

[
ca +R

(
cW +

∂hv

∂T

)]}
=

ρσhs
∂U

∂t
− uaρa

[
ca +R

(
cW +

∂hv

∂T

)]
∂T

∂y
+ ρσ

dm

dt
(Qr − 0,6hv), (3.1)

ρσ
∂U

∂t
= −uaρa

∂R

∂y
+

dm

dt
(0,6 + U), (3.2)

onde: t - tempo (s), y - eixo na direção vertical (orientado de baixo para cima) (m), U -
umidade dos grãos (kg (água) kg−1 (grão seco)), ua - velocidade do ar de aeração (ms−1),
cg - calor específico dos grãos (Jkg−1 ◦C−1), cW - calor específico da água (Jkg−1 ◦C−1),
ca - calor específico do ar (Jkg−1 ◦C−1), R - razão de mistura (g (vapor da água) g−1 (ar
seco)), ρa - densidade do ar intragranular (kgm−3), ρσ - densidade dos grãos (kgm−3),
hv - entalpia específica de vaporização da água (Jkg−1), hs - entalpia diferencial de sorção
(Jkg−1), T - temperatura dos grãos (◦C), ϵ - porosidade da massa de grãos (decimal), dm

dt
-

derivada da perda de matéria seca em relação ao tempo (kgs−1), Qr - calor de oxidação dos
grãos (Js−1m−3).

Considerou-se o fluxo de ar através da massa de grãos na direção vertical, ou seja:
y ∈ [0, L], onde L representa a altura do local de armazenamento da massa de grãos, conforme
a FIGURA 5. Portanto, considerou-se uma simplificação unidimensional do modelo.

FIGURA 5 – DOMÍNIO DE CÁLCULO.

FONTE: Modificado de Panigrahi et al. (2020b).
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3.1 Parâmetros do Modelo Matemático

O modelo matemático utilizado neste trabalho é composto por constantes, constantes
que dependem do tipo de grão e parâmetros que são obtidos por meio de soluções analíticas
conhecidas da literatura.

3.1.1 Constantes

A velocidade do ar de aeração (ua) consiste na velocidade na qual o ar flui através da
massa de grãos armazenada. Segundo Brooker et al. (1992) o calor específico da água (cW ) e
o calor específico do ar (ca) são quantidades bem definidas e respectivamente iguais a 4186
(J/(kg◦C)) e 1000 (J/(kg◦C)). De acordo com Fleurat-Lessard (2002), o calor de oxidação
dos grãos (Qr) é igual a 15778 (J/(sm3)).

3.1.2 Constantes Dependentes do Tipo de Grão

Segundo Silva e Corrêa (2000), a porosidade (ϵ) pode ser definida como a relação
entre o volume ocupado pelo ar existente na massa granular e o volume total ocupado por
esta massa, tendo grande influência sobre a pressão de um fluxo de ar que atravessa a massa de
grãos. A porosidade pode ser obtida de acordo com o tipo de grão, conforme a TABELA 3.

TABELA 3 – VALORES PARA A POROSIDADE DA MASSA DE GRÃOS.
Tipo de Grão Porosidade (ϵ) (%)

Soja 0,361
Arroz 0,584
Milho 0,435
Trigo 0,453
Aveia 0,555

FONTE: Brooker et al. (1992).

A densidade dos grãos (ρσ) varia de acordo com a TABELA 4 e determina o volume
requerido para armazenar uma determinada quantidade de produto. Esta propriedade influ-
encia diretamente a vazão de ar requerida para a aeração e os processos de transferência de
calor e de massa no ambiente de armazenamento (LOPES, 2006).

TABELA 4 – VALORES PARA A DENSIDADE DA MASSA DE GRÃOS.
Tipo de Grão Densidade (ρσ) ( kg

m3 )
Soja 737

Arroz 576
Milho 640
Trigo 762
Aveia 480

FONTE: Thorpe (2001b).
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O calor específico dos grãos, segundo Lopes (2006), representa a quantidade de
energia térmica requerida para aumentar a temperatura de 1 kg de produto em 1°C. Esta
propriedade também influencia os processos de transferência de calor e de massa durante a
aeração (NAVARRO; NOYES, 2001). A TABELA 5 mostra o calor específico (cg) para alguns
tipos de grãos.

TABELA 5 – VALORES PARA O CALOR ESPECÍFICO DA MASSA DE GRÃOS.
Tipo de Grão Calor Específico (cg) (Jkg−1 ◦C−1)

Soja 1637,0
Arroz 1197,0
Milho 1534,8
Trigo 1184,0
Aveia 1277,0

FONTE: Jayas e Cenkowski (2006).

3.1.3 Parâmetros com Soluções Analíticas Conhecidas

A entalpia diferencial de sorção (hs), assim como a entalpia específica de vaporização
da água (hv), são propriedades importantes, consideradas nas simulações do processo de aeração,
pois interferem nas transferências de calor e massa dentro do ambiente de armazenamento
(LOPES, 2006). Segundo Thorpe (2001b), a entalpia diferencial de sorção é a energia total
necessária para remover uma unidade de massa de água da massa de grãos.

A entalpia diferencial de sorção (hs) pode ser calculada pela equação de Chung-Pfost
(PFOST et al., 1976)

hs = hv

[
1 +

Ae−BU(T + 273,15)

(T + C)2 − 5 + 6800
T+273,15

]
, (3.3)

onde A , B e C são constantes que variam de acordo com o tipo de grão, conforme a
TABELA 6.

TABELA 6 – VALORES DAS CONSTANTES DA EQUAÇÃO DE CHUNG-PFOST.
Tipo de Grão A B C

Soja 138,45 14,967 24,576
Arroz 594,65 21,733 35,703
Milho 312,31 16,958 30,205
Trigo 725,59 23,607 35,662

FONTE: Pfost et al. (1976).

De acordo com Thorpe (2001b), o calor aplicado à água que a faz mudar de líquido
para vapor é chamado de entalpia específica de vaporização da água (hv) e fornece a energia
necessária para superar a atração mútua das moléculas no estado líquido, e pode ser calculada
por
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hv = 2501,33− 2,363T. (3.4)

Esta equação foi obtida por Thorpe (2001b) ajustando-se uma equação linear a dados
termodinâmicos obtidos por Cengel e Boles (1998). Derivando-se a Eq. (3.4) em relação à
temperatura, encontra-se a derivada da entalpia de vaporização da água (dhv

dT
).

Visando corrigir os possíveis efeitos da altitude, a densidade do ar (ρa) pode ser
calculada por (ALÉ, 2001)

ρa =
258,8Patm

101,325(T + 273,15)
, (3.5)

em que Patm corresponde à pressão atmosférica em kPa.

A perda de matéria seca pode ser estimada por meio de modelos obtidos ajustando-se
relações matemáticas a dados experimentais. O modelo mais utilizado é o apresentado por
Thompson (1972), ondea derivada da perda de matéria seca em relação ao tempo (dm

dt
) é dada

por

dm

dt
= 8,83× 10−4

{
exp

[
1,667× 10−6 t

MUMT

]
− 1

}
+ 2,833× 10−9 t

MUMT

, (3.6)

onde MU e MT são parâmetros utilizados para ajustar o tempo de aeração de acordo com o
teor de água e temperatura dos grãos. O parâmetro MU pode ser obtido por

MU = 0,103

(
exp

[
455

(100U)1,53

]
− 0,845U + 1,558

)
, (3.7)

e MT pode ser obtido de acordo com a faixa de temperatura e umidade:


MT = S, se T ≤ 15 ou U ≤ 19,

MT = S +
100U
U+1

− 19

100
exp

[
0,0183T − 0,2847

]
, se T > 15 e 19 < U < 28,

MT = S + 0,09 exp
[
0,0183T − 0,2847

]
, se T > 15 e U ≥ 28,

(3.8a)

(3.8b)

(3.8c)

onde S = 32,2 exp
[
− 0,1044T − 1,856

]
.

A razão de mistura (R) é a razão entre a massa de vapor de água e a massa de ar
seco em um dado volume de ar úmido. A razão de mistura é uma propriedade do ar, não
estando diretamente relacionada à estimativa do teor de água dos grãos, e pode ser calculada
por (THORPE, 2001a)

R = 0,622
rups

Patm − rups
, (3.9)
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onde ps é a pressão de vapor de saturação do ar (kPa) dada por (HUNTER, 1987)

ps =
6× 1025

(T + 273,15)5
exp

[
− 6800

T + 273,15

]
, (3.10)

e ru corresponde a umidade relativa de equilíbrio e pode ser calculada por (CHUNG; PFOST,
1967)

ru = exp

[
− A

T + C
exp

[
−BU

]]
. (3.11)

Nesta dissertação utilizaram-se as referências apontadas nesta seção para calcular os
parâmetros do modelo matemático, no entanto, na literatura do problema, há uma grande
variedade de opções para calcular estes parâmetros.

3.2 Condições Iniciais

Antes de serem armazenados, os grãos são submetidos à secagem, visando atingir um
teor de água ideal para o armazenamento seguro. Este procedimento aquece os grãos de forma
indesejável, sendo requerido um resfriamento da massa de grãos com a aeração. Portanto, em
todo domínio, a condição inicial de temperatura é dada por ( TI ).

T (y, 0) = TI . (3.12)

A umidade inicial ( UI ) pode ser obtida conforme Thorpe (2001b), por

U(y, 0) =
Up

100− Up

= UI , (3.13)

onde Up corresponde ao teor de água inicial dos grãos (% b.u.).

Obtém-se a razão de mistura inicial ( RI ) utilizando-se a Eq. (3.9) e empregando-se
TI e UI como parâmetros nas Eqs (3.10 e 3.11)

3.3 Condições de Contorno

Em y = 0 supôs-se que os grãos localizados na base do local de armazenamento
entram em equilíbrio com o ar de aeração, dessa forma

T (0, t) = TC , (3.14)

onde TC representa a temperatura do ar de aeração.

A umidade em y = 0 ( UC ) consiste em uma adaptação da equação de Chung-Pfost
(Eq. (3.11)) e pode ser calculada por
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U(0, t) = − 1

B
ln

[
ln
(
− ra

100

)(
− TC + C

A

)]
= UC , (3.15)

onde A, B e C variam de acordo com a TABELA 6 e ra representa a umidade relativa do ar
de aeração e é dada por

ra = ur

6×1025

(Tamb+273,15)5
exp

[
− 6800

Tamb+273,15

]
6×1025

(TC+273,15)5
exp

[
− 6800

TC+273,15

] , (3.16)

onde ur corresponde a umidade relativa do ar ambiente e Tamb é a temperatura ambiente.

A razão de mistura em y = 0 ( RC ), é dado por

R(0, t) = 0,622
rapsa

Patm − rapsa
= RC , (3.17)

onde psa corresponde a pressão de vapor de saturação, Eq. (3.10) utilizando TC como
parâmetro.

Em y = L, tem-se para a temperatura e umidade, as condições de contorno de
Neumann.

(
∂T

∂y

)
y=L

= 0, (3.18)

(
∂U

∂y

)
y=L

= 0. (3.19)

3.4 Método das Soluções Fabricadas (MSF)

Esta seção constitui o desenvolvimento da solução analítica para a temperatura da
massa de grãos, Eq. (3.1), e do termo fonte associado, utilizando o MSF.

3.4.1 Solução Analítica

Como discutido anteriormente, mesmo com a vasta utilização do modelo proposto
por Thorpe (2001b), ainda não existe uma investigação sobre a solução analítica do modelo
matemático. A fim de encontrar uma solução analítica para a temperatura da massa de grãos,
Eq. (3.1), considerou-se como base, dados experimentais apresentados por Khatchatourian e
Oliveira (2006) e Oliveira et al. (2007).

Estes dados foram obtidos no laboratório de medidas físicas e modelagem matemática
da Universidade Regional do Noroeste do Rio Grande do Sul (UNIJUI), em um protótipo de
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silo composto por um tubo PVC com isolamento térmico nas laterais, altura de 1,0 m (L = 1
m) e diâmetro de 0,15 m.

Para realização dos experimentos, os grãos de soja com teor de água médio de 12 % b.u.
foram previamente selecionados, limpos e aquecidos em estufa até temperatura aproximada
de 52,9 ºC e a temperatura do ar de aeração era 31,1 °C. Ou seja, TI = 52,9 °C e TC = 31,1
°C. A temperatura dos grãos foi medida por termopares, inseridos dentro da massa de grãos
ao longo do tubo, nas seguintes seções da coluna de grãos: y = 0,15 m; y = 0,27 m; y = 0,40 m
e y = 0,54 m durante uma hora.

A FIGURA 6 mostra o comportamento da temperatura dos grãos, obtida experimen-
talmente, nas alturas y = 0,15 m, y = 0,27 m, y = 0,40 m e y = 0,54 m em relação a uma hora
de aeração.

FIGURA 6 – DADOS EXPERIMENTAIS DA TEMPERATURA DOS GRÃOS.

FONTE: Khatchatourian e Oliveira (2006) e Oliveira et al. (2007).

A solução analítica para a Eq. (3.1) proposta neste trabalho foi fabricada a partir de
modificações feitas em uma solução de um problema apresentado por Van Genuchten e Alves
(1982), e ela é dada por

T̂ (y, t) = TI +
1

2

(
TC − TI

)[
erfc
(y − 2,2× 10−4t√

8× 10−6t

)
+

exp
(2,2× 10−4y

8× 10−6

)
erfc
(y + 2,2× 10−4t√

8× 10−6t

)]
, (3.20)
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onde erfc representa a função erro complementar (VAN GENUCHTEN; ALVES, 1982),
definida por

erfc(x) = 1− erf(x) = 2√
π

∫ ∞

x

e−t2dt. (3.21)

A FIGURA 7 mostra a Eq. (3.20) aplicada nos mesmos pontos dos dados experimen-
tais, utilizando TI = 52,9 °C e TC = 31,1°C.

FIGURA 7 – SOLUÇÃO ANALÍTICA PROPOSTA E OS DADOS EXPERIMENTAIS.

FONTE: O autor (2022).

Pode-se notar na FIGURA 7 que a solução analítica proposta neste trabalho apresenta
uma boa concordância e acurácia quando comparada aos dados experimentais. A solução dada
pela Eq. (3.20) foi fabricada para satisfazer um experimento realizado por Khatchatourian e
Oliveira (2006) e Oliveira et al. (2007) com grãos de soja, muito citado na literatura. Observa-
se que a solução analítica adota como parâmetros: o tamanho do local de armazenamento (y),
o tempo de aeração (t), a temperatura do ar de aeração (TC) e a temperatura inicial da massa
do grãos (TI).

Considerando sistemas de aeração realistas, que requerem aproximadamente entre 300
e 600 horas, diferentes geometrias, diferentes temperaturas iniciais e diferentes temperaturas
do ar de aeração, a solução proposta neste trabalho, dada pela Eq. (3.20), satisfaz as condições
mencionadas com ligeiras adaptações. Quanto à mudança do tipo de grão, são necessárias
modificações mais elaboradas e estas adaptações são objeto de estudos.
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3.4.2 Termo Fonte

Para a função definida anteriormente ser considerada solução analítica da Eq. (3.1),
um termo fonte ( ST ) deve ser adicionado a equação governante:

∂T

∂t

{
ρσ[cg + cWU ] + ϵρa[ca +R(cW +

∂hv

∂T
)]

}
=

ρσhs
∂U

∂t
− uaρa

[
ca +R(cW +

∂hv

∂T
)

]
∂T

∂y
+ ρσ

dm

dt
(Qr − 0,6hv) + ST , (3.22)

onde o termo fonte ST pode ser calculado da seguinte forma:

ST =
∂T̂

∂t

{
ρσ[cg + cWU ] + ϵρa[ca +R(cW +

∂hv

∂T
)]

}
−ρσhs

∂U

∂t
+ uaρa

[
ca +R(cW +

∂hv

∂T
)

]
∂T̂

∂y
− ρσ

dm

dt
(Qr − 0,6hv). (3.23)

A derivada ∂T̂
∂t

é dada por:

∂T̂

∂t
=

1

2
(TC − TI)

[
−

2 exp
[−125000(y−2,2×104t)

2

t

](
− 176,777(y−2,2×10−4t)

t
3
2

− 0,0777817√
t

)
√
π

−
2 exp

[
27,5y − 125000(2,2×104t+y)

2

t

](
0,0777817√

t
− 176,777(2,2×10−4t+y)

t
3
2

)
√
π

]
. (3.24)

E a derivada ∂T̂
∂y

é dada por:

∂T̂

∂y
=

1

2
(TC − TI)

[
27,5 exp

[
27,5y

]
erfc
(353,553(2,2× 10−4t+ y)√

t

)

−
398,942 exp

[
−125000(y−2,2×10−4t)2

t

]
√
t

−
398,942 exp

[
27,5y − 125000(2,2×10−4t+y)2

t

]
√
t

]
. (3.25)

Substituindo as Eqs. (3.24) e (3.25) na Eq. (3.23), obtém-se o termo fonte:
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ST =

{
1

2
(TC − TI)

[
−

2 exp
[−125000(y−2,2×104t)

2

t

](
− 176,777(y−2,2×10−4t)

t
3
2

− 0,0777817√
t

)
√
π

−
2 exp

[
27,5y − 125000(2,2×104t+y)

2

t

](
0,0777817√

t
− 176,777(2,2×10−4t+y)

t
3
2

)
√
π

]}{
ρσ[cg + cWU ]

+ ϵρa[ca +R(cW +
∂hv

∂T
)]

}
− ρσhs

∂U

∂t
+ uaρa

[
ca +R(cW +

∂hv

∂T
)

]
{
1

2
(TC − TI)

[
27,5 exp

[
27,5y

]
erfc
(353,553(2,2× 10−4t+ y)√

t

)

−
398,942 exp

[
−125000(y−2,2×10−4t)2

t

]
√
t

−
398,942 exp

[
27,5y − 125000(2,2×10−4t+y)2

t

]
√
t

]}
−ρσ

dm

dt
(Qr − 0,6hv). (3.26)

Ademais, efetuando algumas simplificações e denotando A , B e F, como

A = ρσ[cg + cWU ] + ϵρa

[
ca +R

(
cW +

∂hv

∂T

)]
, (3.27)

B = uaρa

[
ca +R

(
cW +

∂hv

∂T

)]
, (3.28)

F = A

{
1

2
(TC − TI)

[
−

2 exp
[−125000(y−2,2×104t)

2

t

](
− 176,777(y−2,2×10−4t)

t
3
2

− 0,0777817√
t

)
√
π

−
2 exp

[
27,5y − 125000(2,2×104t+y)

2

t

](
0,0777817√

t
− 176,777(2,2×10−4t+y)

t
3
2

)
√
π

]}

+B

{
1

2
(TC − TI)

[
27,5 exp

(
27,5y

)
erfc
(353,553(2,2× 10−4t+ y)√

t

)

−
398,942 exp

[
−125000(y−2,2×10−4t)2

t

]
√
t

−
398,942 exp

[
27,5y − 125000(2,2×10−4t+y)2

t

]
√
t

]}
,

(3.29)

tem-se a equação que descreve a temperatura (T ) da massa de grãos:

A
∂T

∂t
+B

∂T

∂y
= F, (3.30)

cuja solução analítica é dada pela Eq. (3.20) por meio do MSF.
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4 MODELO NUMÉRICO

Neste capítulo são apresentados os modelos numéricos resultantes da discretização
do modelo matemático apresentado no capítulo 3. Os modelos numéricos são desenvolvidos
através das aproximações apresentadas no capítulo 2: UDS; CDS; UDS-C; RWS e LS. O
capítulo contém também a implementação da viscosidade artificial nos métodos de segunda
ordem, ou seja, a modificação dos coeficientes desses métodos. Finalmente, este capítulo é
encerrado apresentando um algoritmo da implementação computacional.

4.1 Esquema com Um Ponto a Montante (UDS)

Aproximando a derivada espacial de T por UDS (Eq. (2.7)) e a derivada temporal de
T utilizando a Eq. (2.10), tem-se a discretização da Eq. (3.30):

A θ

[
T n+1
P − T n

P

∆t

]
= −B θ

[
T θ
P − T θ

S

∆y

]
+ F θ, (4.1)

A θT n+1
P = A θT n

P −B θ
(∆t

∆y

)
T θ
P +B θ

(∆t

∆y

)
T θ
S + F θ∆t, (4.2)

onde:

A θ = ρσ

[
cg + cWU θ

P

]
+ ϵρa

[
ca +Rθ

P

(
cW +

∂hv

∂T

)]
, (4.3)

B θ = uaρa

[
ca +Rθ

P

(
cW +

∂hv

∂T

)]
, (4.4)

F θ = A θ

{
1

2
(TC − TI)

[
−

2 exp
[−125000(y−2,2×104t)

2

t

](
− 176,777(y−2,2×10−4t)

t
3
2

− 0,0777817√
t

)
√
π

+

−
2 exp

[
27,5y − 125000(2,2×104t+y)

2

t

](
0,0777817√

t
− 176,777(2,2×10−4t+y)

t
3
2

)
√
π

]}
+

+B θ

{
1

2
(TC − TI)

[
27,5 exp

(
27,5y

)
erfc
(353,553(2,2× 10−4t+ y)√

t

)
+

−
398,942 exp

[
−125000(y−2,2×10−4t)2

t

]
√
t

−
398,942 exp

[
27,5y − 125000(2,2×10−4t+y)2

t

]
√
t

]}
. (4.5)

Aproximando a derivada espacial de R por UDS (Eq. (2.7)) e a derivada temporal de
U utilizando a Eq. (2.10), tem-se a discretização da Eq. (3.2):
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ρσ

[
Un+1
P − Un

P

∆t

]
= −uaρa

[
Rθ

P −Rθ
S

∆y

]
+

dm

dt
(0,6 + U θ

P ), (4.6)

Un+1
P = Un

P − uaρa
ρσ

(∆t

∆y

)
Rθ

P +
uaρa
ρσ

(∆t

∆y

)
Rθ

S +
∆tdm

dt

ρσ
U θ
P +

0,6∆tdm
dt

ρσ
. (4.7)

As condições de contorno de Neumann, Eqs. (3.18) e (3.19), podem ser aproximadas
por UDS (Eq. (2.7)), dessa forma a temperatura T e a umidade U em y = L podem ser
calculadas, respectivamente, por

T n+1
NC = T n

NC−1, (4.8)

Un+1
NC = Un

NC−1, (4.9)

onde NC representa o nó localizado no contorno, conforme a FIGURA 2.

4.1.1 UDS com Formulação Explícita (UDS - Explícito)

No caso de se usar θ = 0, a Eq. (4.2) resulta em:

A nT n+1
P =

[
A n −B n

(∆t

∆y

)]
T n
P +B n

(∆t

∆y

)
T n
S + F n∆t, (4.10)

onde:

A n = ρσ[cg + cWUn
P ] + ϵρa

[
ca +Rn

P

(
cW +

∂hv

∂T

)]
, (4.11)

B n = uaρa

[
ca +Rn

P

(
cW +

∂hv

∂T

)]
, (4.12)

F n = A n

{
1

2
(TC − TI)

[
−

2 exp
[−125000(y−2,2×104t)

2

t

](
− 176,777(y−2,2×10−4t)

t
3
2

− 0,0777817√
t

)
√
π

+

−
2 exp

[
27,5y − 125000(2,2×104t+y)

2

t

](
0,0777817√

t
− 176,777(2,2×10−4t+y)

t
3
2

)
√
π

]}
+

+B n

{
1

2
(TC − TI)

[
27,5 exp

(
27,5y

)
erfc
(353,553(2,2× 10−4t+ y)√

t

)
+
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−
398,942 exp

[
−125000(y−2,2×10−4t)2

t

]
√
t

−
398,942 exp

[
27,5y − 125000(2,2×10−4t+y)2

t

]
√
t

]}
. (4.13)

Ao escrever a Eq. (4.10) no formato da Eq. (2.32), os seguintes coeficientes são obtidos:

aS = 0, (4.14a)
aN = 0, (4.14b)
aP = A n, (4.14c)

bP =
[

A n −B n
(∆t

∆y

)]
T n
P +B n

(∆t

∆y

)
T n
S + F ∆t. (4.14d)

No caso de usar θ = 0, a Eq. (4.7) resulta em:

Un+1
P =

[
1 +

∆tdm
dt

ρσ

]
Un
P − uaρa

ρσ

(∆t

∆y

)
Rn

P +
uaρa
ρσ

(∆t

∆y

)
Rn

S +
0,6∆tdm

dt

ρσ
. (4.15)

4.1.2 UDS com Formulação Implícita (UDS - Implícito)

No caso de usar θ = 1, a Eq. (4.2) resulta em:

[
B n+1

(∆t

∆y

)
+ A n+1

]
T n+1
P = A n+1T n

P +B n+1
(∆t

∆y

)
T n+1
S + F n+1∆t, (4.16)

onde:

A n+1 = ρσ[cg + cWUn+1
P ] + ϵρa

[
ca +Rn+1

P

(
cW +

∂hv

∂T

)]
, (4.17)

B n+1 = uaρa

[
ca +Rn+1

P

(
cW +

∂hv

∂T

)]
, (4.18)

F n+1 = A n+1

{
1

2
(TC − TI)

[
−

2 exp
[−125000(y−2,2×104t)

2

t

](
− 176,777(y−2,2×10−4t)

t
3
2

− 0,0777817√
t

)
√
π

+

−
2 exp

[
27,5y − 125000(2,2×104t+y)

2

t

](
0,0777817√

t
− 176,777(2,2×10−4t+y)

t
3
2

)
√
π

]}
+

+B n+1

{
1

2
(TC − TI)

[
27,5 exp

(
27,5y

)
erfc
(353,553(2,2× 10−4t+ y)√

t

)
+

−
398,942 exp

[
−125000(y−2,2×10−4t)2

t

]
√
t

−
398,942 exp

[
27,5y − 125000(2,2×10−4t+y)2

t

]
√
t

]}
,

(4.19)
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resultando nos seguintes coeficientes:

aS = B n+1
(∆t

∆y

)
, (4.20a)

aN = 0, (4.20b)
aP = aS + A n+1F n+1, (4.20c)

bP = A n+1T n
P + F n+1∆t. (4.20d)

No caso de usar θ = 1, a Eq. (4.7) resulta em:

Un+1
P =

[
ρσ

ρσ −∆tdm
dt

][
Un
P − uaρa

ρσ

(∆t

∆y

)
Rn+1

P +
uaρa
ρσ

(∆t

∆y

)
Rn+1

S +
0,6∆tdm

dt

ρσ

]
. (4.21)

4.1.3 UDS com Formulação Crank-Nicolson (UDS - Crank-Nicolson)

No caso de usar θ = 0,5, a Eq. (4.2) resulta em:

[
BCN

2

(∆t

∆y

)
+ A CN

]
T n+1
P =

[
A CN − BCN

2

(∆t

∆y

)]
T n
P+

+
BCN

2

(∆t

∆y

)
T n+1
S +

BCN

2

(∆t

∆y

)
T n
S + F CN∆t, (4.22)

onde:

A CN = ρσ

[
cg + cW

1

2

(
Un+1
P + Un

P

)]
+ ϵρa

[
ca +

1

2

(
Rn+1

P +Rn
P

)(
cW +

∂hv

∂T

)]
, (4.23)

BCN = uaρa

[
ca +

1

2

(
Rn+1

P +Rn
P

)(
cW +

∂hv

∂T

)]
, (4.24)

F CN = A CN

{
1

2
(TC − TI)

[
−

2 exp
[−125000(y−2,2×104t)

2

t

](
− 176,777(y−2,2×10−4t)

t
3
2

− 0,0777817√
t

)
√
π

+

−
2 exp

[
27,5y − 125000(2,2×104t+y)

2

t

](
0,0777817√

t
− 176,777(2,2×10−4t+y)

t
3
2

)
√
π

]}
+

+BCN

{
1

2
(TC − TI)

[
27,5 exp

(
27,5y

)
erfc
(353,553(2,2× 10−4t+ y)√

t

)
+

−
398,942 exp

[
−125000(y−2,2×10−4t)2

t

]
√
t

−
398,942 exp

[
27,5y − 125000(2,2×10−4t+y)2

t

]
√
t

]}
,

(4.25)
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resultando nos seguintes coeficientes:

aS =
BCN

2

(∆t

∆y

)
, (4.26a)

aN = 0, (4.26b)
aP = aS + A CN , (4.26c)

bP =

[
A CN − BCN

2

(∆t

∆y

)]
T n
P +

BCN

2

(∆t

∆y

)
T n
S + F CN∆t. (4.26d)

No caso de usar θ = 0,5, a Eq. (4.7) resulta em:

Un+1
P =

[
2ρσ

2ρσ −∆tdm
dt

][(
1 +

∆tdm
dt

2ρσ

)
Un
P − uaρa

2ρσ

(∆t

∆y

)(
Rn+1

P +Rn
P

)
+

+
uaρa
2ρσ

(∆t

∆y

)(
Rn+1

S +Rn
S

)
+

0,6∆tdm
dt

ρσ

]
. (4.27)

4.2 Esquema com Diferença Central (CDS)

Aproximando a derivada espacial de T por CDS (Eq. (2.17)) e a derivada temporal
de T utilizando a Eq. (2.10), tem-se a discretização da Eq. (3.30):

A θ

[
T n+1
P − T n

P

∆t

]
= −B θ

[
T θ
N − T θ

S

2∆y

]
+ F θ, (4.28)

A θT n+1
P = A θT n

P − B θ

2

(∆t

∆y

)
T θ
N +

B θ

2

(∆t

∆y

)
T θ
S + F θ∆t, (4.29)

onde A θ, B θ e F θ, são definidos da mesma forma que as Eqs. (4.3), (4.4) e (4.5), respectivamente.

Aproximando a derivada espacial de R por CDS (Eq. (2.17)) e a derivada temporal
de U utilizando a Eq. (2.10), tem-se a discretização da Eq. (3.2):

ρσ

[
Un+1
P − Un

P

∆t

]
= −uaρa

[
Rθ

N −Rθ
S

2∆y

]
+

dm

dt
(0,6 + U θ

P ), (4.30)

Un+1
P = Un

P − uaρa
2ρσ

(∆t

∆y

)
Rθ

N +
uaρa
2ρσ

(∆t

∆y

)
Rθ

S +
∆tdm

dt

ρσ
U θ
P + 0,6

∆tdm
dt

ρσ
. (4.31)

As condições de contorno de Neumann, Eqs. (3.18) e (3.19), podem ser aproximadas
por CDS utilizando a técnica de ponto fictício (MALISKA, 2004), dessa forma a temperatura
T e a umidade U em y = L podem ser calculadas, respectivamente, por
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T n+1
NC = T n

NC +
F θ∆t

A θ
, (4.32)

Un+1
NC = Un

NC +
∆tdm

dt

ρσ
U θ
P + 0,6

∆tdm
dt

ρσ
. (4.33)

4.2.1 CDS com Formulação Explícita (CDS - Explícito)

No caso de se usar θ = 0, a Eq. (4.29) resulta em:

A nT n+1
P = A nT n

P − B n

2

(∆t

∆y

)
T n
N +

B n

2

(∆t

∆y

)
T n
S + F n∆t, (4.34)

onde A n, B n e F n podem ser calculados através das Eqs. (4.11), (4.12) e (4.13), respectivamente.

Resultando nos seguintes coeficientes:

aS = 0, (4.35a)
aN = 0, (4.35b)
aP = A n, (4.35c)

bP = A nT n
P − B n

2

(∆t

∆y

)
T n
N +

B n

2

(∆t

∆y

)
T n
S + F n∆t. (4.35d)

No caso de usar θ = 0, a Eq. (4.31) resulta em:

Un+1
P =

[
1 +

∆tdm
dt

ρσ

]
Un
P − uaρa

2ρσ

(∆t

∆y

)
Rn

N +
uaρa
2ρσ

(∆t

∆y

)
Rn

S + 0,6
∆tdm

dt

ρσ
, (4.36)

e no contorno (y = L), a temperatura e a umidade são obtidas, respectivamente, por

T n+1
NC = T n

NC +
F n∆t

A n
, (4.37)

Un+1
NC =

[
1 +

∆tdm
dt

ρσ

]
Un
NC + 0,6

∆tdm
dt

ρσ
. (4.38)

4.2.2 CDS com Formulação Implícita (CDS - Implícito)

No caso de se usar θ = 1, a Eq. (4.29) resulta em:

A n+1T n+1
P = A n+1T n

P − B n+1

2

(∆t

∆y

)
T n+1
N +

B n+1

2

(∆t

∆y

)
T n+1
S + F n+1∆t, (4.39)

onde A n+1, B n+1 e F n+1 podem ser calculados através das Eqs. (4.17), (4.18) e (4.19), respecti-
vamente.
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Resultando nos seguintes coeficientes:

aS =
B n+1

2

(∆t

∆y

)
, (4.40a)

aN = −B n+1

2

(∆t

∆y

)
, (4.40b)

aP = A n+1, (4.40c)
bP = A n+1T n

P + F n+1∆t. (4.40d)

No caso de usar θ = 1, a Eq. (4.31) resulta em:

Un+1
P =

[
ρσ

ρσ −∆tdm
dt

][
Un
P − uaρa

2ρσ

(∆t

∆y

)
Rn+1

N +
uaρa
2ρσ

(∆t

∆y

)
Rn+1

S + 0,6
∆tdm

dt

ρσ

]
, (4.41)

e no contorno (y = L), a temperatura e a umidade são obtidas, respectivamente, por

T n+1
NC = T n

NC +
F n+1∆t

A n+1
, (4.42)

Un+1
NC =

[
ρσ

ρσ −∆tdm
dt

][
Un
NC + 0,6

∆tdm
dt

ρσ

]
. (4.43)

4.2.3 CDS com Formulação Crank-Nicolson (CDS - Crank-Nicolson)

No caso de usar θ = 0,5, a Eq. (4.29) resulta em:

A CNT n+1
P = A CNT n

P−
BCN

4

(∆t

∆y

)(
T n+1
N +T n

N

)
+

BCN

4

(∆t

∆y

)(
T n+1
S +T n

S

)
+F CN∆t, (4.44)

A CNT n+1
P = A CNT n

P − BCN

4

(∆t

∆y

)
T n+1
N +

BCN

4

(∆t

∆y

)
T n+1
S − BCN

4

(∆t

∆y

)
T n
N+

+
BCN

4

(∆t

∆y

)
T n
S + F CN∆t, (4.45)

onde A CN , BCN e F CN podem ser calculados através das Eqs. (4.23), (4.24) e (4.25), respecti-
vamente.

Resultando nos seguintes coeficientes:
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aS =
BCN

4

(∆t

∆y

)
, (4.46a)

aN = −BCN

4

(∆t

∆y

)
, (4.46b)

aP = A CN , (4.46c)

bP = A CNT n
P − BCN

4

(∆t

∆y

)
T n
N +

BCN

4

(∆t

∆y

)
T n
S + F CN∆t. (4.46d)

No caso de usar θ = 0,5, a Eq. (4.31) resultam em:

Un+1
P =

[
2ρσ

2ρσ −∆tdm
dt

][[
1 +

∆tdm
dt

2ρσ

]
Un
P − uaρa

4ρσ

(∆t

∆y

)(
Rn+1

N +Rn
N

)
+

+
uaρa
4ρσ

(∆t

∆y

)(
Rn+1

S +Rn
S

)
+

0,6∆tdm
dt

ρσ

]
, (4.47)

e no contorno (y = L), a temperatura e a umidade são obtidas, respectivamente, por

T n+1
NC = T n

NC +
F CN∆t

A CN
, (4.48)

Un+1
NC =

[
2ρσ

2ρσ −∆tdm
dt

][[
1 +

∆tdm
dt

2ρσ

]
Un
NC +

0,6∆tdm
dt

ρσ

]
. (4.49)

4.3 UDS com Correção Adiada (UDS-C)

Aproximando a derivada espacial de T por UDS-C (Eq. (2.23)) e a derivada temporal
de T utilizando a Eq. (2.10), tem-se a discretização da Eq. (3.30):

A θ

[
T n+1
P − T n

P

∆t

]
= −B θ

[
T θ
P − T θ

S

∆y
+ β

[T ∗
S − 2T ∗

P + T ∗
N

2∆y

]]
+ F θ, (4.50)

A θT n+1
P = A θT n

P −B θ
(∆t

∆y

)
T θ
P +B θ

(∆t

∆y

)
T θ
S−

B θβ

2

(∆t

∆y

)[
T ∗
S−2T ∗

P +T ∗
N

]
+F θ∆t, (4.51)

onde A θ, B θ e F θ são definidos da mesma forma que as Eqs. (4.3), (4.4) e (4.5), respectivamente.

Aproximando a derivada espacial de R por UDS-C (Eq. (2.23)) e a derivada temporal
de U utilizando a Eq. (2.10), tem-se a discretização da Eq. (3.2):
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ρσ

[
Un+1
P − Un

P

∆t

]
= −uaρa

[
Rθ

P −Rθ
S

∆y
+ β

[R∗
S − 2R∗

P +R∗
N

2∆y

]]
+

dm

dt
(0,6 + U θ

P ), (4.52)

Un+1
P = Un

P − uaρa
ρσ

(∆t

∆y

)
Rθ

P +
uaρa
ρσ

(∆t

∆y

)
Rθ

S − uaρaβ

2ρσ

(∆t

∆y

)[
R∗

S − 2R∗
P +R∗

N

]
+

+
∆tdm

dt

ρσ
U θ
P +

0,6∆tdm
dt

ρσ
. (4.53)

As condições de contorno de Neumann, Eqs. (3.18) e (3.19), podem ser aproximadas
utilizando as Eqs. (4.8) e (4.9).

4.3.1 UDS-C com Formulação Explícita (UDS-C - Explícito)

No caso de se usar θ = 0, a Eq. (4.51) resulta em:

A nT n+1
P =

[
A n−B n

(∆t

∆y

)]
T n
P +B n

(∆t

∆y

)
T n
S −

B nβ

2

(∆t

∆y

)[
T ∗
S−2T ∗

P+T ∗
N

]
+F n∆t, (4.54)

onde A n, B n, F n podem ser calculados através das Eqs. (4.11, 4.12 e 4.13), respectivamente.

Resultando nos seguintes coeficientes:

aS = 0, (4.55a)
aN = 0, (4.55b)
aP = A n, (4.55c)

bP =
[

A n −B n
(∆t

∆y

)]
T n
P +B n

(∆t

∆y

)
T n
S − B nβ

2

(∆t

∆y

)[
T ∗
S − 2T ∗

P + T ∗
N

]
+ F n∆t.

(4.55d)

No caso de usar θ = 0, a Eq. (4.53) resulta em:

Un+1
P =

[
1 +

∆tdm
dt

ρσ

]
Un
P − uaρa

ρσ

(∆t

∆y

)
Rn

P +
uaρa
ρσ

(∆t

∆y

)
Rn

S+

−uaρaβ

2ρσ

(∆t

∆y

)[
R∗

S − 2R∗
P +R∗

N

]
+

0,6∆tdm
dt

ρσ
. (4.56)

4.3.2 UDS-C com Formulação Implícita (UDS-C - Implícito)

No caso de usar θ = 1, a Eq. (4.51) resulta em:

[
B n+1

(∆t

∆y

)
+ A n+1

]
T n+1
P = A n+1T n

P +B n+1
(∆t

∆y

)
T n+1
S
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−B n+1β

2

(∆t

∆y

)[
T ∗
S − 2T ∗

P + T ∗
N

]
+ F n+1∆t, (4.57)

onde A n+1, B n+1eF n+1 podem ser calculados através das Eqs. (4.17), (4.18) e (4.19), respecti-
vamente.

Resultando nos seguintes coeficientes:

aS = B n+1
(∆t

∆y

)
, (4.58a)

aN = 0, (4.58b)
aP = aS + A n+1, (4.58c)

bP = A n+1T n
P − B n+1β

2

(∆t

∆y

)[
T ∗
S − 2T ∗

P + T ∗
N

]
+ F n+1∆t. (4.58d)

No caso de usar θ = 1, a Eq. (4.53) resulta em:

Un+1
P =

[
ρσ

ρσ −∆tdm
dt

][
Un
P − uaρa

ρσ

(∆t

∆y

)
Rn+1

P +
uaρa
ρσ

(∆t

∆y

)
Rn+1

S +

−uaρaβ

2

(∆t

∆y

)[
R∗

S − 2R∗
P +R∗

N

]
+

0,6∆tdm
dt

ρσ

]
. (4.59)

4.3.3 UDS-C com Formulação Crank-Nicolson (UDS-C - Crank-Nicolson)

No caso de usar θ = 0,5, a Eq. (4.51) resulta em:

[BCN

2

(∆t

∆y

)
+ A CN

]
T n+1
P =

[
A CN − BCN

2

(∆t

∆y

)]
T n
P +

BCN

2

(∆t

∆y

)
T n+1
S +

BCN

2

(∆t

∆y

)
T n
S+

−BCNβ

2

(∆t

∆y

)[
T ∗
S − 2T ∗

P + T ∗
N

]
+ F CN∆t, (4.60)

onde A CN , BCN e F CN podem ser calculados através das Eqs. (4.23), (4.24) e (4.25), respecti-
vamente.

Resultando nos seguintes coeficientes:

aS =
BCN

2

(∆t

∆y

)
, (4.61a)

aN = 0, (4.61b)

aP =
[BCN

2

(∆t

∆y

)
+ A CN

]
, (4.61c)

bP =

[
A CN − BCN

2

(∆t

∆y

)]
T n
P +

BCN

2

(∆t

∆y

)
T n
S − BCNβ

2

(∆t

∆y

)[
T ∗
S − 2T ∗

P + T ∗
N

]
+ F CN∆t.

(4.61d)
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No caso de usar θ = 0,5, a Eq. (4.53) resulta em:

Un+1
P =

[
2ρσ

2ρσ −∆tdm
dt

][[
1 +

∆tdm
dt

2ρσ

]
Un
P − uaρa

2ρσ

(∆t

∆y

)(
Rn+1

P +Rn
P

)
+

+
uaρa
2ρσ

(∆t

∆y

)(
Rn+1

S +Rn
S

)
− uaρaβ

2

(∆t

∆y

)[
R∗

S − 2R∗
P +R∗

N

]
+

0,6∆tdm
dt

ρσ

]
. (4.62)

4.4 Esquema de Roberts e Weiss (RWS)

Aproximando a derivada espacial de T com a Eq. (2.26) e a derivada temporal de T

pela Eq. (2.10), tem-se a discretização da Eq. (3.30):

A CN

[
T n+1
P − T n

P

∆t

]
= −BCN

2

[
T n+1
P − T n+1

S

∆y
+

T n
N − T n

P

∆y

]
+ F CN , (4.63)

[
2A CN+

BCN∆t

∆y

]
T n+1
P =

[
2A CN+

BCN∆t

∆y

]
T n
P+
(BCN∆t

∆y

)
T n+1
S −

(BCN∆t

∆y

)
T n
N+2F CN∆t,

(4.64)
onde A CN , BCN e F CN são definidos da mesma forma que nas Eqs. (4.23), (4.24) e (4.25),
respectivamente.

Resultando nos seguintes coeficientes:

aS =
BCN∆t

∆y
, (4.65a)

aN = 0, (4.65b)
aP = 2A CN + aS, (4.65c)

bP =

[
2A CN +

BCN∆t

∆y

]
T n
P −

(BCN∆t

∆y

)
T n
N + 2F CN∆t. (4.65d)

Aproximando a derivada espacial de R pela Eq. (2.26) e a derivada temporal de U

pela Eq. (2.10), tem-se a discretização da Eq. (3.2):

ρσ

[
Un+1
P − Un

P

∆t

]
= −uaρa

2

[
Rn+1

P −Rn+1
S

∆y
+

Rn
N −Rn

P

∆y

]
+ 0,6

dm

dt
+

1

2

dm

dt

(
Un+1
P + Un

P

)
,

(4.66)
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Un+1
P =

[
2ρσ

2ρσ −∆tdm
dt

][[
1 +

∆tdm
dt

2ρσ

]
Un
P+,

−uaρa
2ρσ

(∆t

∆y

)(
Rn+1

P −Rn+1
S +Rn

N −Rn
P

)
+

0,6∆tdm
dt

ρσ

]
. (4.67)

As condições de contorno de Neumann, Eqs. (3.18) e (3.19), podem ser aproximadas
utilizando a técnica de ponto fictício (MALISKA, 2004), dessa forma a temperatura T e a
umidade U em y = L podem ser calculadas pelas Eqs. (4.48) e (4.49), respectivamente.

4.5 Esquema de Leith (LS)

Aproximando a derivada espacial de T com a Eq. (2.29) e a derivada temporal de T

pela Eq. (2.10), tem-se a discretização da Eq. (3.30):

[
T n+1
P − T n

P

∆t

]
= −B n

A n

((B n

A n

)(∆t

∆y

)[T n
P − T n

S

∆y

]
+

[
1−
(B n

A n

)(∆t

∆y

)][T n
N − T n

S

2∆y

])
+

F n

A n
,

(4.68)
ou ainda,[
T n+1
P − T n

P

∆t

]
= −

(B n

A n

)2(∆t

∆y

)[T n
P − T n

S

∆y

]
−

[
B n

A n
−
(B n

A n

)2(∆t

∆y

)][T n
N − T n

S

2∆y

]
+

F
A n

,

(4.69)
ou ainda,

T n+1
P − T n

P = −
(B n

A n

∆t

∆y

)2[
T n
P − T n

S

]
−

[
1

2

B n

A n

(∆t

∆y

)
− 1

2

(B n

A n

∆t

∆y

)2][
T n
N − T n

S

]
+∆t

F n

A n
,

(4.70)
e, finalmente,

T n+1
P =

[
1−

(B n

A n

∆t

∆y

)2]
T n
P +

1

2

[(B n

A n

∆t

∆y

)2
+
(B n

A n

∆t

∆y

)]
T n
S+

+
1

2

[(B n

A n

∆t

∆y

)2
−
(B n

A n

∆t

∆y

)]
T n
N +∆t

F n

A n
, (4.71)

resultando nos seguintes coeficientes:

aS = 0, (4.72a)
aN = 0, (4.72b)
aP = 1, (4.72c)

bP =
[
1−

(B n

A n

∆t

∆y

)2]
T n
P +

1

2

[(B n

A n

∆t

∆y

)2
+
(B n

A n

∆t

∆y

)]
T n
S+,

+
1

2

[(B n

A n

∆t

∆y

)2
−
(B n

A n

∆t

∆y

)]
T n
N +∆t

F n

A n
. (4.72d)
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O mesmo trabalho pode ser feito na Eq. (3.2), resultando na seguinte discretização:

Un+1
P =

[
2ρσ

2ρσ − dm
dt
∆t

][[
1 +

dm
dt
∆t

2ρσ

]
Un
P +

[
−
(uaρa

ρσ

∆t

∆y

)2]
Rn

P +
1

2

[(uaρa
ρσ

∆t

∆y

)2
+

+
(uaρa

ρσ

∆t

∆y

)]
Rn

S +
1

2

[(uaρa
ρσ

∆t

∆y

)2
−
(uaρa

ρσ

∆t

∆y

)]
Rn

N +
0,6∆tdm

dt

ρσ

]
. (4.73)

As condições de contorno de Neumann, Eqs. (3.18) e (3.19) podem ser aproximadas
utilizando a técnica de ponto fictício (MALISKA, 2004), dessa forma a temperatura T e a
umidade U em y = L podem ser calculadas pelas Eqs. (4.48) e (4.49), respectivamente.

4.6 Viscosidade Artificial

Neste trabalho, pretende-se utilizar a viscosidade artificial nos métodos de segunda
ordem com o intuito de minimizar suas oscilações não-físicas. Conforme a TABELA 2, os
métodos de segunda ordem são: CDS - Crank-Nicolson, RWS e LS. Portanto, pequenas
alterações nos coeficientes devem ser feitas, basta adicionar a forma discretizada da viscosidade
artificial (Eq. (2.42)) no termo fonte (bP ) dos métodos.

Para a aproximação CDS - Crank-Nicolson, as seguintes modificações devem ser
feitas:

aS =
BCN

4

(∆t

∆y

)
, (4.74a)

aN = −BCN

4

(∆t

∆y

)
, (4.74b)

aP = A CN , (4.74c)

bP = A CNT n
P − BCN

4

(∆t

∆y

)
T n
N +

BCN

4

(∆t

∆y

)
T n
S + F CN∆t+

+
D

∆y

[∣∣∣T n
N − T n

P

∣∣∣(T n
N − T n

P

)
−
∣∣∣T n

P − T n
S

∣∣∣(T n
P − T n

S

)]
. (4.74d)

Para a aproximação RWS, as seguintes alterações devem ser feitas:

aS =
BCN∆t

∆y
, (4.75a)

aN = 0, (4.75b)
aP = 2A CN + aS, (4.75c)

bP =

[
2A CN +

BCN∆t

∆y

]
T n
P −

(BCN∆t

∆y

)
T n
N + 2F CN∆t+,+

+
D

∆y

[∣∣∣T n
N − T n

P

∣∣∣(T n
N − T n

P

)
−
∣∣∣T n

P − T n
S

∣∣∣(T n
P − T n

S

)]
. (4.75d)
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Para a aproximação LS, as seguintes modificações devem ser feitas:

aS = 0, (4.76a)
aN = 0, (4.76b)
aP = 1, (4.76c)

bP =
[
1−
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A n
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−
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P − T n

S

)]
. (4.76d)

4.7 Algoritmo Base para a Implementação Computacional

Os passos básicos do algoritmo utilizado neste trabalho, para a implementação com-
putacional do problema, são descritos no Algoritmo 1. Tal algoritmo leva em consideração
a aproximação LS (e que aqui será indicada por LS em vermelho nos pontos específicos no
algoritmo), mas para as demais discretizações, basta fazer uma pequena adaptação.
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Algoritmo 1: CÁLCULO DA TEMPERATURA E UMIDADE - (LS)
Entrada: ua, cW , ca, Qr, ϵ, ρσ , cg , A, B, C, ur, ui, Patm, TC , TI , L, tf , Ny , Nt

Calcula-se os valores de ∆y e ∆t. [Eqs. (2.1) e (2.2)]
Inicializa-se T (1 : Ny, 1 : Nt), U(1 : Ny, 1 : Nt)) e R(1 : Ny, 1 : Nt).
for (n = 1) e (i = 1:Ny) do

T (i, 1) = TI [Eq. (3.12)]
U(i, 1) = UI [Eq. (3.13)]

for (i = 1 : Ny) e (n = 1) do
Calcula-se a pressão de vapor de saturação (ps). [Eq. (3.10)]
Calcula-se a umidade relativa de equilíbrio (ru). [Eq. (3.11)]
Calcula-se a razão de mistura inicial R(i, 1). [Eq. (3.9)]

for (n = 2 : Nt) e (i = 1 : Ny) do
if (i = 1) then

Calcula-se a densidade do ar (ρa). [Eq. (3.5)]
Calcula-se a umidade relativa do ar de aeração (ra). [Eq. (3.16)]
Calcula-se a pressão de vapor de saturação (utilizando ra) (psa). [Eq. (3.10)]
Calcula-se a razão de mistura em y = 0 (R(1, n)). [Eq. (3.17)]
Calcula-se a umidade em y = 0 (U(1, n))). [Eq. (3.15)]
Calcula-se a temperatura em y = 0 (T (1, n)). [Eq. (3.14)]

for (i = 2 : Ny − 1) do
Calcula-se a perda de matéria seca em relação ao tempo (dmdt ). [Eq. (3.6)]
Calcula-se a pressão de vapor de saturação (ps). [Eq. (3.10)]
Calcula-se a pressão de umidade relativa de equilíbrio (ru). [Eq. (3.11)]
Calcula-se a razão de mistura (R(i, n)). [Eq. (3.9)]
Calcula-se a umidade (U(i, n)). [Eq. (4.73)] LS
Calcula-se a perda de matéria seca em relação ao tempo (dmdt ). [Eq. (3.6)]
Calcula-se entalpia específica de vaporização da água (hv). [Eq. (3.4)]
Calcula-se a derivada da entalpia de vaporização da água em relação a temperatura

(∂hv

∂T ). [Eq. (3.4)]a
Calcula-se entalpia diferencial de sorção hs. [Eq. (3.3)]
Calcula-se a temperatura (T (i, n)). [Eq. (4.71)] LS

if (i = Ny) then
Calcula-se a pressão de vapor de saturação em y = L (ps). [Eq. (3.10)]
Calcula-se a umidade relativa de equilíbrio em y = L (ru). [Eq. (3.11)]
Calcula-se a razão de mistura em y = L (R(Ny, n)). [Eq. (3.9)]
Calcula-se a umidade em y = L (U(Ny, n)). [Eq. (4.49)] LS
Calcula-se a perda de matéria seca em relação ao tempo em y = L (dmdt ). [Eq. (3.6)]
Calcula-se entalpia específica de vaporização da água em y = L (hv). [Eq. (3.4)]
Calcula-se entalpia diferencial de sorção em y = L hs. [Eq. (3.3)]
Calcula-se a temperatura em y = L (T (Ny, n)). [Eq. (4.48)] LS

a Corresponde a derivada da Eq. (3.4) em relação à temperatura.
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5 RESULTADOS

Neste capítulo apresenta-se a verificação numérica de todos os métodos apresentados
nos capítulos anteriores e efetua-se as comparações entre os métodos. Além disso, diversas
simulações computacionais foram realizadas a fim de investigar as resoluções numéricas quando
comparadas com a solução analítica proposta neste trabalho.

5.1 Verificação Numérica

Realizou-se a verificação dos modelos numéricos por meio de comparações das
suas soluções e por meio da análise dos erros envolvidos, a qual, por sua vez, está associada
principalmente ao monitoramento das ordens efetivas dos erros (ver seção 2.5), além da análise
de seus decaimentos em relação ao refino de malha.

Para cada aproximação utilizada são apresentados os resultados referentes às ordens
efetivas e os erros de discretização para a temperatura (T ), nos seguintes pontos:

• T0,15 = T (0,15; 450) - 0,15 m após 450 segundos;

• T0,27 = T (0,27; 950) - 0,27 m após 950 segundos;

• T0,40 = T (0,40; 1500) - 0,40 m após 1500 segundos.

Obteve-se resultados análogos para estes pontos pré-definidos utilizando-se outros
tempos de simulação. Em todos os testes, calculou-se o tamanho representativo de malha, h,
como h = 2∆y = ∆t, onde ∆y e ∆t foram definidos, respectivamente, pelas Eqs. (2.1) e (2.2).
Realizou-se os testes de verificação utilizando as seguintes malhas (NyxNt): 32x64, 64x128,
128x256, 256x512 e 512x1024.

Segundo Dehghan (2005), a combinação da aproximação espacial CDS com a apro-
ximação temporal explícita é instável para este tipo de problema, e esta combinação não tem
utilidade prática. Sendo assim, os métodos CDS - Explícito e UDS-C - Explícito (combinação
entre UDS - Explícito e CDS - Explícito) não foram utilizados.

A seguir, os testes de verificação numérica são apresentados. Os comportamentos dos
erros de discretização com o refino de malha, para todos os métodos utilizados em T0,15, T0,27

e T0,40, podem ser analisados, respectivamente, nas FIGURAS 8, 9 e 10.
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FIGURA 8 – DECAIMENTO DOS ERROS DE DISCRETIZAÇÃO COM O REFINO DE MA-
LHA PARA TODAS AS APROXIMAÇÕES EM T0,15.

FONTE: O autor(2022).

FIGURA 9 – DECAIMENTO DOS ERROS DE DISCRETIZAÇÃO COM O REFINO DE MA-
LHA PARA TODAS AS APROXIMAÇÕES EM T0,27.

FONTE: O autor(2022).

Observa-se nas FIGURAS 8, 9 e 10 que, com o refinamento da malha, para todos os
pontos em análise (T0,15, T0,27 e T0,40), o erro de discretização diminuiu para todos os métodos
em estudo.

Além disso, as inclinações das curvas dos métodos de primeira ordem são aproxima-
damente iguais, indicando que os erros decaem sob as mesmas taxas. É possível ver a diferença
de inclinação entre as curvas das aproximações de primeira ordem e as curvas das aproxima-
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FIGURA 10 – DECAIMENTO DOS ERROS DE DISCRETIZAÇÃO COM O REFINO DE MA-
LHA PARA TODAS AS APROXIMAÇÕES EM T0,40.

FONTE: O autor(2022).

ções de segunda ordem, indicando que os métodos de segunda ordem apresentam melhor
desempenho, conforme esperado.

As FIGURAS 11, 12 e 13 ilustram, respectivamente, as ordens efetivas (pE) com o
refino de malha para todos os métodos em estudo nos pontos T0,15, T0,27 e T0,40.

FIGURA 11 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM O REFINO DE MALHA EM T0,15 PARA TODAS OS MÉTODOS EM
ESTUDO.

FONTE: O autor(2022).
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FIGURA 12 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM O REFINO DE MALHA EM T0,27 PARA TODAS OS MÉTODOS EM
ESTUDO.

FONTE: O autor(2022).

FIGURA 13 – COMPORTAMENTO DAS ORDENS EFETIVAS DOS ERROS DE DISCRETIZA-
ÇÃO COM O REFINO DE MALHA EM T0,40 PARA TODAS OS MÉTODOS EM
ESTUDO.

FONTE: O autor(2022).

A TABELA 7 apresenta as ordens efetivas (pE), obtidas em uma malha de dimensão
512x1024, ou seja, correspondem aos pontos com h = 1/1024 (a malha mais refinada) das
FIGURAS 11, 12 e 13 comparadas com as respectivas ordens assintóticas (pL) da TABELA 2.
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TABELA 7 – ORDENS EFETIVAS DAS APROXIMAÇÕES NUMÉRICAS UTILIZADAS.
Aproximação Numérica pE(T0,15) pE(T0,27) pE(T0,40) pL

UDS - Explícito 0,955131 1,000654 0,970914 1
UDS - Implícito 0,878338 0,925327 0,8871622 1

UDS - Crank-Nicolson 0,917002 0,963722 0,928635 1
CDS - Implícito 0,978672 1,060261 1,040256 1

CDS - Crank-Nicolson 2,085905 1,951828 1,950503 2
UDS-C Implícito (β = 1

2 ) 0,914213 0,980993 0,952797 1
UDS-C Crank-Nicolson (β = 1

2 ) 0,945063 1,014166 0,990999 1
Roberts e Weiss (RWS) 2,035717 1,940688 2,126867 2

Leith (LS) 2,099425 2,050493 2,061124 2

FONTE: O autor (2022).

Nota-se nas FIGURAS 11, 12 e 13 e na TABELA 7 que, com o refino de malha, as
ordens efetivas de cada método tendem ao valor mostrado na TABELA 2, para todos os pontos
em análise (T0,15, T0,27 e T0,40), corroborando seus resultados.

5.2 Resultados Numéricos

As resoluções numéricas foram obtidas usando programas computacionais escritos
em Fortran 95, usando o Microsoft Visual Studio Code v. 1.62.0 com precisão quádrupla e
foram compilados em um computador com processador Intel Core i5 Quad-Core (3.4 GHz)
com 8 GB DDR3 de memória RAM (1333 MHz) e uma placa de vídeo AMD Radeon 7850
2GB. Foram realizadas simulações variando o número de nós e passos no tempo para cada
aproximação utilizada. Para calcular o erro entre as simulações numéricas e a solução analítica
proposta, utilizou-se a norma L2 do erro numérico, definida por

L2(y) =
∣∣∣∣∣∣T n

Num(y)− T n
An(y)

∣∣∣∣∣∣
2
, (5.1)

onde ||.||2 representa a norma L2 do erro para cada y fixo e n variando, TNum(y) e TAn(y)

representam as temperaturas obtidas numericamente e analiticamente, respectivamente. Nas
próximas seções serão apresentadas as comparações entre os desempenhos dos métodos com o
refinamento de malha quando comparados à solução analítica durante uma hora de aeração
(tf = 3600s).

5.2.1 Efeitos da Viscosidade Artificial

As FIGURAS 14, 15 e 16 e TABELAS 8, 9 e 10 mostram, com detalhes, o efeito do
uso ou não da viscosidade artificial nos métodos de segunda ordem (CDS-Crank-Nicolson,
RWS e LS).

As FIGURAS 14a e 14b mostram o comportamento da aproximação espacial CDS
com a aproximação temporal Crank-Nicolson, respectivamente, sem a viscosidade artificial
(Eq. (4.46d)) e com a utilização da viscosidade artificial (Eq. (4.74d)), utilizando-se Ny = 256

e Nt = 512.
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FIGURA 14 – EFEITOS DA VISCOSIDADE ARTIFICIAL NO MÉTODO CDS - CRANK-
NICOLSON.

(a) SEM VISCOSIDADE ARTIFICIAL (b) COM VISCOSIDADE ARTIFICIAL
Fonte: O autor (2022).

A TABELA 8 mostra a norma L2 (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m do método CDS - Crank-Nicolson com e sem a utilização da viscosidade artificial.

TABELA 8 – NORMA L2 DO ERRO NUMÉRICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO A VISCOSIDADE ARTIFICIAL NO MÉTODO CDS - CRANK-
NICOLSON E NÃO UTILIZANDO A VISCOSIDADE ARTIFICIAL COM Ny =
256 e Nt = 512.

CDS - Crank-Nicolson 0,15 m 0,27 m 0,40 m 0,54 m
SEM V. A. 0,46234E+02 0,37943E+02 0,33183E+02 0,29610E+02
COM V. A. 0,90104E+00 0,72498E+00 0,63062E+00 0,56777E+00

Fonte: O autor (2022).

As FIGURAS 15a e 15b mostram o comportamento do método RWS, respectiva-
mente, sem a viscosidade artificial (Eq. (4.65d)) e com a utilização da viscosidade artificial
(Eq. (4.75d)), utilizando-se Ny = 256 e Nt = 512.

FIGURA 15 – EFEITOS DA VISCOSIDADE ARTIFICIAL NO MÉTODO RWS.

(a) SEM VISCOSIDADE ARTIFICIAL (b) COM VISCOSIDADE ARTIFICIAL
Fonte: O autor (2022).
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A TABELA 9 mostra a norma L2 (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m do método RWS com e sem a utilização da viscosidade artificial.

TABELA 9 – NORMA L2 DO ERRO NUMÉRICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO A VISCOSIDADE ARTIFICIAL NO MÉTODO RWS E NÃO UTI-
LIZANDO A VISCOSIDADE ARTIFICIAL COM Ny = 256 e Nt = 512.

RWS 0,15 m 0,27 m 0,40 m 0,54 m
SEM V. A. 0,39721E+02 0,32612E+02 0,28411E+02 0,25212E+02
COM V. A. 0,79835E+00 0,69449E+00 0,64035E+00 0,60269E+00

Fonte: O autor (2022).

As FIGURAS 16a e 16b mostram o comportamento do método LS, respectivamente,
sem a viscosidade artificial (Eq. (4.72d)) e com a utilização da viscosidade artificial (Eq. (4.76d)),
utilizando-se Ny = 256 e Nt = 512.

FIGURA 16 – EFEITOS DA VISCOSIDADE ARTIFICIAL NO MÉTODO LS

(a) SEM VISCOSIDADE ARTIFICIAL (b) COM VISCOSIDADE ARTIFICIAL
Fonte: O autor (2022).

A TABELA 10 mostra a norma L2 (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m do método LS com e sem a utilização da viscosidade artificial.

TABELA 10 – NORMA L2 DO ERRO NUMÉRICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO A VISCOSIDADE ARTIFICIAL NO MÉTODO LS E NÃO UTI-
LIZANDO A VISCOSIDADE ARTIFICIAL COM Ny = 256 e Nt = 512.

LS 0,15 m 0,27 m 0,40 m 0,54 m
SEM V. A. 0,19426E+02 0,15137E+02 0,12822E+02 0,11252E+02
COM V. A. 0,38558E+00 0,27057E+00 0,21759E+00 0,18492E+00

Fonte: O autor (2022).

Observa-se que nos métodos CDS - Crank-Nicolson, RWS e LS, a viscosidade
artificial tem um efeito fundamental no controle das oscilações nas soluções numéricas. Em
virtude disso, na sequência da dissertação, os dados referentes aos métodos CDS - Crank-
Nicolson, RWS e LS, levam em consideração o uso da viscosidade artificial.
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5.2.2 Esquema com Um Ponto a Montante (UDS)

As FIGURAS 17, 18 e 19 mostram o comportamento da aproximação espacial UDS
com as aproximações temporais: explícita (FIGURA 17), implícita (FIGURA 18) e Crank-
Nicolson (FIGURA 19), utilizando-se (a) Ny = 64 e Nt = 128 e (b) Ny = 256 e Nt = 512.

FIGURA 17 – COMPARATIVO ENTRE AS SOLUÇÕES NUMÉRICAS E ANALÍTICAS UTILI-
ZANDO UDS - EXPLÍCITO.

(a) Ny = 64 e Nt = 128 (b) Ny = 256 e Nt = 512

Fonte: O autor (2022).

FIGURA 18 – COMPARATIVO ENTRE AS SOLUÇÕES NUMÉRICAS E ANALÍTICAS UTILI-
ZANDO UDS - IMPLÍCITO.

(a) Ny = 64 e Nt = 128 (b) Ny = 256 e Nt = 512

Fonte: O autor (2022).
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FIGURA 19 – COMPARATIVO ENTRE AS SOLUÇÕES NUMÉRICAS E ANALÍTICAS UTILI-
ZANDO UDS - CRANK-NICOLSON.

(a) Ny = 64 e Nt = 128 (b) Ny = 256 e Nt = 512

Fonte: O autor (2022).

A TABELA 11 mostra a norma L2 (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m das aproximações: UDS - Explícito, UDS - Implícito e UDS - Crank-Nicolson.

TABELA 11 – NORMA L2 DO ERRO NUMÉRICO APLICADA AOS PONTOS DE INTE-
RESSE UTILIZANDO UDS - EXPLÍCITO, UDS - IMPLÍCITO E UDS - CRANK-
NICOLSON.

Aproximação Ny x Nt 0,15 m 0,27 m 0,40 m 0,54 m

UDS - Explícito 64x128 0,79739E+01 0,11484E+02 0,13623E+02 0,15364E+02
256x512 0,17062E+01 0,24806E+01 0,30938E+01 0,36074E+01

UDS - Implícito 64x128 0,32112E+02 0,38754E+02 0,43225E+02 0,47039E+02
256x512 0,98588E+01 0,12216E+02 0,13951E+02 0,15386E+02

UDS - Crank-Nicolson 64x128 0,19445E+02 0,24758E+02 0,28163E+02 0,31010E+02
256x512 0,51925E+01 0,68008E+01 0,79779E+01 0,89451E+01

Fonte: O autor (2022).

Pode-se observar que com o refino da malha os resultados numéricos se aproximam
do resultado analítico. Nota-se também que, devido ao fato das malhas utilizadas respeitarem a
condição de estabilidade da formulação explícita, o método UDS - Explícito foi mais eficiente
que os métodos UDS - Implícito e UDS - Crank-Nicolson.

5.2.3 Esquema com Diferença Central (CDS)

As FIGURAS 20 e 21 mostram o comportamento da aproximação espacial CDS
com as aproximações temporais implícita (FIGURA 20) e Crank-Nicolson (FIGURA 21),
utilizando-se (a) Ny = 64 e Nt = 128 e (b) Ny = 256 e Nt = 512.



78

FIGURA 20 – COMPARATIVO ENTRE AS SOLUÇÕES NUMÉRICAS E ANALÍTICAS UTILI-
ZANDO CDS - IMPLÍCITO.

(a) Ny = 64 e Nt = 128 (b) Ny = 256 e Nt = 512

Fonte: O autor (2022).

FIGURA 21 – COMPARATIVO ENTRE AS SOLUÇÕES NUMÉRICAS E ANALÍTICAS UTILI-
ZANDO CDS - CRANK-NICOLSON.

(a) Ny = 64 e Nt = 128 (b) Ny = 256 e Nt = 512

Fonte: O autor (2022).

A TABELA 12 mostra a norma L2 (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m das aproximações: CDS - Implícito e CDS - Crank-Nicolson.

TABELA 12 – NORMA L2 DO ERRO NUMÉRICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO CDS - IMPLÍCITO E CDS - CRANK-NICOLSON.

Aproximação Ny x Nt 0,15 m 0,27 m 0,40 m 0,54 m

CDS - Implícito 64x128 0,15214E+02 0,15019E+02 0,14964E+02 0,15020E+02
256x512 0,16843E+02 0,12500E+02 0,10486E+02 0,92868E+01

CDS - Crank-Nicolson 64x128 0,24121E+02 0,18853E+02 0,16212E+02 0,14350E+02
256x512 0,90104E+00 0,72498E+00 0,63062E+00 0,56777E+00

Fonte: O autor (2022).
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Visualiza-se que para a camada de 0,15 m, o método CDS - Implícito não apresentou
melhora com o refino de malha. Isto se deve ao fato do método, embora de primeira ordem,
apresentar oscilações não-físicas na solução numérica.

5.2.4 UDS com Correção Adiada (UDS-C)

As FIGURAS 22 e 23 mostram o comportamento da aproximação espacial UDS-C
com as aproximações temporais implícita (FIGURA 22) e Crank-Nicolson (FIGURA 23),
utilizando-se (a) Ny = 64 e Nt = 128 e (b) Ny = 256 e Nt = 512.

FIGURA 22 – COMPARATIVO ENTRE AS SOLUÇÕES NUMÉRICAS E ANALÍTICAS UTILI-
ZANDO UDS-C - IMPLÍCITO.

(a) Ny = 64 e Nt = 128 (b) Ny = 256 e Nt = 512

Fonte: O autor (2022).

FIGURA 23 – COMPARATIVO ENTRE AS SOLUÇÕES NUMÉRICAS E ANALÍTICAS UTILI-
ZANDO UDS-C - CRANK-NICOLSON.

(a) Ny = 64 e Nt = 128 (b) Ny = 256 e Nt = 512

Fonte: O autor (2022).

A TABELA 13 mostra a norma L2 (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m das aproximações: UDS-C - Implícito e UDS-C - Crank-Nicolson.
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TABELA 13 – NORMA L2 DO ERRO NUMÉRICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO UDS-C - IMPLÍCITO E UDS-C - CRANK-NICOLSON.

Aproximação Ny x Nt 0,15 m 0,27 m 0,40 m 0,54 m

UDS-C - Implícito 64x128 0,19535E+02 0,23449E+02 0,26123E+02 0,28420E+02
256x512 0,69867E+01 0,76702E+01 0,83632E+01 0,89985E+01

UDS-C - Crank-Nicolson 64x128 0,78813E+01 0,10224E+02 0,11722E+02 0,12971E+02
256x512 0,48818E+01 0,42649E+01 0,42108E+01 0,43017E+01

Fonte: O autor (2022).

5.2.5 Esquema de Roberts e Weiss (RWS)

A FIGURA 24 mostra o comportamento da aproximação RWS utilizando-se (a)
Ny = 64 e Nt = 128 e (b) Ny = 256 e Nt = 512.

FIGURA 24 – COMPARATIVO ENTRE AS SOLUÇÕES NUMÉRICAS E ANALÍTICAS UTILI-
ZANDO RWS.

(a) Ny = 64 e Nt = 128 (b) Ny = 256 e Nt = 512

Fonte: O autor (2022).

A TABELA 14 mostra a norma L2 (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m da aproximação RWS.

TABELA 14 – NORMA L2 DO ERRO NUMÉRICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO RWS.

Aproximação Ny x Nt 0,15 m 0,27 m 0,40 m 0,54 m

RWS 64x128 0,17201E+02 0,16575E+02 0,15772E+02 0,14538E+02
256x512 0,79835E+00 0,69449E+00 0,64035E+00 0,60269E+00

Fonte: O autor (2022).
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5.2.6 Esquema de Leith (LS)

A FIGURA 25 mostra o comportamento da aproximação LS utilizando-se (a) Ny =

64 e Nt = 128 e (b) Ny = 256 e Nt = 512.

FIGURA 25 – COMPARATIVO ENTRE AS SOLUÇÕES NUMÉRICAS E ANALÍTICAS UTILI-
ZANDO LS.

(a) Ny = 64 e Nt = 128 (b) Ny = 256 e Nt = 512

Fonte: O autor (2022).

A TABELA 15 mostra a norma L2 (Eq. (5.1)) aplicada aos pontos 0,15 m, 0,27 m, 0,40
m e 0,54 m da aproximação LS.

TABELA 15 – NORMA L2 DO ERRO NUMÉRICO APLICADA AOS PONTOS DE INTERESSE
UTILIZANDO LS.

Aproximação Ny x Nt 0,15 m 0,27 m 0,40 m 0,54 m

LS 64x128 0,86454E+01 0,69525E+01 0,60400E+01 0,53747E+01
256x512 0,38558E+00 0,27057E+00 0,21759E+00 0,18492E+00

Fonte: O autor (2022).

5.3 Comparativo Entre as Aproximações

Nesta seção apresenta-se as comparações entre o desempenho das aproximações
numéricas, com foco especial na comparação entre o método preferido pela literatura, UDS -
Explícito, e os demais métodos. Primeiramente são comparados os erros em relação ao número
de incógnitas usados. Em seguida, os tempos computacionais são exibidos e discutidos.

Com o objetivo de comparar os métodos utilizados, a TABELA 16 mostra as normas
L2 das normas L2(y) definida como

L2 =
∣∣∣∣∣∣L2(y)

∣∣∣∣∣∣
2
, (5.2)
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para todos os métodos em relação ao número de incógnitas (N = NyxNt) utilizadas, onde
||.||2 representa a norma L2 para y variando, ou seja, y1 = 0,15 m, y2 = 0,27 m, y3 = 0,40 m e
y4 = 0,54 m.

TABELA 16 – NORMAS L2 DO ERRO NUMÉRICO EM RELAÇÃO AO NÚMERO DE IN-
CÓGNITAS PARA CADA MÉTODO UTILIZADO.

N 2048 8192 32768 131072
UDS - Explícito 0,423953E+02 0,246870E+02 0,120533E+02 0,562578E+01
UDS - Implícito 0,115970E+03 0,813272E+02 0,488517E+02 0,260343E+02

UDS - Crank-Nicolson 0,788805E+02 0,524008E+02 0,292950E+02 0,147267E+02
CDS - Implícito 0,329772E+03 0,580427E+02 0,146876E+02 0,116746E+02

CDS - Crank-Nicolson 0,974650E+02 0,374968E+02 0,104454E+02 0,143440E+01
UDS-C - Implícito 0,766608E+02 0,492095E+02 0,282868E+02 0,160799E+02

UDS-C - Crank-Nicolson 0,379368E+02 0,217324E+02 0,121467E+02 0,884629E+01
RWS 0,764881E+02 0,295019E+02 0,772825E+01 0,137585E+01

LS 0,424803E+02 0,137277E+02 0,229758E+01 0,550837E+00
Fonte: O autor (2022).

A FIGURA 26 mostra os dados da TABELA 16 em um gráfico L2 versus o número
de incógnitas para todos os métodos utilizados.

FIGURA 26 – NORMA L2 DO ERRO VERSUS O NÚMERO DE INCÓGNITAS.

FONTE: O autor (2022).

Verifica-se inicialmente que a norma L2 do erro decai com o aumento no número
de incógnitas para todos os métodos usados, como esperado. Além disso, observa-se com a
TABELA 16 e a FIGURA 26 que os métodos que apresentam os menores erros em relação a
solução analítica são: UDS - Explícito, CDS - Crank-Nicolson, RWS e LS.
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Para o maior número de incógnitas testado (N = 131072), a diferença entre o método
UDS - Explícito (melhor método de primeira ordem e preferido pela literatura) com CDS
- Crank-Nicolson, RWS e LS é de, respectivamente, 4,19138 °C, 4,24993 °C e 5,074943
°C; mostrando que os métodos de segunda ordem apresentam resultados consideravelmente
melhores se comparado ao melhor método de primeira ordem.

A FIGURA 27 ilustra o efeito do número de incógnitas (N ) sobre o tempo de CPU,
para cada aproximação utilizada.

FIGURA 27 – EFEITO DO NÚMERO DE INCÓGNITAS SOBRE O TEMPO DE CPU PARA
CADA APROXIMAÇÃO UTILIZADA

FONTE: O autor (2022)

Pode-se observar na FIGURA 27 que o tempo de CPU dos métodos UDS - Explí-
cito,UDS - Implícito, UDS - Crank-Nicolson, CDS - Implícito, CDS - Crank-Nicolson,
RWS e LS são menores com o aumento no número de incógnitas do que os métodos UDS-C
- Implícito e UDS-C Crank-Nicolson.

A TABELA 17 resume os tempos de CPU obtidos para os métodos que apresentaram
melhores comportamentos na FIGURA 26 (UDS - Explícito, CDS - Crank-Nicolson, RWS
e LS) para diversos valores de N = NyxNt.

TABELA 17 – TEMPO DE CPU (SEGUNDOS) DAS APROXIMAÇÕES UTILIZADAS EM RE-
LAÇÃO AO NÚMERO DE INCÓGNITAS.

N UDS - Explícito CDS - Crank-Nicolson RWS LS
2048 8,73209E-02 9,17998E-02 9,12019E-02 9,64619E-02
8192 0,347722 0,35931 0,35766 0,36324
32768 1,3726 1,40793 1,41547 1,42788
131072 5,48489 5,59400 5,60301 5,68517

Fonte: O autor (2022).
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Observa-se que o método UDS - Explícito apresenta um tempo de CPU menor
que os demais métodos, porém com a máxima diferença 0,10911s, 0,11812s e 0,20028s,
respectivamente para CDS - Crank-Nicolson, RWS e LS.

Nota-se que os tempos de CPU estão muito próximos, isto se deve ao fato do
método TDMA ser muito eficiente e apresentar excelente complexidade. Além disso, existe
um elevado número de elementos nos coeficientes e termo fonte de todos os métodos, o que
acaba nivelando a complexidade da resolução do sistema.

Levando em consideração as seguintes expressões:

EM =
L2 (UDS - Explícito)

L2

, (5.3)

tMCPU =
tCPU (UDS - Explícito)

tCPU

, (5.4)

na TABELA 18, compara-se o desempenho do método UDS - Explícito (amplamente utilizado
na literatura) com os métodos CDS - Crank-Nicolson, RWS e LS. É possível observar que,
se o valor obtido for maior que a unidade, o método teve desempenho melhor que UDS -
Explícito.

TABELA 18 – COMPARATIVO ENTRE OS MELHORES MÉTODOS
Método EM tMCPU

UDS - Explícito 1,00000 1,00000
CDS - Crank-Nicolson 3,87797 0,98049

RWS 4,04300 0,97891
LS 10,0985 0,96477

FONTE: O autor (2022)

Dado a grande diferença entre as normas L2 (coluna EM ), e a pequena diferença de
tempos de CPUs (coluna tMCPU ), os métodos CDS - Crank-Nicolson, RWS e LS mostraram
ser melhores que o método UDS - Explícito, amplamente utilizado na literatura (THORPE,
2001b; LOPES et al., 2006; RADTKE, 2009; KWIATKOWSKI JR, 2011; LOPES et al., 2014,
2015; RIGONI; KWIATKOWSKI JR, 2020).

Portanto, este trabalho propõe a utilização destes três métodos, ainda não utilizados
na literatura, CDS - Crank-Nicolson, RWS e LS, para solucionar numericamente o modelo
proposto por Thorpe (2001b), com foco especial sobre o método LS (veja FIGURA 26).
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6 CONCLUSÕES

6.1 Conclusões Gerais

Neste trabalho foi proposta uma solução analítica usando o MSF, fidedigna a dados
experimentais, para o modelo matemático proposto por Thorpe (2001b) referente ao problema
de aeração da massa de grãos. Tal solução, com pequenas modificações, atende a sistemas
com diferentes geometrias, longos períodos de aeração e condições iniciais e de contorno
distintas. Com relação a outros tipos de grãos, mudanças mais elaboradas são exigidas e essas
modificações são objeto de estudos.

Utilizou-se o MDF para solucionar numericamente o modelo matemático, e foram
realizados estudos sobre o comportamento de diversos tipos de aproximações numéricas, ainda
não exploradas na literatura para este problema. Para os métodos de segunda ordem, CDS
- Crank-Nicolson, RWS e LS, utilizou-se a viscosidade artificial a fim de evitar oscilações
não-físicas nas soluções numéricas.

Verificou-se que os métodos CDS - Crank-Nicolson, RWS e LS, obtiveram menores
erros se comparados ao método amplamente utilizado, UDS - Explícito. Observou-se também
que a diferença de tempo de CPU entre os métodos propostos e o utilizado na literatura é
muito pequena.

Portanto, este trabalho propõe a utilização dos três métodos, CDS - Crank-Nicolson,
RWS e LS, para solucionar numericamente o modelo de aeração da massa de grãos proposto
por Thorpe (2001b), com foco especial sobre o método LS.

6.2 Principais Contribuições

As principais contribuições desta dissertação são:

• Propôs-se uma solução analítica, com comportamento fidedigno a dados experimentais
retirados da literatura, para o processo de aeração da massa de grãos.

• Solucionou-se o modelo matemático numericamente utilizando outras aproximações
numéricas que se mostraram melhores que o método amplamente utilizado na literatura.

• Implementou-se a viscosidade artificial nos métodos de segunda ordem para tratar
oscilações não-físicas nas soluções numéricas no modelo proposto por Thorpe (2001b).

• O trabalho é pioneiro em realizar uma verificação numérica das resoluções computacio-
nais do modelo estudado.
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6.3 Proposta de Trabalhos Futuros

Com a finalidade de complementar e expandir os estudos deste trabalho, são sugeridas
as seguintes propostas de trabalhos futuros:

• Implementar a solução analítica proposta nesta dissertação em outros modelos matemá-
ticos relacionados a aeração da massa de grãos.

• Investigar o efeito de diferentes métodos de discretização, por exemplo o método dos
volumes finitos, para solucionar o modelo matemático.

• Considerar o modelo matemático sem as simplificações adotadas e comparar os modelos.

• Investigar e implementar o modelo matemático em 2D e 3D.

• Aplicar outros solvers para solucionar o sistema, como o método multigrid.
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