
PRACTICAL
FOURIER ANALYSIS

FOR MULTIGRID
METHODS

© 2005 by Chapman & Hall/CRC Press



Numerical Insights

Series Editor
A. Sydow, GMD-FIRST, Berlin, Germany

Editorial Board
P. Borne, École de Lille, France; G. Carmichael, University of Iowa, USA;

L. Dekker, Delft University of Technology, The Netherlands; A. Iserles, University
of Cambridge, UK; A. Jakeman, Australian National University, Australia;

G. Korn, Industrial Consultants (Tucson), USA; G.P. Rao, Indian Institute of
Technology, India; J.R. Rice, Purdue University, USA; A.A. Samarskii, Russian
Academy of Science, Russia; Y. Takahara, Tokyo Institute of Technology, Japan

The Numerical Insights series aims to show how numerical simulations provide
valuable insights into the mechanisms and processes involved in a wide range of
disciplines. Such simulations provide a way of assessing theories by comparing
simulations with observations. These models are also powerful tools which serve to
indicate where both theory and experiment can be improved.

In most cases the books will be accompanied by software on disk demonstrating
working examples of the simulations described in the text.

The editors will welcome proposals using modelling, simulation and systems
analysis techniques in the following disciplines: physical sciences; engineering;
environment; ecology; biosciences; economics.

Volume 1
Numerical Insights into Dynamic Systems: Interactive Dynamic System Simulation
with Microsoft® Windows™ and NT™
Granino A. Korn

Volume 2
Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent
Approach using Soft Computing and Fractal Theory
Patricia Melin and Oscar Castillo

Volume 3
Principles of Mathematical Modeling: Ideas, Methods, Examples
A.A. Samarskii and A. P. Mikhailov

Volume 4
Practical Fourier Analysis for Multigrid Methods
Roman Wienands and Wolfgang Joppich

© 2005 by Chapman & Hall/CRC Press



Roman Wienands
Wolfgang Joppich

CHAPMAN & HALL/CRC
A CRC Press Company

Boca Raton   London   New York   Washington, D.C.

PRACTICAL
FOURIER ANALYSIS

FOR MULTIGRID
METHODS

© 2005 by Chapman & Hall/CRC Press



 

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating
new works, or for resale. Specific permission must be obtained in writing from CRC Press for such
copying.

Direct all inquiries to CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. 

 

Trademark Notice: 

 

Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

 

Visit the CRC Press Web site at www.crcpress.com

 

© 2005 by Chapman & Hall/CRC Press

No claim to original U.S. Government works
International Standard Book Number 1-58488-492-4

Library of Congress Card Number 2004055113
Printed in the United States of America  1  2  3  4  5  6  7  8  9  0

Printed on acid-free paper

 

Library of Congress Cataloging-in-Publication Data

 

Wienands, R. (Roman)
Practical Fourier Analysis for multigrid methods / R. Wienands and W. Joppich.
         p. cm. — (Numerical insights ; v. 4)
Includes bibliographical references and index.
ISBN 1-58488-492-4 (alk. paper)

    1. Fourier analysis. 2. Multigrid methods (Numerical analysis)  I. Joppich, W.
(Wolfgang), 1950- II. Title. III. Series.
    QA403 .5.W54
    515'.2433--dc22 2004055113

 

C4924 disclaimer.fm  Page 1  Tuesday, September 14, 2004  7:51 AM

© 2005 by Chapman & Hall/CRC Press

http://www.crcpress.com


Dedicated to Karl

© 2005 by Chapman & Hall/CRC Press



PREFACE

Mathematicians, scientists, and engineers who have some background in
numerical analysis and in solving partial differential equations (PDEs) know
that multigrid methods are among the fastest solution methods for PDEs.
Especially for elliptic equations, they have been proven to be highly efficient.
Due to the permanently increasing power of computers, the application of
multigrid is expanding to complex systems of PDEs and three-dimensional
problems from various fields of application. All these problems require a
careful composition of the multigrid algorithm to be applied. However, for
problems with nonelliptic and nonsymmetric features—as they often occur
in real-life applications—a general rigorous mathematical theory is not yet
available and the correct choice of multigrid components is often far from
being trivial. For such situations, local Fourier analysis can be considered as
the main analysis tool to obtain quantitative convergence estimates and to
optimize multigrid components like smoothers or intergrid transfer operators.

There are already several tutorials and books on multigrid. Why do we
dare to write another book in this context? The answer is simply based on the
fact that most books do not provide with software that confirms the written
statements about convergence and efficiency of an algorithm and—even more
important—that can be easily adapted to the particular application at hand.
Usually, paper does not convince the practitioner who has to solve a very
concrete problem. Before writing a multigrid code, questions to be posed are:
Does the development pay out? Will multigrid work for my application? What
are the numerical properties? How good is convergence? These questions
have one goal in common—to ensure a successful development. Considering
multigrid algorithms, there is an enormous degree of freedom in choosing the
algorithmic components. This complicates the naive use of multigrid. On
the other hand, many of the standard multigrid components work well, even
in complex situations. To get rid of the uncertainty—which approach will
work and which one will not—a theoretically based technique can provide the
practical proof of multigrid applicability or multigrid failure. Based on the
framework of local Fourier analysis, it is the intention of this book to describe
what is needed for multigrid algorithms in a realistic simulation environment.
Our systematic and well-elaborated description of Fourier k-grid (k = 1, 2, 3)
analysis both for scalar equations and systems of equations including three-
dimensional applications provides the required framework to answer the above
questions. Especially the recently developed generalization of the classical
two-grid analysis to the Fourier three-grid analysis yields additional valuable
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insights to real multigrid behavior that cannot be captured by a standard
two-grid analysis. This might be of great benefit for optimizing a particular
algorithm and debugging its implementation.

The Fourier analysis software LFA and the graphical user interface (GUI)
xlfa to use the software efficiently are unique worldwide. Local Fourier anal-
ysis is sometimes considered as very technical and tedious, especially for sys-
tems of equations and three-dimensional equations. Using our software it can
be performed by a simple mouse click. The book and the accompanying soft-
ware provide both the theoretical background and the necessary link between
theory and practice. Because the book and the software establish a bridge
from theory to application, the target group is a mixture of theoretically
and practically oriented researchers, not limited to multigrid specialists. It is
expected to range from interested students on a beginner’s level to respon-
sible persons for projects on computer simulation. Summarizing, this book
is intended as a companion to the basic multigrid literature with a focus on
quantitative convergence estimates which are crucial for the development of
new multigrid software.

According to the idea of establishing a bridge from theory to application
we have structured the presentation of the material such that we combine
the learning by reading and the learning by doing (that is, by applying our
software) as soon as possible. This is reflected in the overall structure: The
first part of the book (Part I: Chapters 1-4) provides all the knowledge which
is necessary to understand the basic principles of multigrid and local Fourier
analysis and to efficiently use the software.

Chapter 1 introduces our notation and the two main ingredients of multi-
grid: smoothing and coarse-grid correction. The multigrid idea is motivated
by a first application of local Fourier analysis to a simple model problem.
Moreover, we take a first look at the accompanying software illustrated by
the GUI.

Chapter 2 presents the theoretical basis of local Fourier analysis without
going into technical details. Possible limits to this approach are discussed.
The practical relevance and the reliability of the analysis for concrete prob-
lems are of importance, especially for developers of multigrid software which
compose and debug their algorithms using our software. Hence, it seems
reasonable to start the discussion of applicability and limits already at this
place.

Chapter 3 describes multigrid methods and the difficulty of appropriately
choosing their components. In particular, all implemented types of discretiza-
tion approaches, relaxation methods, coarsening strategies, and transfer oper-
ators are discussed in some detail. For a more basic presentation of multigrid,
we refer to the well-known literature [7, 13, 28, 60, 65] and especially to [62]
for a recent monograph. The descriptions are supported by the GUI, which
is presented now in more detail, in order to make the reader familiar with
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its functionality. It is shown, how to select the different components of the
algorithm which are described in Sections 3.4 and 3.5. This interaction with
our software prepares the reader for the following case studies.

Chapter 4 contains case studies for two- and three-dimensional problems.
The anisotropic diffusion equation with different discretizations, Helmholtz
equation, biharmonic equation, biharmonic system, Stokes equations, Oseen
equations, elasticity system, and a shell problem are only a few to mention.
For some of them, the effect of differently choosing components is discussed in
a systematic manner. The influence of cycle type, discretization, coarsening
strategy, or relaxation methods are investigated. All results like convergence
rates, norm values of two- and three- level operators, distributions of eigen-
values, etc., are illustrated by the GUI.

So far, the first part provided the skills to exploit the full power of the
accompanying software, which has been used up to the end of Chapter 4 as
a black-box tool. The second part (Part II: Chapters 5-7) describes the
theory hidden in the software and is important for those readers who want to
understand the details.

More precisely, in Chapter 5 we focus on the relaxation method in a
multigrid cycle. Here the Fourier smoothing analysis is described for general d-
dimensional systems of equations including multistage smoothing. Moreover,
the measure of h-ellipticity is introduced, which plays an important role for
the development of efficient relaxation methods. Chapter 5 can be seen as a
one-grid analysis as it solely takes the fine grid operators—discretization and
relaxation—into account.

The analysis for the remaining multigrid components is discussed in Chap-
ter 6 where we present a general description of Fourier two- and three-grid
analysis. For example, semicoarsening strategies in two and three dimensions
are considered as well as systems of equations. With a three-grid analysis it
is possible to investigate real multigrid effects, for example, the different be-
havior of different cycle strategies or pre- and postsmoothing. Moreover, the
three-grid analysis allows for a more reliable investigation of possible coarse-
grid correction difficulties.

Chapter 7 presents some further applications of local Fourier analysis
which are not (yet) implemented in LFA, like the analysis of cell-centered
multigrid or a “simplified” Fourier k-grid analysis. This chapter is mainly
intended for multigrid experts.

The core of this work has been the Ph.D. thesis of R. Wienands [67], which
provided both the theory and the LFA software. The practical experience of
teaching and applying multigrid by W. Joppich lead to the requirement of
supporting the theory by a user-friendly framework as it is provided now by
the GUI. This combination of different intentions and approaches to multigrid
is reflected by the authors and we have tried to exploit the best of each for
this book.
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Symbol Description

Boundary value problems:
Ω,Γ,Ωh, Γh d-dimensional do-

main, boundary,
and discrete analogs
with mesh size h

L,Lh, B,Bh continuous and dis-
crete differential and
boundary operator

[�κ]h stencil representing
Lh, Section 1.1.3

L Matrix related to Lh

u, uh continuous and dis-
crete solution

u vector related to uh

∂j1...jn
partial differential
operator

Dj
hj

, ..., Djjjj
hj

central discretiza-
tions, Example 1.2

[dj
κj

]hj
, . . . corresponding sten-

cils, Example 1.2
uh, vh, wh, fh grid functions
F(Ωh) space of grid func-

tions
〈vh, wh〉Ωh

discrete Euclidean
inner product

||vh||Ωh
corresponding norm

u
(i)
h approximation of uh

after i steps of an it-
erative method

e
(i)
h , r

(i)
h algebraic error and

residual

Multigrid:
Sh relaxation
ω relaxation or damp-

ing parameter
ωn multistage parame-

ter
Ch distributor for dis-

tributive relaxation
Ph

H prolongation
RH

h restriction

LH coarse-grid dis-
cretization

KH
h coarse-grid correc-

tion operator (3.1)
MH

h two-grid operator
(3.2)

γ cycle index

Fourier analysis:
Gh d-dimensional infi-

nite grid (1.3) with
mesh size vector h

i complex unit
√−1

α = (α1, .., αd) multi-index, αj=0,1
(j = 1, . . . , d)

θ Fourier frequency,
Definition 5.1

ϕh(θ,x) Fourier component,
Definition 5.1

L̃h(θ) Fourier symbol for
discretization, Defi-
nition 5.1

F Fourier space (5.4)
Fhθ

finite dimensional
Fourier space (5.11)

Θhigh,Θlow sets of high and
low frequencies, Sec-
tion 5.2

A(θ, ω) Fourier symbol for
Jacobi- and Gauss-
Seidel-type relax-
ations (5.7)

S̃h(θ, ω) Fourier representa-
tion of relaxation

QH
h ideal coarse-grid

correction operator
(5.25)

ρ1(ν, ω) general definition of
the smoothing fac-
tor, Definition 5.9

ρ (SνQ) related LFA output
(5.28)
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ρD
1 (ν, ω) smoothing factor re-

ferring to Dirich-
let boundary condi-
tions, Definition 5.9

ρ(SνQ)D related LFA output
(5.28)

Eh (Lh) measure of h-
ellipticity, Defini-
tion 5.10

F2h(θ) spaces of 2h-
harmonics, Defini-
tion 5.8

F4h(θ) spaces of 4h-
harmonics, Defini-
tion 6.3

F4h
2h (θ) spaces of (2h, 4h)-

harmonics, Defini-
tion 6.4

R̃H
h (θ) Fourier symbol for

restriction
P̃h

H(θ) Fourier symbol for
prolongation

ρ(M2L) two-grid conver-
gence factor (6.22)

||M2L||s spectral norm of
the two-grid error-
reduction operator

||M2L||d spectral norm of the
two-grid residual-
reduction operator

ρ(M3L) three-grid conver-
gence factor (6.36)

||M3L||s spectral norm of
the three-grid error-
reduction operator

||M3L||d spectral norm of the
three-grid residual-
reduction operator
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Chapter 1

INTRODUCTION

This introductory chapter attempts to give a first feeling for

• local Fourier analysis,

• multigrid methods,

• and the application of the accompanying software LFA with the help
of the graphical user interface (GUI) xlfa.

In this respect, it can be considered as a preview and guideline for the following
chapters where the above ingredients are discussed in detail. More precisely,
Section 1.3 provides a short discussion of Fourier components and a first
convergence analysis is performed for a model problem. In this way, the
basic idea of local Fourier analysis is introduced. It is revisited in Chapter 2
in a more general framework with an emphasis on the main principles of
local Fourier analysis omitting technical details. A systematic mathematical
description of local Fourier k-grid analysis for general situations is finally given
in the second part of this book (Chapters 5-7).

The analysis and observations for the above-mentioned introductory model
problem in combination with the coarse-grid correction idea presented in Sec-
tion 1.4 naturally lead to the development of multigrid algorithms. Section 1.5
presents the multigrid principle and possible components without lots of the-
oretical derivations but as an obvious consequence of the analysis presented
in Section 1.3. A more detailed description of multigrid and the components
that are implemented in LFA is given in Chapter 3.

The graphical user interface supports the proper understanding of algorith-
mic details. Consequently, Section 1.6 offers a first look at the GUI and the
software behind it. All multigrid components can be selected easily just by
using the buttons of the mouse. A first case study for the Poisson equation
illustrates how to use our Fourier analysis tool exploring the effect of different
multigrid components on the numerical behavior of the resulting algorithms.
A large variety of two- and three-dimensional test cases including systems of
equations can be found in Chapter 4.

xlfa is written in tcl/tk, an interpreted scripting language, whereas LFA is
a Fortran77 code. Hence, all you need to start with the experiments is an ap-
propriate interpreter (which is freely available for nearly every UNIX, LINUX,
or Windows-like operating system) and a Fortran compiler. More information
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4 Practical Fourier Analysis for Multigrid Methods

on installation requirements and installation steps are given in the correspond-
ing manuals which can be found on the accompanying CD-ROM.

Section 1.1 starts with a short introduction to boundary value problems
and their discrete description to clarify our notation. The stencil terminology
is introduced for scalar equations and for systems of PDEs. Basic iterative
schemes are presented in Section 1.2 as far as it is required for understanding
the following motivation of multigrid methods.

1.1 SOME NOTATION

Multigrid is commonly explained and analyzed using operators whereas
basic iterative methods are often described with matrices, compare with Sec-
tion 1.2. For our presentation, it is convenient to combine operator, matrix,
and stencil notation. To distinguish between operators and matrices, an op-
erator is denoted by a subscript h in contrast to the corresponding matrix.
Similarly, we distinguish grid functions from their related vector representa-
tions. A short overview of our notation is given in Section 1.1.5.

1.1.1 Boundary value problems

A (linear) boundary value problem on a d-dimensional domain Ω with
boundary ∂Ω reads

Lu(x) = f(x) on Ω ⊂ IRd

(1.1)
Bu(x) = g(x) on Γ := ∂Ω

with x = (x1, . . . , xd)T and given functions

f : Ω −→ IR, g : Γ −→ IR.

L denotes a (linear) differential operator on Ω and B represents one or several
boundary operators according to the boundary conditions under considera-
tion. In order to simplify the notation of partial differential operators we use
the following terminology:

∂j1...jn
:=

∂n

∂xj1 . . . ∂xjn

and uj1...jn
(x) :=

∂nu(x)
∂xj1 . . . ∂xjn

for j1, . . . , jn ∈ {1, . . . , d} and n ∈ IN.

This yields, for example, ∂2/∂x2
1 = ∂11 or ∂2u(x)/(∂x1∂x2) = u12(x). For the

well-known classification (elliptic, parabolic, hyperbolic) of partial differential
operators, we refer to the literature, e.g., [25]. In this book we focus on purely
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INTRODUCTION 5

elliptic and singularly perturbed problems. Here, a singular perturbation
means that the type of the differential operator changes subject to a certain
choice of its parameters.

Example 1.1 (Anisotropic diffusion equation). A prominent example
for an elliptic boundary value problem is the anisotropic diffusion equation:

Lu(x) := −
d∑

j=1

εjujj(x) = f(x) on Ω with εj ≥ 0 (j = 1, . . . , d)

Bu(x) = g(x) on Γ.

For ε1 = · · · = εd = 1, we obtain the Poisson equation which is the standard
test case in the classical multigrid literature. If one or several coefficients εj

tend to zero or to infinity, the type of L changes from elliptic to parabolic. �

1.1.2 Discrete boundary value problems

As we are interested in a numerical solution of (1.1), we search for a discrete
approximation uh of the continuous solution u which satisfies the discrete
analogue of the boundary value problem (1.1),

Lhuh(x) = fh(x) on Ωh := Ω ∩Gh
(1.2)

Bhuh(x) = gh(x) on Γh := ∂Γ ∩Gh,

with a d-dimensional vertex-centered infinite grid

Gh := {x =(x1, . . . , xd)T = κh = (κ1h1, . . . , κdhd)T | κ ∈ ZZd }
(1.3)

where h1 =
1
n1
, . . . , hd =

1
nd

(n1, . . . , nd ∈ IN).

n1, . . . , nd are assumed to be even, which is a natural choice in connection with
multigrid methods, see Chapter 3. The components of h ∈ IRd denote the
mesh sizes of Gh into the different space directions. For many of the problems
considered here, the mesh sizes with respect to the different directions are
identical. In this case we refer to the scalar quantity h(= 1/n) instead of
h. The notation h is only used if necessary, for example, in connection with
semicoarsening to be defined below. Lh and Bh are discrete differential or
boundary operators related to L and B. The grid functions uh, fh, and gh

are the restrictions of the continuous counterparts from (1.1) to the discrete
domain Ωh (or the discrete boundary Γh), for example, gh := g|Ωh

. In practice,
the discrete boundary conditions are often eliminated from (1.2). Then, we
simply replace (1.2) by

Lhuh(x) = fh(x) on Ωh.
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6 Practical Fourier Analysis for Multigrid Methods

We define the space of all grid functions that act on the discrete domain
Ωh by

F(Ωh) := {vh | vh(x) : Ωh −→ C} .
With the usual addition and scalar multiplication we have a linear vector
space. It can be endowed with a scaled, discrete Euclidean inner product,

〈vh, wh〉Ωh
:=

1
#Ωh

∑
x∈Ωh

vh(x)wh(x) ( vh, wh ∈ F(Ωh) ), (1.4)

where #Ωh is the number of grid points of Ωh, leading to a Hilbert space.
The induced norm is ||vh||Ωh

:=
√〈vh, vh〉Ωh

. The corresponding operator
norm is the spectral norm given by ||Lh||S :=

√
ρ(LhL∗

h) where L∗
h is the

adjoint of Lh and ρ(Sh) denotes the spectral radius of a discrete operator Sh.
In practice, one often applies the infinity norm

||vh||∞ := max {|vh(x)| : x ∈ Ωh}
whereas the discrete Euclidean norm is especially suited for theoretical con-
siderations.

1.1.3 Stencil notation

For a Cartesian or logically rectangular grid Gh, it is appropriate to define
discrete differential operators using the stencil terminology [55], which is most
easily described for infinite grid functions uh : Gh −→ IR. This formulation
is particularly convenient in the context of the local Fourier analysis, compare
with Section 2.2.2. For a fixed grid point x ∈ Gh, we can define an operator
Lh on the space of infinite grid functions by

Lhuh(x) =
∑
κ∈J

�κuh(x + κh) (1.5)

with stencil coefficients �κ ∈ IR and a certain finite subset J ⊂ ZZd containing
(0, . . . , 0).

As a two-dimensional example, consider the well-known central approxima-
tion of Lu(x) = u11(x), which is given by

1
h2

(u(x1 − h, x2) − 2u(x1, x2) + u(x1 + h, x2)) (1.6)

for a fixed grid point x = (x1, x2) ∈ Gh. The central point x may be written
as x + κh with κ = (0, 0). Similarly, (x1 + h, x2) and (x1 − h, x2) correspond
to x + κh with κ = (1, 0) and κ = (−1, 0), respectively. Hence, we have
�(−1,0) = 1/h2, �(0,0) = −2/h2, and �(1,0) = 1/h2. We write this in a more
compact way by collecting the coefficients as a one-dimensional “stencil”

Lh
∧=
[
�(−1,0) �(0,0) �(1,0)

]
h

=
1
h2

[1 − 2 1]h .
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INTRODUCTION 7

Applying formula (1.5) with Lh
∧= 1

h2 [1 − 2 1]h yields (1.6).
Thus, a discrete differential operator Lh is uniquely defined for every fixed

x ∈ Gh by a stencil [�κ]h, which is commonly written as

Lh1

∧= [�κ1 ]h1
=
[ · · · �−1 �0 �1 · · · ]

h1
, Lh2

∧= [�κ2 ]h2
=

⎡
⎢⎢⎢⎢⎢⎢⎣

...
�1
�0
�−1

...

⎤
⎥⎥⎥⎥⎥⎥⎦

h2

or Lh
∧= [�κ]h =

⎡
⎢⎢⎢⎢⎢⎢⎣

...
...

...
· · · �(−1,1) �(0,1) �(1,1) · · ·
· · · �(−1,0) �(0,0) �(1,0) · · ·
· · · �(−1,−1) �(0,−1) �(1,−1) · · ·

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦

h

in one or two dimensions, respectively. The generalization to higher dimen-
sions is straightforward. For the representation of three-dimensional stencils,
we use several two-dimensional stencils in the following way:

[�κ]h =
[
. . . [�κ](−1)

h [�κ](0)h [�κ](1)h . . .
]
.

Here, [�κ](κ3)
h (κ3 ∈ {. . . ,−1, 0, 1 . . . }) denotes a two-dimensional stencil where

the position in the third space direction (κ3) is fixed, i.e.,

[�κ](κ3)
h =

⎡
⎢⎢⎢⎢⎢⎢⎣

...
...

...
· · · �(−1,1,κ3) �(0,1,κ3) �(1,1,κ3) · · ·
· · · �(−1,0,κ3) �(0,0,κ3) �(1,0,κ3) · · ·
· · · �(−1,−1,κ3) �(0,−1,κ3) �(1,−1,κ3) · · ·

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦

h

.

Only a finite number #J (= number of elements of J) of stencil elements �κ
is nonzero. The zero elements are usually omitted in the above notation.

Example 1.2 (Central discretizations, discrete Laplace operator). If
the partial differential operators ∂1, ∂11, ∂111, and ∂1111 are discretized by
central differences, the corresponding discrete differential operators D1

h1
, D11

h1
,

D111
h1

, and D1111
h1

, respectively, are given by the following stencils:

[
d1

κ1

]
h1

= 1
2h1

[−1 0 1
]
h1
,

[
d11

κ1

]
h1

= 1
h2
1

[
1 −2 1

]
h1
,[

d111
κ1

]
h1

= 1
2h3

1

[−1 2 0 −2 1
]
h1
,
[
d1111

κ1

]
h1

= 1
h4
1

[
1 −4 6 −4 1

]
h1
.

© 2005 by Chapman & Hall/CRC Press



8 Practical Fourier Analysis for Multigrid Methods

The stencil notations of the central discretizations of ∂j , ∂jj , ∂jjj , and ∂jjjj

for j = 2, . . . , d can be obtained straightforwardly. The standard 5- and 7-
point discretizations of the two- and three-dimensional Laplace operator with
h = h1 = h2 = h3 read

D1
h +D2

h = ∆h
∧=

1
h2

[
1 −2 1

]
h

+
1
h2

⎡
⎣ 1
−2
1

⎤
⎦

h

=
1
h2

⎡
⎣ 1

1 −4 1
1

⎤
⎦

h

(1.7)

and D1
h +D2

h +D3
h = ∆h

∧=
1
h2

⎡
⎣[ 1 ]h

⎡
⎣ 1

1 −6 1
1

⎤
⎦

h

[ 1 ]h

⎤
⎦ (1.8)

respectively. The discrete operators (1.7) and (1.8) are of second-order accu-
racy, i.e., with Taylor’s expansion one can establish a consistency relation of
the form

Lu(x) − Lhu(x) =
d∑

j=1

O(h2
j ) for h1, . . . , hd → 0 (x ∈ Ωh)

and a sufficiently smooth function u. �

Of course, the introduced stencil notation is not limited to symmetric cases
as shown above, where the central point referring to κ = (0, 0) is located
at the central position of the stencil. To indicate the position of the central
point within a nonsymmetric stencil, the corresponding coefficient is usually
underlined. For example, a one-sided upwind discretization of Lu(x) = u1(x)
is given by

1
h

(u(x1, x2) − u(x1 − h, x2)) .

The corresponding stencil reads

Lh
∧=

1
h

[
�(−1,0) �(0,0)

]
=

1
h

[−1 1
]
.

Remark 1.1 (Calculation with stencils). Suppose that the stencil nota-
tions of two discrete operators Sh and Th are given by [sκ]h and [tκ]h for a
fixed x ∈ Gh. Then, the stencil elements of αSh ± βTh (α, β ∈ IR) and ShTh

can be calculated by

αsκ ± βtκ and
∑

ν∈ZZd

sνtκ−ν (κ ∈ ZZd), respectively. (1.9)

Furthermore, it is possible to define a tensor product
⊗

between one-dimensional
stencils

[
sκj

]
hj

corresponding to certain one-dimensional discrete infinite grid
operators Shj

(j = 1, . . . , d) by

d⊗
j=1

[
sκj

]
hj

:= [sκ]h with sκ =
d∏

j=1

sκj
(κ ∈ ZZd).
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INTRODUCTION 9

Obviously, the resulting stencil [sκ]h represents a d-dimensional discrete op-
erator Sh.

The stencil that describes the adjoint of an operator Sh
∧= [sκ]h reads

S∗
h

∧= [s−κ]h. �

Example 1.3 (Stencils for Mixed Derivatives). Stencils for differential
operators with mixed derivatives may be calculated by tensor products of one-
dimensional stencils. For example, the stencils corresponding to the central
discretizations D12

h of ∂12 and D1122
h of ∂1122 are given by

[
d12

κ

]
h

=
[
d1

κ1

]
h1

⊗[
d2

κ2

]
h2

=
1

4h1h2

⎡
⎣−1 0 1

0 0 0
1 0 −1

⎤
⎦

h

,

[
d1122

κ

]
h

=
[
d11

κ1

]
h1

⊗[
d22

κ2

]
h2

=
1

h2
1h

2
2

⎡
⎣ 1 −2 1
−2 4 −2
1 −2 1

⎤
⎦

h

with d12
κ = d1

κ1
d2

κ2
(κ ∈ ZZ2) and d1122

κ = d11
κ1
d22

κ2
(κ ∈ ZZ2), respectively.

For the representation of
[
d1

κ1

]
h1

,
[
d2

κ2

]
h2

,
[
d11

κ1

]
h1

, and
[
d22

κ2

]
h2

, see Exam-
ple 1.2. �

Note that most of the discrete differential operators occuring in this mono-
graph can be expressed by sums and tensor products of the central one-
dimensional discrete operators Dj

hj
,Djj

hj
,Djjj

hj
, and Djjjj

hj
(j = 1, . . . , d) from

Example 1.2.

Remark 1.2 (Operators with variable coefficients). If a discrete oper-
ator Lh depends on x, then its stencil does as well, leading to [�κ(x)]h. In
practice, discrete operators are usually given on the finite grid Ωh. To identify
such operators with a stencil, one has to restrict [�κ(x)]h to Ωh, which often
forces a modification of [�κ(x)]h near the boundaries. Such modifications are
obvious for rectangular domains. �

Apart from discrete differential operators it is, furthermore, possible to
specify certain multigrid components (like intergrid transfer operators) using
stencil notation, compare with Sections 3.4.5, 6.2.3, and 6.2.4.

1.1.4 Systems of partial differential equations

The generalization of (1.1) to linear (q × q)-systems of PDEs reads

Lu(x) = f(x) on Ω
Bu(x) = g(x) on Γ (1.10)
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10 Practical Fourier Analysis for Multigrid Methods

with u = (u1, . . . , uq)T , f = (f1, . . . , fq)T , g = (g1, . . . , gr)T ,

L =

⎛
⎜⎝
L1,1 · · · L1,q

... · · · ...
Lq,1 · · · Lq,q

⎞
⎟⎠ , and B =

⎛
⎜⎝
B1,1 · · · B1,q

... · · · ...
Br,1 · · · Br,q

⎞
⎟⎠ .

The Li,j (i, j = 1, . . . , q) are scalar differential operators and the Bi,j (i =
1, . . . , r; j = 1, . . . , q) are scalar boundary operators. Note that in general
the number of boundary conditions r does not necessarily have to match the
number of equations q (for more details see, for example, [62]). The discrete
counterpart of (1.10) is given by

Lhuh(x) = fh(x) on Ωh
(1.11)

Bhuh(x) = gh(x) on Γh

with uh = (u1
h, . . . , u

q
h)T , fh = (f1

h , . . . , f
q
h)T , gh = (g1

h, . . . , g
r
h)T ,

Lh =

⎛
⎜⎝
L1,1

h · · · L1,q
h

... · · · ...
Lq,1

h · · · Lq,q
h

⎞
⎟⎠ , and Bh =

⎛
⎜⎝
B1,1

h · · · B1,q
h

... · · · ...
Br,1

h · · · Br,q
h

⎞
⎟⎠ . (1.12)

The vector valued functions uh, fh, and gh consist of scalar grid functions
u1

h, . . . , u
q
h, f1

h , . . . , f
q
h ∈ F(Ωh) and g1

h, . . . , g
r
h ∈ F(Γh). The systems Lh

and Bh are composed of discrete scalar differential and boundary operators,
respectively:

Li,j
h : F(Ωh) −→ F(Ωh) (i, j = 1, . . . , q),

Bi,j
h : F(Γh) −→ F(Γh) (i = 1, . . . , r; j = 1, . . . , q).

Example 1.4 (Biharmonic system). The central approximation of the
biharmonic system

Lu(x) =
(

∆ 0
−I ∆

)(
u1(x)
u2(x)

)
=
(
f1(x)

0

)

reads

Lhuh(x) =
(

∆h 0
−Ih ∆h

)(
u1

h(x)
u2

h(x)

)
=
(
f1

h(x)
0

)

with discrete identity Ih
∧= [ 1 ]h. �

A generalization of the discrete Euclidean inner product (1.4) for vector
valued functions

vh,wh ∈ F(Ωh) := {vh | vh(x) : Ωh −→ Cq} ,
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is defined by

〈vh,wh〉qΩh
:=

q∑
j=1

〈vj
h, w

j
h〉Ωh

.

The stencil notation for a (q× q)-system of scalar discrete operators, denoted
by Lh, is given by [�κ]h, where [�κ]h consists of q · q scalar stencils [�i,jκ ]h
representing the q ·q scalar discrete operators Li,j

h (i, j = 1, . . . , q). The scalar
stencils [ai,j

κ ]h constituting the adjoint system L∗
h are given by [ai,j

κ ]h = [�j,i−κ]h
for i, j = 1, . . . , q. This representation is used in the accompanying software
to construct Kaczmarz relaxation methods; see below.

1.1.5 Operator versus matrix notation

After a brief summary of our operator/function notation for scalar equa-
tions, we introduce the related matrix/vector terminology. The respective
notation is collected in Table 1.1.

Starting from a (linear) boundary value problem (1.1) with continuous dif-
ferential operator L, boundary operator B, given functions f , g, and solution
u, the discrete analogs are denoted by Lh, Bh, fh, gh, and discrete solution
uh. The discrete operator will often be defined by a stencil

Lh
∧= [�κ]h ,

as introduced in Section 1.1.3. Then, the discrete problem (with eliminated
boundary conditions) can be converted into a large linear system of equations
where the discrete operator Lh is represented by a matrix L and the unknown
discrete function uh by a vector u. More precisely, the unknowns uh(x) with
x ∈ Ωh are collected in the vector u and each matrix row represents the
connections of one unknown to its neighbors governed by the discrete partial
differential operator. The generalization to (q×q) systems of PDEs is straight-
forward. Here, we have q unknowns at each grid point x.

TABLE 1.1: Operator, matrix, and stencil
notation

continuous discrete matrix
operator operator

L −→ Lh
∧= [�κ]h −→ L

continuous discrete vector
function function

u −→ uh −→ u
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12 Practical Fourier Analysis for Multigrid Methods

1.2 BASIC ITERATIVE SCHEMES

For the solution of linear systems of equations governed by large sparse
matrices, iterative methods like Gauss-Seidel (GS), Jacobi (JAC), weighted
Jacobi (ω-JAC), or successive overrelaxation (SOR) methods are a natural
and popular choice. The Jacobi- or simultaneous-displacement method is of
theoretical importance for explaining some principles.

Such classical iterative methods are constructed in the following way [63].
For solving a linear system of Lu = f the matrix L is split into L = C − A,
where C is assumed to be regular.

From Lu = f we get
(C − A)u = f or

Cu = Au + f and with iteration count
u(i+1) = C−1Au(i) + C−1f.

The convergence of the iterative method is determined by the matrix S :=
C−1A, which is called the iteration matrix. For the description of a particular
iteration scheme one simply has to specify the corresponding splitting of the
matrix L. More precisely, it is sufficient to specify C since A can be computed
using A = C − L. Obviously C should be chosen in such a way that it is
easily invertible.

Example 1.5 (Jacobi and Gauss-Seidel relaxation). In order to define
some well-known classical iterative schemes it is convenient to split the matrix
L into L = D − E − F. D is the diagonal part of L, while E and F are the
strictly lower and upper nondiagonal parts of L with reverse sign, respectively.
The Jacobi and the Gauss-Seidel relaxation are given by C = D and C =
D − E, respectively. The corresponding iteration matrices read:

SJAC := D−1 (E + F) and SGS := (D − E)−1 F. (1.13)

There are modifications of these methods which do not add the complete
increment to u(i) to obtain u(i+1) but only a weighted one. These are the
weighted Jacobi and the weighted Gauss-Seidel method. They are given by
the following two iteration matrices:

SJAC(ω) := ωD−1 (E + F) + (1 − ω)I and

SGS(ω) := (D − ωE)−1 ((1 − ω)D + ωF) .

Obviously SJAC(ω = 1) = SJAC and SGS(ω = 1) = SGS hold and the
undamped methods are recovered. �
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Note that the weighted Gauss-Seidel relaxation is usually called the successive
overrelaxation (SOR) method. However in connection with multigrid methods
—where it is used as a smoother and not as a solver, see below—it is often
referred to as weighted Gauss-Seidel relaxation (ω-GS).

1.3 A FIRST DISCUSSION OF FOURIER
COMPONENTS

When dealing with the solution of the discrete problem there are three
quantities which have to be considered. The approximation to the solution
(produced by any iterative method), the algebraic error, and the residual. The
residual and especially the residual equation are of importance when deriving
multigrid schemes.

If the exact solution uh of the discrete problem solves

Lhuh = fh on Ωh, (1.14)

an approximation u
(i)
h after i iterations corresponds to some algebraic error

e
(i)
h = uh − u

(i)
h and to a residual (or defect), because the approximation will

not satisfy (1.14) exactly: r(i)h := fh − Lhu
(i)
h .

1.3.1 Empirical calculation of convergence factors

The quantities like u
(i)
h , e

(i)
h , and r

(i)
h can be measured by standard vec-

tor norms like the infinity norm or the discrete Euclidean norm defined in
Section 1.1.

The above-mentioned classical iterative methods show an unsatisfactory
convergence, especially when the mesh sizes h1, . . . , hd are small. A conver-
gence history both for the development of the error and the residual applying
the Jacobi method four hundred times to the two-dimensional Poisson equa-
tion

−∆huh = fh on (0, 1)2, uh = gh on [0, 1]2 \ (0, 1)2 (1.15)

with fixed fh and gh, discretized on a square grid with h = h1 = h2 = 1
128 is

given in Figure 1.1 (where fh and gh are chosen such that the exact solution
is u (x1, x2) = x3

1 + x2
2). The convergence history of Figure 1.1 shows that

the development of error and residual becomes very similar after a certain
number of iterations. The empirical error-reduction || e(i)h || / || e(i−1)

h || and
residual-reduction || r(i)h || / || r(i−1)

h || for varying mesh size h are given
in Table 1.2 reveiling an h-dependent behavior: The asymptotic convergence
clearly deteriorates for h → 0. This behavior can be explained for model
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FIGURE 1.1: Convergence history for Jacobi relaxation, ω = 1, h = 1
128 .

TABLE 1.2: Error- and defect-reduction
after 1000 iterations, Poisson problem, Jacobi
iteration

error-reduction defect-reduction

h = 1
16 0.98079 0.98079

h = 1
32 0.99518 0.99518

h = 1
64 0.99877 0.99867

h = 1
128 0.99959 0.99903

problems and basic relaxation schemes. The proper understanding of this fact
will help to motivate the functionality of multigrid methods and to introduce
the basic principles of local Fourier analysis.

1.3.2 Convergence analysis for the Jacobi method

The poor and h-dependent convergence of iterative schemes has been demon-
strated by numerical experiments in the previous subsection. The theoretical
explanation now follows.

The asymptotic convergence property of an iterative method is character-
ized by the spectral radius of its corresponding operator

ρ(Sh) = max {|λ| | λ is eigenvalue of Sh},
which is also called the asymptotic convergence factor. The iterative process
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converges if and only if ρ(Sh) is smaller than one. It can be shown that
this is equivalent to an asymptotic error or residual reduction smaller than
one. We would like to emphasize that these asymptotic reduction factors are
usually observed after only a few iterations for elliptic problems and multi-
grid methods. As an alternative, one might consider norms of the iteration
operator which yield upper bounds for the error reduction for each iteration
step including the very first iterations. However, norm estimates are often
too pessimistic for practical problems where the spectral radius is usually a
sharper approximation for the actual convergence behavior.

The spectral radius of the iteration operator for the Jacobi method (1.13),

ρ(SJAC
h ) = ρ

(
D−1

h (Eh + Fh)
)
,

can be easily determined analytically for the discrete model problem from the
previous subsection. The first step is to verify that

ϕ�,m(x) = sin(�πx1) sin(mπx2) (x = (x1, x2) ∈ Ω) and
λ�,m = �2 +m2 for all �,m = 1, 2, ...

are eigenfunctions, respectively eigenvalues of the two-dimensional Laplacian
on the unit square with Dirichlet boundary conditions. The corresponding
discrete eigenvalue problem

−∆huh = λhuh in Ωh = (0, 1)2 ∩Gh

uh = 0 at Γh

on a square grid with h = 1/n = h1 = 1/n1 = h2 = 1/n2 has discrete
eigenfunctions

ϕ�,m
h (x) = sin(�πx1) sin(mπx2) (x ∈ Ωh) (1.16)

with 1 ≤ �,m ≤ n− 1. The respective discrete eigenvalues are given by

λ�,m
h =

1
h2

[4 − 2 cos(�πh) − 2 cos(mπh)] =
4
h2

[
sin2

(
�πh

2

)
+ sin2

(
mπh

2

)]
.

Note, that the discrete eigenfunctions and eigenvalues might be rewritten as

ϕD
h (θ,x) := sin(θ1x1/h1) sin(θ2x2/h2) (= ϕ�,m

h (x)) and

λh(θ) :=
4
h2

[
sin2

(
θ1
2

)
+ sin2

(
θ2
2

)]
(= λ�,m

h ) with (1.17)

θ ∈ ΘD := {θ | θ = (θ1, θ2) with θ1 = π�/n1, θ2 = πm/n2 }.
The superscript “D” refers to “Dirichlet” boundary conditions. ϕD

h (θ,x) are
called Fourier components, Fourier modes or simply modes [4]. θ are known
as Fourier frequencies; compare with the general description of local Fourier
analysis in the second part of this monograph.
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The special structure of the operators both for the discrete Poisson equation
and for the Jacobi scheme allows for a direct analysis of the model problem.
From

SJAC
h = D−1

h (Eh + Fh) = D−1
h (Dh − Lh) = Ih −D−1

h Lh

we calculate the eigenvalues of SJAC
h as

λ�,m
h (SJAC

h ) = 1 − h2

4
λ�,m

h = 1 −
(

1 − 1
2

cos �πh− 1
2

cosmπh
)

=
1
2

(cos �πh+ cosmπh) ,

and we obtain the spectral radius ρ(SJAC
h ) = cosπh for the Jacobi scheme

applied to the Poisson equation. It is shown in Table 1.3 for different mesh
sizes. The asymptotic convergence factors presented are in good accordance

TABLE 1.3: Asymptotic convergence factors
ρ(SJAC

h ) = cosπh for the Jacobi relaxation
applied to the Poisson equation

h 1/16 1/32 1/64 1/128

ρ(SJAC
h ) 0.98079 0.99518 0.99880 0.99970

with the values of Table 1.2 after one thousand relaxations.
The weighted Jacobi scheme also allows for a direct analysis of our discrete

model problem. Again, the eigenvalues λ�,m
h (ω) of the iteration operator are

determined from the representation of SJAC
h (ω), using the fact that the eigen-

functions given by (1.16) of the operators −∆h and SJAC
h (ω) coincide. This

yields

λ�,m
h (ω) = 1 − ω

h2

4
λ�,m

h = 1 − ω

(
sin2 �πh

2
+ sin2 mπh

2

)
(1.18)

for all 1 ≤ �,m ≤ n− 1. ω ∈ (0, 1] implies convergence. However, the spectral
radius is very close to one if h is small and there is no satisfactory convergence
for any ω. We can easily spot the “h-dependent convergence”: the smaller h
becomes the worse the convergence is.

1.3.3 Smoothing properties of Jacobi relaxation

The eigenfunctions ϕ�,m
h of the iteration operator form a basis for all grid

functions having zero boundary values. Therefore, an initial error e(0)h for the
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Poisson equation with Dirichlet boundary conditions is given by

e
(0)
h =

n−1∑
�,m=1

c
(0)
�,mϕ

�,m
h

with some coefficients c(0)�,m. (Note that the error or the residual are generally

zero at a Dirichlet boundary.) For the weighted Jacobi scheme, the error e(i)h

after i iterations is e(i)h =
(
SJAC

h (ω)
)i (

e
(0)
h

)
. Inserting the representation of

e
(0)
h gives

e
(i)
h =

n−1∑
�,m=1

c
(0)
�,m

(
SJAC

h (ω)
)i

ϕ�,m
h =

n−1∑
�,m=1

c
(0)
�,m

(
λ�,m

h (ω)
)i

ϕ�,m
h . (1.19)

Again, the identity of eigenfunctions of both SJAC
h (ω) and −∆h has been

used. The representation of e(i)h is governed by coefficients

c
(i)
�,m := c

(0)
�,m

(
λ�,m

h (ω)
)i

.

That is, the coefficients of the initial error are damped by the i-th power of
the corresponding eigenvalue.

Selected frequencies are used as initial guesses to illustrate the behavior
of the Jacobi iteration. The modes with (�,m) ∈ {(1, 1); (3, 3); (6, 6)} on a
grid with h = 1

128 are reduced faster when the wave numbers are higher, see
Figure 1.2. In general, an initial guess will be composed of several modes
with different wave numbers. The previous experiment, but now with a lin-
ear combination of ϕ1,1

h , ϕ6,6
h and ϕ64,64

h , shows a well-known result. After an
initially fast decrease the reduction becomes worse because the contributions
to the error referring to modes with high wave numbers are already smoothed
out and the iteration scheme slowly reduces the now dominating components
with small wave numbers; see Figure 1.3. Many basic relaxation methods
behave like this. Regarding this matter it seems reasonable to distinguish
between modes with small and high wave numbers. Hence, the above Fourier
modes are subdivided into two disjoint subsets. Modes with wave numbers
1 ≤ �,m < n

2 are called low-frequency modes. Those with max(�,m) ≥ n
2

are high-frequency ones. (The reason for this particular splitting becomes
more obvious below. It is related to the “coarsening strategy” within a multi-
grid method; compare with Sections 3.1 and especially 5.2.) For the related
Fourier frequencies θ = (π�/n, πm/n) this means that low frequencies are
characterized by θ ∈ (0, π/2)2 and high frequencies by θ ∈ (0, π)2 \ (0, π/2)2.
A wave number � represents �

2 full sine waves on the unit interval, each having
a wavelength of 2

� . The wavelength of a low-frequency mode ranges from 4h
to 2 and the wavelength of high-frequency ones varies between 2h and 4h.
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Modes with �,m ≥ n cannot be represented on an h-grid, because their wave
lengths are smaller than 2h. They coincide with modes with wave numbers
0 < m, � < n due to the periodicity of the sine function. For instance, modes
with � = 13 alias with modes related to wave number 2n− � = 3, considering
the mesh size h = 1/n = 1/8.

A reasonable question now might be how a certain relaxation method will
work on high-frequency modes, i.e., how good the smoothing is. This is
combined with the question of whether this property can be quantified. It
turns out that there is a number, the “smoothing factor,” which measures
the smoothing property of relaxation schemes. The smoothing factor ρ1 is
defined to be the worst damping factor of all high-frequency modes. For
instance, weighted Jacobi relaxation with ω = 0.8 on a square grid has a
smoothing factor ρ1(ω) = 0.6 assuming the above distinction between high-
and low-frequency components. This means that high-frequency modes are
reduced per relaxation step at least by a factor of 0.6 which might be easily
verified using formula (1.18). A motivation for the particular choice of the
relaxation parameter (ω = 0.8)—which is in fact optimal for this particular
problem—is given in Example 5.17. For Gauss-Seidel relaxation with a lexico-
graphical ordering of grid points one obtains ρ1 = 0.5 and with a checkerboard
ordering even ρ1 = 0.25. Details and a thorough description of this kind of
“smoothing analysis” are given in Chapter 5.

1.4 FROM RESIDUAL CORRECTION TO COARSE-
GRID CORRECTION

Solving the discrete problem

Lhuh = fh (1.20)

iteratively yields a sequence of approximations u(i)
h (i = 0, 1, 2, . . . ) of the

discrete solution uh. The algebraic error e(i)h = uh − u
(i)
h measures the actual

quality of the approximation. Due to the definition of the residual after i
iterations, r(i)h := fh − Lhu

(i)
h , it is easy to verify that we have

r
(i)
h = fh − Lhu

(i)
h = fh − Lh(uh − e

(i)
h ) = fh − Lhuh + Lhe

(i)
h .

Together with (1.20) this gives the defect equation

Lhe
(i)
h = r

(i)
h . (1.21)

From this relationship it turns out that solving (1.21) immediately yields the
desired solution by uh = u

(i)
h + e

(i)
h . Hence, an iterative process for solving

(1.21) can be considered as an iterative method to solve (1.20).
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An approximate solution of the defect equation Lhe
(i)
h = r

(i)
h can be ob-

tained by solving a “similar problem”

L̂hê
(i)
h = r

(i)
h (1.22)

with an operator L̂h being “similar” to Lh. If the inverse operator L̂−1
h exists,

we use the solution
ê
(i)
h = L̂−1

h r
(i)
h

of the above equation to compute a new approximation

u
(i+1)
h = u

(i)
h + ê

(i)
h = u

(i)
h + L̂−1

h r
(i)
h = u

(i)
h + L̂−1

h fh − L̂−1
h Lhu

(i)
h

=
(
Ih − L̂−1

h Lh

)
u

(i)
h + L̂−1

h fh, (1.23)

with an iteration operator Mh := Ih− L̂−1
h Lh where Ih represents the identity

operator. Because the solution of the residual equation has been used to
“correct” the approximation, this procedure is called residual correction.

Now, the crucial point is to find a problem similar to the defect equation
which is cheaper to solve in order to benefit from the above rewriting of the
original equation (1.20). Regarding this matter, a coarser grid ΩH (H > h)
and an appropriate approximation LH to Lh on ΩH are introduced to formu-
late an H-defect equation LHe

(i)
H = r

(i)
H which can be solved fast for a small

number of grid points in ΩH . Applying a restriction operator RH
h we define

r
(i)
H := RH

h r
(i)
h . Then, the solution of the coarse-grid equation LHe

(i)
H = r

(i)
H is

transferred back to the fine grid by an interpolation operator (prolongation)
Ph

H . This interpolated solution of the coarse-grid defect equation is an ap-
proximation to that of the fine-grid defect equation. It is used to correct the
fine-grid approximation. This approach makes sense if the coarse-grid quanti-
ties e(i)H and r(i)H are reasonable approximations to the corresponding fine-grid
quantities. Especially for the error we know from the previous section that af-
ter some relaxation steps the high-frequency components have been smoothed
out and low-frequency components dominate. Such smooth quantities can be
approximated well on coarser meshes.

1.5 MULTIGRID PRINCIPLE AND COMPONENTS

The development of multigrid methods for the numerical solution of an
elliptic boundary value problem

Lhuh = fh on Ωh, Bhuh = gh at ∂Ωh

is motivated by two basic observations which have been discussed in Sec-
tion 1.3.3 and Section 1.4, respectively:
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1. Smoothing principle: Many classical iterative methods (like Jacobi,
Gauss-Seidel relaxation, etc.) have a strong error smoothing effect if
they are applied to discrete, elliptic problems.

2. Coarse-grid correction principle: A smooth error term, on the other
hand, can be represented well on a coarser grid ΩH where its approxi-
mation is substantially less expensive.

If the grid coarsening is performed by doubling the mesh size into each direc-
tion, i.e., ΩH = Ω2h, we speak of standard coarsening. This is particularly
straightforward if n1, . . . , nd from (1.3) are even numbers. The above princi-
ples suggest the following structure of a two-grid cycle for a linear problem
called the correction scheme (CS), compare with Algorithm 3.1:

• Presmoothing: Perform ν1 steps of a classical iterative relaxation method
Sh on the fine grid Ωh.

• Coarse-grid correction:

– Compute the defect (or the residual) of the current fine-grid approxi-
mation.

– Restrict the defect to the coarse grid ΩH using the fine-to-coarse
transfer operator RH

h .

– Solve the coarse-grid defect equation on ΩH .

– Interpolate the correction using the coarse-to-fine transfer operator
Ph

H .

– Add the interpolated correction to the current fine-grid approxi-
mation.

• Postsmoothing: Perform ν1 steps of a classical iterative relaxation method
Sh on the fine grid Ωh.

The multigrid idea is based on the observation that it is not necessary to
solve the coarse-grid defect equation exactly. Instead, one could approximate
its solution by γ two-grid cycles with zero initial approximation. A recursive
application of this idea yields a multigrid or k-grid method involving k dif-
ferent grids. Summarizing, for the unique definition of a multigrid cycle one
has to specify its components: The number k of involved grids, the smooth-
ing procedures on each grid, the number of pre- and postrelaxation steps on
each grid, the coarsening strategy which determines the coarser grids, the dis-
cretization operators on each grid, the transfer operators, and the cycle index
γ. Note that at least a three-grid analysis is necessary to analyze the different
behaviour of varying cycle indices or pre- and postsmoothing. Examples are
given in Chapter 4.
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FIGURE 1.4: The initial window of xlfa.

1.6 A FIRST LOOK AT THE GRAPHICAL USER
INTERFACE

Having learned how multigrid is composed of different components which
have to be put together in a proper way, the local Fourier analysis software
LFA should be able to analyze these pieces of the puzzle. Therefore, the
graphical user interface (GUI) xlfa offers an easy way to select the multigrid
components. This will shortly be shown here for a model problem.

When starting the GUI main function (wish main) the collection of pre-
defined applications is offered to select one. Here we choose our model prob-
lem from the class of Poisson-type equations with standard second-order dis-
cretization discussed in Section 1.3.

Pressing the start-button in Figure 1.4 makes the main window (Fig-
ure 1.5) of xlfa appear. This window supports the selection of all previously
mentioned components. Pre- and postsmoothing can be chosen in the same
way as the numbers ν1 and ν2 of pre-, and postsmoothing steps, respectively
(left and right boxes in the part which we denote as Parameter display in
Figure 1.5, see also Figure 3.3). When clicking the bars with Presmoothing
or Postsmoothing a window appears where the number of smoothing steps
can be modified from default values to desired ones by moving sliders. Press-
ing the bar Presmoothing opens a selection box which offers all the possible
smoothing methods. We select red-black Gauss-Seidel for one pre- and one
postsmoothing step as shown in Figure 1.6.
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FIGURE 1.5: The main window of xlfa.

FIGURE 1.6: Relaxation methods for pre- and postsmoothing.
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The coarse-grid correction step is composed of transfer operators both from
fine to coarse and vice versa and the solution of the coarse-grid equation. Re-
striction and interpolation (prolongation) depend on the coarsening strategy.
Pressing the button of any of these parameters opens a more detailed win-
dow (see Figure 1.7), where restriction, coarsening strategy, and prolongation
can be selected. We choose full weighting and bilinear interpolation for the
transfer of defects and corrections, respectively (compare with Sections 3.4.5
and 3.4.6). This is a proper choice as these methods are adjoint operators
up to a scaling factor. The cycle parameter γ determines the complexity of
the cycle and to some extent controls the amount of work to be invested on
coarser meshes. The default value is γ = 1, representing the V-cycle. Stan-
dard coarsening and natural analogs of the fine-grid discretization on coarser
grids are used within the V-cycle.

FIGURE 1.7: Possible parameters for coarse-grid correction.

Below the Parameter display block for the coarse-grid correction it is
possible to select the type of analysis to be performed. The single-grid anal-
ysis essentially delivers the smoothing factor of the chosen relaxation. If the
number of levels has been fixed to two, a two-grid analysis for the scheme is
performed. With a three-level analysis we can expect the results to be more
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realistic and closer to the final multigrid performance. When all the parame-
ters have been selected, LFA may be started either from the Problem-menu
and the run program selection or by pressing the run-button in the button
bar (top area in the GUI). Running the program delivers the smoothing factor
and two- or three-grid convergence predictions, respectively. Different norms
of the operators are given as well (see Figure 1.8).

Due to the chosen multigrid components (V(1,1), standard-coarsening, full-
weighting, bilinear interpolation, red-black Gauss-Seidel, ν = ν1 + ν2 =
1+1 = 2), a multigrid program applied to the Poisson equation with Dirichlet
boundary conditions (solution u(x1, x2) = x3

1 + x2
2) delivers empirical defect-

reduction rates of about 0.10 for the cycles 5 to 14. The corresponding em-
pirical error-reduction rate of 0.11 is only slightly worse. To determine the
asymptotic behavior of an algorithm it is a standard approach to specify
zero boundary conditions and zero right-hand side, thus looking for the zero
function as solution. Then, from a nonzero initial guess many cycles can be
evaluated and the empirical reduction factors should reach the asymptotic
behavior. Performing such an experiment with the above components gives
0.1193 both for error reduction and for residual reduction. This value is ob-
tained when using a finest mesh size both with 64 subdivisions of the unit
interval and with 128 subdivisions performing more than one hundred cycles.

In Figure 1.8, upper left window, the smoothing factor ρ (SνQ) for the se-
lected relaxation method (Gauss-Seidel red-black) is shown. The given value
of 0.0625 for two smoothing steps is nothing else than the information that the
chosen component has good smoothing properties. It is not necessarily a good
approximation of the multigrid convergence, because no grid-transfer compo-
nent is considered for its calculation. The upper-right window in Figure 1.8
additionally shows values for the two-grid operator. There is the spectral
radius ρ(M2L) giving asymptotic information, and the norms of the two-grid
method both for error reduction ||M2L||s and for residual (defect) reduction
||M2L||d. The asymptotic estimation of a two-grid method is too optimistic
compared to the observed behavior of a multigrid program. The norm values
shown give some information about the improvement which can be reached
at least per iteration step. From this it is not surprising that the estimation
of what can be reached at least for each iteration step (including the very first
ones) is worse than that which has been reached asymptotically. As the two-
level method is still an artificial limitation when thinking in terms of many
levels for multigrid, the three-grid values may be a better prediction of pos-
sible multigrid convergence. In the lower-left window of Figure 1.8 the value
ρ(M3L) now comes close to the empirically observed asymptotic convergence
of 0.1193 (independent on the mesh size, using six and seven levels, respec-
tively). In a similar way as mentioned before, the norms ||M3L||s and ||M3L||d
indicate that the improvement per step should be better than 0.15. This has
been verified in practice considering the complete convergence history.

If desired, the distribution of the eigenvalues of the analyzed operators can
be displayed, too. We show results for the two-level method using Gauss-
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FIGURE 1.8: Smoothing factors, two-, and three-grid convergence esti-
mates.
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Seidel with red-black ordering (left picture in Figure 1.9) and additionally
the eigenvalues of the two-level method when selecting lexicographic ordering
for the Gauss-Seidel smoothing (right picture in Figure 1.9). The plot of
such distributions is selected again from the button bar (right part). For
comparison, the three-grid values for this selection of ordering are shown in
the lower-right window of Figure 1.8. The experiment for the asymptotic
behavior delivers values of about 0.184, being close to the predicted value.
Both practice and theoretical prediction show the influence of ordering on the
final convergence behavior.

FIGURE 1.9: Distribution of eigenvalues for three-grid methods applying
Gauss-Seidel relaxation with different orderings; red-black (left), lexicographic
(right).

Another selection made from the button bar concerns the stencils which
are used on the different levels. It is possible to visualize the stencils at all
levels involved in the selected Fourier analysis. An important quantity in the
framework of local Fourier analysis is the measure of h-ellipticity of a discrete
operator Lh. A certain amount of h-ellipticity is a sufficient condition for the
existence of an efficient point smoother. More details are given in Section 5.8.
Figure 1.10 shows the discrete Laplacian and the corresponding measure of
h-ellipticity on three different levels. Because we use standard coarsening and
coarse-grid analogs of the fine-grid discretization, the five-point stencils look
very similar—up to the factor 4 because of doubling the mesh size. Below we
will show what happens when nonstandard coarsening strategies or coarse-grid
operators have been chosen.

© 2005 by Chapman & Hall/CRC Press



28 Practical Fourier Analysis for Multigrid Methods

FIGURE 1.10: Stencil representation for the central approximation of the
Poisson equation on three different levels.
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Chapter 2

MAIN FEATURES OF LOCAL
FOURIER ANALYSIS FOR
MULTIGRID

In this chapter, we summarize the basic features of local Fourier analysis for
multigrid methods without going into technical details. It is intended to give a
short overview about the main ideas, the power, and the range of applicability
of local Fourier analysis. In this respect it should be particularly worthwhile
for the practitioner who is mainly interested in the accompanying software.
Here he gets a qualitative insight into the principles of local Fourier analysis
without wading through the theoretical chapters from the second part of this
monograph. Moreover, for the theoretically oriented researcher it may serve
as a preparation and guideline for the (more technical) description of local
Fourier analysis for multigrid presented in the second part.

The application of Fourier analysis to multigrid methods has been intro-
duced by Achi Brandt [4] who prefers the expression local mode analysis
instead of local Fourier analysis. Comprehensive surveys including further
contributions are given in [7, 59, 60, 62, 65]. Our presentation is related
to the notation and philosophy from [59, 60, 62]. The recent developments
concerning the k-grid analysis are based on [67, 68].

2.1 THE POWER OF LOCAL FOURIER ANALYSIS

A standard choice for a multigrid method is to apply a classical pointwise
relaxation method as a smoother, to repeatedly double the mesh size in each
spatial direction for the determination of coarser grids, to use straightforward
geometric transfer operators from fine to coarse grids and vice versa, and to
apply coarse-grid operators that are natural analogs of the fine-grid discretiza-
tion. For “nicely” elliptic PDEs like the Poisson equation, these standard
multigrid methods have been proven to be highly efficient using local Fourier
analysis techniques. However, the basic multigrid structure described above
is often not appropriate for more complex problems. The crucial point for the
efficiency of any multigrid method is the correct choice of its components for
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an efficient interplay between smoothing and coarse-grid correction.
The difficulties in connection with standard multigrid are mainly divided

into two categories. The first one being that the error cannot be uniformly
smoothed by the relaxation method. The second class of difficulties is due to
the fact that smooth error components cannot be sufficiently reduced by the
coarse-grid correction. For example, for anisotropic problems pointwise relax-
ation exhibits good smoothing properties only “into the directions of strong
couplings” as it is shown in Sections 4.1.1 and 4.2.1. In the case of nonellip-
tic or singularly perturbed operators, there are smooth “characteristic” error
terms that are poorly approximated on coarse grids leading to a severe deteri-
oration of the multigrid convergence for standard components; compare with
Section 7.2 and [2, 6, 12, 75]. Consequently, one has to switch to more sophis-
ticated smoothers or one has to switch to nonstandard coarse-grid correction
schemes with a satisfactory approximation of smooth error terms. Examples
are given in Sections 4.1.6, 4.1.7, and 4.3.3.

Over the last three decades it has been demonstrated that carefully tuned
multigrid methods could be successfully applied to a much larger class of
problems than the nicely elliptic ones. During this development, the standard
multigrid components were replaced by block relaxations, ILU smoothers,
operator-dependent transfer operators, Galerkin coarse-grid operators, (mul-
tiple) semicoarsening techniques, etc. (compare with Sections 3.4 and 3.5) in
order to overcome the particular difficulty at hand; see, for example, [62] for
a recent monograph. In many cases this tuning was motivated and optimized
with the help of local Fourier analysis. In this respect, local Fourier analysis
can be regarded as the main quantitative analysis tool for the development of
new efficient multigrid methods.

2.2 BASIC IDEAS

We start with a discrete linear boundary value problem

Lhuh = fh on Ωh, Bhuh = gh at ∂Ωh

which is iteratively solved by a k-grid method.

2.2.1 Main goal

The main goal is to estimate the spectral radius or certain norms of the
k-grid operator which are quantitative measures for the error (or defect) re-
duction, see Section 1.3.

For an exact calculation of these quantities, it is necessary that there exists a
unitary basis of periodic eigenfunctions of Lh which generate the whole space
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of grid functions and which are compatible with the boundary conditions.
Then it is possible to expand the error (or the residual) after the i-th k-grid
cycle into a Fourier series by a unitary basis transformation, and different
multigrid methods can be analyzed by evaluating their effect on the eigen-
functions. An example is given in Section 1.3 for the Laplacian on the unit
square with homogeneous Dirichlet boundary conditions. However, for more
complicated domains, operators Lh, or (combinations of) boundary conditions
an appropriate basis of unitary eigenfunctions does usually not exist.

2.2.2 Necessary simplifications for the discrete problem

Therefore, we assume that Lh has only constant coefficients, neglect bound-
ary conditions and extend the discrete operator to an infinite grid. The eigen-
functions of such a constant coefficient infinite-grid operator are given by
simple exponential functions—called the Fourier components—generating the
whole space of bounded infinite-grid functions [9, 29, 65]. Thus, each infinite-
grid function can be written as a linear combination of Fourier components.
In particular an error or residual function can be expanded into a series with
respect to the Fourier components.

So far, we described the necessary simplifications only with respect to the
discrete operator Lh and the underlying domain. In order to apply the local
Fourier analysis to the whole k-grid operator, we furthermore assume that all
operators involved in the k-grid method have constant coefficients (which will
usually hold if already Lh is assumed to have constant coefficients) and that
they are extended to infinite grids (Gh, GH , etc.) as well.

2.2.3 Crucial observation

Due to the above simplifications, it turns out that the complete k-grid error
(or defect) reduction operator for large classes of multigrid components (to be
specified in Chapters 5, 6 for the two- and three-dimensional cases) leaves cer-
tain low-dimensional subspaces of Fourier components invariant. (More pre-
cisely, these subspaces are low-dimensional for small k, for example, k = 2, 3.)
This fact can be considered as the crucial observation from the local Fourier
analysis and means that the k-grid operator is unitarily equivalent to a block-
diagonal matrix with small blocks. From this block-diagonal representation
it is easy to obtain the corresponding spectral radius or norm value which is
usually done by a computer program, compare with Chapter 4 where the us-
age of the accompanying software to perform these computations is described
for many test cases.

2.2.4 Arising questions

From the previous discussion it is obvious that we have to clarify two main
questions:
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1. What are the implications of the above simplifications for “my real-
world application” which is nonlinear, has nonconstant coefficients and
a complex domain? In other words, we have to specify the range of
applicability of local Fourier analysis.

2. How do these block-diagonal representations (the so-called Fourier rep-
resentations) of the k-grid operator look like in practice?

The explicit Fourier representations for practical k-grid methods (k = 2, 3)
are derived in Chapters 5 and 6. Since the Fourier representations are calcu-
lated automatically by the accompanying software, these chapters are mainly
interesting for the theoretician. The answer of the practically very important
first question is given in the next section.

2.3 APPLICABILITY OF THE ANALYSIS

At first sight, the necessary simplifications in the framework of local Fourier
analysis, i.e.,

• Lh is a linear operator with constant coefficients,

• boundary conditions are neglected,

seem to be very restrictive and very unrealistic w.r.t. real applications. To
resolve this objection we would like to emphasize the following crucial obser-
vation.

Under general assumptions, any general discrete operator, nonlinear with
nonconstant coefficients can be linearized locally and can be replaced locally
(by freezing the coefficients) by an operator with constant coefficients.

This means if we deal with linear operators Lh(x) that are characterized
by variable coefficients, we are able to apply the analysis to the locally frozen
operator at a fixed grid point ξ. Replacing the variable x by a constant ξ,
one obtains an operator Lh(ξ) with constant frozen coefficients. In [8, 57]
it is shown that the convergence factor for an elliptic operator with varying
coefficients can be bounded by the supremum over the estimates from local
Fourier analysis for the locally frozen operators in case of smoothly vary-
ing coefficients. Moreover, practical experience demonstrates that estimates
for linearized versions of the original moderately nonlinear problem are in
good accordance with the actual performance. In this way it is possible to
treat a very large class of discrete difference operators—including real-life
applications—by local Fourier analysis. This will be validated by a large va-
riety of different examples given in Chapter 4. For example, in Section 4.3.3
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the validity of local Fourier analysis for an application governed by the incom-
pressible Navier Stokes equations is demonstrated, representing a nonlinear
system of PDEs with nonconstant coefficients.

The neglect of boundary conditions does usually not affect the validity of lo-
cal Fourier analysis as well, assuming a “correct” treatment of the boundaries.
This important observation is proved in [8, 57]. This means that the predicted
convergence factors should always be obtained in the numerical experiments
through the expense of some negligible work (at least in the limit of small mesh
size) at and near the boundaries. However, this “correct” treatment necessi-
tates a certain expertise for difficult applications and complicated domains.
Often it can be accomplished by some additional boundary relaxations.

2.3.1 Type of partial differential equation

Local Fourier analysis is rigorously proven to be valid for elliptic prob-
lems [8, 57]. However, for certain nonelliptic and singularly perturbed prob-
lems it can be very useful as well (see, for example [62, 67, 75] and the refer-
ences therein) which will be demonstrated in the following by several examples
like anisotropic diffusion or convection-dominated flow problems. Especially
for hyperbolic equations, there are certain variants of the local Fourier analy-
sis like the first differential approximation or the half-space analysis; compare
with [7, 21]. Moreover, the (time) discretization of parabolic equations often
leads to a sequence of elliptic problems which may be solved by multigrid
methods and analyzed with the help of local Fourier analysis.

2.3.2 Type of grid

Local Fourier analysis is restricted to uniform grids but it is valid for general
domains. (More precisely it is valid for general domains assuming a correct
treatment of the boundary, see above.) In this book, we focus on vertex-
centered grids Gh, i.e., the coarse grids are constructed by deleting grid points
so that the nodes on every coarse grid form a subset of the nodes on finer grids.
A popular alternative approach is to divide the computational domain into
cells and to locate the unknowns at cell centers. This approach is most natural
in connection with finite volume discretizations. Coarse grids are formed by
merging fine-grid cells. Thus, the cell centers of a coarse grid do not belong
to the next finer grid. Local Fourier analysis as presented in Chapter 6 for
the vertex-centered case can be straightforwardly adapted to the cell-centered
case [44] which is briefly discussed in Section 7.3. The accompanying software
is developed for multigrid methods on vertex-centered grids. However, certain
parts of the analysis (in particular smoothing analysis or the investigation of
the h-ellipticity to be defined below) do not distinguish between vertex- or
cell-centered grids and can be applied to both cases.

For systems of PDEs arising from computational fluid dynamics so-called
staggered grids are often applied. Here certain unknowns are placed at cell
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centers whereas others are placed at their borders. Even for such complicated
grid structures it is possible to perform local Fourier analysis; see [10, 46, 70].

2.3.3 Type of discretization

In principle, finite-difference (FD), finite-volume (FV), and finite-element
(FEM) discretizations can be used in the context of local Fourier analysis as
long as they lead to difference stencils with constant coefficients on uniform
grids. However for FEM, the applicability is rather limited since there is
no application to irregular grids which often arise from FEM discretizations.
Thus, we will typically deal with FD or FV discretizations.

Summarizing, we have discussed the huge range of applicability and its
practical relevance for the development of efficient multigrid methods for a
large variety of problems. These observations will be illustrated and come to
life in Chapter 4 by considering a lot of case studies.
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Chapter 3

MULTIGRID AND ITS
COMPONENTS IN LFA

In this chapter we give a short introduction into multigrid methods for two-
and three-dimensional problems including systems of equations. For a detailed
description we refer to the literature, e.g., [7, 28, 62, 65]. Here, our main
focus is to describe the multigrid components which can be selected in the
accompanying software LFA. Sections 3.1 and 3.2 are for those readers who
are not yet familiar with multigrid principles. In Sections 3.3, 3.4, and 3.5, the
implemented multigrid components of LFA are detailed and it is explained
how to select them via the graphical user interface xlfa.

3.1 MULTIGRID CYCLING

In the first chapter a special property of basic relaxation schemes has been
worked out theoretically and practically: the fast damping of high-frequency
Fourier modes. Such a behavior is typical for many iterative schemes. It is im-
portant to note that this fast reduction of high-frequency modes usually does
not depend on the mesh size—in contrast to convergence. This property is a
fundamental one for the construction of multigrid algorithms. A second basic
idea has already been mentioned, the coarse-grid correction. The combination
of both ideas leads to the multigrid correction scheme.

3.1.1 Coarse-grid correction operator

Recall from Section 1.4 that the coarse-grid correction is based on the so-
lution of a coarse-grid residual equation

e
(i)
H = L−1

H r
(i)
H = L−1

H RH
h r

(i)
h

with some restriction operator RH
h : Ωh → ΩH . Then, the coarse-grid quan-

tity e
(i)
H is transferred back to the fine grid by an interpolation or prolonga-

tion operator Ph
H : ΩH → Ωh. This interpolated quantity ê

(i)
h := Ph

He
(i)
H =
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Ph
HL

−1
H RH

h r
(i)
h is applied to correct the current fine grid approximation, i.e.,

û
(i)
h = u

(i)
h + ê

(i)
h = u

(i)
h + Ph

HL
−1
H RH

h r
(i)
h

= u
(i)
h + Ph

HL
−1
H RH

h fh − Ph
HL

−1
H RH

h Lhu
(i)
h

= KH
h u

(i)
h + Ph

HL
−1
H RH

h fh

with the coarse-grid correction operator

KH
h = Ih − Ph

HL
−1
H RH

h Lh. (3.1)

Note that the coarse-grid correction procedure does not converge. There exist
h-grid functions r(i)h , which are restricted to zero. As a consequence, the cor-
responding correction, computed from LHe

(i)
H = 0, is zero as well. Therefore,

the spectral radius ρ
(
KH

h

)
is larger or equal to one. In this regard it makes

no sense to apply the coarse-grid correction as a standalone solver.

3.1.2 Aliasing of Fourier components

Because the coarse grid receives fine-grid quantities we have to answer the
question of what happens to functions when transferring them. The transfer
of Fourier components like ϕ�,m

h (x1, x2) from Section 1.3 is particularly illus-
trative. For simplicity we assume standard coarsening (H = 2h) and injection
of defects from the fine grid onto the coarse grid. Then

Ω2h = {(x1, x2) | x1 = κ1H = 2κ1h, x2 = κ2H = 2κ2h; κ1, κ2 ∈ ZZ}
consists of all even-numbered points of Ωh. Injection of fine-grid functions is
nothing else than the evaluation of these functions at coarse-grid places. For
a fine-grid component ϕ�,m

h at (x1, x2) = (2κ1h, 2κ2h) ∈ Ω2h we have

ϕ�,m
h (x1, x2) = sin (�π2κ1h) · sin (mπ2κ2h) = ϕ�,m

2h (x1, x2),

showing that modes maintain their wave number.
The next question concerns the representation of high-frequency h-grid

modes (i.e., max{�,m} ≥ n/2; compare with Section 1.3.3) on the coarse
grid. It turns out that they cannot be represented on the coarse grid, be-
cause they coincide with certain low-frequency components. More precisely,
for low-frequency modes (1 ≤ �,m < n/2) we have

ϕ�,m
h (x1, x2) = ϕn−�,n−m

h (x1, x2) = −ϕn−�,m
h (x1, x2) = −ϕ�,n−m

h (x1, x2)

for (x1, x2) ∈ Ω2h. Hence the high-frequency modes cannot be distinguished
on Ω2h. They are not “visible” on the coarse grid.

Example 3.1 (Aliasing of Fourier modes). Any h-grid mode with � (or
m) equal to n

2 is mapped onto the coarse-grid zero function, because we have

ϕ
n
2 ,m

h (κ1H,κ2H) = ϕ
n
2 ,m

h (2κ1h, 2κ2h) = sin (πκ1) · sin (mπ2κ2h) = 0
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for all nodes of Ω2h.
Let n = 32, h = 1

32 , H = 2h = 1
16 . W.r.t. Ωh, � = 10 refers to a

low-frequency component. Regarding Ω2h, this function is a high-frequency
mode, because high-frequency wave numbers vary between 8 and 15 on Ω2h.

The Fourier mode with wave numbers (�,m) = (27, 2) is a high-frequency
component w.r.t. Ωh. Due to the aliasing phenomenon this function appears
on the 2h-grid as a mode with wave numbers (�,m) = (5, 2), which obviously
refers to a low-frequency component. �

If we discuss visibility now with respect to wavelength it has to be remem-
bered that on a grid with given mesh size those modes are visible which have
a wavelength larger or equal to twice that mesh size. Consequently, on the
H-mesh only modes with a wavelength larger or equal to 2H = 4h are visi-
ble. These are low-frequency fine-grid modes. On the coarse grid the Fourier
modes with wavelengths smaller than 2H are invisible. They correspond to
high-frequency modes on the fine mesh.

3.1.3 Correction scheme

From the above discussion it is a straightforward idea to suppress the trans-
fer of invisible modes to the coarse grid. This can be achieved by eliminating
high-frequency components on the fine grid by relaxation. The principles of
smoothing and coarse-grid correction naturally lead to a new two-grid itera-
tion procedure, which is called the two-grid Correction Scheme (CS) [4].

Algorithm 3.1 Correction scheme (CS)

(1) Presmoothing ū
(i)
h := Sν1

h u
(i)
h

(2) Computation of residuals r
(i)
h := fh − Lhū

(i)
h

(3) Restriction of residuals r
(i)
H := RH

h r
(i)
h

(4) Exact solution of the
coarse-grid problem LHe

(i)
H = r

(i)
H

(5) Transfer of the correction ê
(i)
h := Ph

He
(i)
H

(6) Correction û
(i)
h := ū

(i)
h + ê

(i)
h

(7) Postsmoothing u
(i+1)
h = Sν2

h û
(i)
h

The iteration operator of this two-grid method reads

MH
h = Sν2

h KH
h S

ν1
h . (3.2)

The iterative use of this operator finally leads to the formal description of the
error reduction by the correction scheme:

e
(i+1)
h =

(
Sν2

h

(
Ih − Ph

HL
−1
H RH

h Lh

)
Sν1

h

)
e
(i)
h . (3.3)
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A similar formula can be derived for the defect reduction using (1.21):

r
(i+1)
h =

(
Lh

(
Sν2

h

(
Ih − Ph

HL
−1
H RH

h Lh

)
Sν1

h

)
L−1

h

)
r
(i)
h . (3.4)

The two-grid method is easily extended to a multigrid method by applying
γ two grid cycles again to step (4) of Algorithm 3.1. It is only necessary
to introduce a coarser mesh, for instance, a 4h-grid. Such a recursive use
of coarser and coarser meshes can be continued until the coarsest problem
has reached a size which allows a direct solution according to step (4). In
many cases the coarsest grid may consist of a single interior point only. For
example, a k-grid method using standard coarsening involves k different grids
with uniform mesh sizes

hj(m) = 2k−mh =: h(m) (m = 1, . . . , k; j = 1, . . . , d). (3.5)

Obviously, the mesh size becomes finer with an increasing index m and we
have h(k) = h. Then it can be easily established by induction that the error
transformation of a k-grid cycle is given by the following recursion [28, 60, 62]:

M1
2 = Sν2

2 K1
2S

ν1
2 = Sν2

2 (I2 − P 2
1 (L1)−1R1

2L2)Sν1
2 (3.6)

M1
�+2 = Sν2

�+2K
1
�+2S

ν1
�+2 (3.7)

= Sν2
�+2(I�+2 − P �+2

�+1 (I�+1 − (M1
�+1)

γ)(L�+1)−1R�+1
�+2L�+2)Sν1

�+2

for � = 1, ..., k − 2 ,

where the sub- and superscripts of the different operators are abbreviations
for the related mesh sizes h(m) of the k involved grids. γ denotes the cycle
index.

The two-grid analysis provides the spectral radii and the norms of the error
and defect-reduction operators:

ρ
(
MH

h

)
= ρ

(
LhM

H
h L

−1
h

)
, ‖MH

h ‖S , ‖LhM
H
h L

−1
h ‖S .

In the accompanying software these values are named

ρ (M2L) , ‖M2L‖s, ‖M2L‖d.

The corresponding three-grid values (see (3.7) with k = 3) are

ρ (M3L) , ‖M3L‖s, ‖M3L‖d,

respectively. Details on how to derive these estimates are given in Chapter 6.
The effect of this algorithm is understood best when thinking in terms

of frequencies. By smoothing on the h-grid, high-frequency fine-grid modes
are damped by some smoothing steps. The remaining modes are visible on
the next coarser mesh. They are transferred to the coarse grid. Again, the
coarse-grid high-frequency components are damped by smoothing. Then low-
frequency coarse-grid components remain, but they are visible on the next
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coarser mesh. The same arguments can be applied further and further. Sum-
marizing, most Fourier components are smoothed out by the relaxation pro-
cedure on that particular mesh where they are visible high-frequency modes.
The remaining error modes are removed on the coarsest grid where an exact
solution is assumed.

Having introduced the correction scheme it is appropriate to apply the
algorithm to exactly that problem (compare Figure 1.1) where we started
from with our analysis of basic iterative schemes. Different mesh sizes h ∈
{ 1

64 ,
1

128 ,
1

256} have been used for the finest grid when applying the CS iter-
ation. The coarsest grid always consists of only a single interior point. We
choose the same components as in our previous discussion in Section 1.6.
There we have shown convergence predictions and empirical convergence fac-
tors for an algorithm with two sweeps of red-black Gauss-Seidel smoothing,
full weighting and bilinear interpolation for grid transfers, standard coarsen-
ing and V-cycling. Figure 3.1 shows the multigrid convergence history for
both the errors and the residuals.

0 5 10 15 20 25
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

* log ⏐⏐ r
h
(i) ⏐⏐

o log ⏐⏐ u − u
h
(i) ⏐⏐

. log ⏐⏐ r
2h
(i)  ⏐⏐

+ log ⏐⏐ u − u
2h
(i)  ⏐⏐

+ log ⏐⏐ r
4h
(i)  ⏐⏐

* log ⏐⏐ u − u
4h
(i)  ⏐⏐

Multigrid convergence history, h=1/256
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FIGURE 3.1: Multigrid convergence history, cycling with a finest mesh
size h = 1

128 .

The most significant facts are:

1. Residual and error are reduced by almost the same factor of approxi-
mately 0.1 per multigrid iteration.

2. The reduction does not depend on the mesh size of the finest grid level.
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3. Two of these numerically cheap multigrid cycles reduce errors and resid-
uals to about the same extent as four hundred steps of the single-grid
method (Jacobi relaxation) applied in Section 1.3.1. The numerical work
for one cycle is about that of four iterations of the single-grid method
applied on the finest grid.

3.2 FULL MULTIGRID

We continue our brief survey of multigrid principles with a description of
full multigrid (FMG).

To solve Lhuh = fh by multigrid, a hirarchy of k grids, Ωh = Ωk, . . . ,Ω1,
with decreasing mesh sizes (3.5) is introduced. (For ease of notation, we
use the indexing with level numbers instead of using the mesh size directly,
compare with Section 3.1). The cycling starts on grid level k and proceeds to
coarser grids. Within this iterative approach the different grids are applied to
compute corrections to the approximation on the next finer level.

Moreover, as for many other iterative approaches, the coarser grids can
be used to compute an initial guess. It is straightforward to combine this
idea known as “nested iteration” with multigrid cycling. The resulting FMG
algorithm is easily described.

Algorithm 3.2 Full multigrid
With the hierarchy of grids Ωh = Ωk,Ωk−1, . . . ,Ω1 perform

1. on the coarsest level Ω1 solve L1u1 = f1

2. for m = 2, · · · , k

(a) interpolate the initial guess u
(0)
m = IIm

m−1um−1

(b) start from this initial value on level m with nm multigrid cycles to
calculate the new approximation um.

To clearly distinguish the interpolation operator IIm
m−1 from the interpolation

of corrections it is called FMG-interpolation.
Note that FMG is no fixed algorithm. It offers a wide range of choices.

Instead of V-cycles any other cycle type might be used. It is not necessary to
start the nested iteration on the coarsest grid which is used for multigrid. A
proper choice for the number of multigrid cycles nm to be applied on each level
depends on the convergence factor of the multigrid cycle under consideration.
Assuming “typical” multigrid convergence, nm = 1, 2 is usually sufficient; see,
for example, [62].

There are two main features of FMG which make it superior to pure multi-
grid cycling. Firstly, it can be shown that FMG computes an approximation
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to the solution of the PDE up to the accuracy of the discretization error. This
desirable feature mainly depends on the “polynomial order” of the FMG in-
terpolation, the cycle index γ, and on a sufficiently small norm of the two-grid
operator [60, 62]. (For the definition and a discussion of the order of transfer
operators, refer to Section 7.1.) In practice, the designer of multigrid meth-
ods will look for small two- or three-level values with the help of LFA and
then he can be sure that FMG will work properly. The second property of
FMG is that it reaches this accuracy with an amount of work which is linearly
dependent on the number N of unknowns characterizing an “optimal order”
method or “O(N)-method”.

The potential of FMG can be easily demonstrated when solving our stan-
dard problem. Within just a single FMG step errors as well as defects are
reduced up to the same amount which is obtained by the multigrid correction
scheme after seven to ten iterations. Figure 3.2 shows the multigrid con-
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FIGURE 3.2: Multigrid convergence history, cycling (∗, ◦) versus FMG
(×, +), finest mesh size h = 1

128 .

vergence history in a logarithmic scale for both the errors and the residuals
computing the solution of an example with nonvanishing discretization error
(u(x) = x5

1 + x6
2). Multigrid iteration reduces the algebraic error uh − u

(i)
h

well, but after some iterations, the total error u− u
(i)
h has reached the size of

the discretization error and cannot be reduced any further. FMG starts from
the coarsest mesh, always performing just a single cycle per level. Because
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we use V(1,1)-cycles, the numerical effort for such an FMG step is about 1.6
times larger than that for one cycle starting on the finest grid. The resulting
norm of both residual and error after one FMG cycle is marked by × and
+, respectively. This shows the potential of FMG: the accuracy of discretiza-
tion error is reached with substantially less numerical effort compared to pure
multigrid cycling.

3.3 xlfa FUNCTIONALITY—AN OVERVIEW

The user interface xlfa has been designed to allow for an easy modification
of input parameters for the Fourier analysis program LFA. The multigrid
components and postprocessing functions like plotting selected results can be
chosen by either using the mouse (standard case) or the keyboard. xlfa is
written in tcl/tk, an interpreted scripting language. Thus, if an appropriate
interpreter is present xlfa can be run on nearly every UNIX-, LINUX-, or
Windows-like operating system. More detailed information on functionality,
installation requirements, and installation steps are given in the user’s manual
which can be found on the accompanying CD-ROM.

The initial module (Figure 1.5) of the graphical environment is a tabbed
register panel which supports the selection of the problem class (2Dscalar,
2Dsystems, 3Dscalar) and the choice of a concrete PDE problem. There is a
representative set of standard problems to work with. Nevertheless, the user
is allowed to define and include new applications into the list.

The main window consists of four sections: the menu bar, the button bar,
the parameter display, and the problem display; see Figure 3.3. To select any
function the mouse is used, but there are shortcuts to use the keyboard, too.

3.3.1 Menu bar

The File menu supports loading previously used options or saving them.
This menu is also used to quit xlfa. When working with the Parameters-
menu the input information for the Fourier analysis program LFA is created.
There are submenus where the output of LFA is specified, where relaxation-
related selections can be made, and where components for the coarse-grid
correction are chosen. Also, the type of discretization and the grid size can
be specified here. There are default xlfa-parameters and options for each of
the predefined applications. They can be saved as another option file to be
loaded via the File menu above.

The Problem menu can be used to compile and run the current application.
Moreover, it may serve to create a new application. To do so, one simply has
to specify the related stencil of the new application; compare with Section 4.4.
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FIGURE 3.3: The main window of xlfa revisited.

The Problem menu supports editing such stencil files as well as incorporating
them into LFA. Finally, the linked application may be started from this menu.
Usually, the Output menu will be used to select the style of LFA-related
output information. Internal files with detailed information and compact
data about convergence rates and operator norms can be shown. Eigenvalues
of different operators may be selected for visualization purposes here, too.

3.3.2 Button bar

The Button bar (Figure 3.4) provides a selection of often-used actions to
be initiated by a single click with the mouse button. The first category con-
cerns the preparation (definition of options, compilation, and execution) of
the special application. The second class of buttons allows a fast selection
of interactively displayed information such as convergence rates, stencils for
selected levels, and distributions of eigenvalues.

3.3.3 Parameter display

The Parameter display (Figure 3.5) shows most of the actually chosen
multigrid-related parameters. The graphical representations are self-explai-
natory. When clicking on list boxes or icons in this part of the display, a
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FIGURE 3.4: The Button bar.

dialog is opened and the selection of different components is offered. The new
selection is displayed by an appropriate icon in this part of the display, again.

FIGURE 3.5: The Parameter display.

The number of levels to be used within the analysis is of importance for
the type of analysis. If only one level is chosen, the single grid (or smoothing)
analysis is carried out. Otherwise a two- or three- grid analysis is performed.
In principle, the results are the closer to multigrid results when more levels
are involved. The selection of components has to be in accordance with the
selected number of levels.

3.3.4 Problem display

The Problem display (Figure 3.6) shows the output of the last LFA execu-
tion. The path of the currently selected problem run is displayed, too.

3.4 IMPLEMENTED COARSE-GRID CORRECTION
COMPONENTS

The description of Algorithm 3.1 already shows that there are several algo-
rithmic details to be chosen properly. An appropriate selection for obtaining
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FIGURE 3.6: The Problem display.

an efficient multigrid strategy for a given problem is not trivial. Nevertheless,
by theory and experience there exist recommendations for save and robust
components.

In the following we consider each of the components separately which can be
selected in LFA. The description of multigrid has not yet offered any feature
which would limit the use of multigrid to scalar equations. Comparable to
the scalar case the transfer of quantities and the proper selection of relaxation
schemes becomes crucial. Thus it is convenient to describe the multigrid
components for scalar equations and for a system of equations simultaneously.
However, although the multigrid principles remain, the efficient treatment of
systems of partial differential equations is definitely not straightforward and
cannot be deduced from pure intuition or experience. Especially in these
cases, LFA yields valuable and reliable information about the performance of
different multigrid methods.

3.4.1 Discretization and grid structure

Discretization technique and grid structure strongly depend on the differ-
ential operator and the domain under consideration. In most cases the un-
derlying geometric information is used. For a large class of problems vertex-
centered discretization schemes are favored, where the unknown quantities
are located at grid points. As previously mentioned, for many systems of
PDEs in fluid-flow calculations, cell-oriented and staggered approaches are
used. This does not limit the use of multigrid, but programming the compo-
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nents becomes technically more demanding. The accompanying software is
mainly designed for vertex-centered grids. However, local Fourier analysis for
cell-centered [44] grids is addressed in Section 7.3 whereas the staggered case
can be found in [10, 46, 70].

3.4.2 Coarsening strategies

The coarsening defines the hierarchy of grids to be used within the multigrid
method. Regular grids allow coarsening rules which are easy to use. Doubling
the mesh size from Gh to GH with H = 2h, is known as standard coarsening.
A second uniform coarsening is red-black coarsening where the next coarser
mesh is created by omitting every other point. The new grid corresponds to
a rotated grid with H =

√
2h.

A basic nonuniform procedure doubles the mesh size only with respect to
a subset of spatial directions. For instance, x1- and x2-semicoarsening for
two-dimensional applications yield H = (H1,H2) = (2h, h) and H = (h, 2h),
respectively. In three dimensions, the number of semicoarsening strategies
increases. The different coarsening strategies implemented in LFA are il-
lustrated in the middle part of the coarse grid correction dialogue box
shown in Figure 3.7.

Restriction and prolongation have to be selected in accordance with the
coarsening strategy, see below.

3.4.3 Coarse-grid operator

The discretization dialogue (Figure 3.8) serves to adapt the discretization
approach. This concerns both the size of the stencil and the choice of the
coarse-grid operator. Additionally, the size of the discrete meshes in physical
space and in Fourier space (wave numbers) can be selected. For the non-
experienced user, we always recommend selecting the same value for both
parameters. The finer the discretization in the frequency space the higher the
computational cost of the LFA calculations will be.

The coarse-grid operator LH has been introduced up to now by the only
condition that it is “similar” to the fine grid operator Lh. The most natural
definition of LH is to directly apply the same discretization technique as on the
finest grid. This will be referred to as discretization coarse-grid approximation
(DCA) as in [65]. Alternatively, LH can be chosen using the Galerkin opera-
tor LH = RH

h LhP
h
H , denoted by Galerkin coarse-grid approximation (GCA).

Prolongation operator Ph
H and restriction operator RH

h are often selected to be
adjoint to each other. The possible choices for RH

h and Ph
H shown in Figure 3.8

are explained in Sections 3.4.5 and 3.4.6. Another possibility supported by
the accompanying software is the selection of a user-defined coarse-grid ap-
proximation (UCA) which has to be specified in a subroutine called starH.f.
An example is given in Section 4.1.2.
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FIGURE 3.7: Coarse-grid correction dialogue for two- and three-
dimensional cases.
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FIGURE 3.8: Discretization dialogue.

3.4.4 Multigrid cycling

The cycle parameter γ of recursive calls of the two-grid method to solve the
coarse-grid problem determines how often a certain grid level is used. Usually
γ equals one or two. γ = 1 leads to the so-called V-cycle and γ = 2 generates
the W-cycle. Figure 3.9 motivates the names when using three levels.

FIGURE 3.9: V- and W-cycles.

V- and W-cycle are the standard cycle types. Obviously, W-cycles are
computationally more expensive than V-cycles. On the other hand, W-cycles
are more robust and a general convergence theory exists; see, for example [28].
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3.4.5 Restriction

For the description of the transfer operators listed in Fig. 3.7, we have
to consider their dimensionality, which depends on the dimension of the
underlying application and on the coarsening strategy. For example, x1-
semicoarsening requires a one-dimensional restriction procedure (independent
of the dimension of the underlying application) whereas standard coarsening
requires a two-dimensional restriction procedure for two-dimensional applica-
tions and a three-dimensional restriction for three-dimensional problems. The
practical application of transfer operators close to boundaries has to be done
carefully for complicated domains; see, for example [62]. However, for our pur-
pose such modifications are of minor interest since in the framework of local
Fourier analysis we are considering infinite grids; compare with Section 2.2.2.

For ΩH ⊂ Ωh the pure injection (INJ) first comes to mind. With stan-
dard coarsening we have RH

h vh = vh |ΩH
. For half injection (HI) the injected

value is multiplied by 1
2 . This particular restriction has been proven to be

highly efficient for Poisson-type problems in connection with red-black Gauss-
Seidel relaxation; compare with Section 4.1.1. Injection is easily programmed
but averaging transfer operators are more robust for general problems. Full
weighting (FW) is an often-recommended restriction. Higher-order weighting
is rarely applied but might be useful in connection with higher-order differen-
tial equations like the biharmonic equation. If the grid coarsening is done in
one space direction only—say x1—the corresponding stencils read as

1
4
[
1 2 1

]2h

h
for full weighting and (3.8)

1
32
[−1 0 9 16 9 0 −1

]2h

h
for higher-order weighting. (3.9)

The two- and three-dimensional analogues of (3.8) and (3.9) can be obtained
by simple tensor products as described in Example 1.3. For example, the
two-dimensional FW operator, given by

1
4
[
1 2 1

]2h

h

⊗ 1
4

⎡
⎣1

2
1

⎤
⎦

2h

h

=
1
16

⎡
⎣ 1 2 1

2 4 2
1 2 1

⎤
⎦

2h

h

(3.10)

might be applied in the case of standard coarsening for two-dimensional prob-
lems or in the case of (x1, x2)-semicoarsening for three-dimensional appli-
cations. Interpreting these stencils due to (1.5), the coarse-grid function
v2h(x1, x2) ((x1, x2) ∈ Ω2h) after, e.g., full weighting in connection with stan-
dard coarsening and a two-dimensional application is given by

v2h(x1, x2) =
1
16

[vh(x1 − h, x2 − h) + 2vh(x1, x2 − h) + vh(x1 + h, x2 − h)

+ 2vh(x1 − h, x2) + 4vh(x1, x2) + 2vh(x1 + h, x2)
+ vh(x1 − h, x2 + h) + 2vh(x1, x2 + h) + vh(x1 + h, x2 + h)].
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Moreover, there are some restriction operators which cannot be described by
tensor products of one-dimensional operators. That is, half weighting (HW)
in two and three dimensions,

1
8

⎡
⎣ 1

1 4 1
1

⎤
⎦

2h

h

,
1
12

⎡
⎢⎣
⎡
⎣ 1

⎤
⎦

2h

h

⎡
⎣ 1

1 6 1
1

⎤
⎦

2h

h

⎡
⎣ 1

⎤
⎦

2h

h

⎤
⎥⎦ ,

seven-point restriction in two dimensions,

1
8

⎡
⎣1 1

1 2 1
1 1

⎤
⎦

2h

h

, (3.11)

the adjoint of linear interpolation in three dimensions due to [65]

1
16

⎡
⎢⎣
⎡
⎣1 1

1 1

⎤
⎦

2h

h

⎡
⎣1 1

1 2 1
1 1

⎤
⎦

2h

h

⎡
⎣ 1 1

1 1

⎤
⎦

2h

h

⎤
⎥⎦ , (3.12)

and the operator-dependent restrictions R2h
h (Lh) from [18, 77]. In addition,

it is possible to apply the transpose of the selected prolongation operator as
a restriction.

The generalization of the above restrictions to systems of equations is triv-
ial (except for matrix-dependent restrictions, discussed in the following sub-
section). Here, each variable has to be treated separately by the selected
restriction operator.

3.4.6 Prolongation

The transfer of coarse-grid information to the next finer one, especially
prolongating the smooth correction, is often done by (bi-, tri-)linear inter-
polation. Other possible choices are (bi-, tri-)cubic or even (bi-, tri-)quintic
interpolation. A particular simple (but usually not very efficient) choice is to
use constant upwind interpolation only. Linear interpolation in two dimen-
sions is adjoint to a seven-point restriction (3.11). It is exact for functions
v(x1, x2) = 1, x1, x2, and takes place in triangles. In three dimensions, linear
interpolation is adjoint to (3.12) and takes place in tetrahedra [65].

Depending on the problem and on the quantity to be transferred more
sophisticated interpolation methods are needed. Popular alternatives are
matrix-dependent prolongations Ph

2h(Lh) [18, 32, 65, 77] which are based
on the discretization operator under consideration. These matrix-dependent
transfer operators are defined for two-dimensional scalar equations which can
be represented by compact 9-point stencils in connection with standard coars-
ening. However for (q×q) systems of equations, one can use matrix-dependent
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prolongations Ph
2h(Li,i

h ) and restrictions R2h
h (Li,i

h ) based on the diagonal scalar
operators Li,i

h (i = 1, . . . , q) as long as they are given by compact 9-point sten-
cils. Then, for the i-th unknown discrete function, R2h

h (Li,i
h ) and Ph

2h(Li,i
h ) are

used as transfer operators from coarse to fine grids and vice versa.
Similarly, one applies Ph

2h(Li,i
h ) and R2h

h (Li,i
h ) (i = 1, . . . , q) if Galerkin

coarsening is selected. More precisely, L2h is then composed of

Li,j
2h = R2h

h (Li,i
h ) Li,j

h Ph
2h(Lj,j

h ) for i, j = 1, . . . , q.

Then, P 2h
4h (Li,i

2h) and R4h
2h(Li,i

2h) (i = 1, . . . , q) are applied to construct the next
coarser Galerkin discretization L4h, and so on. Note that such an application
of matrix-dependent transfer operators is closely related to the “unknown
approach” in an algebraic multigrid (AMG) setting for systems of PDEs; see,
for example, [51].

Because interpolation creates high-frequency modes on the fine grid, post-
smoothing is recommended after coarse-grid correction.

3.5 IMPLEMENTED RELAXATIONS

Relaxation methods play a dominant role in multigrid algorithms. There is
an extensive list of iterative schemes which have been applied as smoothers in
a multigrid algorithm [62, 65] ranging from basic relaxations as presented in
Section 1.2 to more sophisticated methods like “ILU-type” smoothers based
on an incomplete matrix decomposition. Here, we focus on those relaxation
methods implemented in LFA.

3.5.1 Relaxation type and ordering of grid points

Iterative schemes require a systematic way to resolve the equations for the
corresponding unknowns. Because an unknown is associated with some grid
node, this scanning of equations is also called ordering of grid points. Jacobi it-
eration (JAC) does not depend on the ordering whereas for Gauss-Seidel-type
relaxations (GS) different orderings yield different numerical results. Hence
it can be expected that the ordering of equations may have some influence on
the quality of smoothing. To distinguish the type of ordering we append the
information in which sequence the grid points are visited. Standard orderings
for two-dimensional applications are lexicographic (LEX), red-black (RB) in
a checkerboard (point relaxation), or zebra (line relaxation) manner [62, 65].

Using a lexicographical ordering, the point (κ1h, κ2h) is called “smaller”
than (κ′1h, κ

′
2h) if κ2 ≤ κ′2 and in case of κ2 = κ′2 if κ1 < κ′1. For the

checkerboard ordering the grid points are split into a set of red points ΩR
h =

{(κ1h, κ2h) | κ1 + κ2 even} and into the black ones ΩB
h = Ωh \ ΩR

h . In a
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similar way the four-color ordering (4C) requires splitting Ωh into four dis-
joint subsets; compare with Section 5.4.7. Within every color the points are
numbered lexicographically, again. An x1-zebra line ordering first collects all
points belonging to red (even-numbered) lines ΩR

h = {(κ1h, κ2h) | κ2 even}
and then the black (odd-numbered) ones.

The possibility for theoretical analysis is the main reason to use Jacobi-
type relaxation, although they often do not provide efficient smoothing. A
first modification of standard Jacobi iteration is red-black Jacobi relaxation
(RB-JAC), which is realized by two half-steps. The first one applies Jacobi
iteration to all grid points (respectively equations) belonging to ΩR

h . With
new red values the second Jacobi step determines new values for ΩB

h . A
straightforward generalization is the four-color Jacobi relaxation (4C-JAC).
Gauss-Seidel relaxation with lexicographic ordering of grid points (GS-LEX)
works satisfactorily in many cases. Nevertheless, Gauss-Seidel relaxation with
red-black ordering (RB-GS) yields better smoothing properties for Poisson-
like equations.

Block-oriented schemes become attractive as soon as there occur anisotro-
pies, for instance caused by strongly varying coefficients of the PDE. Block-
relaxation schemes collect all equations corresponding to the block (for in-
stance a column or a line) and solve this subsystem directly. Passing through
all the columns or lines lexicographically and updating the values immediately
establishes the lexicographic column or line Gauss-Seidel relaxation (x1-, x2-
line GS-LEX). The denomination for red-black variants (x1-, x2-line RB-JAC)
are self-explainatory.

The alternating direction line RB-JAC relaxation (AD-RB-JAC) performs
four different steps in a “symmetric” manner: x1-line RB-JAC for odd-num-
bered lines followed by x1-line RB-JAC for even-numbered lines followed by
x2-line RB-JAC for even-numbered columns followed by x2-line RB-JAC for
odd-numbered columns.

Apart from these standard smoothing methods, it is also possible to choose
the so-called KAPPA-smoother [49] which has been especially designed for
higher-order upwind discretizations of convection-dominated flow problems.

In three dimensions the possible number of variants is increased by using
plane relaxations, compare with Fig. 3.10. The orientation of the plane should
be governed by the coefficients of the discrete problem, which will be specified
by several case studies given in Section 4.2.1. A plane relaxation, directly
solving for all unknowns belonging to this plane, is realized in many cases by
a two-dimensional multigrid method itself.

The selection of one of the described relaxation methods and the num-
ber of pre- and postsmoothing steps can be made with the help of a dialog
box pictured in Figure 3.10. Also particular parameters like weighting fac-
tors (see Example 1.5) or multistage parameters (defined in Section 3.5.3)
may be modified. For both, pre- and postsmoothing up to 10 different se-
lections (Presmoothing 1-10, Postsmoothing 1-10) can be made. More-
over, a Kaczmarz variant of the selected relaxation method might be applied,
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which is based on the normal equations of the underlying application; compare
with [62, 65] and Remarks 5.12 and 5.16.

FIGURE 3.10: Possible smoothing methods for two- and three-
dimensional scalar equations.

A general theoretical description of point- and block-relaxation methods
of JAC-, GS-, and RB-JAC-type for d-dimensional problems will be given
in Chapter 5 in connection with local Fourier smoothing analysis. For im-
plementation purpose and further details on the above-mentioned relaxation
methods, we refer to the well-known basic multigrid literature, e.g., [62, 65].
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3.5.2 Relaxation methods for systems

In order to characterize different types of relaxations for systems of PDEs,
it is important to distinguish between unknowns, u1, . . . , uq, grid points, x,
and variables, u1

h(x), . . . , uq
h(x). An unknown is one of the functions being

approximated, e.g., the pressure or the velocity components in the Stokes
equations discussed in Section 4.3.2. The meaning of grid point is evident.
The value representing the unknown at a particular grid point is called a
variable.

The straightforward generalization of a scalar smoothing method described
above to a system of PDEs is a collective (COL) or coupled relaxation. Like
its scalar counterpart, this relaxation method sweeps over all grid points in a
certain order, for example, in a lexicographic order or in a red-black manner.
At each grid point x in pointwise collective smoothing, all difference equations
are solved simultaneously, i.e., the corresponding variables u1

h(x), . . . , uq
h(x)

are updated simultaneously. This means that a linear (q × q)-system has to
be solved at each grid point. The necessary adaptations for collective line or
plane smoothers are straightforward.

Relaxation schemes which do not collectively solve the q equations at one
grid point are called decoupled smoothers. We distinguish between two decou-
pled relaxation methods. Both variants consist of an inner and an outer sweep
to update the variables. In the first variant (DEC1), the grid points are vis-
ited in an outer sweep where at each grid point the variables u1

h(x), . . . , uq
h(x)

are updated one after the other (inner sweep). In the second variant (DEC2),
each grid point is visited q times. In the first sweep over the grid points, only
the variables u1

h(x) are calculated, in the second sweep the variables u2
h(x) are

updated, etc., and finally the variables uq
h(x) are actualized. In other words,

the variables are updated with the help of an outer sweep over the unknowns
and an inner sweep over the grid points. For both variants, we are free to
choose the order (lexicographic, red-black, etc.) in which the grid points are
visited (outer sweep in the first variant, inner sweep in the second variant; see
Fig. 3.11).

Distributive relaxations [10, 71] represent an important class of smoothing
methods for systems of equations. They can be described as follows. To relax
a system of PDEs Lhuh = fh, we introduce a new variable vh by uh =
Chvh and consider the transformed system LhChvh = fh. For example, Ch

is chosen in such a way that the resulting transformed system is suited for
decoupled smoothing. The implemented distributor for the predefined Stokes
equations is constructed like this (compare with Section 4.3.2). If Ch =
L∗

h is applied, the distributive version of the relaxation under consideration
coincides with its Kaczmarz variant. For details on distributive relaxations,
see [7, 10, 62, 71] and Section 5.5.2. Next to the predefined distributive
relaxations, one might easily implement new variants by simply specifying
the distributor stencil in the file dist.f explained in Section 4.4.
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FIGURE 3.11: Selection of smoothing methods for two-dimensional sys-
tems.

3.5.3 Multistage (MS) relaxations

For any given smoothing method Sh, it is possible to construct an m-stage
(MS) relaxation by

Pm (Sh) :=
m∏

n=1

((1 − ωn)Ih + ωnSh) (3.13)

with multistage parameters ωn (n = 1, . . . ,m) and grid identity Ih. The most
popular multistage methods are of point Jacobi-type [31, 20, 15, 40]. The use
of block- or red-black-type multistage methods is not very common, but it
can be useful as well; see [67] and Section 4.1.5.

Note that the consecutive application of m damped point/block Jacobi re-
laxations (n = 1, . . . ,m) is equivalent to point/block multistage Jacobi relax-
ation with multistage parameters ω1, . . . , ωm. For pattern or damped Gauss-
Seidel relaxations it is not possible to express the relaxation parameters in
terms of the multistage parameters. More details about MS relaxation are
given in Section 5.6.
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Chapter 4

USING THE FOURIER ANALYSIS
SOFTWARE

Assuming that an application has been selected and that the compilation has
created an LFA-executable we may start the experiments, for instance, by
clicking the run-icon of the button bar (Fig. 3.4). Any error or warning of
LFA is reported in the problem display. For each experiment the convergence
predictions can be saved yielding a sequence of results in order to document
the way to the most promising selection of components. We would like to point
out that LFA does not only present some numbers (the expected multigrid
convergence rates), it also provides the possibility to optimize algorithms and
to debug multigrid software. The optimization aspect is easily understood.
The debugging feature is a second aspect. Whenever the desired components
for a given problem class have been selected and programming has started,
LFA can be used to analyze the current status of the development step by
step. As soon as a new component has been finished and is activated in the
program, numerical experiments should be made to investigate the empirical
behavior of the program. If this does not coincide with the predicted values
for the given problem, there might be an error. In this way the analysis
software may help in debugging all the components one after another. To use
the LFA software in such a debugging mode is not only of value for multigrid
beginners.

If a one-level (smoothing) analysis was requested, only the smoothing fac-
tors ρ(SνQ) and ρ(SνQ)D will be shown where ρ(SνQ)D refers to Dirichlet
boundary conditions. Of course, local Fourier analysis usually neglects bound-
ary conditions since it is based on infinite grids. However, it is possible to
heuristically mimic the influence of Dirichlet boundary conditions in Fourier
smoothing analysis which is motivated and explained in Section 5.3.3. The
maximum information to be shown is listed in Table 4.1. The stencils of the
chosen discretization and the corresponding measure of h-ellipticity (compare
with Section 5.8) might be displayed as well. Considering systems of PDEs
it is furthermore possible to take a look at a possible distributor and the
resulting transformed system.

The visualization of the eigenvalues for the different operators as determined
by the Fourier analysis program LFA is either requested by the main menu
or by activating the corresponding icon of the button bar. The complex
eigenvalues are represented in the complex plane (see, for instance, Figure 1.9
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TABLE 4.1: Maximum information displayed by LFA

ρ(SνQ) smoothing factor
ρ(SνQ)D smoothing factor for Dirichlet boundary conditions
ρ(M2L) two-level asymptotic convergence factor
||M2L||s spectral norm of the two-level error reduction operator
||M2L||d spectral norm of the two-level residual reduction operator
ρ(M3L) three-level asymptotic convergence factor
||M3L||s spectral norm of the three-level error-reduction operator
||M3L||d spectral norm of the three-level residual-reduction operator

in Section 1.6). A feature for zooming and moving around in order to look at
the results in detail is available. For documentation purposes, an option to
print and save as a postscript file is provided.

Experienced users may look at the input file LFADAT which has been gen-
erated by xlfa and at the output files of LFA itself. This option is chosen
from the Output menu. Besides the already mentioned parameter input file
there are files describing the discretization stencils and the different eigenvalue
distributions.

In this chapter we will present both theoretical and corresponding numer-
ical results for two-dimensional scalar, three-dimensional scalar, and two-
dimensional systems of PDEs in Sections 4.1, 4.2, and 4.3, respectively. The
convergence rates of the numerical experiments are denoted by ρn(kL) which
is the average defect reduction after 100 iterations for the corresponding solu-
tion method involving k levels. We choose such a large number of iterations
because the theoretical predictions ρ (M2L) and ρ (M3L) refer to asymptotic
convergence factors. Unless stated otherwise we use a zero right-hand side,
homogeneous Dirichlet boundary conditions, and a random initial guess to
avoid round-off errors.

Each of the predefined discrete applications of the accompanying soft-
ware LFA is separated in its own subsection. Several interesting features
of LFA like

• the superiority of the three-grid analysis over the classical two-grid anal-
ysis

• benefits of Galerkin coarse-grid approximation (GCA) versus discretiza-
tion coarse-grid approximation (DCA)

• the application of user-defined coarse-grid approximations (UCA)

• the usefulness of multistage and relaxation parameters

• the comparison of coupled and decoupled smoothing for systems of PDEs

• the application of distributive relaxations for systems
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• implications of operator-dependent transfer operators

are discussed by studying an assortment of the given examples in some detail.
Section 4.4 is dedicated to the implementation of a new application.
In the following, we will frequently apply a multigrid method with a fixed

set of coarse-grid correction components and a varying smoother. We denote
this method by MG0(“smoother”). It is characterized in the following table.

• standard coarsening and DCA
MG0(“smoother”): • bi- (2D) or trilinear (3D) interpolation

and full weighting
• smoother under consideration

For the different abbreviations of the particular relaxation at hand—like point
GS-LEX or x1-line RB-JAC—refer to Section 3.5.

In order to get familiar with the accompanying software we encourage the
reader to perform the same experiments as presented in the following sections.

4.1 CASE STUDIES FOR 2D SCALAR PROBLEMS

Two-dimensional scalar equations represent the first category of case stud-
ies under consideration. Typical difficulties concerning an efficient multi-
grid treatment like anisotropies, higher-order discretizations, mixed deriva-
tives, or convection-dominated flow problems are discussed and possible reme-
dies are presented. The investigated test cases are of increasing complexity:
starting with a detailed discussion of the anisotropic diffusion equation—the
most prominent example in connection with multigrid methods—we end up
with a higher-order upwind discretization of the convection diffusion equa-
tion. Sections 4.1.1–4.1.5 are dedicated to basic multigrid topics whereas
Sections 4.1.6–4.1.8 are more relevant for multigrid experts.

4.1.1 Anisotropic diffusion equation:
second-order discretization

A discrete version using central differences of the anisotropic diffusion equa-
tion

Lu(x) = −εu11(x) − u22(x) (ε > 0), (4.1)

is represented by the stencil

Lh
∧=

ε

h2
1

[−1 2 −1
]
h1

+
1
h2

2

⎡
⎣−1

2
−1

⎤
⎦

h2

. (4.2)
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By setting ε = 1, the Poisson equation is obtained representing the class of
isotropic problems. The first algorithm coming into mind for the solution of
the Poisson equation—denoted by MG1—is composed of

• standard coarsening and DCA
MG1: • bilinear interpolation and injection

• point GS-LEX relaxation

These selections are simply motivated by the fact that they can be most
easily implemented. The empirically determined convergence factors for a
V(2,1)-cycle involving six grids with finest mesh size h = 1/64 are satisfying:
the error reduction is about 0.08, whereas the residual reduction is a little
bit worse. This convergence behavior is nicely confirmed by LFA; compare
with the left part of Figure 4.1. The predicted smoothing rate for MG1 is
about 0.125. Due to a total number of three smoothing steps, this could
have been estimated by taking the third power of 0.5, which is known to be
the smoothing rate of lexicographic Gauss-Seidel relaxation (compare with
Section 1.3.3 and Example 5.9). The predicted asymptotic behavior is about
0.09, both for two- and three-grid cycles. Note that even for an asymptotically
converging algorithm the error (or defect) reduction norm might be larger than
one. This is a common observation in connection with a simple injection of
defects; compare with Remark 6.4 and Example 6.6. It can be avoided by an
application of full weighting instead of injection.

Regarding the importance of smoothing and its influence on the multigrid
convergence, a beginner’s next step could be (the easiest one to program) to
replace lexicographic Gauss-Seidel with red-black Gauss-Seidel yielding

• standard coarsening and DCA
MG2: • bilinear interpolation and injection

• point GS-RB relaxation

As a result one obtains a diverging algorithm. At first sight this might be sur-
prising because red-black Gauss-Seidel relaxation has even better smoothing
properties than lexicographic Gauss-Seidel as it has already been reported in
Section 1.3.3. What does local Fourier analysis tell us about this experience?
Replacing the lexicographical ordering by red-black ordering only the smooth-
ing factor shows some improvement. Whenever more algorithmic details are
incorporated for the prediction, the resulting estimates indicate divergence.
The predicted values and the three-level eigenvalue distributions are shown in
the right part of Figure 4.1. The explanation for the diverging algorithm is
that after one red-black Gauss-Seidel step the defect is zero at all black points.
Hence, applying simple injection yields a wrongly scaled representation of the
fine-grid residual on the coarser mesh. It is known that half injection is the
remedy, leading to one of the most efficient multigrid algorithms for the Pois-
son equation [60, 62]: MG3 which is detailed in the following table.
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FIGURE 4.1: Local Fourier analysis estimates and distributions of eigen-
values for MG1 (left) and MG2 (right), V(2,1)-cycles.
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• standard coarsening and DCA
MG3: • bilinear interpolation and half injection

• point GS-RB relaxation

Figure 4.2 shows these parameter selections for the two-dimensional Poisson
equation. The corresponding W(2,1)-cycle (right part) offers an improved
convergence compared to the V(2,1)-cycle (left part), both by prediction and
in practice. The empirically determined asymptotic reduction factor involving
six grids is ρn(6L) = 0.0334. But this gain which is proved by comparing
the predicted and the empirical convergence speed has to be paid for by the
invested numerical effort on the coarser levels.

Next, we discuss another efficient multigrid method, MG0(point RB-JAC),
for the Poisson equation to demonstrate the different behavior of different
cycle strategies and the ability of the three-grid analysis to predict these
differences. Table 4.2 compares the analytical predictions from the one-, two-,
and three-grid analyses with numerical reference values ρn(3L) and ρn(7L) for
several 3- and 7-grid cycles. This table illustrates that even for such a simple
and well-understood problem there is a difference between the performance
of a V-cycle and a W-cycle and pre- and postsmoothing which cannot be
displayed by Fourier two-grid analyses, whereas the different behavior of the
cycle variants is very accurately predicted by the three-grid estimates ρ(M3L).
As it is seen in Table 4.2, one has to choose the multigrid W-cycle to retain

TABLE 4.2: Fourier values and numerically obtained asymptotic
convergence factors for MG0(point RB-JAC) applied to the Poisson equation
involving 3 and 7 levels; h = 1/128

Cycle ρ
(
S2Q

)
ρ (M2L) ρ (M3L) ρn(3L) ρn(7L)

V(1,1) 0.063 0.074 0.106 0.105 0.119
V(2,0) 0.063 0.074 0.133 0.132 0.170
V(0,2) 0.063 0.074 0.140 0.138 0.179

W(1,1), W(2,0), W(0,2) 0.063 0.074 0.074 0.073 0.073

the two-grid convergence factor. This is indicated by the Fourier analysis.
The theoretical predictions for the two- and three-grid factors are equal only
for the W-cycle. If we replace the 5-point discretization on the coarser grids
by operators based on Galerkin coarsening with full weighting and bilinear
interpolation, the V-cycle also leads to k-independent fast convergence. Using
4C-JAC relaxation for the resulting symmetric 9-point operators, we get for
a V(1,1)-cycle: ρ(S2Q) = ρ(M2L) = ρ(M3L) = 0.063. This value is validated
by the corresponding numerical calculation for a 7-grid method.
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FIGURE 4.2: V(2,1)- (left) and W(2,1)-cycle of MG3 for the two-
dimensional Poisson equation.
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After the detailed discussion of the multigrid treatment for the isotropic
diffusion equation (Poisson equation) we continue with the anisotropic case.
As soon as the coefficients of the differential operator vary considerably, the
multigrid strategy has to be adapted to this situation. The anisotropic model
problem (4.1) with ε � 1 is used to explain the principles. First of all, we
observe a severe deterioration of convergence factors for multigrid algorithms
involving standard coarsening and point-relaxation methods. The failure of
MG0(point RB-JAC) is due to the fact that point relaxation leads to smooth
error terms only in the direction of “strong couplings” (i.e., in the x2 direction
in the present example). Hence it is not possible to represent the error that
is highly oscillating in the x1 direction on a coarser mesh. The first obvious
approach to overcome this difficulty is based on a modification of the coarsen-
ing strategy, i.e., coarsening should only take place in the direction of smooth
error terms. Instead of using an equispaced coarse grid to discretize (4.1) we
can use a grid with mesh size H = (H1,H2) = (h, 2h). The corresponding
stencil

LH
∧=

1
4h2

⎡
⎣ −1
−4ε 2(1 + 4ε) −4ε

−1

⎤
⎦

shows a reduced anisotropy because of the factor 4 into the x1 direction.
This is the basis for the first strategy for anisotropic problems: maintaining
the point relaxation but modifying the coarsening strategy from standard to
semicoarsening into the x2 direction (the direction of strong couplings) until
the stencil entries are of approximately the same size, again. Assuming ε� 1,
x1-semicoarsening has to be selected.

The second strategy is to work on the relaxation scheme instead, but fix-
ing the coarsening strategy. This guarantees easy-to-handle grid structures.
Errors which are smooth into both the x1 and x2 direction can be obtained
by treating all strongly coupled unknowns together. For ε � 1, x2-line RB-
JAC relaxation is recommended whereas for ε� 1, x1-line relaxation should
be applied. This approach is often used because it maintains the simplicity
of the algorithm and it can be expanded easily towards alternating direction
line RB-JAC relaxation (AD-RB-JAC) which is an appropriate smoother if
the size of the coefficients considerably varies over the domain (i.e., values
ε � 1 and ε � 1 are realized in different regions of the domain under con-
sideration). The smoothing factors of these relaxation schemes obtained by
LFA are shown in Table 4.3 for different values of ε.

The robustness of the algorithm using alternating line relaxation for varying
ε is obvious. Table 4.4 shows corresponding asymptotic three-grid factors for
the particular choice ε = 0.01 using the same mesh size h = 1

128 . All values
have been confirmed by numerical test calculations.

Figure 4.3 demonstrates the almost identical effect of applying the two
different strategies for the above equation (4.1) using a V(2,1)-cycle with
ε = 0.01. With MG4 given in the following table:
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• x2-semicoarsening and DCA
MG4: • linear interpolation and full weigthing

• point GS-LEX relaxation

we have almost the same convergence predictions as for MG0(x2-line GS-LEX).

TABLE 4.3: Smoothing factors for anisotropic diffusion equation,
standard coarsening

ε point RB-JAC x1-line RB-JAC x2-line RB-JAC AD-RB-JAC

100 0.980 0.125 0.980 0.122
10 0.826 0.125 0.826 0.102
1 0.250 0.250 0.250 0.048
0.1 0.826 0.826 0.125 0.102
0.01 0.980 0.980 0.125 0.122

TABLE 4.4: ρ(M3L) for the anisotropic diffusion equation, ε = 0.01

MG0(point RB-JAC) MG0(x2-line RB-JAC) MG0(AD-RB-JAC)
ε V(2,1) W(2,1) V(2,1) W(2,1) W(1,1)

0.01 0.945 0.942 0.045 0.030 0.048

4.1.2 Anisotropic diffusion equation:
fourth-order discretization

A fourth-order approximation of the anisotropic diffusion equation (4.1)
reads

Lh
∧=

ε

12h2
1

[
1 −16 30 −16 1

]
h1

+
1

12h2
2

⎡
⎢⎢⎢⎢⎣

1
−16

30
−16

1

⎤
⎥⎥⎥⎥⎦

h2

. (4.3)

We apply a V(1,1)-cycle of MG0(point RB-JAC) for the solution of (4.3) with
finest mesh size h = 1/64. The resulting output of xlfa for this algorithm is
shown in the left part of Figure 4.4. The asymptotic convergence rate of the
two-grid method (ρ (M2L) = 0.122) is not recovered by the three-grid analysis
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FIGURE 4.3: Exploiting different strategies for the anisotropic diffusion
equation. MG4: (left) and MG0(x2-line GS-LEX) (right).
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(ρ (M3L) = 0.172). This observation also holds for the corresponding norm
values. It has to be expected (and has been validated by numerical exper-
iments) that this deterioration gets even worse if more levels are involved.
Switching to the more expensive W-cycle, it is possible to avoid this diffi-
culty. As a remedy to overcome this undesirable feature of the V-cycle one
could change the discretizations on coarser grids. Applying the second-order
discretization from (4.2) leading to MG5:

• standard coarsening and UCA
MG5: • bilinear interpolation and full weigthing

• point RB-JAC relaxation

yields improved three-grid values as can be seen in the right part of Fig. 4.4.
This particular choice for starH.f (see Section 3.4.3) has already been im-
plemented in xlfa. The problem menu can be used in order to edit starH.f.

4.1.3 Anisotropic diffusion equation:
Mehrstellen discretization

Another fourth-order approximation of (4.1) is given by the Mehrstellen
discretization

Lhuh(x) = Rhfh(x)

represented by the stencils

Lh
∧=

ε

12h2
1

⎡
⎣ −1 2 −1
−10 20 −10
−1 2 −1

⎤
⎦

h

+
1

12h2
2

⎡
⎣−1 −10 −1

2 20 2
−1 −10 −1

⎤
⎦

h

and Rh
∧=

1
12

⎡
⎣ 1

1 8 1
1

⎤
⎦

h

.

With ε = 1, h1 = h2 = h the Mehrstellen discretization for the Poisson
equation is given by

Lh
∧=

1
6h2

⎡
⎣−1 −4 −1
−4 20 −4
−1 −4 −1

⎤
⎦

h

. (4.4)

Point JAC relaxation with an optimal overrelaxation parameter ω = 10/11
leads to a particular simple but also efficient multigrid algorithm for (4.4).
A V(1,1)-cycle of MG0(point ω-JAC) with finest mesh size h = 1/64 gives an
asymptotic three-grid convergence factor of ρ(M3L) = 0.229.

The default multigrid components as provided by the software distribution
yield a V(1,1)-cycle of MG0(4C-JAC). This leads to very fast multigrid con-
vergence demonstrated by an asymptotic three-grid factor of ρ(M3L) = 0.057
for the Poisson equation.
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FIGURE 4.4: The effect of different coarse-grid discretizations; fourth-
order MG0(point RB-JAC) (left), second-order MG5 (right) for the anisotropic
diffusion equation.
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4.1.4 Helmholtz equation

A second-order approximation of the Helmholtz equation,

Lu(x) = −u11(x) − u22(x) + cu(x) = f(x) (c ∈ IR),

is described by the stencil

Lh
∧=

1
h2

⎡
⎣ −1
−1 4 + ch2 −1

−1

⎤
⎦

h

.

The Helmholtz equation is of high relevance because implicit time-discretiza-
tion schemes for linear parabolic PDEs result in such types of equations to
be solved within every time-step ∆t (see, for example, [33]). The Helmholtz
parameter c then usually depends on h and ∆t: c := c(h,∆t). The Poisson
equation (c = 0) can be considered as the limit for ∆t→ ∞.

The convergence predictions for the Helmholtz equation with c > 0 should
be better than those for the Poisson equation, because of its increasing diag-
onal dominance which is a desirable feature for any iterative method [63].

Note that the typical smoothing and coarse-grid approximation difficulties
known for the indefinite case (i.e., c � 0) [22, 62] cannot be investigated by
local Fourier analysis based on infinite grids. These convergence difficulties
are connected to the boundary conditions which have to be taken into account
for a proper evaluation of multigrid convergence for the indefinite Helmholtz
equation. Alternatively, an analysis based on the sine functions from Sec-
tion 1.3 might be performed assuming Dirichlet boundary conditions. Details
can be found, for example, in [22, 50].

4.1.5 Biharmonic equation

The biharmonic equation,

Lu(x) = − (∂11 + ∂22) (∂11 + ∂22)u(x), (4.5)

is studied in order to demonstrate the usefulness of one- (or even multi-)
stage parameters within a relaxation method. Equation (4.5) is sometimes
transformed into a system of two Poisson-type equations in order to achieve
better smoothing properties [4] and smaller stencils; see Section 4.3.1. Here,
we keep the scalar problem and apply one-stage point RB-JAC to a second-
order discretization given by the following stencil:

Lh
∧=

1
h4

1

[
1 −4 6 −4 1

]
h1

+
1

h2
1h

2
2

⎡
⎣ 2 −4 2
−4 8 −4

2 −4 2

⎤
⎦

h

+
1
h4

2

⎡
⎢⎢⎢⎢⎣

1
−4

6
−4

1

⎤
⎥⎥⎥⎥⎦

h2

.
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Figure 4.5 demonstrates the positive influence of an optimal one-stage pa-
rameter ω = 1.4 taken from [67] (upper right part of the picture) compared
to ordinary point RB-JAC relaxation (upper left part of the picture). Here,
W(1,1)-cycles of MG0(point RB-JAC) are applied. Using this optimal one-
stage relaxation leads to a complex eigenvalue distribution of the three-grid
error-reduction operator (lower picture in Figure 4.5) in contrast to the real-
valued spectrum for regular red-black Jacobi smoothing.

It is possible to construct multistage variants of RB-JAC relaxation (see,
for example, [67]) with even better smoothing properties. However, it turned
out in the Fourier three-grid analysis and in the numerical tests that it does
not pay off to invest too much work into smoothing because the coarse-grid
correction cannot reduce the low-frequency error components equally well.
Therefore, we focus on one-stage RB-JAC smoothing.

4.1.6 Rotated anisotropic diffusion equation

Next we discuss the rotated anisotropic diffusion equation,

Lu(x) = −(c2 + εs2)u11(x)− 2(ε− 1)cs u12(x)− (εc2 + s2)u22(x) = 1 (4.6)

on Ω = (0, 1)2 with ε ≥ 0, c = cosβ, s = sinβ, β ∈ [0◦, 360◦) and homo-
geneous Dirichlet boundary conditions u(x) = 0 on Γ = [0, 1]2 \ Ω. This
differential operator corresponds to −uξξ −εuηη in a (ξ, η)-coordinate system,
which can be obtained by rotating the (x1, x2)-system with an angle of β [65].
A second-order approximation of (4.6) reads

Lh
∧=
c2 + εs2

h2
1

[−1 2 −1
]
h1

+
2(ε− 1)c

4h1h2

⎡
⎣ 1 0 −1

0 0 0
−1 0 1

⎤
⎦

h

+
εc2 + s2

h2
2

⎡
⎣−1

2
−1

⎤
⎦

h2

.

We set β = 45◦. For ε → 0,∞ this equation is no longer elliptic. Using
standard coarsening and Jacobi- or Gauss-Seidel-type smoothing, this leads
to coarse-grid correction difficulties which limit the two-grid convergence to
the factor 0.75; see Section 7.2. A simple recursive argument yields that the
asymptotic V-cycle convergence on k grids is limited by ρn(kL) ≥ 1 − 4−k+1

(ρn(2L) ≥ 0.75, ρn(3L) ≥ 0.9375, . . .). These bounds can be established by
Fourier two- and three-grid analysis as can be seen from Table 4.5, where
MG0(point RB-JAC) is applied to the rotated anisotropic diffusion equation.
Switching to a W-cycle leads to a slight improvement, which is also pre-
dicted by the three-grid analysis. In the context of Galerkin coarsening for
the rotated anisotropic diffusion equation, it is interesting to investigate the
multigrid method MG6 which is composed of

• standard coarsening and GCA
MG6: • matrix-dependent prolongation and restriction, de Zeeuw [77]

• 4C-JAC relaxation
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FIGURE 4.5: Influence of a multistage parameter for MG0(point RB-JAC)
applied to the biharmonic equation.
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TABLE 4.5: Fourier values and numerically obtained
asymptotic convergence factors for MG0(point RB-JAC)
involving 3 and 7 levels for the rotated anisotropic
diffusion equation, β = 45◦, ε = 10−5, h = 1/128

Cycle ρ
(
S2Q

)
ρ (M2L) ρ (M3L) ρn(3L) ρn(7L)

V(1,1) 0.35 0.76 0.94 0.92 0.95
W(1,1) 0.35 0.76 0.90 0.87 0.89

Comparing Tables 4.5 and 4.6, we see a remarkable improvement of the two-
grid convergence factor. For this example, however, Fourier one- and two-grid
analysis yield to some extent misleading results. At first sight, the coarse-grid
correction problem seems to be solved since the two-grid value nearly recovers
the smoothing factor. But if we look at the increasing three-grid values, it has
to be expected that the multigrid convergence will further deteriorate. This
is validated by the numerical reference values for the related 7-grid iterations.

TABLE 4.6: Fourier values and numerically obtained
asymptotic convergence factors for MG6 involving 3 and 7
levels for the rotated anisotropic diffusion equation,
β = 45◦, ε = 10−5, h = 1/128

Cycle ρ
(
S2Q

)
ρ (M2L) ρ (M3L) ρn(3L) ρn(7L)

V(1,1) 0.28 0.36 0.63 0.61 0.87
W(1,1) 0.28 0.36 0.47 0.48 0.61

If the prolongation and restriction from [77] are replaced by the transfer
operators from the blackbox multigrid package for nonsymmetric problems
by Dendy [18], we find very similar results. These transfer operators are
investigated in the next subsection.

Finally, we would like to mention that there are other multigrid components
like ILU-type smoothers or nonstandard coarsening to overcome the coarse-
grid correction difficulty efficiently. De Zeeuw [77], for example, combines his
matrix-dependent Galerkin coarsening with a powerful smoother—the incom-
plete line LU decomposition (ILLU)—and obtains very fast multigrid conver-
gence. These improvements might be verified by a Fourier three-grid analysis.
Another possibility to deal with the difficulty caused by the mixed derivative
is to apply multigrid as a preconditioner for a Krylov subspace method like
GMRES. The Fourier analysis for this combined solution method [69] is briefly
addressed in Section 7.4. In [68] it is shown, that three-grid methods can be
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nicely accelerated by GMRES(m) with a small Krylov subspace. Thus it
can be expected that the corresponding multigrid iterations are appropriate
preconditioners as well, which has been confirmed by numerical experiments.

4.1.7 Convection diffusion equation:
first-order upwind discretization

The next example we discuss in some detail is the convection diffusion equa-
tion with dominant convection. Here, it is important to distinguish between
entering flows with an inflow and outflow boundary condition and recircu-
lating flows for which no real inflow and outflow boundaries exist and where
the boundary information is diffusing into the domain. In principle, efficient
multigrid iterations can be constructed for upstream discretizations if relax-
ation methods are used with a downstream ordering of grid points. Then the
relaxation acts not only as a smoother but also partly as a solver and takes
care of problematic “characteristic” low-frequency error components [11]. For
entering flows such smoothers can be found among standard relaxation meth-
ods, whereas for recirculating flows it is very difficult to construct a smoother
with the desired property.

For convection-dominated rotating flow problems like

− ε∆u(x) + a1(x)u1(x) + a2(x)u2(x) = 1 on Ω = (0, 1)2 (4.7)

with ε = 10−5, a1(x) = − sin (πx1) cos (πx2) , a2(x) = sin (πx2) cos (πx1) ,

u(x) = sin (πx1) + sin (13πx1) + sin (πx2) + sin (13πx2) on Γ = [0, 1]2 \ Ω,

the situation changes if standard smoothers are used, and we observe a similar
coarse-grid correction difficulty as in the previous subsection. If DCA is ap-
plied combined with standard coarsening, the two-grid convergence is limited
by the factor

1 − 2−p, (4.8)

where p denotes the order of the discretization; compare with Section 7.2 and
[12]. This results in a deterioration of the V-cycle multigrid convergence on k
grids, quantified by 1 − 2−(k−1)·p.

Dirichlet boundary effects are neglected by the local Fourier analysis on
infinite grids. For entering flows, high-frequency boundary information may
propagate far into the domain, and thus it should be taken into account by a
reliable analysis. This is done by the so-called half-space full multigrid (FMG)
analysis in [11]. For recirculating flows, however, the influence of the domain
boundary is negligible in the limit of small mesh size, and the (infinite-space)
local Fourier analysis is again useful [12].

Recall from Section 2.3 that a direct application of the Fourier analysis is
not possible dealing with operators Lh(x) that are characterized by variable
coefficients. Instead, the analysis is applied to the locally frozen operator
at a fixed grid point ξ leading to the following approximation of two- and
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three-grid factors in case of variable coefficients:

ρ (MkL) = ρ (MkL (Lh(x))) := sup
ξ∈Ω

ρ (MkL (Lh(ξ))) for k = 2, 3. (4.9)

The smoothing factor and the corresponding norm values are defined accord-
ingly. Consequently, the whole range of convection angles that occur in prob-
lem (4.7) has to be investigated. For an explicit calculation, we approximate
(4.9) by a repeated application of the Fourier analysis to discretizations of
−ε∆u+ a1 u1 + a2 u2 with fixed a1 = cosβ and a2 = sinβ for multiples of 3◦

until the range of possible convection angles β ∈ [0◦, 360◦] is passed through,
as proposed in [65]. Then, the maximal values for ρ (Sν(β)Q), ρ (M2L(β)),
and ρ (M3L(β)) are assumed to be upper bounds for the smoothing and k-grid
factors referring to (4.7). The calculation of the related norm values is carried
out analogously.

A first-order upwind discretization of (4.7) is given by the following stencil:

ε

h2

⎡
⎣ −1
−1 4 −1

−1

⎤
⎦

h

+
1
2h
[−a1 − |a1| 2|a1| a1 − |a1|

]
h

+
1
2h

⎡
⎣ a2 − |a2|

2|a2|
−a2 − |a2|

⎤
⎦

h

.

(4.10)
This discretization is studied in [11, 48, 58, 75] where the coarse-grid correction
difficulty for geometric multigrid with DCA is fixed by different remedies, like
overweighting of residuals [11], additional Krylov acceleration [48], applica-
tion of algebraic multigrid [58], or special higher-order coarse-grid discretiza-
tions [75]. Many of these approaches can be well analyzed by the Fourier
three-grid analysis.

The above-reported deterioration of the two- (and multi)grid convergence
(4.8) due to DCA suggests the use of different discretizations on different grids
in order to overcome the difficulty induced by the characteristic Fourier com-
ponents. The convergence factors of the multigrid method by de Zeeuw [77]
based on matrix-dependent transfer operators and GCA get worse for dis-
cretization (4.10) with an increasing number of grids, even when using a
powerful relaxation like ILLU. This can be confirmed by Fourier three-grid
analysis. It is possible to improve the convergence properties with another
Galerkin coarse-grid operator based on transfer operators from the nonsym-
metric blackbox multigrid by Dendy [18]. It is stated in [75] that the appli-
cation of this Galerkin coarsening should be useful. The symmetric prolon-
gation, based on the symmetric part of the respective discretization operator
1
2 (Lh + L∗

h), is similar to the well-known operator-dependent prolongations
for jumping coefficients; see, for instance, [28, 65, 77]. The nonsymmetric
restriction, however, is defined as the transpose of a prolongation operator
that is based on L∗

h, leading to an upstream restriction. This is particularly
useful because the coarse-grid operators remain upstream as well and tend to
a second-order compact upstream discretization. This can be nicely observed
in Fig. 4.6 showing the resulting stencil representations for Lh, L2h, and L4h
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and convection angle β = 45◦. This agrees with the observation that the
coarse-grid operators must become higher-order, at least in the cross-stream
direction, to provide a good coarse-grid approximation, see [75]. The related

FIGURE 4.6: Sequence of stencils for the convection diffusion equa-
tion generated by Galerkin coarsening based on transfer operators due to
Dendy [18]; ε = 10−5, β = 45◦, h = 1/256.

measures of h-ellipticity indicate that for this particular angle (represent-
ing flow directions that are nonaligned with the computational grid) efficient
pointwise smoothing is possible. However, considering the aligned case (i.e.,
β = 0◦, 90◦, 180◦, 270◦) one has to switch to an appropriate line relaxation
(or a point smoother with a downstream numbering of grid points). More
details concerning this matter are given in Section 5.8.2.

Table 4.7 shows the maximal one-, two-, and three-grid factors with the
corresponding convection angles in brackets for MG7 which is composed of

• standard coarsening and GCA
MG7: • matrix-dependent prolongation and restriction, Dendy [18]

• and damped (ω = 0.7) AD-RB-JAC relaxation

TABLE 4.7: Fourier values and numerically obtained asymptotic
convergence factors for MG7 involving 8 levels for the rotating convection
diffusion equation 4.7 discretized by a first-order upwind scheme,
ε = 10−5, h = 1/256

Cycle ρ (Sν(β)Q) ρ (M2L(β)) ρ (M3L(β)) ‖M3L(β)‖d ρn(8L)
(β = 3◦) (β = 6◦) (β = 6◦) (β = 6◦)

W (1,1) 0.29 0.22 0.22 0.24 0.20
W (2,1) 0.15 0.17 0.18 0.20 0.17
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As the two- and three-grid factors are very similar or even equal, it can be
expected that the multigrid convergence for discretization (4.10) is close to
these estimates, which is confirmed by the numerical reference for an 8-grid
method. The maximal norm values ‖M3L(β)‖d differ only slightly from the
corresponding ρ(M3L(β)), which indicates that the convergence speed for a
single iteration is not much larger than the asymptotic convergence factor.
Thus, ‖M3L(β)‖d is a satisfactory prediction for the actual multigrid conver-
gence. This is observed in the numerical convergence history. Furthermore,
we see that the damped AD-RB-JAC relaxation, which is a robust smoother
for the fine-grid discretization [65] keeps this property for the Galerkin coarse-
grid discretizations resulting from the blackbox transfer operators. If Galerkin
coarsening and matrix-dependent transfer operators are replaced by DCA and
geometric transfer operators, the deterioration of the convergence factors pre-
dicted by (4.8) can be confirmed by LFA as well.

4.1.8 Convection diffusion equation:
higher-order upwind discretization

We conclude the discussion of two-dimensional scalar equations with the
higher-order upwind discretization of the convection diffusion equation (4.7)
using van Leer’s κ-scheme [39]. The diffusive part is discretized as in Sec-
tion 4.1.7. If a1u1(x) is discretized by higher-order kappa upwinding, one
obtains

a1

2h1

[−1 0 1
]
h1

+
(4.11)

1 − κ

8h1

[|a1| + a1 −4|a1| − 2a1 6|a1| 2a1 − 4|a1| −a1 + |a1|
]
h1
.

The discretization of a2u2(x) can be found similarly. The convective part is
discretized with second-order for κ ∈ [−1, 1] \ {1/3} and with third-order for
κ = 1/3.

Channel-type flows employing higher-order upwind discretizations are trea-
ted successfully in [49] by introducing so-called KAPPA-smoothers which are
especially designed for the above κ-schemes. However, an efficient multigrid
treatment for rotating flows (4.7) involving higher-order upwind discretization
is a particular difficult task. A promising approach presented in [48] applies
a multigrid method based on the KAPPA-smoother as a preconditioner for a
Krylov subspace method.
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4.2 CASE STUDIES FOR 3D SCALAR PROBLEMS

The next sequence of case studies consists of three-dimensional scalar equa-
tions. More precisely, the three-dimensional versions of the test cases from the
previous section are presented. Hence, we can keep the discussion brief. We
mainly focus on differences and similarities compared to the two-dimensional
variants.

For three-dimensional applications, it is often convenient to decompose the
complex stencil representations of the different discretizations into the central
one-dimensional stencils from Examples 1.2 and 1.3.

4.2.1 Ansiotropic diffusion equation:
second-order discretization

A second-order accurate approximation of the anisotropic diffusion equation

Lu(x) = −ε1u11(x) − ε2u22(x) − ε3u33(x) = f(x) (ε1, ε2, ε3 > 0) (4.12)

is represented by the stencil

Lh
∧= −ε1

[
d11

κ1

]
h1

− ε2
[
d22

κ2

]
h2

− ε3
[
d33

κ3

]
h3

(4.13)

=

⎡
⎢⎢⎣
[
− ε3
h2

3

]
h

⎡
⎢⎣

− ε2
h2
2

− ε1
h2
1

2
(

ε1
h2
1

+ ε2
h2
2

+ ε3
h2
3

)
− ε1

h2
1

− ε2
h2
2

⎤
⎥⎦

h

[
− ε3
h2

3

]
h

⎤
⎥⎥⎦ .

By setting ε1 = ε2 = ε3 = 1 we get the Poisson equation. A W(1,1)-cycle of
MG0(point RB-JAC) applied to the three-dimensional Poisson equation with
mesh size h = 1/32 yields an asymptotic three-grid convergence factor of
ρ(M3L) = 0.192; compare with the left part of Figure 4.7.

In [74] it was shown that an overrelaxation parameter (ω > 1) improves
the smoothing properties of RB-JAC (leading to ω-RB-JAC) and therefore
improves the convergence of MG0(point ω-RB-JAC) compared to MG0(point
RB-JAC) for d-dimensional Poisson-type equations. The extra computational
work for performing the overrelaxation in the smoother is worthwhile if d = 3.
The resulting excellent convergence factors for ω = 1.15 are shown in the right
part of Figure 4.7. The application of an optimal overrelaxation parameter
leads to an orbital eigenvalue distribution of the three-grid error-reduction
operator; compare with Section 4.1.5 where an optimal one-stage RB-JAC
method applied to the biharmonic equation is discussed. The implications
of optimal relaxation parameters to the eigenvalue distribution of the related
multigrid method are investigated in [67, 69].

In general, the coefficients ε1, ε2, ε3 referring to the different spatial direc-
tions may be different. As long as the coefficients are of the same magni-
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FIGURE 4.7: Influence of a relaxation parameter for MG0(point RB-JAC)
and MG0(point ω-RB-JAC) applied to the three-dimensional Poisson equation.

© 2005 by Chapman & Hall/CRC Press



USING THE FOURIER ANALYSIS SOFTWARE 79

tude (Poisson-like problem) multigrid algorithms based on standard coarsen-
ing and point relaxation are the methods of choice. If, however, the coefficients
ε1, ε2, ε3 differ considerably, more sophisticated methods have to be chosen.
As in the two-dimensional case, either the coarsening strategy or the smooth-
ing method have to be adapted. Considering three dimensions, we have an
increased number of different coarsening strategies and relaxation methods;
compare with the lower parts of Figures 3.7 and 3.10. To smooth all strongly
coupled unknowns simultaneously in a block, line, or even plane relaxation
has to be selected. For the implementation of plane relaxations, appropriate
two-dimensional multigrid methods can be applied.

In [61], concrete recommendations are given for how to choose the smooth-
ing method or the coarsening strategy in case of considerably varying coeffi-
cients. Following [61], we discuss three representative situations. We use “∼”
in the sense of being similar and “�” for being much larger. In the first case,
ε1 � ε2 ∼ ε3, x1-line relaxation is recommended if standard coarsening is
selected. Alternatively, x1-semicoarsening might be used in combination with
point GS-LEX smoothing. In Figure 4.8, the effect of an adapted relaxation
scheme (right, MG0(x1-line GS-LEX)) or an adapted coarsening yielding MG8
(middle)

• x1-semicoarsening and DCA
MG8: • bilinear interpolation and full weighting

• point GS-LEX relaxation

compared to the naive approach (left, MG0(point GS-LEX)) becomes obvious.
The respective distributions of the eigenvalues, are shown from left to right,
too.

For the second case, ε1 ∼ ε2 � ε3, an (x1, x2)-plane relaxation could be
applied, where the corresponding two-dimensional multigrid method—used
to perform the plane smoothing—might be based on point relaxation. Set-
ting ε1 = ε2 = 100 and ε3 = 1, we show in Figure 4.9 that playing with
either smoothing strategy (MG0((x1, x2)-plane GS-LEX), right) or coarsening
strategy leading to MG9 (middle)

• (x1, x2)-semicoarsening and DCA
MG9: • linear interpolation and full weighting

• point GS-LEX relaxation

helps to overcome the problems which occur with the naive approach for the
anisotropic case (MG0(point GS-LEX), left).

Regarding the third case, ε1 � ε2 � ε3, an (x1, x2)-plane relaxation be-
comes necessary, where the related two-dimensional multigrid method to carry
out the plane smoothing should use x1-line relaxation. A robust multigrid al-
gorithm w.r.t. all possible choices for ε1, ε2, ε3 is based on alternating plane
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FIGURE 4.8: Local Fourier analysis estimates and eigenvalue distributions
for MG0(point GS-LEX) (left), MG8 (middle), and MG0(x1-line GS-LEX) applied
to the 3D anisotropic diffusion equation, W(1,1)-cycles; ε1 = 100, ε2 = ε3 = 1.
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FIGURE 4.9: Local Fourier analysis estimates for MG0(point GS-LEX)
(left), MG9 (middle), and MG0((x1, x2)-plane GS-LEX) applied to the 3D
anisotropic diffusion equation, W(1,1)-cycles; ε1 = ε2 = 100, ε3 = 1.

relaxation. The related two-dimensional multigrid methods to carry out the
different plane relaxations have to apply alternating line relaxation.

Note that for moderate anisotropies it is possible to construct efficient point
relaxation methods (in connection with standard coarsening) by a careful
choice of relaxation or multistage parameters as it is shown in [67, 74]. This
observation carries over to two-dimensional (moderately) anisotropic cases.
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4.2.2 Anisotropic diffusion equation:
fourth-order discretization

A fourth-order approximation of the anisotropic diffusion equation (4.12)
is represented by the stencil

Lh
∧=
[
[�κ](−2)

h [�κ](−1)
h [�κ](0)h [�κ](1)h [�κ](2)h

]
with [�κ](−2)

h = [�κ](2)h =
1
12

[
ε3
h2

3

]
h

, [�κ](−1)
h = [�κ](1)h =

1
12

[ −16ε3
h2

3

]
h

,

and [�κ](0)h =
1
12

⎡
⎢⎢⎢⎢⎢⎢⎣

ε2
h2
2−16ε2

h2
2

ε1
h2
1

−16ε1
h2
1

30
(

ε1
h2
1

+ ε2
h2
2

+ ε3
h2
3

)
−16ε1

h2
1

ε1
h2
1−16ε2

h2
2

ε2
h2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

h

.

Similar as in the two-dimensional variant it is useful to apply the second-order
discretization (4.13) on coarse grids to obtain an improved V-cycle conver-
gence. A three-dimensional variant of MG5 with finest mesh size h = 1/32
yields a V(1,1) three-grid convergence factor ρ(M3L) = 0.213 compared to
ρ(M3L) = 0.290 obtained by the standard algorithm MG0(point RB-JAC).

4.2.3 Anisotropic diffusion equation:
Mehrstellen discretization

The fourth-order Mehrstellen discretization

Lhuh(x) = Rhfh(x)

of the anisotropic diffusion equation (4.12) is described by the stencils

Lh
∧= −ε1

[
d11

κ1

]
h1

− ε2
[
d22

κ2

]
h2

− ε3
[
d33

κ3

]
h3

−
(
ε1
h2

2

12
+ ε2

h2
1

12

)[
d1122

κ

]
h

−
(
ε1
h2

3

12
+ ε3

h2
1

12

)[
d1133

κ

]
h
−
(
ε2
h2

3

12
+ ε3

h2
2

12

)[
d2233

κ

]
h

Rh
∧= [1]h +

h2
1

12
[
d11

κ1

]
h1

+
h2

2

12
[
d22

κ2

]
h2

+
h2

3

12
[
d33

κ3

]
h3
.

For ε1 = ε2 = ε3 = 1 and h1 = h2 = h3 = h, one obtains

Lh
∧=

1
6h2

⎡
⎣
⎡
⎣ −1
−1 −2 −1

−1

⎤
⎦

h

⎡
⎣−1 −2 −1
−2 24 −2
−1 −2 −1

⎤
⎦

h

⎡
⎣ −1
−1 −2 −1

−1

⎤
⎦

h

⎤
⎦ (4.14)

Rh
∧=

1
12

⎡
⎣[ 1 ]h

⎡
⎣ 1

1 6 1
1

⎤
⎦

h

[ 1 ]h

⎤
⎦ .
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The optimal overrelaxation parameter for damped JAC relaxation applied to
(4.14) is ω = 12/11. The resulting asymptotic V(1,1) three-grid convergence
for MG0(point ω-JAC) with finest mesh size h = 1/32 reads ρ(M3L) = 0.229. It
is interesting to note that the three-dimensional variant of MG0(point ω-JAC)
exactly resembles the convergence behavior of the two-dimensional version dis-
cussed in Section 4.1.3. This is a particular property of optimal damped JAC
relaxation applied to the Mehrstellen discretization of the Laplacian. Usually
one has to expect a (slight) deterioration of the multigrid convergence with
an increasing dimension. This can be observed, for example, by comparing
the results for the two- and three-dimensional versions of the second-order
approximation of the anisotropic diffusion equation; see Sections 4.1.1 and
4.2.1. For a detailed investigation of this phenomenon, we refer to Chapter 4
of [67].

4.2.4 Helmholtz equation

The three-dimensional variant of the Helmholtz equation reads

Lu(x) = −u11(x) − u22(x) − u33(x) + cu(x) = f(x) (c ∈ IR).

The corresponding central second-order approximation implemented in LFA is
given by

Lh
∧=

⎡
⎣[ − 1

h2

]
h

⎡
⎣ − 1

h2

− 1
h2

6
h2 + c − 1

h2

− 1
h2

⎤
⎦

h

[
− 1
h2

]
h

⎤
⎦ .

4.2.5 Biharmonic equation

A second-order approximation of the biharmonic equation,

Lu(x) = − (∂11 + ∂22 + ∂33) (∂11 + ∂22 + ∂33)u(x) = f(x),

is represented by the stencil

Lh
∧= − [d1111

κ1

]
h1

− [d2222
κ2

]
h2

− [d3333
κ3

]
h3

−2
[
d1122

κ

]
h
−2
[
d1133

κ

]
h
−2
[
d2233

κ

]
h
.

As in the two-dimensional case it is difficult to find an efficient smoothing
method for the biharmonic equation. A promising approach is to apply a
composite relaxation scheme, which is explained in detail in [42]. Alterna-
tively, one might construct multistage RB-JAC relaxations; compare with
Section 4.1.5.

4.2.6 Convection diffusion equation:
first-order upwind discretization

Another well-known test problem is the convection diffusion equation

Lu(x) = −ε (u11(x) + u22(x) + u33(x))+a1u1(x)+a2u2(x)+a3u3(x) = f(x),
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with coefficients a1 = cosα cosβ, a2 = sinα cosβ, and a3 = sinβ. The
operator is split into the diffusive part, represented by Ldu(x) = −ε(u11(x)+
u22(x)+u33(x)), and into the convective part Lcu(x) = a1u1(x)+a2u2(x)+
a3u3(x).

The Laplace term Ld is discretized by central differences as in Section 4.2.1.
A general stencil formula with a first-order upwind scheme of a1u1(x) for a1 ≥
0 as well as for a1 < 0 was already given in Section 4.1.7. The discretization
of a2u2(x) and a3u3(x) is carried out accordingly.

The difficulties for convection-dominated recirculating flow problems carry
over from the two-dimensional case as well as the possible remedies discussed
in Section 4.1.7.

4.3 CASE STUDIES FOR 2D SYSTEMS OF
EQUATIONS

The last class of case studies is concerned with two-dimensional systems of
equations. Local Fourier analysis is particular valuable for systems of PDEs
since it is often much more difficult to identify the correct multigrid compo-
nents than in the scalar case. For example, the different behavior of collective
(COL) relaxation and decoupled variants (DEC1, DEC2) can often not be
predicted by simple intuition or an “extrapolation” from the scalar case.

For systems of equations implemented in the accompanying software, not
only the corresponding discretization has to be specified but also the prede-
fined distributor to be applied within a distributive relaxation scheme; com-
pare with Section 3.5.2.

4.3.1 Biharmonic system

Recall from Section 4.1.5 that the biharmonic equation is sometimes trans-
formed into a system of two Poisson-type equations in order to get a more
convenient formulation w.r.t. a possible multigrid treatment. A second-order
accurate approximation of the resulting biharmonic system

Lu =
(

∆ 0
−I ∆

)(
u1

u2

)
=
(
f1

0

)

reads

Lhuh =
(

∆h 0
−Ih ∆h

)(
u1

h

u2
h

)
=
(
f1

h

0

)
.

Ih denotes the discrete identity operator and the predefined distributor is
given by Ch = L∗

h. For this particular system one obtains the same smoothing
factors for collective and decoupled relaxation schemes due to the vanishing
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L1,2
h block and the simple structure of L2,1

h . More precisely, the smoothing
properties are simply governed by the diagonal blocks, i.e., the same smooth-
ing factors as for the two-dimensional Poisson equation are found. Hence,
applying a V(1,1)-cycle of MG0(point COL-RB-JAC) to the biharmonic sys-
tem yields excellent multigrid convergence as demonstrated in Figure 4.10.

FIGURE 4.10: V(1,1)-cycle of MG0(point COL-RB-JAC) with finest mesh
size h = 1/32 applied to the biharmonic system.
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4.3.2 Stokes equations

Next, the Stokes equations are considered to point out the different behavior
of collective and decoupled relaxation and the possible benefits of distributive
smoothing regarding this matter. A central second-order discretization of the
Stokes equations

L1,1u+ L1,3p = − (∂11 + ∂22)u+ ∂1p = 0,

L2,2v + L2,3p = − (∂11 + ∂22) v + ∂2p = 0,

L3,1u+ L3,2v = ∂1u+ ∂2v = 0

is given by

Lh =

⎛
⎝−∆h 0 D1

h

0 −∆h D2
h

D1
h D2

h −µh2∆h

⎞
⎠ with µ ≥ 0.

p, u, and v denote the pressure, the velocity component in x1-direction, and
the velocity component in x2-direction, respectively. The artificial pressure
term L3,3

h is applied to overcome the well-known checkerboard instability
for nonstaggered discretizations of Navier-Stokes-type systems. A reasonable
choice for the parameter µ is µ = 1/16; see [62] for details.

Applying a collective AD-GS-LEX relaxation with relaxation parameter
ω = 0.7 yields satisfactory asymptotic convergence factors. A V(1,1)-cycle
of MG0(ω-COL-AD-GS-LEX) with finest mesh size h = 1/32 and µ = 1/16
has an asymptotic three-grid factor of ρ(M3L) = 0.268. The corresponding
decoupled variants lead to diverging algorithms. A possible cure for such a
phenomenon concerning decoupled smoothing is the introduction of an ap-
propriate distributor. The discrete distributor Ch, taken from [7], and the
resulting transformed system read

Ch =

⎛
⎝Ih 0 −D1

h

0 Ih −D2
h

0 0 −∆h

⎞
⎠ , LhCh =

⎛
⎝−∆h 0 0

0 −∆h 0
D1

h D2
h −∆2h + µh2∆2

h

⎞
⎠ .

The stencil representations of Ch and LhCh are shown in Figure 4.11. Obvi-
ously, a triangular system results (i.e., the upper blocks of (LhCh)i,j with j > i
vanish) which is suited for decoupled smoothing. The distributive variant of
ω-DEC2-AD-GS-LEX relaxation yields an excellent asymptotic three-grid fac-
tor of ρ(M3L) = 0.091 for a V(1,1)-cycle of our standard multigrid algorithm
MG0.

4.3.3 First-order discretization of the Oseen equations

In this subsection, we consider a nonlinear system with varying coefficients
in order to demonstrate the applicability of local Fourier analysis even for
such complicated situations. The driven cavity flow is a popular test case in

© 2005 by Chapman & Hall/CRC Press



USING THE FOURIER ANALYSIS SOFTWARE 87

FIGURE 4.11: Stencil representations for the Stokes distributor Ch (up-
per part) and the transformed system LhCh (lower part); µ = 1/16, h = 1/32.
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computational fluid dynamics. It is governed by the incompressible Navier-
Stokes (NVI) equations on the unit square, i.e.,

− 1
Re

(u11(x) + u22(x)) +
(
u2(x)

)
1

+ (u(x)v(x))2 + p1(x) = 0, (4.15)

− 1
Re

(v11(x) + v22(x)) + (u(x)v(x))1 +
(
v2(x)

)
2

+ p2(x) = 0, (4.16)

u1(x) + v2(x) = 0 (4.17)

with x ∈ (0, 1)2. As boundary conditions we set (u(x), v(x)) = (1,0) at
x2 = 1—representing a moving top wall—and homogeneous Dirichlet bound-
ary conditions for u(x) and v(x) elsewhere at the boundary.
Re denotes the Reynolds number, p the pressure, and u and v the velocity

components. (4.15) and (4.16) are called the momentum equations and (4.17)
is named the continuity equation. These equations model the conservation
of momentum and mass. The driven cavity problem is an example for recir-
culating flow; see Figure 4.12 showing the streamlines for the driven cavity
problem with Re = 5000. We are interested in flow problems with a domi-

FIGURE 4.12: Streamlines for the driven cavity problem, Re = 5000.

nant convection, i.e., Re� 1 which are particularly difficult w.r.t. an efficient
multigrid treatment as it has already been discussed in connection with the
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convection diffusion equation in Section 4.1.7. Note that the above system
requires only two boundary conditions. If, however, boundary conditions for
u and v are specified, the pressure is only determined up to a constant. There-
fore, a second-order extrapolation for the pressure at the boundary is applied.
More details can be found, for example, in [62].

We use a nonstaggered discretization, i.e., all unknowns uh(x), vh(x) and
ph(x) (x ∈ Ωh) are located at the grid vertices of Ωh. The diffusive parts of the
momentum equations are discretized by second-order central differences. For
the remaining parts of the three equations, we apply the first-order variant
of Dick’s flux difference splitting [19]. The momentum equations exhibit a
singular perturbation similar as for the convection diffusion equation, if 1/Re
tends to 0. The flux difference splitting discretization introduces artificial
viscosity terms. Therefore, it is an appropriate choice for the calculation of
flows involving high Reynolds numbers Re� 1 due to its stabilizing impact.

To allow an application of local Fourier analysis we consider a linearized
form of the NVI called the Oseen equations:

L1,1u+ L1,3p =
(
− 1
Re

(∂11 + ∂22) + a∂1 + b∂2

)
u+ ∂1p = 0,

L2,2v + L2,3p =
(
− 1
Re

(∂11 + ∂22) + a∂1 + b∂2

)
v + ∂2p = 0,

L3,1u+ L3,2v = ∂1u+ ∂2v = 0.

The scalar operators L1,2, L2,1, and L3,3 are zero. The frozen velocity coef-
ficients can be varied with the help of a parameter β, i.e., a = cos(β) and
b = sin(β).

The first-order accurate flux difference splitting discretization [19] of the
Oseen equations with constant coefficients can be expressed by the following
scalar discrete operators which constitute Lh as calculated in [23]:

L1,1
h = − 1

Re

(
D11

h +D22
h2

)
+ aD1

h + bD2
h − h

2
a2 + 2√
a2 + 4

D11
h − h

2
|b|D22

h ,

L1,2
h = L2,1

h = 0,

L1,3
h = L3,1

h = D1
h − h

2
a√

a2 + 4
D11

h ,

L2,2
h = − 1

Re

(
D11

h +D22
h

)
+ aD1

h + bD2
h − h

2
|a|D11

h − h

2
b2 + 2√
b2 + 4

D22
h ,

L2,3
h = L3,2

h = D2
h − h

2
b√

b2 + 4
D22

h ,

L3,3
h = − h√

a2 + 4
D11

h − h√
b2 + 4

D22
h .

It is interesting to note that L3,3
h �= 0 although the continuous operator L3,3

vanishes. The flux difference splitting approach implicitly introduces an arti-
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ficial pressure term which serves as a remedy for the checkerboard instability
mentioned above.

The predefined distributor reads Ch = L∗
h.

To evaluate the driven cavity flow we proceed as for the convection dif-
fusion equation: We fix the coefficients a = cos(β), b = sin(β) and repeat
the Fourier analysis for the discretized Oseen equations with constant coef-
ficients until the range of convection angles β ∈ [0◦, 360◦] is processed. For
convection-dominated flow problems, i.e., Re � 1, one observes the same
coarse-grid correction difficulties as described in Section 4.1.7 in connection
with the convection diffusion equation. An application of our standard multi-
grid algorithm MG0 with collective symmetric alternating line GS-LEX (COL-
SYM-AD-GS-LEX) with relaxation parameter ω = 0.9 (that is, alternating
line GS-LEX with a forward ordering of grid points followed by alternating
line GS-LEX with a backward ordering) yields excellent smoothing factors
as it is demonstrated in Table 4.8 for Re = 5000. However, due to a wrong

TABLE 4.8: Fourier values and numerically obtained asymptotic
convergence factors for MG0(ω-COL-SYM-AD-GS-LEX) involving 7
levels for the driven cavity flow discretized by first-order flux difference
splitting, Re = 5000, h = 1/128

Cycle ρ (Sν(β)Q) ρ (M2L(β)) ρ (M3L(β)) ‖M3L(β)‖d ρn(7L)
(β = 0◦) (β = 45◦) (β = 45◦) (β = 45◦)

W (1,1) 0.021 0.449 0.509 0.525 0.500

scaling of the coarse-grid discretization operators (DCA) a severe deteriora-
tion of the two- and three-grid factors is observed. Note that the convergence
prediction provided by local Fourier analysis is in good agreement with the
numerical test calculation involving seven levels. This is a remarkable result
for such a difficult application. In the limit of small mesh size, i.e., h → 0,
one obtains the same limiting factor 1/2 for the asymptotic two-grid conver-
gence as for the first-order upwind discretization of the convection diffusion
equation; compare with (4.8). More details concerning this matter are given
in Section 7.2 in connection with the simplified Fourier k-grid analysis.

In an analogy to the scalar case, it is possible to overcome this difficulty by
applying GCA based on the operator-dependent transfer operators introduced
by Dendy [18] for scalar equations. The generalization of this approach to
systems of equations has been outlined in Section 3.4.6. The modified version
of MG7 for systems of equations based on ω-COL-AD-RB-JAC relaxation leads
to very fast multigrid convergence. The worst three-grid factor found for
β = 96◦ reads ρ (M3L(β)) = 0.241. The stencil representations of Lh and
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L4h are shown in Figure 4.13 for Re = 5000, β = 45◦, and h = 1/128.
It can be observed that the discretizations of the convective parts tend to
second-order compact upstream discretizations—similar as for the convection
diffusion equation—in contrast to the first-order upwind discretization on the
fine grid.

Other possibilities to deal with the coarse-grid correction difficulty—like an
acceleration with a Krylov subspace method (compare with Section 7.4) or
the application of higher-order upwind discretizations on coarser grids—are
discussed in [67].

4.3.4 Higher-order discretization of the Oseen equations

Employing the κ-scheme [39], we obtain a higher-order flux difference split-
ting discretization of the Oseen equations with constant coefficients. The
representation of Lh in terms of central differences (see Example 1.2) is cal-
culated in [66]:

L1,1
h = − 1

Re

(
D11

h +D22
h

)
+ aD1

h + bD2
h − 1 − κ

4
(
h2aD111

h + h2bD222
h

)
+

1 − κ

8

(
h3 a2 + 2√

a2 + 4
D1111

h + h3|b|D2222
h

)
,

L1,2
h =L2,1

h = 0,

L1,3
h =L3,1

h = D1
h − 1 − κ

4
h2aD111

h +
1 − κ

8
h3 a√

a2 + 4
D1111

h ,

L2,2
h = − 1

Re

(
D11

h +D22
h

)
+ aD1

h + bD2
h − 1 − κ

4
(
h2aD111

h + h2bD222
h

)
+

1 − κ

8

(
h3|a|D1111

h + h3 b2 + 2√
b2 + 4

D2222
h

)
,

L2,3
h =L3,2

h = D2
h − 1 − κ

4
h2bD222

h +
1 − κ

8
h3 b√

b2 + 4
D2222

h ,

L3,3
h =

1 − κ

8

(
h3 2√

a2 + 4
D1111

h + h3 2√
b2 + 4

D2222
h

)
.

Again, the predefined distributor is given by Ch = L∗
h. The discretization

of the convective part is of second-order for κ ∈ [−1, 1] \ {1/3} and of third-
order for κ = 1/3. The KAPPA-relaxation proposed in [49] is an excellent
smoothing method for higher-order upwind discretization of Navier-Stokes-
type systems involving van Leer’s κ-scheme [39]. However, due to similar
coarse-grid correction difficulties as discussed above it is very difficult to find
an efficient multigrid method especially for recirculating flow problems. More
details about possible multigrid approaches for this particular problem can be
found, for example, in [48, 67].
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FIGURE 4.13: Lh and L4h for the first-order flux difference splitting dis-
cretization of the Oseen equations; Re = 5000, β = 45◦, h = 1/128.
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4.3.5 Elasticity system

A second-order accurate approximation of the linear elasticity problem

L1,1u+ L2,1v = − ((2µ+ λ)∂11 + µ∂22)u− (µ+ λ)∂12v = f

L2,1u+ L2,2v = −(µ+ λ)∂12u− (µ∂11 + (2µ+ λ)∂22) v = g

with Lamé coefficients µ and λ reads

L1,1
h = −(2µ+ λ)D11

h1
− µD22

h2
,

L1,2
h = L2,1

h = −(µ+ λ)D12
h ,

L2,2
h = −µD11

h1
− (2µ+ λ)D22

h2
. (4.18)

The implemented distributor is given by Ch = L∗
h.

The diagonal blocks L1,1
h and L2,2

h become anisotropic for λ � µ. That
is, the size of the coefficients referring to the different spatial directions (i.e.,
−(2µ+ λ)) and −µ) varies considerably for such a choice of the Lamé coeffi-
cients. Hence, a robust smoothing method consists of alternating line relax-
ations; compare with Section 4.1.1 dedicated to anisotropic diffusion problems.
Moreover, λ� µ leads to coarse-grid correction difficulties for standard multi-
grid components. This particular parameter selection refers to materials that
are almost incompressible, i.e., the corresponding Poisson ratio

ν :=
λ

2µ+ 2λ

tends to 1/2. It is well known that the efficiency of many solution methods
for problems from linear elasticity deteriorates for ν → 1/2. A fast converging
but somewhat exotic multigrid algorithm (involving CGA, residual weighting
and overrelaxation parameters) is presented in [50] which is based on insights
from Fourier three-grid analysis.

4.3.6 A linear shell problem

A system of PDEs (see, for example, Section 8.5 from [62]) derived by linear
shell theory, is

L1,1f + L1,4v = (∂11 + ∂22) f − v = 0,

L2,1f + L2,2u = −Λ2 (zyy∂11 − 2zxy∂12 + zxx∂22) f + (∂11 + ∂22)u = p,

L3,2u+ L3,3w = −u+ (∂11∂22)w = 0,

L4,3w + L4,4v = Λ2 (zyy∂11 − 2zxy∂12 + zxx∂22)w + (∂11 + ∂22) v = 0
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for the four unknown functions f , u, w, and v. A central second-order accurate
discretization is then given by

L1,1
h = L2,2

h = L3,3
h = L4,4

h = D11
h1

+D22
h2
,

L1,2
h = L1,3

h = L2,3
h = L2,4

h = L3,1
h = L3,4

h = L4,1
h = L4,2

h = 0,

L1,4
h = L3,2

h = −Ih,
L2,1

h = −Λ2
(
zyyD

11
h1

− 2zxyD
12
h + zxxD

22
h2

)
,

L4,3
h = Λ2

(
zyyD

11
h1

− 2zxyD
12
h + zxxD

22
h2

)
.

The predefined distributor reads Ch = L∗
h.

Possibilities for an efficient multigrid treatment of this linear shell problem
are investigated in [62] with a special emphasis on the distinction between
collective and decoupled smoothing. The presented examples might be exam-
ined with the help of LFA. Note, that we resorted the equations compared
to [62].

4.4 CREATING NEW APPLICATIONS

The collection of problems provided by the distributed software can be
expanded by the user. To do so, the functions of the main-window shown in
Figure 1.5 should be used.

There is a sample directory for a new application to be specified by the
user. Of course one could also create a new directory and copy the files of
an existing application into the new problem directory. The first step is to
implement the stencil of a new discretization in the Fortran subroutine star.f
by specifying the stencil array

• Lh(-lhmax:lhmax,-lhmax:lhmax) (2D−scalar)

• Lh(-lhmax:lhmax,-lhmax:lhmax,-lhmax:lhmax) (3D−scalar)

• Lh(Nq,Nq,-lhmax:lhmax,-lhmax:lhmax) (2D−systems).

It is necessary to adjust the length lhmax of the stencil. The default value
of lhmax is 1 for compact 9- or 27-point stencils in two or three dimensions,
respectively. Nq refers to the number of equations constituting the system
under consideration. For example, for the biharmonic system we have Nq = 2
and for the Stokes equations Nq = 3 holds.

As an example we consider the two-dimensional anisotropic diffusion equa-
tion with possibly different mesh sizes h(1) and h(2) into x1- and x2-direction,
respectively. The related source code appears as follows:
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Lh( 0, 1) = -1.0d0/(h(2)*h(2))
Lh( 1, 0) = -1.0d0/(h(1)*h(1))*eps
Lh( 0, 0) = 2.0d0/(h(1)*h(1))*eps + 2.0d0/(h(2)*h(2))
Lh(-1, 0) = -1.0d0/(h(1)*h(1))*eps
Lh( 0,-1) = -1.0d0/(h(2)*h(2))

The strength of the anisotropy is governed by the user parameter eps. Often,
there are problem specific parameters which have to be transferred to the
Fourier analysis program. A typical example is the coefficient eps of the
anisotropic diffusion equation shown above. It is possible to rename these
user-defined symbolic parameters or to create more of them. Creating new
discretization stencils may be simplified by using these symbolic names. They
are stored for each application in a file called user.pro. A corresponding
Problem menu-item allows an easy editing of the user parameters.

Considering systems of equations characterized by q · q scalar stencils [�i,jκ ]h
(i, j = 1, . . . , q) (compare with Section 1.1.4), [�i,jκ ]h has to be specified in
Lh(i,j,-lhmax:lhmax,-lhmax:lhmax). For systems of equations it is fur-
thermore possible to define an appropriate distributor. This can be done with
the help of the Fortran subroutine dist.f by specifying the corresponding
array Ch(Nq,Nq,-lhmax:lhmax,-lhmax:lhmax). By default, the discrete dis-
tributor is simply given by Ch = L∗

h yielding Kaczmarz relaxation schemes.
If there is some reason to apply a particular coarse-grid discretization (dif-

ferent from that given in star.f) the coarse-grid stencil might be specified in
the subroutine starH.f. This allows the study of different discretizations on
the coarse grids as it was done in Section 4.1.2.

As soon as the stencil files star.f and starH.f (and the distributor file
dist.f considering systems of equations) have been changed they have to be
compiled to create the new executable of LFA within the problem path. It
is recommended to apply the Problem menu and its systems-option to store
files in the proper directory and to adapt the makefiles for compilation of
newly created files. A compilation is always required if a new application has
been incorporated, if existing stencil or distributor files have been modified,
or if the names of user parameters have been changed.

© 2005 by Chapman & Hall/CRC Press



Part II

The Theory behind LFA

97



Chapter 5

FOURIER ONE-GRID OR
SMOOTHING ANALYSIS

In this chapter, we concentrate on the smoothing procedure Sh in a multigrid
cycle. The influence of the coarse-grid correction is neglected or, more pre-
cisely, an “ideal” coarse-grid correction operator (see below) is assumed. This
smoothing analysis might also be named one-grid analysis as it only takes the
fine-grid operators into account.

The main aim of this chapter is to provide the technical framework of
Fourier smoothing analysis for all kinds of relaxation methods that are imple-
mented in the accompanying software; compare with Figure 3.10. According
to this intention, we choose a rather general and elaborate formulation for d-
dimensional problems. In particular, a detailed description of the smoothing
analysis for three-dimensional pattern relaxations (Section 5.4) and systems of
equations (Section 5.5) is given which is lacking in textbooks. Although this
can be considered as a straightforward generalization of the two-dimensional
scalar case, it is technically very complicated. Therefore it seems worthwhile
to close this gap which is a key feature of this chapter.

Many examples are given to make the mathematical formulation more trans-
parent. We would like to point out that we mainly apply simple examples—
like the Laplacian—which can often be dealt with analytically, because they
are particularly illustrative. However, for slightly more difficult problems an
analytical treatment is usually not possible or at least very cumbersome. For
such situations it is convenient to apply the accompanying software to per-
form the smoothing analysis, as it has been demonstrated in Chapter 4 by a
large number of test cases.

First of all, some basic facts about local Fourier analysis are provided in Sec-
tion 5.1. They will be extensively used in the following. Moreover, they serve
as a preparation for the more complicated Fourier k-grid analysis presented
in Chapter 6. We concentrate on three classes of smoothing methods:

• JAC: Jacobi-type relaxations (Section 5.3)

• GS-LEX: lexicographical Gauss-Seidel relaxations (Section 5.3)

• RB-JAC, RB-GS: pattern relaxations of red-black Jacobi- and red-black
Gauss-Seidel-type (Section 5.4)

99
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including point- and blockwise (for example, lines or planes) variants. Note
that RB-JAC line or plane relaxation is often called ZEBRA relaxation. Each
method may be used with a damping parameter or with multistage parame-
ters. The damped versions are sometimes denoted by ω-JAC, ω-GS-LEX, and
ω-RB-JAC referring to the damping or (over)relaxation parameter ω; com-
pare with Section 1.2. The analysis and development of optimal multistage
relaxations is described in Section 5.6.

Section 5.8 is dedicated to the concept of h-ellipticity [6, 7, 10]. In this
context, the “measure of h-ellipticity” is computed for several discrete oper-
ators from Chapter 4 giving a first indication whether a multigrid treatment
is supposed to be successful.

Other systematic introductions into Fourier smoothing analysis are pre-
sented in [60, 62, 65].

5.1 ELEMENTS OF LOCAL FOURIER ANALYSIS

Starting from a linear boundary value problem

Lhuh(x) = fh(x) on Ωh, Bhuh(x) = gh(x) at ∂Ωh,

local Fourier analysis for multigrid is based on the following simplifications:

• Lh has constant coefficients.

• Neglect boundary conditions and extend the discrete problem to an
infinite grid, i.e.,

Lhuh(x) = fh(x) on Gh. (5.1)

5.1.1 Basic definitions

For a fixed grid point x ∈ Gh, (5.1) reads in stencil notation (see Sec-
tion 1.1.3) as

Lhuh(x) =
∑
κ∈J

�κuh(x + κh) = fh(x) (5.2)

with constant stencil coefficients �κ ∈ IR (i.e., �κ does not depend on x) and
a certain finite subset J ⊂ ZZd containing (0, . . . , 0).

Definition 5.1 (Fourier component, Fourier frequency, Fourier sym-
bol). From (5.2) it can be easily seen that the eigenfunctions of a constant
coefficient infinite grid operator are given by

ϕh(θ,x) :=
d∏

j=1

exp(i θjxj/hj) with θ ∈ IRd, x ∈ Gh,
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and complex unit i =
√−1. These eigenfunctions are called the Fourier com-

ponents associated with a Fourier frequency θ. The corresponding eigenvalues
or Fourier symbols of Lh read

L̃h(θ) :=
∑
κ∈J

�κ exp(i θκ).

�

Example 5.1 (Fourier symbol of the Laplacian). The Fourier symbol
of the two-dimensional Laplacian

Lh = −∆h
∧=

1
h2

 −1
−1 4 −1

−1


h

is given by

L̃h(θ) =
1
h2

(4 − exp(i θ1) − exp(−i θ1) − exp(i θ2) − exp(−i θ2))

=
1
h2

(4 − 2 cos(θ1) − 2 cos(θ2)) .

Similarly, we obtain for the d-dimensional Laplacian

L̃h(θ) =
1
h2

2d −
d∑

j=1

2 cos(θj)

 .

�

Example 5.2 (Fourier symbols for central discretizations). The
Fourier symbols for the central discretizations from Example 1.2 and Ex-
ample 1.3 are given by

D̃j
h(θ) =

i
hj

sin(θj), D̃jjj
h (θ) =

i
h3

j

(−2 sin(θj) + sin(2θj)),

D̃jj
h (θ) =

2
h2

j

(cos(θj) − 1), D̃jjjj
h (θ) =

2
h4

j

(3 − 4 cos(θj) + cos(2θj))

and D̃12
h (θ) = − 1

h1h2
sin(θ1) sin(θ2).

�

On Gh, we introduce the scaled Euclidean inner product

〈vh, wh〉Gh
:= lim

m→∞
1

md

∑
|κ|≤m

vh(κh)wh(κh) (5.3)
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with |κ| := max{|κ1|, . . . , |κd|} and vh, wh : Gh −→ C, leading to a norm
||vh||Gh

:=
√〈vh, vh〉Gh

. Note that the Fourier components are unitary with
respect to this inner product. We define the space of bounded infinite grid
functions by

F(Gh) := {vh | vh( . ) : Gh −→ C with ||vh||Gh
< ∞}.

For each vh ∈ F(Gh), there exists a Fourier transformation, that is, each vh

can be written as a linear combination of Fourier components [9, 29, 65]. In
particular an error or residual function can be expanded into a series with
respect to the Fourier components.

Definition 5.2 (Fourier space). Fourier components with

|θ̂| := max{|θ̂1|, . . . , |θ̂d|} ≥ π

are not visible on Gh, since they coincide with components ϕh(θ, . ), where
θ = θ̂(mod 2π), due to the periodicity of the exponential function. Therefore,
the Fourier space

F := span
{
ϕh(θ, . ) : θ ∈ Θ := (−π, π]d

}
(5.4)

contains any bounded infinite grid function. �

5.1.2 Generalization to systems of PDEs

The generalization to systems of q equations (1.11) is straightforward. Here,
we are dealing with vector-valued Fourier components

ϕh(θ, . ) := ϕ(θ, . ) · I I = (1, . . . , 1)T ∈ IRq

and the Fourier symbols

L̃h(θ) =

L̃1,1
h (θ) · · · L̃1,q

h (θ)
... · · · ...

L̃q,1
h (θ) · · · L̃q,q

h (θ)


are given by (q × q)-matrices consisting of scalar Fourier symbols.

Example 5.3 (Fourier symbol for the biharmonic system). The Fourier
symbol for the second-order approximation of the d-dimensional biharmonic
system

Lh =
(

∆h 0
−Ih ∆h

)
reads

L̃h(θ) =

 1
h2

(∑d
j=1 2 cos(θj) − 2d

)
0

−1 1
h2

(∑d
j=1 2 cos(θj) − 2d

) .

�
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The Euclidean inner product for vector-valued infinite grid functions vh =
(v1

h, . . . , vq
h)T , wh = (v1

h, . . . , wq
h)T has to be adapted accordingly:

〈vh,wh〉qGh
:=

q∑
j=1

〈vj
h, wj

h〉Gh
,

compare with (5.3).

5.2 HIGH AND LOW FOURIER FREQUENCIES

Fourier smoothing analysis is based on a distinction between “high” and
“low” Fourier frequencies governed by the coarsening strategy under consid-
eration.

5.2.1 Standard and semicoarsening

If standard or full coarsening (H = 2h) is selected, the Fourier components
ϕh(θ, . ) with |θ| := max{|θ1|, . . . , |θd|} ≤ π/2 are also visible on the coarse
grid GH whereas components with |θ| > π/2 coincide with certain ϕh(θ̂, . )
where |θ̂| ≤ π/2. This observation leads to the following.

Definition 5.3 (High and low frequencies, standard coarsening). An
element θj (j ∈ {1, . . . , d}) of a Fourier frequency θ is called low (or smooth)
if

−π/2 < θj ≤ π/2 for θ ∈ Θ = (−π, π]d.

Otherwise it is called high (or rough). We speak of a low (or smooth) Fourier
frequency θ ∈ Θ if all its elements are low (or smooth). Otherwise it is named
a high (or rough) frequency. We collect the low and high frequencies in the
subsets Θlow = (−π/2, π/2]d and Θhigh = Θ \ Θlow, respectively. �

A two-dimensional example of low and high frequencies for standard coarsen-
ing is given in the left picture of Figure 5.1.

The distinction obviously depends on the coarsening as for different coars-
ening strategies different sets of Fourier frequencies are visible on the coarse
grid. We define the set of coordinate indices by I := {1, . . . , d}. If the grid
is coarsened only in a subset {xj | j ∈ Ic ⊂ I} of the coordinate directions
and remains fixed in the other coordinates xj with j ∈ If = I \ Ic, we speak
of semi- or partial coarsening. Several examples of semicoarsening in two and
three dimensions are illustrated in Figure 3.7. Considering semicoarsening, we
have for the coarse-grid mesh size H that Hj = 2hj for j ∈ Ic and Hj = hj
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FIGURE 5.1: Low (white region) and high (shaded region) frequencies for
standard (left) and x1-semicoarsening (right).

for j ∈ If. The superscripts “c” and “f” refer to “coarse” and “fine,” indicat-
ing in which space directions the grid is getting coarser and where it remains
fine during the coarsening procedure. Then, the definition of high and low
frequencies has to be adapted accordingly.

Definition 5.4 (High and low frequencies, semicoarsening). A Fourier
frequency θ ∈ Θ is called low (or smooth) if all elements θj ∈ Ic are low (or
smooth), compare with Definition 5.3. Otherwise it is called a high (or rough)
frequency. Again, the low and high frequencies constitute the subsets Θlow
and Θhigh, respectively. �

Figure 5.1 (right picture) illustrates the distinction of low and high frequencies
in the case of x1-semicoarsening for a two-dimensional problem, i.e., Ic = {1}
and If = {2}.

5.2.2 Red-black coarsening and quadrupling

Another famous coarsening strategy is red-black coarsening. Here, the
coarse grid is constructed by leaving out every other fine-grid point. More
precisely, the fine grid is subdivided into red (R) and black (B) points in a
checkerboard manner,

GR
h = {x = κh ∈ Gh |

d∑
j=1

κj even}, GB
h = {x = κh ∈ Gh |

d∑
j=1

κj odd},

and the coarse grid is build by the black points only, i.e., GH = GB
h . GH

can be considered as a rotated uniform grid with mesh size H =
√

2h. The
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corresponding set of low-frequency components for d = 2 reads

Θlow = {θ ∈ Θ | |θ| ≤ π}.

Quadrupling means that the coarse grid is given by GH = G4h. Then, the
low-frequency components are simply defined by

Θlow = (−π/4, π/4]d

in an analogy to standard coarsening (GH = G2h). In practice, quadrupling
is rarely applied because it is difficult to find efficient smoothing methods for
this coarsening strategy. This is due to the fact that the relaxation method
has to take care of too many high-frequency error components.

Fourier smoothing analysis for both coarsening strategies is implemented
in the accompanying software for two-dimensional applications. The related
distinction in high and low Fourier frequencies is shown in Figure 5.2.

−π/2

−π

0

−π

π/2

π/20

1

2

−π/2

θ

θ

π

π

0 π/4 π−π/4−π

0

−π

−π/4

π/4

π

θ

θ

1

2

FIGURE 5.2: Low (white region) and high (shaded region) frequencies for
red-black coarsening (left) and quadrupling (right).

5.3 SIMPLE RELAXATION METHODS

Classical relaxation methods can be easily characterized by adopting the
following notation from [60]. According to the LFA we consider the discrete
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problem on an infinite grid

Lhuh(x) = fh(x) (x ∈ Gh, uh ∈ F(Gh)).

The discrete operator Lh is divided into a sum

Lh = L+
h + L0

h + L−
h . (5.5)

For a specification of this splitting, recall the stencil notation for Lh given by

Lhuh(x) =
∑
κ∈J

�κuh(x + κh).

Then (5.5) is characterized by a corresponding splitting of the index set J into
three disjoint subsets: J+, J0, and J−. J0 characterizes those grid points
where the unknowns are smoothed simultaneously, for example, in a line or a
plane. At grid points related to J− the relaxation employs old approximations
whereas at grid points defined by J+ new values are already available. Using
this convention we consider relaxation methods with a relaxation parameter
ω defined by(

L0
h + ωL+

h

)
ēh(x) =

(
(1 − ω)L0

h − ωL−
h

)
eh(x) for x ∈ G̃h

(5.6)
ēh(x) = eh(x) for x ∈ Gh \ G̃h.

eh and ēh denote the error before and after one complete or one partial re-
laxation step. Considering a complete relaxation step, we have G̃h = Gh

whereas in the case of a partial relaxation step G̃h denotes a certain sub-
space of Gh. In this section, we focus on relaxation methods consisting of one
complete sweep over all grid points, like Jacobi or lexicographic Gauss-Seidel
relaxation. Smoothing analysis is particularly simple for these type of relax-
ations because the Fourier components are eigenfunctions of such a relaxation
method.

The Fourier symbols of L+
h , L0

h, and L−
h are simply given by

L̃+
h (θ) =

∑
κ∈J+

�κ exp (iθκ) , L̃0
h(θ) =

∑
κ∈J0

�κ exp (iθκ) ,

and L̃−
h (θ) =

∑
κ∈J−

�κ exp (iθκ) (θ ∈ Θ);

see Definition 5.1. Assuming a complete relaxation step (i.e., G̃h = Gh),
it is then possible to calculate the Fourier symbol which corresponds to the
relaxation operator Sh(ω) defined by (5.6):

Sh(ω)ϕh(θ,x) = A(θ, ω)ϕh(θ,x) for θ ∈ Θ and x ∈ Gh
(5.7)

with A(θ, ω) =
(1 − ω)L̃0

h(θ) − ωL̃−
h (θ)

L̃0
h(θ) + ωL̃+

h (θ)
.
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(5.7) only makes sense for L̃0
h(θ)+ωL̃+

h (θ) 
= 0. If this condition does not hold
for certain θ∗, they have to be excluded from the analysis. The corresponding
results of the Fourier analysis for this slightly shrunken space of frequencies
have to be interpreted carefully. For an example, see the discussion of the
measure of h-ellipticity for the convection diffusion equation in Section 5.8.3.

In the following, we simply have to specify J0, J−, and G̃h in order to define
the relaxation method under consideration. Of course, J+ is then given by
J+ = J \ (J0 ∪ J−).

5.3.1 Jacobi relaxation

For Jacobi-type relaxations we have G̃h = Gh. An ω-JAC point smoother
is characterized by

J0 = {(0, . . . , 0)} and J− = J \ J0. (5.8)

To define general block relaxation methods for d-dimensional problems, we
apply the following definition; see [73].

Definition 5.5 (Block relaxation). We split the index set I = {1, . . . , d}
of coordinate indices into two disjoint subsets Ib and Ip. Unknowns at dif-
ferent grid points x and x̄ are relaxed simultaneously in a block (for example,
a line or a plane) if xj = x̄j holds for at least one j ∈ Ib. The superscripts
“b” and “p” refer to “blockwise” and “pointwise”, respectively. �

Using this definition, it is possible to specify ω-JAC block relaxation methods
by

J0 = {κ ∈ J | κj = 0 for j ∈ Ip} and J− = J \ J0. (5.9)

Example 5.4 (ω-JAC (x1-x2)-plane relaxation, d = 3). To illustrate
the above definition of general block relaxations we consider ω-JAC (x1,x2)-
plane relaxation applied to a three-dimensional operator which is described
by a 7-point stencil like the central discretization of the Laplacian. Here, we
have Ib = {1, 2}, Ip = {3} and consequently

J0 = {κ ∈ J | κ3 = 0} = {(0, 0, 0), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0)}.
Unknowns at x and x̄ are smoothed simultaneously in a plane, if x1 = x̄1 or
x2 = x̄2 holds. �

Due to G̃h = Gh and J+ = ∅ in the case of ω-JAC relaxations, the general
description (5.6) reduces to

L0
hēh(x) =

(
(1 − ω)L0

h − ωL−
h

)
eh(x) for x ∈ Gh.

This yields the following Fourier symbol for ω-JAC relaxations

A(θ, ω) = 1 − ω

(
1 +

L̃−
h (θ)

L̃0
h(θ)

)
= 1 − ω

L̃h(θ)

L̃0
h(θ)

(θ ∈ Θ). (5.10)
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Example 5.5 (Fourier symbol of point JAC for the Laplacian). For
the d-dimensional Laplacian and ω-JAC point relaxation, we have L̃h(θ) =
1
h2 (2d −∑d

j=1 2 cos(θj)) and L̃0
h(θ) = 2d

h2 leading to

A(θ, ω) = 1 − ω +
ω

d

 d∑
j=1

cos(θj)

 .

�

Example 5.6 (Fourier symbol of (x1, x2)-plane JAC for the Lapla-
cian, d = 3). Applying ω-JAC (x1, x2)-plane relaxation to the three-dimen-
sional Laplacian gives L̃0

h(θ) = 1
h2 (6− 2 cos(θ1)− 2 cos(θ2)) (see Example 5.4

for J0) yielding

A(θ, ω) = 1 − ω + ω
cos(θ3)

3 − cos(θ1) − cos(θ2)
.

�

5.3.2 Lexicographic Gauss-Seidel relaxation

First of all, note that for all GS-LEX-type relaxations G̃h = Gh holds.
General expressions for J+, J0, and J− are rather intricate for point and block
GS-LEX-type relaxations in d dimensions. Therefore, it is more convenient
to give several examples of GS-LEX smoothing in two and three dimensions
which are most relevant (and, in particular, which are implemented in the
accompanying software) .

In two dimensions we distinguish four different point smoothers character-
ized by the order in which the grid points are visited. If the relaxation marches
rowwise from left to right and from bottom to top, we speak of forward GS-
LEX defined by

J0 = {(0, 0)} and J− = {κ ∈ J | κ2 > 0} ∪ {κ ∈ J | κ2 = 0 and κ1 > 0}.

If the order of the grid points is of minor importance, we simply speak of
GS-LEX as already done above.

Example 5.7 (Fourier symbol of point GS-LEX for the Laplacian).
The Fourier symbol of forward GS-LEX point relaxation applied to the two-
dimensional Laplacian reads

A(θ, ω) =
(1 − ω)4 + ω(exp(i θ1) + exp(i θ2))

4 − ω(exp(−i θ1) + exp(−i θ2))
.

�
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A rowwise marching from right to left and from top to bottom is called
backward lexicographic Gauss-Seidel relaxation:

J0 = {(0, 0)} and J− = {κ ∈ J | κ2 < 0} ∪ {κ ∈ J | κ2 = 0 and κ1 < 0}.
Note that there is no natural starting point for lexicographical Gauss-Seidel

relaxations on an infinite grid. However, in practice GS-LEX is applied on
a finite domain Ωh. Figure 5.3 shows the numbering of grid points on a
square domain for forward (first picture) point GS-LEX and backward (second
picture) point GS-LEX, respectively. In forward point GS-LEX, the relaxation
starts in the southwestern corner whereas in backward point GS-LEX it starts
in the northeastern corner, leading to the abbreviations GS-LEX-SW and GS-
LEX-NE, respectively.

21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5

GS-LEX-SW

5 4 3 2 1
10 9 8 7 6
15 14 13 12 11
20 19 18 17 16
25 24 23 22 21

GS-LEX-NE

25 24 23 22 21
20 19 18 17 16
15 14 13 12 11
10 9 8 7 6
5 4 3 2 1

GS-LEX-SE

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

GS-LEX-NW
FIGURE 5.3: Different numberings of grid points for point GS-LEX.

Regarding Figure 5.3 the definition and meaning of GS-LEX-SE and GS-
LEX-NW should be obvious.

Remark 5.1 (Four direction GS-LEX). A “robust” relaxation method
for the first-order upwind discretization of the convection diffusion equation,
denoted by four direction (4DIR) GS-LEX, consists of four consecutive sweeps
of GS-LEX with different ordering of grid points, i.e., GS-LEX-SW followed
by GS-LEX-NE, GS-LEX-SE, and GS-LEX-NW. The corresponding operator
reads

S4DIR
h (ω) := SNW

h (ω) · SSE
h (ω) · SNE

h (ω) · SSW
h (ω).

Further details are given in Section 5.8.3. �

A similar distinction between forward and backward relaxation can be made
for two-dimensional line smoothers. Forward and backward x1-line GS-LEX
are defined by

J0 = {κ ∈ J | κ2 = 0}, J− = {κ ∈ J | κ2 > 0}
and J0 = {κ ∈ J | κ2 = 0}, J− = {κ ∈ J | κ2 < 0},

respectively. For x2-line GS-LEX an analog definition applies.
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The generalization to three-dimensional GS-LEX-type relaxations is straight-
forward. In analogy to the two-dimensional case (see Figure 5.3), we have
eight different point smoothers. For example, forward GS-LEX is given by

J0 = {(0, 0, 0)} and J− = {κ ∈ J | κ3 > 0} ∪ {κ ∈ J | κ3 = 0 and κ2 > 0}
∪ {κ ∈ J | κ3 = κ2 = 0 and κ1 > 0}.

Moreover, we distinguish six different line relaxations (x1-, x2-, x3-line in a
forward and backward manner) and six different plane smoothers ((x1, x2)-,
(x1, x3)-, (x2, x3)-plane in forward and backward manner).

Example 5.8 (Forward GS-LEX block relaxations). Forward x1-line
and forward (x1, x2)-plane GS-LEX relaxation are defined by

J0 = {κ ∈ J | κ2 = κ3 = 0}, J− = {κ ∈ J | κ3 > 0}
∪ {κ ∈ J | κ3 = 0 and κ2 > 0}

J0 = {κ ∈ J | κ3 = 0}, J− = {κ ∈ J | κ3 > 0},
respectively. The Fourier symbol of x1-line GS-LEX applied to the three-
dimensional Laplacian reads

A(θ, ω) =
(1 − ω)(6 − 2 cos(θ1)) + ω(exp(i θ2) + exp(i θ3))

6 − 2 cos(θ1) − ω(exp(−i θ2) + exp(−i θ3))
.

�

5.3.3 A first definition of the smoothing factor

After the description of JAC- and GS-LEX-type relaxation methods, we
continue with the definition of their smoothing factor. Considering Fourier
smoothing analysis, one investigates the influence of a smoothing operator
Sh(ω) to the high-frequency error components as the multigrid idea is based
on the assumption that high-frequency components are smoothed out by the
relaxation whereas the low-frequency components are reduced by the coarse-
grid correction; see Section 1.5.

Definition 5.6 (Smoothing Factor for ω-JAC and ω-GS-LEX): Let
A(θ, ω) denote the Fourier symbol of ω-JAC or ω-GS-LEX. Then we define
the corresponding smoothing factors by

ρ1(ω) := sup
θ∈Θhigh

|A(θ, ω)| .

In analogy to the two- and three-grid factors to be defined in Chapter 6 it
could also be named a one-grid factor as it only takes the fine-grid operators
into account. The subscript “1” refers to “one-grid.” If ω = 1, we often use
the shorter expression ρ1 := ρ1(1). �
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Example 5.9 (Smoothing factors for the Laplacian). The smooth-
ing factor for damped (ω = 4/5) JAC point relaxation applied to the two-
dimensional Laplacian reads

ρ1(4/5) = sup
θ∈Θhigh

∣∣∣∣15 +
2
5
(cos(θ1) + cos(θ2))

∣∣∣∣ .
The supremum in case of standard coarsening is attained at θsup = (±π,±π),
(π/2,±π), (±π, π/2) yielding ρ1(4/5) = 3/5; compare with Section 1.3.3. For
the derivation of the optimal damping parameter ω = 4/5, we refer to Exam-
ple 5.17.

An application of (undamped) point GS-LEX to the two-dimensional Lapla-
cian in connection with standard coarsening leads to

ρ1 = sup
θ∈Θhigh

∣∣∣∣ exp(i θ1) + exp(i θ2)
4 − exp(−i θ1) + exp(−i θ2)

∣∣∣∣ = 1/2

with θsup = (π/2, cos−1(4/5)), (cos−1(4/5), π/2) [65]. �

Remark 5.2 (Finite dimensional Fourier space). Note that the Fourier
space (5.4) has a nondenumerable basis as θ varies continuously in (π, π]d.
The use of infinite dimensional spaces and operators leads to some technical
simplifications in the analysis, see [60]. However, in general the supremum
in the definition of the smoothing factor cannot be calculated analytically as
in the above example. The practical computation performed by the Fourier
analysis software is based on a finite dimensional Fourier space. This finite
dimensional Fourier space Fhθ

is related to the mesh size h under consideration
if the same values are selected for the parameters fixing the physical “gridsize”
h and the “Fourier gridsize” hθ (compare with the Discretization dialogue
shown in Figure 3.8). Then Fhθ

is given by

Fhθ
:= span

{
ϕh(θ, . ) : θ ∈ ΘP := (−π, π]d ∩ Ghθ

}
(5.11)

with Ghθ
:= {θ = hθκ with hθ = 2πh, κ ∈ ZZd} .

The definitions of Θlow and Θhigh have to be changed accordingly, leading
to ΘP

low := Θlow ∩ Ghθ
and ΘP

high := Θhigh ∩ Ghθ
. Hence, the supremum is

replaced by a maximum, i.e.,

ρP
1 (ω) := max

θ∈ΘP
high

|A(θ, ω)| , (5.12)

which can easily be calculated numerically. The superscript “P” refers to
“periodic.” The reason for this choice is explained in the following remark.
In principle, the suprenum can be approximated by increasing the parameter
which determines the Fourier gridsize while the physical mesh size remains
fixed. However, in light of Remark 5.4 given below we do not recommend
such an approach. �
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Remark 5.3 (Exact analysis for periodic boundary conditions). Us-
ing this finite dimensional Fourier space, the local Fourier analysis becomes
an exact analysis for certain model problems on rectangular domains with
periodic boundary conditions. A famous exception is GS-LEX relaxation. As
discussed in the previous subsection, there is no natural starting point for
GS-LEX on an infinite grid in contrast to a finite domain, see Figure 5.3. As
a consequence, the infinite grid operator does not coincide with its variant on
a finite domain. This observation is described in detail in [67] using a matrix
notation. However, the difference between these operators is solely induced
by the boundary treatment. Away from the boundary we can expect that the
smoothing properties of the infinite grid operator give a reliable approxima-
tion for the relaxation operator on the finite grid as smoothing is a purely
local process; see, for example, [4, 9, 62]. �

Such an exact analysis that explicitly takes into account the underlying
domain and the corresponding boundary conditions is known as model prob-
lem analysis or rigorous Fourier analysis [60, 62]. An example of the model
problem analysis has already been given in Section 1.3 investigating the two-
dimensional Laplacian on the unit square with Dirichlet (D) boundary con-
ditions. Here, the appropriate eigenfunctions or Fourier components were
given by certain sine functions ϕD

h (θ, . ) (1.17). The generalization of these
eigenfunctions to d-dimensional applications is clearly given by

ϕD
h (θ,x) :=

d∏
j=1

sin(θjxj/hj) with x ∈ [0, 1]d ∩ Gh and

θ ∈ ΘD := {θ | θ = (θ1, . . . , θd) with θj = πmj/nj ,

1 ≤ mj ≤ nj − 1, nj = 1/hj (j = 1, . . . , d) }.
For ϕD

h (θ, . ), Fourier frequencies θ with θj = 0 (j ∈ {1, . . . , d}) do not occur
in ΘD, but they are contained in Θ for the exponential components ϕh(θ, . ).
This indicates that a more realistic prediction of the smoothing factor is ob-
tained by leaving out the Fourier frequencies with θj = 0, as it has been
observed in [16, 65, 72]. Based on the heuristics, one might mimic the effect
of Dirichlet boundary conditions by removing the “zero frequencies” leading
to the following modified definition of the smoothing factor.

Definition 5.7 (Smoothing Factor for ω-JAC and ω-GS-LEX; Dirich-
let boundary conditions). To study the effect of Dirichlet boundary con-
ditions we apply the following slightly modified smoothing factor:

ρD
1 (ω) := max

θ∈ΘD
high

|A(θ, ω)| with

(5.13)
ΘD

high =
(
Θhigh \ {θ | θj = 0, j ∈ {1, . . . , d}}) ∩ Ghθ

.

As in the previous definition we will use ρD
1 := ρD

1 (1). �
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Definition 5.7 only makes sense if it is based on the finite dimensional Fourier
space Fhθ

yielding the calculation of a certain maximum (5.13). Otherwise
the maximum would have to be replaced by a supremum. As a consequence,
the exclusion of the zero frequencies would not make any difference compared
to ρ1(ω) as long as ρD

1 (ω) depends continuously on θ. A particularly illus-
trative example—demonstrating the benefits of the above modification of the
smoothing factor in case of Dirichlet boundary conditions—is given in Sec-
tion 5.8.3 for the first-order upwind discretization of the convection diffusion
equation.

Remark 5.4 (h-dependency of smoothing analysis). Equation (5.12)
and Definition 5.7 lead to h-dependent results since ΘP

high and ΘD
high are re-

lated to the underlying computational grid under consideration. Obviously,
ρP
1 (ω) ≤ ρ1(ω) holds, since ΘP ⊂ Θ. If A(θ, ω) is a smooth function in θ,

then ρ1(ω) − ρP
1 (ω) = O(hm

j ) follows for some m ≥ 1 [65]. This means that
ρP
1 (ω) quickly approaches the limit ρ1(ω) for “usual” elliptic problems [28].
LFA based on Θ yields h-independent results for discretization operators

involving partial derivatives of the same order only, since the Fourier fre-
quencies are not related to a certain grid in contrast to ΘP and ΘD. More
precisely, the continuously defined set Θ (= limh1,...,hd→0 ΘP) implies that
h1, . . . , hd → 0. These limits will, of course, never be attained in a real nu-
merical calculation where it is reasonable to assume a lower bound h0 ≈ 10−3

for h1, . . . , hd [72].
It may happen that a set of problems is controlled by a parameter ε such

that ρ1(ω)−ρP
1 (ω) = O(hm

j /ε) [65]. Considering only practical values hj ≥ h0

(j = 1, . . . , d), there might be a big difference between ρP
1 (ω), ρD

1 (ω) and
ρ1(ω) if ε � 1 as for the anisotropic diffusion or the convection diffusion
equation [43, 65, 72]. In this case, ρ1(ω) can be too pessimistic and the h-
dependent values ρP

1 (ω) and ρD
1 (ω) yield more reliable predictions.

From the above discussion it is obvious that ρP
1 (ω) and ρD

1 (ω)—provided
by the accompanying software—can be considered as the relevant values for
practical applications. �

5.4 PATTERN RELAXATIONS

If the relaxation method under consideration consists of several partial re-
laxation steps—i.e., G̃h 
= Gh, see (5.6)—we speak of pattern relaxations.
Here, the situation is somewhat more difficult as the Fourier components are
no longer eigenfunctions of the relaxation operator. However, it still leaves
certain low-dimensional subspaces of Fourier components invariant yielding
a block-diagonal Fourier representation of the smoothing operator consisting
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of small blocks only. This representation allows for an easy calculation of
smoothing factors (to be defined below for pattern relaxations).

5.4.1 Red-black Jacobi (RB-JAC) relaxations

Among the most popular pattern relaxations are red-black Jacobi smoothers
(RB-JAC) applying two partial relaxation steps. For red-black relaxations,
the grid Gh = {x = κh | κ ∈ ZZd} is divided into two disjoint subsets GR

h and
GB

h referring to “red” and “black” points, respectively. One complete red-
black relaxation SRB

h (ω) consists of two steps. In the first half-step (SR
h (ω))

only the unknowns located at red points are smoothed whereas the unknowns
at black points remain unchanged. Then, in the second half-step (SB

h (ω)) the
unknowns at the black points are changed using the new values at the red
points calculated in the first half-step. The iteration operator of one complete
red-black iteration is given by

SRB
h (ω) = SB

h (ω) · SR
h (ω).

With

G̃h = GR
h , Gh \ G̃h = GB

h and G̃h = GB
h , Gh \ G̃h = GR

h

for the first and for the second half-step, respectively, notation (5.6) applies.
For point ω-RB-JAC, the computational grid is subdivided into red and

black points in a checkerboard manner as it has already been described in
Section 5.2.2 in the context of red-black coarsening, i.e.,

GR
h = {x = κh ∈ Gh |

d∑
j=1

κj even}, GB
h = {x = κh ∈ Gh |

d∑
j=1

κj odd};

(5.14)
compare with Figure 5.4 for the two-dimensional case. In both half-steps we
use the same splitting of the index set J as for point ω-JAC; see (5.8).

For general block ω-RB-JAC relaxations, recall the splitting of the coordi-
nate indices into Ib and Ip from Definition 5.5. Here, it is more appropriate
to speak of red blocks and black blocks that are collected in

GR
h = {x = κh ∈ Gh |

∑
j∈Ip

κj even}, GB
h = {x = κh ∈ Gh |

∑
j∈Ip

κj odd},

(5.15)
respectively. The splitting of J is adopted from the block ω-JAC relaxations;
see (5.9). Line or plane RB-JAC relaxations are also known as line or plane
ZEBRA relaxations. The corresponding distinction between red and black
points is specified in Tables 5.1 and 5.2. x1-line relaxation for d = 2 is
illustrated in Figure 5.4.
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×

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦

◦ ◦

• • •

• • •

• •

• •

• •

×

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

• • • • •

• • • • •

FIGURE 5.4: Red (◦) and black (•) points for point (left) and x1-line
(right) RB-JAC relaxation; d = 2. × denotes the origin of Gh.

TABLE 5.1: Characterization of GR
h

and GB
h for two-dimensional RB-JAC

relaxations; compare with (5.14) and
(5.15) for the general definitions.

relaxation GR
h GB

h

point κ1 + κ2 even κ1 + κ2 odd
x1-line κ2 even κ2 odd
x2-line κ1 even κ1 odd

5.4.2 Spaces of 2h-harmonics

Pattern relaxations involving partial step operators do not have simple
scalar Fourier symbols like (5.7) or (5.10) because they couple certain Fourier
components. In this respect it is convenient to consider the following low-
dimensional spaces of Fourier components which turn out to be invariant
under an application of RB-JAC relaxations.

Definition 5.8 (2h-harmonics, d-dimensional case): The spaces of 2h-
harmonics for θ ∈ Θ2h := (−π/2, π/2]d are given by

F2h(θ) := span {ϕh (θα, . ) | α = (α1, . . . , αd), αj ∈ {0, 1}, j = 1, . . . , d} with

θ = θ(0,...,0) ∈ Θ2h and θα := θ(0,...,0) − (α1sign(θ1), . . . , αdsign(θd)) π.

�
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TABLE 5.2: Characterization of GR
h and GB

h for
three-dimensional RB-JAC relaxations; compare with
(5.14) and (5.15) for the general definitions.

relaxation GR
h GB

h

point κ1 + κ2 + κ3 even κ1 + κ2 + κ3 odd
x1-line κ2 + κ3 even κ2 + κ3 odd
x2-line κ1 + κ3 even κ1 + κ3 odd
x3-line κ1 + κ2 even κ1 + κ2 odd

(x1, x2)-plane κ3 even κ3 odd
(x1, x3)-plane κ2 even κ2 odd
(x2, x3)-plane κ1 even κ1 odd

In the following, α = (α1, . . . , αd) is often abbreviated by α1 . . . αd. For
example, we use 000 instead of (0, 0, 0); see below.

Obviously, the 2h-harmonics generate the whole Fourier space. More pre-
cisely, we have

F =
⊕

θ∈Θ2h

F2h(θ);

see Definition 5.2. The motivation for such a splitting of F and the mean-
ing of the name “2h-harmonics” will become more obvious in the context of
the k-grid analysis; see Section 6.2. The subscript “2h” stands for standard
coarsening (H = 2h). (Note that Θ2h = Θlow, where low refers to standard
coarsening.) A set of Fourier frequencies generating one space of 2h-harmonics
is shown in Figure 5.5.

In the context of Fourier smoothing analysis it is crucial that the pattern
relaxation methods ω-RB-JAC leave these spaces of 2h-harmonics invariant.
This means that pattern relaxations Sh(ω) are unitarily equivalent to a block
matrix consisting of 2d-blocks, as the 2h-harmonics build 2d-dimensional sub-
spaces. Hence, the Fourier symbols of these pattern relaxations based on the
2h-harmonics are given by (2d × 2d) complex matrices S̃h(θ, ω), i.e.,

Sh(ω)|F2h(θ) = S̃h(θ, ω) ∈ C2d×2d

.

Example 5.10 (Fourier representation of point RB-JAC relaxation,
d = 2). The Fourier representations for several pattern relaxations in the two-
dimensional case are derived, for example, in [59, 60] assuming the following
order for the multiindex α:

(0, 0), (1, 1), (1, 0), (0, 1). (5.16)
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0 π/2 π−π/2−π

0

−π

−π/2

π/2

π

θ

θ

1

2

♦ : θ00 ∈ Θ2h

� : θ11,θ10,θ01 ∈ Θ \ Θ2h

FIGURE 5.5: Sample set of Fourier frequencies generating a space of 2h-
harmonics. Θ2h: white region, Θ \ Θ2h: shaded region.

For point RB-JAC relaxation one obtains

S̃RB
h (θ, ω) = S̃B

h (θ, ω) · S̃R
h (θ, ω) with

S̃R
h (θ, ω) = 1

2


A00 + 1 A11 − 1 0 0
A00 − 1 A11 + 1 0 0

0 0 A10 + 1 A01 − 1
0 0 A10 − 1 A01 + 1

 ,

S̃B
h (θ, ω) = 1

2


A00 + 1 −A11 + 1 0 0
−A00 + 1 A11 + 1 0 0

0 0 A10 + 1 −A01 + 1
0 0 −A10 + 1 A01 + 1

 ,

and Aα := A(θα, ω) from (5.10). The Fourier representations for x1-, x2-line
RB-JAC relaxation (d = 2) are given in Appendix A.1. �

The three-dimensional case is tackled in [61], but the explicit derivation and
definition of the (8 × 8)-blocks is lacking. To close this gap, we calculate
the Fourier symbols for various three-dimensional RB-JAC relaxations. The
following considerations are based on a straightforward modification of the
two-dimensional case which is described in [59, 60]. The point relaxation is
discussed in detail whereas the Fourier representations for the block relax-
ations are listed in Appendix A.2.
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5.4.3 Auxiliary definitions and relations

We start with some basic definitions and relations which are crucial for the
calculation of the Fourier symbols w.r.t. the 2h-harmonics. First of all, one
has to prescribe an order of the basis elements ϕh (θα, . ) of the spaces of
2h-harmonics. Here, we take the order

(0, 0, 0), (1, 1, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (1, 0, 1), (0, 0, 1), (1, 1, 0)

for the multiindex α.
We distinguish eight different types of grid points within the infinite grid

Gh, namely
Gα

h := {x = κh | κ ∈ ZZ3, κ = α(mod 2)}. (5.17)

This compact but somewhat complex definition is broken down in Table 5.3.

TABLE 5.3: Characterization of Gα
h (d = 3); compare

with (5.17).

G000
h κ1, κ2, κ3 even G111

h κ1, κ2, κ3 odd
G100

h κ1 odd; κ2, κ3 even G011
h κ1 even; κ2, κ3 odd

G010
h κ1, κ3 even; κ2 odd G101

h κ1, κ3 odd; κ2 even
G001

h κ1 even; κ2, κ3 odd G110
h κ1, κ2 odd; κ3 even

Remark 5.5 (Generalization to d dimensions). The infinite grid has to
be subdivided into 2d different kinds of grid points for a general treatment of
pattern relaxations in d dimensions. Using α from Definition 5.8, (5.17) has
to be adapted as follows

Gα
h := {x = κh | κ ∈ ZZd, κ = α(mod 2)}. (5.18)

The two-dimensional case is specified in Table 5.4. �

TABLE 5.4: Characterization of Gα
h (d = 2);

compare with (5.18).

G00
h κ1, κ2 even G11

h κ1, κ2, odd
G10

h κ1 odd; κ2 even G01
h κ1 even; κ2 odd

© 2005 by Chapman & Hall/CRC Press



FOURIER ONE-GRID OR SMOOTHING ANALYSIS 119

For the 2h-harmonics, it can be easily established that the following rela-
tions are valid:

ϕh(θ111,x) =

{
ϕh(θ000,x) for x ∈ G000

h ∪ G011
h ∪ G101

h ∪ G110
h ,

−ϕh(θ000,x) for x ∈ G111
h ∪ G100

h ∪ G010
h ∪ G001

h .

ϕh(θ100,x) =

{
ϕh(θ000,x) for x ∈ G000

h ∪ G011
h ∪ G010

h ∪ G001
h ,

−ϕh(θ000,x) for x ∈ G111
h ∪ G100

h ∪ G110
h ∪ G101

h .

ϕh(θ011,x) =

{
ϕh(θ000,x) for x ∈ G000

h ∪ G111
h ∪ G011

h ∪ G100
h ,

−ϕh(θ000,x) for x ∈ G110
h ∪ G101

h ∪ G010
h ∪ G001

h .

ϕh(θ010,x) =

{
ϕh(θ000,x) for x ∈ G000

h ∪ G101
h ∪ G100

h ∪ G001
h ,

−ϕh(θ000,x) for x ∈ G111
h ∪ G110

h ∪ G011
h ∪ G010

h .

ϕh(θ101,x) =

{
ϕh(θ000,x) for x ∈ G000

h ∪ G111
h ∪ G101

h ∪ G010
h ,

−ϕh(θ000,x) for x ∈ G110
h ∪ G011

h ∪ G100
h ∪ G001

h .

ϕh(θ001,x) =

{
ϕh(θ000,x) for x ∈ G000

h ∪ G110
h ∪ G100

h ∪ G010
h ,

−ϕh(θ000,x) for x ∈ G111
h ∪ G101

h ∪ G011
h ∪ G001

h .

ϕh(θ110,x) =

{
ϕh(θ000,x) for x ∈ G000

h ∪ G111
h ∪ G110

h ∪ G001
h ,

−ϕh(θ000,x) for x ∈ G101
h ∪ G011

h ∪ G100
h ∪ G010

h .

(5.19)

Furthermore, we introduce eight functions ψ1, . . . , ψ8 defined by:

ψ1(x) := (ϕh(θ000,x) + ϕh(θ111,x) + ϕh(θ100,x) + ϕh(θ011,x)
+ ϕh(θ010,x) + ϕh(θ101,x) + ϕh(θ001,x) + ϕh(θ110,x))/8

ψ2(x) := (ϕh(θ000,x) − ϕh(θ111,x) − ϕh(θ100,x) + ϕh(θ011,x)
− ϕh(θ010,x) + ϕh(θ101,x) − ϕh(θ001,x) + ϕh(θ110,x))/8

ψ3(x) := (ϕh(θ000,x) − ϕh(θ111,x) − ϕh(θ100,x) + ϕh(θ011,x)
+ ϕh(θ010,x) − ϕh(θ101,x) + ϕh(θ001,x) − ϕh(θ110,x))/8

ψ4(x) := (ϕh(θ000,x) + ϕh(θ111,x) + ϕh(θ100,x) + ϕh(θ011,x)
− ϕh(θ010,x) − ϕh(θ101,x) − ϕh(θ001,x) − ϕh(θ110,x))/8

ψ5(x) := (ϕh(θ000,x) − ϕh(θ111,x) + ϕh(θ100,x) − ϕh(θ011,x)
− ϕh(θ010,x) + ϕh(θ101,x) + ϕh(θ001,x) − ϕh(θ110,x))/8

ψ6(x) := (ϕh(θ000,x) + ϕh(θ111,x) − ϕh(θ100,x) − ϕh(θ011,x)
+ ϕh(θ010,x) + ϕh(θ101,x) − ϕh(θ001,x) − ϕh(θ110,x))/8

ψ7(x) := (ϕh(θ000,x) − ϕh(θ111,x) + ϕh(θ100,x) − ϕh(θ011,x)
+ ϕh(θ010,x) − ϕh(θ101,x) − ϕh(θ001,x) + ϕh(θ110,x))/8

ψ8(x) := (ϕh(θ000,x) + ϕh(θ111,x) − ϕh(θ100,x) − ϕh(θ011,x)
− ϕh(θ010,x) − ϕh(θ101,x) + ϕh(θ001,x) + ϕh(θ110,x))/8
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Using (5.19) it can be verified that

ψ1(x) =

{
ϕh(θ000,x) for x ∈ G000

h ,

0 for x /∈ G000
h .

ψ2(x) =

{
ϕh(θ000,x) for x ∈ G111

h ,

0 for x /∈ G111
h .

ψ3(x) =

{
ϕh(θ000,x) for x ∈ G100

h ,

0 for x /∈ G100
h .

ψ4(x) =

{
ϕh(θ000,x) for x ∈ G011

h ,

0 for x /∈ G011
h .

ψ5(x) =

{
ϕh(θ000,x) for x ∈ G010

h ,

0 for x /∈ G010
h .

ψ6(x) =

{
ϕh(θ000,x) for x ∈ G101

h ,

0 for x /∈ G101
h .

ψ7(x) =

{
ϕh(θ000,x) for x ∈ G001

h ,

0 for x /∈ G001
h .

ψ8(x) =

{
ϕh(θ000,x) for x ∈ G110

h ,

0 for x /∈ G110
h .

Altogether one obtains for arbitrary cα ∈ C:

c000ψ1(x) + c111ψ2(x) + c100ψ3(x) + c011ψ4(x)
+ c010ψ5(x) + c101ψ6(x) + c001ψ7(x) + c110ψ8(x) = cαϕh(θ000,x) for x ∈ Gα

h .

c000ψ1(x) − c111ψ2(x) − c100ψ3(x) + c011ψ4(x)
− c010ψ5(x) + c101ψ6(x) − c001ψ7(x) + c110ψ8(x) = cαϕh(θ111,x) for x ∈ Gα

h .

c000ψ1(x) − c111ψ2(x) − c100ψ3(x) + c011ψ4(x)
+ c010ψ5(x) − c101ψ6(x) + c001ψ7(x) − c110ψ8(x) = cαϕh(θ100,x) for x ∈ Gα

h .

c000ψ1(x) + c111ψ2(x) + c100ψ3(x) + c011ψ4(x)
− c010ψ5(x) − c101ψ6(x) − c001ψ7(x) − c110ψ8(x) = cαϕh(θ011,x) for x ∈ Gα

h .

c000ψ1(x) − c111ψ2(x) + c100ψ3(x) − c011ψ4(x)
− c010ψ5(x) + c101ψ6(x) + c001ψ7(x) − c110ψ8(x) = cαϕh(θ010,x) for x ∈ Gα

h .

c000ψ1(x) + c111ψ2(x) − c100ψ3(x) − c011ψ4(x)
+ c010ψ5(x) + c101ψ6(x) − c001ψ7(x) − c110ψ8(x) = cαϕh(θ101,x) for x ∈ Gα

h .

c000ψ1(x) − c111ψ2(x) + c100ψ3(x) − c011ψ4(x)
+ c010ψ5(x) − c101ψ6(x) − c001ψ7(x) + c110ψ8(x) = cαϕh(θ001,x) for x ∈ Gα

h .

c000ψ1(x) + c111ψ2(x) − c100ψ3(x) − c011ψ4(x)
− c010ψ5(x) − c101ψ6(x) + c001ψ7(x) + c110ψ8(x) = cαϕh(θ110,x) for x ∈ Gα

h .

(5.20)

5.4.4 Fourier representation for RB-JAC point relaxation

Next we derive the Fourier representation S̃RB
h (θ, ω) of RB-JAC point relax-

ation based on the 2h-harmonics by applying the preliminary considerations
from the previous subsection. The general description (5.6) of a relaxation
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method immediately yields

SR
h (ω) ϕh(θ,x) =

{
A(θ, ω) ϕh(θ,x) for x ∈ GR

h

ϕh(θ,x) for x ∈ GB
h

(5.21)

for the first Jacobi sweep over the red points with A(θ, ω) from (5.10).

Red and black points for point RB-JAC relaxation can be expressed by Gα
h :

GR
h = G000

h ∪G011
h ∪G101

h ∪G110
h and GB

h = G111
h ∪G100

h ∪G010
h ∪G001

h ; (5.22)

compare with Tables 5.2 and 5.3. Combining (5.21), (5.22), and (5.20) gives

SR
h (ω) ϕh(θα,x) =



A(θ000, ω) (ψ1(x) + ψ4(x) + ψ6(x) + ψ8(x))
+ (ψ2(x) + ψ3(x) + ψ5(x) + ψ7(x)) (α = (0, 0, 0))

A(θ111, ω) (ψ1(x) + ψ4(x) + ψ6(x) + ψ8(x))
+ (−ψ2(x) − ψ3(x) − ψ5(x) − ψ7(x)) (α = (1, 1, 1))

A(θ100, ω) (ψ1(x) + ψ4(x) − ψ6(x) − ψ8(x))
+ (−ψ2(x) − ψ3(x) + ψ5(x) + ψ7(x)) (α = (1, 0, 0))

A(θ011, ω) (ψ1(x) + ψ4(x) − ψ6(x) − ψ8(x))
+ (ψ2(x) + ψ3(x) − ψ5(x) − ψ7(x)) (α = (0, 1, 1))

A(θ010, ω) (ψ1(x) − ψ4(x) + ψ6(x) − ψ8(x))
+ (−ψ2(x) + ψ3(x) − ψ5(x) + ψ7(x)) (α = (0, 1, 0))

A(θ101, ω) (ψ1(x) − ψ4(x) + ψ6(x) − ψ8(x))
+ (ψ2(x) − ψ3(x) + ψ5(x) − ψ7(x)) (α = (1, 0, 1))

A(θ001, ω) (ψ1(x) − ψ4(x) − ψ6(x) + ψ8(x))
+ (−ψ2(x) + ψ3(x) + ψ5(x) − ψ7(x)) (α = (0, 0, 1))

A(θ110, ω) (ψ1(x) − ψ4(x) − ψ6(x) + ψ8(x))
+ (ψ2(x) − ψ3(x) − ψ5(x) + ψ7(x)) (α = (1, 1, 0))

(5.23)
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for θ = θ000 ∈ Θlow = (−π/2, π/2]3. Due to

ψ1(x) + ψ4(x) + ψ6(x) + ψ8(x) =
1
2
(
ϕh(θ000,x) + ϕh(θ111,x)

)
ψ1(x) + ψ4(x) − ψ6(x) − ψ8(x) =

1
2
(
ϕh(θ100,x) + ϕh(θ011,x)

)
ψ1(x) − ψ4(x) + ψ6(x) − ψ8(x) =

1
2
(
ϕh(θ010,x) + ϕh(θ101,x)

)
ψ1(x) − ψ4(x) − ψ6(x) + ψ8(x) =

1
2
(
ϕh(θ001,x) + ϕh(θ110,x)

)
ψ2(x) + ψ3(x) + ψ5(x) + ψ7(x) =

1
2
(
ϕh(θ000,x) − ϕh(θ111,x)

)
−ψ2(x) − ψ3(x) + ψ5(x) + ψ7(x) =

1
2
(
ϕh(θ100,x) − ϕh(θ011,x)

)
−ψ2(x) + ψ3(x) − ψ5(x) + ψ7(x) =

1
2
(
ϕh(θ010,x) − ϕh(θ101,x)

)
−ψ2(x) + ψ3(x) + ψ5(x) − ψ7(x) =

1
2
(
ϕh(θ001,x) − ϕh(θ110,x)

)

(5.23) can be simplified, yielding

SR
h (ω) ϕ(θα,x) =

1
2



A(θ000, ω)
(
ϕh(θ000,x) + ϕh(θ111,x)

)
+
(
ϕh(θ000,x) + ϕh(θ111,x)

)
for α = (0, 0, 0)

A(θ111, ω)
(
ϕh(θ000,x) + ϕh(θ111,x)

)
− (ϕh(θ000,x) − ϕh(θ111,x)

)
for α = (1, 1, 1)

A(θ100, ω)
(
ϕh(θ100,x) + ϕh(θ011,x)

)
+
(
ϕh(θ100,x) − ϕh(θ011,x)

)
for α = (1, 0, 0)

A(θ011, ω)
(
ϕh(θ100,x) + ϕh(θ011,x)

)
− (ϕh(θ100,x) − ϕh(θ011,x)

)
for α = (0, 1, 1)

A(θ010, ω)
(
ϕh(θ010,x) + ϕh(θ101,x)

)
+
(
ϕh(θ010,x) − ϕh(θ101,x)

)
for α = (0, 1, 0)

A(θ101, ω)
(
ϕh(θ010,x) + ϕh(θ101,x)

)
− (ϕh(θ010,x) − ϕh(θ101,x)

)
for α = (1, 0, 1)

A(θ001, ω)
(
ϕh(θ001,x) + ϕh(θ110,x)

)
+
(
ϕh(θ001,x) + ϕh(θ110,x)

)
for α = (0, 0, 1)

A(θ110, ω)
(
ϕh(θ001,x) + ϕh(θ110,x)

)
− (ϕh(θ001,x) − ϕh(θ110,x)

)
for α = (1, 1, 0).

(5.24)

Thus, SR
h (ω) : F2h(θ) → F2h(θ) for θ ∈ Θlow = (−π/2, π/2]3 holds and
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(5.24) yields SR
h (ω)|F2h(θ) = S̃R

h (θ, ω) ∈ C8×8 with

S̃
R
h (θ, ω) =

1

2



A000 + 1 A111 − 1 0 0 0 0 0 0
A000 − 1 A111 + 1 0 0 0 0 0 0

0 0 A100 + 1 A011 − 1 0 0 0 0
0 0 A100 − 1 A011 + 1 0 0 0 0
0 0 0 0 A010 + 1 A101 − 1 0 0
0 0 0 0 A010 − 1 A101 + 1 0 0
0 0 0 0 0 0 A001 + 1 A110 − 1
0 0 0 0 0 0 A001 − 1 A110 + 1


.

Due to space limitations we use the abbreviation Aα := A(θα, ω) as in the
two-dimensional case discussed in Example 5.10. Similarly, it can be shown
that SB

h (ω) : F2h(θ) → F2h(θ) for θ ∈ Θlow holds and that SB
h (ω)|F2h(θ) =

S̃B
h (θ, ω) ∈ C8×8 is given by

1
2


A000 + 1 −A111 + 1 0 0 0 0 0 0
−A000 + 1 A111 + 1 0 0 0 0 0 0

0 0 A100 + 1 −A011 + 1 0 0 0 0
0 0 −A100 + 1 A011 + 1 0 0 0 0
0 0 0 0 A010 + 1 −A101 + 1 0 0
0 0 0 0 −A010 + 1 A101 + 1 0 0
0 0 0 0 0 0 A001 + 1 −A110 + 1
0 0 0 0 0 0 −A001 + 1 A110 + 1

.

By S̃RB
h (θ, ω) = S̃B

h (θ, ω) · S̃R
h (θ, ω) ∈ C8×8 one obtains the Fourier repre-

sentation of RB-JAC point relaxation w.r.t. the 2h-harmonics. The Fourier
representation of line and plane RB-JAC relaxations can be computed analo-
gously; see Appendix A.2.

Remark 5.6 (Minimal invariant subspaces for pattern relaxations).
The minimal invariant subspaces of Fourier components for red-black type
relaxations are two-dimensional, see [36, 60, 62, 73]. In the case of point RB-
JAC, it is already indicated by the distribution of zero entries in S̃R

h (θ, ω)
and S̃B

h (θ, ω) that they can be decomposed further. However, as the minimal
invariant subspaces differ for different variants of point/block RB-JAC relax-
ation it is convenient to stay with the 2h-harmonics for a uniform treatment,
especially in connection with Fourier k-grid analysis from Chapter 6.

Smoothing factors for point/block RB-JAC relaxations applied to the d-
dimensional ansiotropic diffusion equation (see Sections 4.1.1 and 4.2.1 for
the two- and three-dimensional case, respectively) are derived analytically
in [73]. This analysis is based on Fourier representations w.r.t. the minimal
invariant subspaces. �

5.4.5 General definition of the smoothing factor

In order to measure the smoothing properties of pattern relaxation meth-
ods we adopt the general definition of the smoothing factor from [60]. Here,
the real coarse-grid correction for a two-grid method (see Section 3.1) is re-
placed by an ideal coarse-grid correction operator QH

h which annihilates the
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low-frequency error components and leaves the high-frequency components
unchanged [60]. QH

h is a projection operator onto the space of high-frequency
components

Fhigh := {ϕh(θ, . ) | θ ∈ Θhigh}.
The space of low-frequency components is then evidently given by Flow :=
{ϕh(θ, . ) | θ ∈ Θlow}. Thus, for a general coarsening strategy QH

h is defined
by

QH
h ϕh(θ, . ) :=

{
ϕh(θ, . ) for ϕh(θ, . ) ∈ Fhigh

0 for ϕh(θ, . ) ∈ Flow
. (5.25)

The Fourier representation of QH
h using the 2h-harmonics is particularly sim-

ple. It is given by (2d × 2d) diagonal matrices, since the Fourier components
are eigenfunctions of QH

h .

Example 5.11 (Q̃H
h for two-dimensional problems). Standard, x1-, and

x2-semicoarsening in two dimensions lead to the following Fourier representa-
tions of the related ideal coarse-grid correction operator assuming order (5.16)
for the multiindex α:

Q̃2h
h = diag{0, 1, 1, 1}, Q̃2h,h

h = diag{0, 1, 1, 0}, Q̃h,2h
h = diag{0, 1, 0, 1}.

That is,

Q̃2h
h : F2h(θ) −→ span

{
ϕh(θ11, . ), ϕh(θ10, . ), ϕh(θ01, . )

}
,

Q̃2h,h
h : F2h(θ) −→ span

{
ϕh(θ11, . ), ϕh(θ10, . )

}
,

Q̃h,2h
h : F2h(θ) −→ span

{
ϕh(θ11, . ), ϕh(θ01, . )

}
for θ ∈ Θ2h. �

Some representations in the three-dimensional case are given in the next ex-
ample.

Example 5.12 (Q̃H
h for three-dimensional problems). Using the same

order for the multiindex α as in Section 5.4.3, we obtain the following Fourier
representations for QH

h based on the 2h-harmonics, shown in Table 5.5. �

The representation of ω-JAC and ω-GS-LEX w.r.t. the 2h-harmonics is
evidently given by (2d × 2d) diagonal matrices. Using the Fourier symbols
from (5.7), this reads in two and three dimensions as

Sh(ω)|F2h(θ) =: S̃h(θ, ω) = diag
{
A(θ00, ω), A(θ11, ω), A(θ10, ω), A(θ01, ω)

}
,

Sh(ω)|F2h(θ) =: S̃h(θ, ω) = diag
{
A(θ000, ω), A(θ111, ω), A(θ100, ω), A(θ011, ω),

A(θ010, ω), A(θ101, ω), A(θ001, ω), A(θ110, ω)
}
,

(5.26)
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TABLE 5.5: Fourier representation of QH
h .

coarsening strategy Fourier symbol of QH
h

standard coarsening Q̃2h
h = diag{0, 1, 1, 1, 1, 1, 1, 1}

(x1-x2)-coarsening Q̃H
h = diag{0, 1, 1, 1, 1, 1, 0, 1}

(x1-x3)-coarsening Q̃H
h = diag{0, 1, 1, 1, 0, 1, 1, 1}

(x2-x3)-coarsening Q̃H
h = diag{0, 1, 0, 1, 1, 1, 1, 1}

x1-coarsening Q̃H
h = diag{0, 1, 1, 0, 0, 1, 0, 1}

x2-coarsening Q̃H
h = diag{0, 1, 0, 1, 1, 0, 0, 1}

x3-coarsening Q̃H
h = diag{0, 1, 0, 1, 0, 1, 1, 0}

respectively. Note, that in connection with Fourier two-grid (2g) analysis
presented in the following chapter, we prefer the notation Sh(ω)|F2h(θ) =:
S2g(θ).

Now, we are able to give a general definition for the smoothing factor ap-
plying the Fourier representations of Sh(ω) and QH

h with respect to the 2h-
harmonics.

Definition 5.9 (General definition of the smoothing factor): Defini-
tion 5.6 of ρ1(ω) is generalized to relaxation methods Sh(ω) which leave the
spaces of 2h-harmonics invariant in the following way [5, 60]:

ρ1(ν, ω) := sup
θ∈Θlow

{
ν

√
ρ
(
Q̃H

h S̃ν
h(θ, ω)

)}
(5.27)

where ν = ν1 + ν2 denotes the sum of pre- and postsmoothing steps.
Definition 5.7 referring to Dirichlet boundary conditions has to be adapted

accordingly leading to ρD
1 (ν, ω). For example, for two-dimensional applica-

tions we have

ρD
1 (ν, ω) := max

θ∈ΘP
low

{
ν

√
ρ
(
D̃(θ) Q̃H

h S̃ν
h(θ, ω)

)}

with D̃(θ) = diag
{
d(θ00), 1, d(θ10), d(θ01)

}
where d(θ00) = 0 if θ00

1 = 0
and/or θ00

2 = 0, and d(θ00) = 1 otherwise; d(θ10) = 0 if θ00
2 = 0, and d(θ10) =

1 otherwise; finally d(θ01) = 0 if θ00
1 = 0, and d(θ01) = 1 otherwise [65].

The generalization to higher dimensions is straightforward. ω and ν will be
skipped if they equal one. �

It should be pointed out that the explicit calculation of ρ1(ν, ω) by the
Fourier analysis software is again based on the finite dimensional Fourier space
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yielding ρP
1 (ν, ω); compare with Remarks 5.2 and 5.4. The main difference

between Definition 5.6/Definition 5.7 and Definition 5.9 is that the smoothing
factor from Definition 5.9 depends on ν. This is due to the fact that low- and
high-frequency components are intermixed by general relaxation methods.
However, if the Fourier components are eigenfunctions of the relaxation (as it
is the case for JAC and GS-LEX) then the two definitions of the smoothing
factor coincide due to the diagonal structure of S̃h(θ, ω) (5.26).

In the accompanying software,

ρ(SνQ) :=
(
ρP
1 (ν, ω)

)ν

and ρ(SνQ)D :=
(
ρD
1 (ν, ω)

)ν

(5.28)

are displayed. The smoothing factors for RB-JAC point relaxation applied to
the three-dimensional Laplacian are shown in Figure 5.6.

FIGURE 5.6: Smoothing factors for point RB-JAC relaxation applied to
the three-dimensional Poisson equation, h = 1/32, ν = 1.

Remark 5.7 (Ideal versus real coarse-grid correction). The smoothing
factor should be understood as an indication of which two-grid or multigrid
convergence factors can be expected if a “proper” treatment of the coarse-
grid correction is performed. Then, (ρ1(ν, ω))ν yields a reasonable approx-
imation for the convergence factor of the related multigrid cycle involving
ν = ν1 + ν2 pre- and postrelaxation steps. In this respect, QH

h can be seen
as an ideal coarse-grid correction. However, the expression “ideal” is some-
what misleading. It should not imply that the smoothing factor is a lower
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bound for the two- or multigrid convergence factor which is not true in gen-
eral. A famous counterexample involves point GS-LEX relaxation. The ap-
plication of a multigrid method—consisting of one point GS-LEX relaxation,
full weighting of residuals, bilinear interpolation, and coarse-grid analogs of
the fine-grid discretization—to the second-order central discretization of the
two-dimensional Laplacian yields smoothing factor ρ1 = 0.5 and a two-grid
convergence factor of 0.4. �

Remark 5.8 (Variable coefficients). Dealing with operators Lh(x) that
are characterized by variable coefficients prevents a direct application of the
Fourier analysis. However, local Fourier analysis can be applied to the locally
frozen operator at a fixed grid point ξ. Replacing the variable x by a constant
ξ, one obtains an operator Lh(ξ) with constant frozen coefficients.

Properties of the frozen operators carry over to Lh(x) if certain conditions
(for instance sufficiently smooth coefficients [8]) are fulfilled. For example,
Hackbusch’s smoothing property can be retained by Lh(x) if it holds for the
locally frozen operators [28]. In [7, 8, 10] it is motivated that the smoothing
factor for Lh(x) can be bounded by the supremum over the smoothing factors
for the locally frozen operators, i.e.,

ρ1 (ν, ω;Lh(x)) := sup
ξ∈Ω

ρ1 (ν, ω;Lh(ξ)) . (5.29)

In the case of Dirichlet boundary conditions one may define ρD
1 (ν, ω;Lh(x)) :=

supξ∈Ω ρD
1 (ν, ω;Lh(ξ)) following Definition 5.7. For an explicit calculation,

one usually approximates the smoothing factor by maxξ∈Ωh
ρ1 (ν, ω;Lh(ξ)) or

maxξ∈Ωh
ρD
1 (ν, ω;Lh(ξ)). Examples are given in Section 4.1.7. �

Remark 5.9 (Analytical formulas for smoothing factors). For certain
operators like the Laplacian [43, 67, 73, 74, 76] it is possible to derive analyt-
ical formulas for the related smoothing factors even for RB-JAC relaxations.
However, for most applications one has to rely on an appropriate software to
perform Fourier smoothing analysis. �

5.4.6 Red-black Gauss-Seidel (RB-GS) relaxations

Another type of pattern relaxation is red-black Gauss-Seidel (RB-GS) re-
laxation. It consists of two partial sweeps governed by a distinction between
red and black points, in the same way as it has been discussed for RB-JAC
relaxations. As a consequence, the Fourier representations Sh(ω)|F(θ) for RB-
GS relaxations have the same structure as the related RB-JAC variant. That
is, they share the same distribution of A(θα, ω)-entries. However for RB-GS,
each half-step is processed in a Gauss-Seidel-type manner, i.e., the unknowns
within each half-step are numbered lexicographically and they are updated
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dynamically. Hence, the calculation of A(θα, ω) is usually based on a differ-
ent splitting of the discretization operator Lh in case of RB-GS smoothers
compared to their RB-JAC counterpart.

Example 5.13 (RB-GS point relaxation, d = 2). RB-GS point relax-
ation is characterized by the same choice of GR

h and GB
h as for RB-JAC point

relaxation (see Table 5.1) and the following splitting of the index set J within
each half-sweep:

J+ = ({κ ∈ J | κ2 < 0} ∪ {κ ∈ J | κ2 = 0 and κ1 < 0})
∩{κ ∈ J | κ1 + κ2 even} (5.30)

J0 = {(0, 0)}, J− = J \ (J+ ∩ J0
)
.

Obviously, J+ 
= ∅ for general applications in contrast to RB-JAC-type meth-
ods. An exception is given in the following remark. �

Remark 5.10 (RB-GS versus RB-JAC point relaxation). In two di-
mensions RB-GS point relaxation coincides with RB-JAC point relaxation
for 5-point discretizations like ∆h for the Laplacian. This is due to the fact
that J+ = ∅ for such a stencil, compare with (5.30). However, this equiva-
lence is no longer valid for discrete operators based on “larger” stencils. As
a consequence, RB-JAC and RB-GS behave differently in general. For exam-
ple, consider the compact 9-point Mehrstellen discretization of the Laplacian
from Section 4.1.3 with h = 1/64. The corresponding smoothing factors of one
step of RB-JAC and RB-GS point relaxation are ρP

1 = 0.160 and ρP
1 = 0.246,

respectively. �

5.4.7 Multicolor relaxations

Analogous to RB-JAC or RB-GS relaxation which can be considered as two-
color relaxations one might define a multi- or m-color (MC) relaxation. Here,
the computational grid is subdivided into m types of grid points G1

h, . . . , Gm
h

where each type is associated with a certain color. One complete step of m-
color relaxation consists of m partial sweeps: In the j-th partial sweep (j =
1, . . . , m) only the unknowns located at x ∈ Gj

h are changed using the already
updated values from the previous (j − 1) partial sweeps. A lexicographic
numbering of grid points and a dynamic update of unknowns within each
color yield multicolor Gauss-Seidel (MC-GS) relaxation. If the partial sweeps
are performed in a Jacobi-type manner (that means that there is no dynamic
update of unknows within each color) MC-JAC relaxation results.

Remark 5.11 (4C-GS versus 4C-JAC point relaxation). A proper
choice of subgrids for four-color point relaxation in two dimensions reads

G1
h = G00

h , G2
h = G11

h , G3
h = G10

h , G4
h = G01

h ;
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compare with Table 5.4. The related 4C-JAC and 4C-GS point relaxations
are equivalent for two-dimensional operators represented by compact 9-point
stencils, see also Remark 5.10, where the relation between RB-JAC and RB-
GS for 5-point stencils is discussed. This observation is an important issue
when thinking about a parallelization of 4C-GS: all unknowns located at grid
points with the same color can be updated simultaneously and independently
of the unknowns associated with another color. The Fourier representation of
the above 4C-JAC point relaxation is given in [59].

Note that for the three-dimensional variant of the Mehrstellen disretization
of the Laplacian—represented by a 19-point stencil, see Section 4.2.3—it is
also possible to construct a parallel 4C-GS relaxation by an application of the
following subgrids:

G1
h = G000

h ∪G001
h , G2

h = G111
h ∪G110

h , G3
h = G100

h ∪G101
h , G4

h = G010
h ∪G011

h ;

see Table 5.3 for the definition of Gα
h . �

5.5 SMOOTHING ANALYSIS FOR SYSTEMS

Fourier smoothing analysis can be generalized to systems of q PDEs in
a straightforward manner by applying the vector-valued Fourier components
ϕh(θ, . ) from Section 5.1.2. The related spaces of 2h-harmonics, F2h(θ) with
θ ∈ Θ2h, are defined analogously to Definition 5.8, replacing the scalar Fourier
components by its vector-valued counterparts.

Standard relaxation methods of JAC-, GS-LEX, and RB-JAC-type are cov-
ered in Section 5.5.1. Section 5.5.2 is dedicated to another important class of
smoothing methods which are particularly designed for systems of equations,
the distributive relaxations.

5.5.1 Collective versus decoupled smoothing

The scalar operators Li,j
h (i, j = 1, . . . , q) which constitute the system

Lh (1.11) are divided as in (5.5),

Li,j
h =

(
L+

h

)i,j
+
(
L0

h

)i,j
+
(
L−

h

)i,j
, (5.31)

governed by the particular relaxation at hand, for example, by Jacobi point
relaxation. Recall the distinction between “collective” (or “coupled”) relax-
ation and “decoupled” relaxation from Section 3.5.2. Using expression (5.31),
it is possible to define a splitting of the operator Lh into Lh = L+

h +L0
h +L−

h

for both types.
We start with collective (COL) relaxations, i.e., all q difference equations

are updated simultaneously at each grid point x. Then, the Fourier symbols
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of L
+/0/−
h are simply given by

L̃
+/0/−
h (θ) :=


(
L̃

+/0/−
h (θ)

)1,1

· · ·
(
L̃

+/0/−
h (θ)

)1,q

...
...(

L̃
+/0/−
h (θ)

)q,1

· · ·
(
L̃

+/0/−
h (θ)

)q,q

 .

In this respect, collective relaxation can be considered as a straightforward
generalization of the scalar case.

The situation is somewhat more complex for decoupled smoothing, where
we distinguish two different variants consisting of an inner and an outer
sweep. The first variant (DEC1) consists of one outer sweep over the grid
points, where at a fixed grid point x∗ the unknowns u1

h(x∗), . . . , uq
h(x∗) are

updated one after the other (inner sweep). For this variant, L̃
+/0/−
h (θ) =

(�+/0/−
i,j )i,j=1,...,q reads

�+i,j =


(
L̃+

h (θ)
)i,j

for i ≤ j(
L̃+

h (θ)
)i,j

+
(
L̃0

h(θ)
)i,j

for i > j

�0i,j =


(
L̃0

h(θ)
)i,j

for i = j

0 for i 
= j

�−i,j =


(
L̃−

h (θ)
)i,j

for i ≥ j(
L̃−

h (θ)
)i,j

+
(
L̃0

h(θ)
)i,j

for i < j.

In the second variant (DEC2), the discrete unknown functions u1
h(x), . . . , uq

h(x)
(x ∈ Gh) are updated one after the other (outer sweep) involving q sweeps
over the grid points (inner sweep). Here, we have

�+i,j =


(
L̃h(θ)

)i,j

for i > j(
L̃+

h (θ)
)i,j

for i = j

0 for i < j

�0i,j =


(
L̃0

h(θ)
)i,j

for i = j

0 for i 
= j
(5.32)

�−i,j =


(
L̃h(θ)

)i,j

for i < j(
L̃−

h (θ)
)i,j

for i = j

0 for i > j.
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Example 5.14 (Decoupled smoothing for a system of two PDEs).
DEC1 and DEC2 applied to a system of two PDEs are governed by the fol-
lowing splittings:

DEC1: L̃
+

h (θ) =

(
(L̃+

h (θ))1,1 (L̃+
h (θ))1,2

(L̃+
h (θ))2,1 + (L̃0

h(θ))2,1 (L̃+
h (θ))2,2

)
,

L̃
0

h(θ) =

(
(L̃0

h(θ))1,1 0
0 (L̃0

h(θ))2,2

)
,

L̃
−
h (θ) =

(
(L̃−

h (θ))1,1 (L̃−
h (θ))1,2 + (L̃0

h(θ))1,2

(L̃−
h (θ))2,1 (L̃−

h (θ))2,2

)
.

DEC2: L̃
+

h (θ) =

(
(L̃+

h (θ))1,1 0
(L̃h(θ))2,1 (L̃+

h (θ))2,2

)
,

L̃
0

h(θ) =

(
(L̃0

h(θ))1,1 0
0 (L̃0

h(θ))2,2

)
, L̃

−
h (θ) =

(
(L̃−

h (θ))1,1 (L̃h(θ))1,2

0 (L̃−
h (θ))2,2

)
.

�

An application of the above splittings of L̃h(θ) for collective and decoupled
smoothing immediately yields the generalization of the Fourier symbol (5.7)
for ω-JAC and ω-GS-LEX relaxations:

A(θ, ω) =
(
L̃

0

h(θ) + ωL̃
+

h (θ)
)−1 (

(1 − ω)L̃
0

h(θ) − L̃
−
h (θ)

)
∈ Cq×q. (5.33)

Hence, the Fourier representation of these relaxations w.r.t. 2h-harmonics is
given by (2dq × 2dq) block-diagonal (bdiag) matrices consisting of 2d (q × q)-
blocks. For example, considering three-dimensional applications one obtains

S̃h(θ, ω) = bdiag
{
A(θ000, ω),A(θ111, ω),A(θ100, ω),A(θ011, ω),

A(θ010, ω),A(θ101, ω),A(θ001, ω),A(θ110, ω)
} ∈ C8q×8q.

Recall that the Fourier representation of pattern relaxations for scalar prob-
lems is given by nondiagonal (2d×2d)-matrices. These matrices have two kinds
of entries: scalar Fourier symbols Aα = A(θα, ω) and certain constants c, see
Section 5.4.4. In the case of systems of PDEs, they have to be replaced by
the appropriate Aα = A(θα, ω) from (5.33) and by c Iq, respectively. Here,
Iq = diag{1, . . . , 1} ∈ Cq×q denotes the matrix identity. For instance, the first
entry of S̃R

h (θ) from Section 5.4.4 has to be adapted as follows:

1
2
(
A000 + Iq

) ∈ Cq×q.

The resulting Fourier representations S̃h(θ, ω) are (2dq×2dq)-matrices again,
but in general they do not have a block-diagonal structure as ω-JAC and ω-
GS-LEX relaxations, see above. As in the scalar case, we write Sh(ω)|F2h(θ) =:
S2g(θ) in connection with Fourier two-grid analysis.
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The generalization of the ideal coarse-grid correction operator to systems
of PDEs is clearly defined by

QH
h ϕh(θ, . ) :=

{
ϕh(θ, . ) for θ ∈ Θhigh

0 · I for θ ∈ Θlow
(5.34)

with ϕh(θ, . ) = ϕh(θ, . ) · I from Section 5.1.2. The related Fourier repre-
sentation w.r.t. the 2h-harmonics is then given by (2dq × 2dq) block-diagonal
matrices. For example, in the case of standard coarsening in three dimensions
we have

Q̃
2h

h = bdiag {diag{0, . . . , 0}, Iq, Iq, Iq, Iq, Iq, Iq, Iq}
assuming the same order of the multiindex α as in Section 5.4.3.

Now, Definition 5.9 of the smoothing factor can be easily adapted to systems
of PDEs by inserting Q̃

H

h and S̃h(θ, ω) into (5.27) instead of Q̃H
h and S̃h(θ, ω),

respectively. The definition of ρP
1 (ω) and ρD

1 (ω) can be generalized to systems
of equations in the same way.

Example 5.15 (Smoothing factors for collective and decoupled re-
laxation). We consider the first-order flux difference-splitting discretization
of the Oseen equations discussed in Section 4.3.3. We set Reynolds number
Re = 1000, convection angle β = 45◦, and mesh size h = 1/32. Applying
alternating line (i.e., forward x1-line followed by forward x2-line) GS-LEX
relaxation yields

ρP
1 = 0.264, 0.691, and 0.782

for COL, DEC1, and DEC2, respectively. The collective variant shows the
best smoothing properties. On the other hand, it is more expensive than the
decoupled relaxations as it involves the solution of a (q × q) linear system
at each grid point due to the simultaneous update of the q equations. The
application of alternating line RB-JAC relaxation gives

ρP
1 = 0.279, 0.437, and 0.267

for COL, DEC1, and DEC2. Hence, it is also possible to find a decoupled
relaxation with satisfactory smoothing properties for the system under con-
sideration. �

5.5.2 Distributive relaxation

Distributive relaxations have already been briefly addressed in Section 3.5.2.
Originally, they were designed for applications from computational fluid dy-
namics [10, 71] but recently they have been applied to problems from poroe-
lasticity as well [24, 70]. A distributive relaxation for the discrete system Lh is
constructed as follows. In order to relax Lhuh = fh, we introduce a new vari-
able vh by uh = Chvh and consider the transformed system LhChvh = fh.
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Ideally (compare with [7]), Ch is chosen such that the resulting system LhCh

is triangular and the diagonal elements of LhCh are composed of the factors
of det (Lh). Then, the resulting transformed system is suited for the second
variant of decoupled smoothing (compare with (5.32)), i.e., each equation can
be treated separately.

Example 5.16 (Distributive relaxation for the Stokes equations). A
second-order discretization of the two-dimensional Stokes equations and an
appropriate distributor are given by

Lh =

−∆h 0 D1
h

0 −∆h D2
h

D1
h D2

h −µh2∆h

 with µ ≥ 0 and Ch =

Ih 0 −D1
h

0 Ih −D2
h

0 0 −∆h

 ,

respectively, leading to the transformed system

LhCh =

−∆h 0 0
0 −∆h 0

D1
h D2

h −∆2h + µh2∆2
h

 with −∆2h
∧=

1
4h2


0 0 −1 0 0
0 0 0 0 0
−1 0 4 0 −1
0 0 0 0 0
0 0 −1 0 0


h

and discrete biharmonic operator ∆2
h from Section 4.1.5. We have det (Lh) =

−∆h(−∆2h + µh2∆2
h). �

For an implementation of distributive relaxations it is convenient to consider
the correction equations

Lhδu
(i+1)
h = r

(i)
h and LhChδv

(i+1)
h = r

(i)
h

with an update δu
(i+1)
h = Chδv

(i+1)
h = uh − u

(i+1)
h and the residual r

(i)
h =

Lhu
(i)
h − fh. u

(i)
h denotes the approximation after the i-th iteration of the

exact discrete solution uh.
The distributive relaxation consists of two steps. In the first step, a new

approximation δv
(i+1)
h to the “ghost variable” δvh = (δv1

h, . . . , δvq
h)T is cal-

culated. This will be done by a decoupled relaxation, due to the (hopefully)
favorable structure of the transformed system. In the second step, a new
approximation for uh is computed by

u
(i+1)
h = u

(i)
h + δu

(i+1)
h = u

(i)
h + Chδv

(i+1)
h .

Only the first step matters for the Fourier smoothing analysis. More pre-
cisely, the smoothing factor for a distributive relaxation method equals the
smoothing factor of the corresponding decoupled relaxation applied to LhCh.
The situation simplifies, if the distributor yields—as desired—a triangular
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transformed system. Then, the smoothing factor ρ1(ν, ω;Lh) is simply gov-
erned by the scalar diagonal blocks of LhCh [7, 62], i.e.,

ρ1(ν, ω;Lh) = max
j=1,...,q

ρ1(ν, ω; (LhCh)j,j).

For the Stokes equations from Example 5.16 this means that

ρ1(ν, ω;Lh) = max
{
ρ1(ν, ω;−∆h), ρ1(ν, ω;−∆2h + µh2∆2

h)
}

.

Remark 5.12 (Kaczmarz relaxation). Applying the adjoint of the un-
derlying system as distributor, Ch = L∗

h, yields a relaxation method on the
normal equations known as Kaczmarz relaxation. However, such a choice for
the distributor will not lead to a triangular transformed system in general
and the resulting smoothing factors are often not satisfactory considering the
computational work.

Of course, this type of relaxation can also be applied to scalar equations.
For example, the Kaczmarz variant of RB-JAC point relaxation for the sym-
metric discrete Laplacian involves ∆h∆∗

h = ∆2
h yielding a smoothing factor

of ρP
1 = 0.640 for the two-dimensional variant, which is much worse than the

smoothing factor of RB-JAC point relaxation for the not transformed operator
(ρP

1 = 0.250). Kaczmarz relaxation is mainly applied to difficult (nonsymmet-
ric) applications where no efficient or even no converging relaxation method is
known. For such a situation, it is convenient to apply a Kaczmarz variant of
a classical relaxation because it always converges, since LhL∗

h is a symmetric
operator; compare with Remark 5.16. �

5.6 MULTISTAGE (MS) RELAXATIONS

Recall that in Section 3.5.3 we introduced the modification of an arbitrary
(undamped) smoothing method Sh(ω = 1) = Sh to a multistage variant by
the following expression:

Pm (Sh) :=
m∏

n=1

((1 − ωn)Ih + ωnSh)

with multistage parameters ωn (n = 1, . . . , m). We collect these parameters
in an m-tuple ω = (ω1, . . . , ωm).

Remark 5.13 (Relation between relaxation and multistage parame-
ters). It can be easily seen that the consecutive application of m point/block
ωn-JAC relaxations (n = 1, . . . , m) is equivalent to point/block multistage
Jacobi (MS-JAC) relaxation with MS parameters ω1, . . . , ωm since unknowns
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are updated after each complete Jacobi sweep. Such a simple relation does
not exist for pattern or ω-GS-LEX relaxations. Here, it is not possible to ex-
press the relaxation parameters in terms of the multistage parameters. In the
multistage variant the overrelaxation is performed after a complete relaxation
step whereas in the ω-RB-JAC and ω-GS-LEX methods the overrelaxation is
applied dynamically within the smoothing step.

In principle it is also possible to combine relaxation and multistage pa-
rameters, i.e., to construct multistage variants of damped relaxation methods
Sh(ω). �

The Fourier symbol of a general m-stage method and the corresponding
smoothing factor are given by

Pm

(
S̃h(θ)

)
and ρ1(ω) := sup

θ∈Θlow

ρ
(
Pm

(
Q̃H

h S̃h(θ)
))

(5.35)

due to the diagonal structure of QH
h . To construct an optimal multistage

relaxation we search the polynomial Pm with coefficients ω1, . . . , ωm, which
minimizes the corresponding smoothing factor. This means that one has to
solve the following minimization problem:

min
ωn

sup
z∈σS

|Pm(z)| with σS =
{

spectrum of
(
Q̃H

h S̃h(θ)
)∣∣∣ θ ∈ Θlow

}
.

(5.36)
The situation is particularly transparent, if we assume a nondiverging relax-
ation Sh having a real-valued spectrum σS ⊂ [Smin, Smax] ⊂ [−1, 1]. Then,
(5.36) reduces to a classical minimization problem,

min
ωn

sup
−1≤Smin≤z≤Smax≤1

|Pm(z)| ;

see, for example, [63]. Its solution can be found in terms of Chebychev poly-
nomials Tm, defined by

Tm(t) = cos
(
m cos−1(t)

)
for − 1 ≤ t ≤ 1 and m ≥ 0 .

y = (2t − (Smax + Smin)) / (Smax − Smin) is a mapping of Smin ≤ t ≤ Smax

onto −1 ≤ y ≤ 1. The classical solution of (5.36) is then attained by the
polynomial

Pm(t) = Tm

(
2t − (Smax + Smin)

Smax − Smin

)
/Tm

(
2 − (Smax + Smin)

Smax − Smin

)
.

The zeroes of Tm(t) are given by tn = cos
(
(2n − 1) π

2m

)
for n = 1, . . . , m.

Using tn, we are able to express the zeroes Sn of the optimal polynomial
Pm(t) in terms of Smin and Smax:

Sn =
Smax − Smin

2
cos
(
(2n − 1)

π

2m

)
+

Smax + Smin

2
for n = 1, . . . , m.

(5.37)
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From these Sn it is possible to calculate the optimal multistage parameters ωn

and the corresponding smoothing factor ρ1(ω), if Smin and Smax are known:

ωn =
1

1 − Sn
for n = 1, . . . , m , ρ1(ω) =

∣∣∣∣∣
m∏

n=1

[ (1 − ωn) + ωnSmin ]

∣∣∣∣∣ .
(5.38)

An optimal 1-stage method, for example, is characterized by

ω1 =
2

2 − Smax − Smin
and ρ1 (ω1) =

Smax − Smin

2 − Smax − Smin
. (5.39)

Thus, one simply has to calculate expressions for Smin and Smax in order to
find an optimal multistage method.

Example 5.17 (Optimal 1-stage JAC relaxation for the Laplacian).
As an example we consider Jacobi point relaxation for the two-dimensional
Laplacian. The corresponding Fourier representation is given by

S̃JAC
h (θ) = diag{A00, A11, A10, A01} ∈ C4×4 with

Aα = A(θα, ω = 1) = 1 − 4 − 2 cos(θα
1 ) − 2 cos(θα

2 )
4

=
1
2
(cos(θα

1 ) + cos(θα
2 )).

From the above Fourier representation of SJAC
h , we easily obtain

σS =
[
Smin =

1
2
(cos(π) + cos(π)) = −1, Smax =

1
2
(cos(−π/2) + cos(0)) = 1/2

]
.

Applying (5.39) yields the well-known optimal, damped Jacobi smoother for
the two-dimensional Laplacian:

ω1 = 4/5 and ρ1(ω1) = 3/5.

Moreover, one can easily calculate the optimal one-stage method for the
d-dimensional Laplacian using Example 5.5:

Smin = −1, Smax =
d − 1

d
and

ω1 =
2d

2d + 1
, ρ1(ω1) =

2d − 1
2d + 1

.

�

Example 5.18 (Optimal 1-stage RB-JAC relaxation). The optimal
one-stage parameter for RB-JAC relaxation applied to the two-dimensional
Laplacian is given by ω1 = 16/15 leading to ρ1(ω1) = 1/5, whereas for the two-
dimensional biharmonic operator we have ω1 = 25/18 yielding ρ1(ω1) = 1/2.
Compare with Example 4.3.1 and Proposition 6.6.1 from [67], respectively. �
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Remark 5.14 (Determination of optimal multistage parameters by
xlfa). It is interesting to know that Smin and Smax (and thus optimal mul-
tistage parameters via (5.38)) can be easily estimated with the help of the
accompanying software which provides a plot of the high-frequency spec-
trum σS of the relaxation method under consideration. Figure 5.7 shows the
corresponding spectrum of (undamped) JAC point relaxation applied to the
two-dimensional Laplacian with h = 1/128 yielding the desired information
Smin ≈ −1 and Smax ≈ 1/2 which is in good agreement with the analytical
derivation from Example 5.17. This is a very convenient feature of the soft-

Im

Re

(−1.00000,−1.00000)

(−1.00000,1.00000) (0.50000,1.00000)

(0.50000,−1.00000)

FIGURE 5.7: High-frequency eigenvalue distribution of JAC point relax-
ation applied to the Poisson equation; d = 2.

ware because the usually cumbersome derivation of Smin and Smax can be
avoided by a simple mouse click. �

Remark 5.15 (Complex Spectrum σS). The spectrum σS generally con-
tains complex eigenvalues as well. Then it may be very difficult or even impos-
sible to find the exact solution of (5.36). However, using complex Chebychev
polynomials it is possible to obtain an asymptotically optimal solution of the
minimization problem [53]. Again, the distribution of eigenvalues provided by
the software can be used for the derivation of multistage parameters. Details
are given in [69]. �

The adaptation of the above considerations in the case of systems of equa-
tions is straightforward.
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5.7 FURTHER RELAXATION METHODS

So far, we provided a detailed discussion of Fourier smoothing analysis for
Jacobi, Gauss-Seidel, and pattern relaxations applied to d-dimensional sys-
tems of equations including multistage, distributive, and Kaczmarz variants.
In this section we give a brief overview on further relaxation methods as well
as some pointers to the literature for the corresponding smoothing analysis.

ILU: Relaxations based on an incomplete matrix decomposition into lower
and upper triangular parts—known as ILU-type smoothers—represent an
important class of smoothing methods, especially for problems with mixed
derivatives [60, 62, 72].

ADI: The alternating direction implicit (ADI) iteration is a classical relax-
ation method that is based on a splitting of the operator under consideration
with regard to the different space directions. It has been mainly designed for
the solution of (anisotropic) diffusion-type problems (see, for example, [63])
but it might also be applied as a smoother within a multigrid method [28].

Composite relaxation: Composite relaxation schemes [42] are designed for
discrete operators that can be written as a product of two discrete operators,
i.e., Lh = L1L2. A famous example is the biharmonic operator ∆2

h = ∆h∆h;
compare with Sections 4.1.1 and 4.2.1. If efficient relaxation methods are
known for each factor L1 and L2, they can be applied within the framework
of composite relaxation yielding an efficient smoother for the product opera-
tor.

SPAI : Sparse approximate inverses (SPAI) [27] have recently been used as
smoothers for multigrid. SPAI algorithms construct a sparse approximate in-
verse M of a matrix L by minimizing I − ML in the Frobenius norm. Their
smoothing properties are investigated in [14].

Krylov: Another possible choice for smoothing is the application of Krylov
subspace methods like GMRES [22, 47]. A smoothing analysis for the indefi-
nite Helmholtz equation is performed in [22].

KAPPA: KAPPA smoothers are certain line-relaxation methods that are
especially designed for higher-order upwind discretizations based on the κ-
scheme [39] from computational fluid dynamics; compare with Sections 4.1.8
and 4.3.4. They are motivated by the “defect correction approach.” That is,
KAPPA smoothers are based on a splitting of the discretization into a “pos-
itive” part on the left-hand side and the remaining part on the right-hand
side. Positive parts (a positive main diagonal and nonpositive off-diagonal
elements) are required in the left-hand side in order to assure that a splitting
has smoothing properties. KAPPA smoothers distinguish two different types
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of splittings (denoted by “splitting 1” and “splitting 2”). Splitting 2 is im-
plemented in the accompanying software. The design and the related Fourier
smoothing analysis of the KAPPA smoothers can be found in [49].

Box: Another popular class of smoothing methods from computational fluid
dynamics are so-called box relaxations. The basic idea of box relaxation is to
divide the computational grid into certain cells or boxes. Then, a subset of
unknowns located in a box are updated simultaneously. For an overview on
box smoothing and the related smoothing analysis, we refer to [62].

5.8 THE MEASURE OF h-ELLIPTICITY

In this section, the concept of h-ellipticity is discussed, which is fundamental
for the existence of efficient pointwise smoothers; see [6, 7] and especially [10].
More precisely, the “measure of h-ellipticity” is often used to decide whether
a certain discretization is appropriate for a multigrid treatment. A “sufficint”
amont of h-ellipticity (some form of “ellipticity” in the discretization) indicates
that pointwise error-smoothing procedures can be constructed.

Definition 5.10 (Measure of h-Ellipticity): The measure of h-ellipticity
of a given operator Lh is defined by

Eh (Lh) :=
min

{∣∣∣L̃h(θ)
∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣L̃h(θ)
∣∣∣ : θ ∈ Θ

} =:
m

M
.

�

Considering a fixed coarsening strategy, it gives a first impression whether it
is possible to construct an efficient point smoother based on a splitting of the
discretization operator, Lh = L+

h + L0
h + L−

h , see (5.6). For simplicity, we
consider only undamped relaxations, ω = 1 in (5.6). Eh(Lh) = 0 implies that
there is a high frequency θ∗ with L̃+

h (θ∗) + L̃0
h(θ∗) = −L̃−

h (θ∗). Assuming
L̃+

h (θ∗) + L̃0
h(θ∗) 
= 0, this yields

ρ1 = sup
θ∈Θhigh

∣∣∣∣∣ L̃−
h (θ)

L̃+
h (θ) + L̃0

h(θ)

∣∣∣∣∣ ≥
∣∣∣∣∣ L̃−

h (θ∗)

L̃+
h (θ∗) + L̃0

h(θ∗)

∣∣∣∣∣ = 1 (5.40)

for the smoothing factor.
On the other hand, a certain amount of h-ellipticity is a sufficient condition

for the existence of an efficient point smoother of the kind seen in (5.6) [10, 6].
More precisely, the following theorem holds; see, for example, [41, 62].
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Theorem 5.1 (Existence of a Point Smoother).

• If Eh(Lh) = 0, it follows that ρ1 ≥ 1 for any smoothing method defined
by a splitting Lh = L+

h + L0
h + L−

h with L̃+
h (θ) + L̃0

h(θ) 
= 0 for each
θ ∈ Θhigh.

• If Eh (Lh) is bounded away from 0 by some constant c (for h1, . . . , hd −→
0), there exists a pointwise smoothing procedure Sh with smoothing
factor ρ1 < 1 that is bounded away from 1 by some constant that only
depends on c.

• Furthermore, if Lh is represented by an “even” [65] or “symmetric” [60,
62] stencil [�κ]h, i.e.,

�κ = �κ with κ = (κ1, . . . ,−κj , . . . , κd) (j = 1, . . . , d), (5.41)

with �(0,...,0) > 0 and if L̃h(θ) > 0 for θ 
= (0, . . . , 0), then we can
construct an optimal ω-JAC point smoother with

ωopt =
2�(0,...,0)

m + M
and ρ1

(
ωopt

)
=

M − m

M + m
=

1 − Eh(Lh)
1 + Eh(Lh)

.

Remark 5.16 (Kaczmarz JAC point relaxation) Similarly as in the
above theorem, one might construct a Kaczmarz JAC point relaxation with
optimal relaxation parameter and corresponding smoothing factor [6] given
by

ωopt =
2�K

(0,...,0)

m2 + M2
and ρ1

(
ωopt

)
=

1 − (Eh(Lh))2

1 + (Eh(Lh))2
.

Here, �K
(0,...,0) denotes the central stencil element of the product operator LhL∗

h

defining the normal equations. As a consequence it is always possible to design
a point smoother for an arbitrary nonsymmteric discretization operator, as
long as it has a sufficient amount of h-ellipticity. �

In order to illustrate the measure of h-ellipticity, we calculate this quantity
for an assortment of the case studies presented in Chapter 4. Comparing the
measure of h-ellipticity and its implications with the corresponding multigrid
algorithms proposed in Chapter 4 it becomes obvious that this simple and
easy-to-calculate quantity already gives some valuable insights into possible
difficulties concerning an efficient multigrid treatment. The sequence of test
cases starts with an investigation of the anisotropic diffusion equation (Sec-
tion 5.8.1). Sections 5.8.2 and 5.8.3 are mainly intended for multigrid experts
interested in convection-dominated flow problems.

For certain model problems it is often possible to find analytical expressions
for the measure of h-elipticity, see below. However, for general applications
including complicated systems of equations it is convenient (and sometimes
the only possibility to obtain the desired quantity) to apply numerical software
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like LFA in order to calculate Eh(Lh). We restrict the considerations to a
square grid (i.e., h = h1, . . . , hd) for ease of notation. The generalization to
rectangular grids can be straightforwardly reduced to uniform grids by an
appropriate scaling of the coefficients occurring in the discrete operators.

5.8.1 Example 1: anisotropic diffusion equation

We consider the central discretization of the ansiotropic diffusion operator

Lh = −
d∑

j=1

εjD
jj
h with εj ≥ 0 (j = 1, . . . , d). (5.42)

With respect to the analysis it is more convenient to scale the real positive
coefficients εj as in [73, 74] and to replace (5.42) by

Lh = −
d∑

j=1

cjD
jj
h with cj = εj/

d∑
j=1

εj . (5.43)

Lh in (5.43) becomes singularly perturbed, if at least one of the scaled coeffi-
cients cj tends to 0. Due to the scaling we have

∑d
j=1 cj = 1 and the Fourier

symbols of Lh are given by

L̃h(θ) =
2
h2

1 −
d∑

j=1

cj cos(θj)

 (θ ∈ Θ), (5.44)

compare with Example 5.1. Using (5.44), one easily establishes that

m =
2cmin

h2
and M =

4
h2

with cmin = minj∈I={1,...,d} cj , yielding the first example of an h-ellipticity
measure.

Example 5.19 (h-Ellipticity for the anisotropic diffusion operator).
The measure of h-ellipticity for (5.43) assuming standard coarsening is given
by

Eh (Lh) =
cmin

2
.

�

Regarding Theorem 5.1, we immediately see that there is no reasonable
point smoother for cmin � 1. cmin � 1 may occur in the case of strong
anisotropies where it is well known (compare with Sections 4.1.1, 4.2.1) that
point smoothing in connection with standard coarsening leads to inefficient
multigrid methods. However, considering the full isotropic d-dimensional Pois-
son equation we have cmin = c1 = · · · = cd = 1

d yielding Eh (Lh) = 1
2d . This
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means that any point smoother will become less efficient with an increasing
dimension d even if the problem remains fully isotropic. This deterioration
of smoothing factors has already been observed in Chapter 4 comparing the
two- and three-dimensional Poisson equation.

Example 5.20 (Optimal ω-JAC point relaxation for the ansiotropic
diffusion operator). As the anisotropic diffusion operator is represented
by an even stencil (5.41), the third item of Theorem 5.1 applies and we can
construct an optimal ω-JAC point smoother. m and M are already given
above. Together with �(0,...,0) = 2/h2 one finds

ωopt =
2

2 + cmin
and ρ1(ωopt) =

2 − cmin

2 + cmin
.

For the isotropic d−dimensional Poisson equation, we have cmin = cj = 1/d
for each j ∈ {1, ..., d} recovering the optimal Jacobi one-stage relaxation from
Example 5.17. �

Remark 5.17 (Remedy in the case of strong anisotropies). If (5.43)
becomes singularly perturbed, i.e., cj → 0 for some j ∈ I, one usually applies
block smoothing or partial coarsening; sompare with Sections 4.1.1 and 4.2.1.
The measure of h-ellipticity for the anisotropic diffusion operator with partial
coarsening can be calculated as in the case of standard coarsening:

Eh (Lh) =
ccmin

2
with ccmin = min

j∈Ic
cj . (5.45)

For Ic we refer to Definition 5.4. As (5.45) indicates, the grid should only
be coarsened along those coordinate directions where the corresponding co-
efficients cj are reasonably bounded away from zero, in order to obtain a
reasonable measure of h-ellipticity. The h-ellipticity with regard to partial
coarsening is called semi-h-ellipticity in [7]. �

Remark 5.18 (Eh(Lh) for fourth-order discretizations of the Lapla-
cian). The measure of h-ellipticity for the fourth-order discretization of the
Laplacian based on a “larger” stencil (compare with Sections 4.1.2 and 4.2.2
for the two- and three-dimensional case, respectively) is given by

Eh(Lh) =
7

16d
.

Similar as for the second-order central discretization, we observe a deteriora-
tion of the measure of h-ellipticity with an increasing dimension.

For the two- and three-dimensional variant of the Mehrstellen discretization
one obtains

Eh(Lh) =
3
8
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yielding an optimal point ω-JAC ralaxation with smoothing factor ρ1(ωopt) =
5/11 and optimal relaxation parameters ωopt = 10/11 (d = 2) and ωopt =
12/11 (d = 3). For this particular discretization, it is possible to retain the
amount of h-ellipticity and consequently the smoothing properties of point
ω-JAC relaxation in the transition from two to three dimensions which has
already been reported in Section 4.2.3. �

5.8.2 Example 2: convection diffusion equation

We continue our discussion of the measure of h-ellipticity by considering
the two-dimensional convection diffusion equation. Analogous results may be
derived for the three-dimensional variant. We focus on the first-order upwind
discretization (4.10) of the convection diffusion operator from Section 4.1.7.
For brevity it will be denoted by 1UD in the following. We would like to point
out that 1UD is equivalent to a combination of a central discretization and
an “artificial viscosity” term. For constant coefficients, it can be written as

Lh(β) = − ε
(
D11

h + D22
h

)
+ aD1

h + bD2
h

− |a|h
2

D11
h − |b|h

2
D22

h (artificial viscosity).

Here, we restrict the considerations to convection angles with a, b ≥ 0. This
does not imply a loss of generality, as it will be seen below. The corresponding
Fourier symbol can be found with the help of Example 5.2:

L̃h(θ) =
1
h2

(
4ε + h(a + b) − (ha + ε) exp(−i θ1) − ε exp(i θ1)

−(hb + ε) exp(−i θ2) − ε exp(i θ2)
)
.

Instead of deriving complicated and intricate formulae for the whole range
of ε, h, a, and b we focus on some representative situations.

In the first case, the convection is aligned with the grid, for example, b = 0.
This induces a highly anisotropic artificial viscosity which cannot be compen-
sated by the isotropic diffusive part of the discretization, if the convection
is dominating (i.e., ε � |a|h/2). Therefore, it might be difficult to find an
efficient point smoother which is reflected by the following example.

Example 5.21 (h-Ellipticity of 1UD, aligned case). For a = 1 and b = 0
one easily finds M = L̃h(π, π) = 1

h2 (8ε + 2h) and m = L̃h(0, π/2) = 1
h2 2ε

leading to

Eh(Lh) =
ε

4ε + h
∈
(

0,
1
4

)
.

For the remaining types of grid alignment (a = −1, b = 0 and a = 0, b = ±1),
one obtains the same expression if L̃h(θ) is adapted according to the respective
discretization. �
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If ε � h, the diffusive part of the operator dominates and Eh(Lh) tends to 1/4,
the h-ellipticity measure of the two-dimensional isotropic Poisson equation;
see Example 5.19. Then, one may apply a standard point-relaxation method
like GS-LEX-SW.

However, in the case of dominant convection (ε → 0) Eh(Lh) tends to 0 as
a consequence of the anisotropic artificial viscosity; see above. On the other
hand it is well known [62, 65] that point GS-LEX-SW is an excellent solver
(and thus an efficient smoother as well) for this problem in connection with
Dirichlet boundary conditions which seems to be a contradiction in light of
Theorem 5.1. This can be explained as follows. In the case of GS-LEX-SW,
we have

L̃−
h (θ) =

1
h2

(−ε exp(i θ1) − ε exp(i θ2)) and

L̃+
h (θ) + L̃0

h(θ) =
1
h2

(
4ε + h(a + b) − (ha + ε) exp(−i θ1) (5.46)

− (hb + ε) exp(−ı θ2)
)
.

For a = 1, b = 0 and the “problematic” high frequency, L̃+
h (0, π/2)+L̃0

h(0, π/2)
reduces to ε

h2 (3 + i). This means that for the limiting value, ε = 0, Theo-
rem 5.1 does not apply because L̃+

h (0, π/2)+ L̃0
h(0, π/2) = 0. On the contrary,

the efficiency of GS-LEX-SW can be deduced from local Fourier analysis. The
smoothing factor for ε � 1 of GS-LEX-SW is attained for θ = (0, π/2) and
thus given by ρ1 = |ε(1 + i)|/|ε(3 + i)| = 1/

√
5 ≈ 0.44721. This is still too

pessimistic, since GS-LEX-SW becomes an exact solver for ε = 0 and Dirich-
let boundary conditions. However, if we apply the heuristic definition of the
smoothing factor in connection with Dirichlet boundary conditions from Def-
inition 5.7, ρD

1 → 0 for ε → 0. As an example, we consider a = 1, b = 0,
ε = 10−5, and h = 1/128 yielding ρD

1 = 0.03669.
Summarizing, we have seen that GS-LEX-SW is an efficient smoother for

a = 1 and b = 0 with smoothing factors ρ1 ∈ [1/
√

5, 1/2) and ρD
1 ∈ (0, 1/2)

for varying ε and h.

Remark 5.19 (Failure of “direction-free” point smoothers). For direc-
tion-free point smoothers such as JAC or RB-JAC relaxation, we always have
L̃+

h (θ) + L̃0
h(θ) = L̃0

h(θ) 
= 0 for (θ ∈ Θhigh) and hence Theorem 5.1 applies.
This means that there is no efficient direction-free point smoother in the
aligned case, regarding Example 5.21. However, alternating line ω-JAC and
alternating line RB-JAC relaxations are robust smoothers for 1UD and the
whole admissible range of a, b, ε, and h, as they can cope with the anisotropic
artificial viscosity. �

We continue the discussion by investigating the fully nonaligned case, a =
b = 1. First of all, note that L̃+

h (θ)+ L̃0
h(θ) 
= 0 for each θ ∈ Θhigh in the case

of GS-LEX-SW, see (5.46). Then Theorem 5.1 applies for this relaxation in
the nonaligned case.
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Example 5.22 (h-Ellipticity of (1UD), nonaligned case). For a = b =
1 one may establish that M = L̃h(π, π) = 1

h2 (8ε + 4h). It is not possi-
ble to give a uniform expression for m covering the whole range of ε and
h. However, for ε → 0 one finds m = |L̃h(π/2, arctan(−1/2))| leading to
Eh(Lh) = 1

4

√
6 − 2

√
5 ≈ 0.30902 in the limit case, ε = 0, independent of

h. If, on the other hand, ε dominates, one obtains m = |L̃h(0, π/2)| yield-
ing Eh(Lh) =

√
(2ε + h)2 + h2/(8ε + 4h). Therefore, Eh(Lh) tends to 1/4

for ε � h. Summarizing, we get the following range for the measure of h-
ellipticity

Eh(Lh) ∈
(

1
4
,
1
4

√
6 − 2

√
5
)

≈ (0.25, 0.30902).

�

From the definition of the smoothing factor (see (5.40)) and from (5.46)
one immediately sees that ρ1 → 0 for ε → 0, since L̃+

h (θ) + L̃0
h(θ) 
= 0 and

L̃−
h (θ) → 0 for ε → 0 (θ ∈ Θ). For example, a = b = 1, ε = 10−5, and

h = 1/128 yield ρ1 = 0.00128 (= ρD
1 ) and Eh(Lh) = 0.30895. If ε � h we

observe as before that ρ1 → 1/2. This implies that with varying ε and h the
smoothing factor ρ1 (ρD

1 ) ranges in (0, 1/2).
From the discussed types of grid (non-)alignment one can conclude that

GS-LEX-SW is a robust smoother for a, b ≥ 0 and for the admissible range of
ε and h. Analogous considerations hold for a, b ≤ 0, for a ≥ 0 and b ≤ 0, and
for a ≤ 0 and b ≥ 0 in connection with GS-LEX-NE, GS-LEX-SE, and GS-
LEX-NW, respectively. Thus, a robust smoother for the first-order upwind
discretization of the convection diffusion operator is given by four-direction
GS-LEX, i.e., four consecutive GS-LEX sweeps where each sweep starts in a
different corner of the domain Ωh.

An analytic treatment of the higher-order upwind discretization (HUD)
from Section 4.1.8, is less transparent than the above considerations, since
we have an additional parameter, κ. Systematic numerical tests indicate that
HUD always shows a certain amount of h-ellipticity (i.e., for all admissible
values of a, b, ε, h, and κ), despite the aligned case. The failure of direction-
free point smoothers carries over to HUD as well. However, the determination
of an efficient smoother is more complicated here, as HUD results in a matrix
with positive off-diagonal elements. For this kind of matrix, the convergence
theory of classical relaxation methods does not apply [63]. A detailed study
of this discretization and the development of an appropriate robust smoother,
the so-called KAPPA-smoother, can be found in [49, 62].

5.8.3 Example 3: Oseen equations

Definition 5.10 can be generalized to systems of q equations with the related
Fourier symbol L̃h(θ) ∈ Cq×q, see Section 5.1.2.
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Definition 5.11 (Measure of h-Ellipticity for Systems of PDEs): The
definition of the h-ellipticity measure of an operator Lh representing a system
of equations applies the determinant of its Fourier symbol, det

(
L̃h(θ)

)
:

Eh (Lh) :=
min

{∣∣∣det
(
L̃h(θ)

)∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣det
(
L̃h(θ)

)∣∣∣ : θ ∈ Θ
} .

�

A generalization of Theorem 5.1 concerning the existence of efficient point or
block smoothers for systems of equations can be found in [7, 41], where the
measure of semi-h-ellipticity is discussed.

The first-order flux difference-splitting discretization (1FD) given in Sec-
tion 4.3.3 behaves qualitatively similar as 1UD: four-direction point GS-LEX
is a robust smoother and direction-free point relaxations deteriorate with an
increasing alignment. The derivation of analytical values for the measure
of h-ellipticity is very cumbersome and does not lead to any further insights.
Therefore, we only give some numerical examples. In the aligned case, Eh(Lh)
tends to 0, if ε → 0. The main difference in 1UD is that GS-LEX does not
become an exact solver for ε → 0. For example, a = 1, b = 0, ε = 0, and
h = 1/32 yield Eh(Lh) = 0, ρ1 = 1.0, and ρD

1 = 0.88402. If we replace
ε = 0 by ε = 10−4 and keep the remaining parameters fixed, one obtains
Eh(Lh) = 0.00034, ρ1 = 0.98894, and ρD

1 = 0.88127. As an example for the
fully nonaligned case we consider a = b = 1, ε = 10−4, and h = 1/32 leading
to Eh(Lh) = 0.03815 and ρ1 = ρD

1 = 0.79081. Obviously, the smoothing
properties of GS-LEX are considerably worse for 1FD compared with 1UD.

For the higher-order flux difference-splitting discretization (HFD) from Sec-
tion 4.3.4 similar considerations hold as for HUD. Apart from the aligned
cases, one observes a small amount of h-ellipticity for the whole range of
a, b, h, ε, and κ. The construction of an efficient smoothing procedure is, how-
ever, not straightforward due to positive definite off-diagonal blocks; see [45,
66] for details. Again, the KAPPA smoother from [49] is found to be a robust
relaxation method for this discretization.

A second variant for HUD and HFD is to apply multistage point JAC
relaxations, see [15, 20, 31, 40, 66]. This approach is very popular because it
is fully parallel and can be easily implemented.
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Chapter 6

FOURIER TWO- AND
THREE-GRID ANALYSIS

In the previous chapter, dealing with Fourier smoothing analysis, we focused
on the relaxation operator used in a multigrid method. The k-grid analysis
(k = 2, 3) also takes into account the remaining operators which constitute
the coarse-grid correction. It has been developed in order to investigate the
interplay between relaxation and coarse-grid correction which is crucial for
an efficient multigrid method. Fourier k-grid analysis yields quantitative con-
vergence estimates—assuming a proper treatment of the boundary—as it has
been demonstrated in Chapter 4 by an extensive study of test cases. For
nonsymmetric problems, it can be considered as the main analysis tool.

An important issue of this chapter is the presentation of the k-grid analysis
to the same extent as it has been realized in the accompanying software. Ac-
cording to this aim, we give a comprehensive description of the state of the art
of local Fourier k-grid analysis. In particular, our presentation includes three-
dimensional applications, semicoarsening, and systems of equations. The cor-
responding k-grid analysis is technically rather complicated and usually not
contained in multigrid textbooks (not even for k = 2).

Especially, the introduction of the three-grid analysis is of great benefit since
for several multigrid components or cycle variants, the asymptotic multigrid
convergence cannot be predicted accurately by a classical Fourier two-grid
analysis. For example, one may use different discretizations on different grids.
It can be beneficial to replace the 2h-, 4h-, etc. analogs of the fine-grid dis-
cretization on the coarser grids by other discretizations. The most prominent
example of this kind is the Galerkin coarse-grid operator. As the entries of the
Galerkin coarse-grid discretizations are in general not known in advance, they
may not be favorable for the smoothing method applied. Investigations of the
two-grid iteration cannot display possible smoothing difficulties on coarser
grids induced by the different discretizations, since the direct solution of the
2h-problem is assumed. Furthermore, one might be interested in the influ-
ence on the asymptotic convergence factor of V-cycles versus W-cycles, of
different numbers of pre- and postsmoothing, or of different smoothers on dif-
ferent grids. Another important advantage of Fourier three-grid analysis is
the possibility to obtain additional valuable insight into coarse-grid correction
difficulties occurring for singularly perturbed problems like the convection dif-
fusion equation with dominating convection. Such relevant phenomena can be

147
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investigated in a Fourier three-grid analysis which is therefore clearly superior
to the classical two-grid analysis. A collection of illustrative examples is given
in Chapter 4.

Fourier three-grid analysis is based on a recursive application of the two-grid
analysis. Hence, a profound understanding of the two-grid analysis should be
accomplished before addressing the extension to three grids. Having this re-
quirement in mind, we give a thorough description of the two-grid analysis for
two-dimensional scalar applications in connection with standard coarsening to
ensure a plain presentation of its basic principles (Section 6.2). The necessary
modifications for other coarsening strategies, three-dimensional problems, and
systems of equations are detailed in Sections 6.2.8, 6.3, and 6.4, respectively.
Finally, Fourier three-grid analysis is introduced in Section 6.5. We start our
presentation of the Fourier k-grid analysis with a short review of its basic
assumptions which have already been outlined in Section 2.2.

6.1 BASIC ASSUMPTIONS

We consider a discrete linear boundary value problem that is iteratively
solved by a k-grid method. Recall from the previous chapter that smooth-
ing analysis turned out to be valid for fine-grid discretization operators and
relaxation methods with constant coefficients that are defined on an infinite
grid. In the k-grid (k = 2, 3) analysis, one furthermore assumes that

• coarse-grid discretizations and

• intergrid transfers

are given by operators with constant coefficients and that they are extended
to infinite grids as well. Consequently, each operator involved in the coarse-
grid correction can be represented by one stencil (see Sections 6.2.3 and 6.2.4
below, for the stencil notation of transfer operators). Therefore it is possible to
calculate the corresponding Fourier representations based on small subspaces
of Fourier components, similar as in Chapter 5 for the relaxation method.

The discrete fine-grid solution uh and a current approximation u
(i)
h can

be represented by linear combinations of Fourier components, because these
generate the whole space of bounded infinite grid functions, see Definition 5.2.
The same holds for the error

e
(i−1)
h := u

(i−1)
h − uh before and e

(i)
h := u

(i)
h − uh

after the i-th k-grid cycle. Therefore it is convenient to investigate the er-
ror transformation (or the residual transformation) by a k-grid cycle by an
analysis of its Fourier representation. The derivation of these Fourier represen-
tations for a variety of k-grid methods (involving two- and three-dimensional
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applications, scalar equations and systems of equations, standard and semi-
coarsening, various transfer operators, direct and Galerkin coarse-grid dis-
cretization) is the main goal of the following sections. It turns out that the
complete k-grid error (or defect) reduction operator is unitarily equivalent to
a block-diagonal matrix with small blocks. Due to this simple block structure
it is easily possible to calculate corresponding spectral radii or norm values
yielding quantitative convergence estimates.

6.2 TWO-GRID ANALYSIS
FOR 2D SCALAR PROBLEMS

The error transformation by a two-grid cycle reads e(i)h = M2h
h e

(i−1)
h with

error-transformation operator (3.6)

M2h
h = Sν2

h K2h
h Sν1

h = Sν2
h

(
Ih − Ph

2hL
−1
2hR

2h
h Lh

)
Sν1

h . (6.1)

Sh is a smoothing operator on Gh, ν1 and ν2 indicate the number of pre- and
postsmoothing iterations, K2h

h is the coarse-grid correction operator, Ih the
Gh-identity, L2h the approximation of Lh on a coarse grid G2h, Ph

2h and Rh
2h

are transfer operators from coarse to fine grids and vice versa, and γ is the
cycle index (for example, γ = 1 denotes a V-cycle and γ = 2 a W-cycle).
L2h may be defined by Galerkin coarsening, L2h = Ř2h

h LhP̌
h
2h, or simply by a

straightforward application of Lh on G2h (called GCA and DCA for brevity;
see Section 3.4.3). Note that the transfer operators in the Galerkin process
need not necessarily match with R2h

h and Ph
2h from the multigrid iteration.

6.2.1 Spaces of 2h-harmonics

In the two-dimensional case, it is appropriate to divide the Fourier space
into the following four-dimensional subspaces. This is a special case of the
more general Definition 5.8 for d-dimensional problems.

Definition 6.1 (2h-harmonics, d = 2). The 2h-harmonics F2h(θ) are
given by

F2h(θ) := span{ ϕh(θ00, . ), ϕh(θ11, . ), ϕh(θ10, . ), ϕh(θ01, . ) } with

θ = θ00 ∈ Θ2h := (−π/2, π/2]2, θα := θ00 − (α1sign(θ1), α2sign(θ2) )π.

�

Definition 6.1 is particularly related to standard coarsening (H = 2h) in the
following way: We have Θ2h = Θlow, where low refers to standard coars-
ening; compare with Section 5.2 for the distinction between low and high
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frequencies with respect to different coarsening strategies. The definition of
the 2h-harmonics is motivated by the fact that each low frequency θ00 ∈ Θ2h

is coupled with three high frequencies θα with α �= (00) in the transition
from Gh to G2h. That is, the three high-frequency components are not visi-
ble on the coarse grid as they coincide with the corresponding low-frequency
component, that is,

ϕh(θ00,x) = ϕh(θ11,x) = ϕh(θ10,x) = ϕh(θ01,x) for x ∈ G2h. (6.2)

(6.2) might be easily verified applying the periodicity of the exponential func-
tion. Interpreting the Fourier components as coarse-grid functions gives

ϕh(θ00,x) = ϕ2h(2θ00,x) (= ϕ2h(2θα,x)) with θ00 ∈ Θ2h, x ∈ G2h.
(6.3)

A sample set of coupled frequencies is illustrated in Figure 6.1.

0 π/2 π−π/2−π

0

−π

−π/2

π/2

π

θ

θ

1

2

♦ : Low frequency θ00

� : High frequencies

θ11, θ10, θ01

FIGURE 6.1: High and low Fourier frequencies generating a space of 2h-
harmonics. Standard coarsening, d = 2.

It will turn out below that the coarse-grid correction

K2h
h = Ih − Ph

2hL
−1
2hR

2h
h Lh

leaves the spaces of 2h-harmonics invariant yielding a simple block-diagonal
representation for K2h

h consisting of (4 × 4)-blocks

K2h
h |F2h(θ) =: K2g(θ) (θ ∈ Θ2h).
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In the following, we calculate the Fourier representations of the different oper-
ators involved in the coarse-grid correction of a two-grid method with respect
to the 2h-harmonics. To ensure a unique definition, we need to prescribe
an order of the multiindex α. For a consistent treatment of relaxation and
coarse-grid correction we have to use the same order as in the Fourier smooth-
ing analysis from the previous chapter:

(0, 0), (1, 1), (1, 0), (0, 1).

6.2.2 Fourier representation of fine-grid discretization

The treatment of the fine-grid discretization is particularly simple, as the
Fourier components are eigenfunctions for constant coefficient operators Lh

∧=
[�κ]h. Thus, the Fourier representation of Lh w.r.t. the 2h-harmonics is given
by a diagonal matrix,

Lh|F2h(θ)
∧= L2g(θ) =

⎛
⎜⎜⎜⎝
L̃h(θ00) 0 0 0

0 L̃h(θ11) 0 0
0 0 L̃h(θ10) 0
0 0 0 L̃h(θ01)

⎞
⎟⎟⎟⎠ ∈ C4×4

with Fourier symbols L̃h(θα) =
∑

κ∈J �κ exp(iκθθ) and the spaces of 2h-
harmonics are invariant under an application of Lh, i.e.,

Lh : F2h(θ) −→ F2h(θ) (θ ∈ Θ2h).

6.2.3 Fourier representation of restriction

Consider an arbitrary restriction which is characterized by a constant coef-
ficient stencil R2h

h
∧= [rκ]2h

h . That is, an infinite grid function vh : Gh → C is
transferred to the coarse grid G2h in the following way:

(
R2h

h vh

)
(x) =

∑
κ∈J

rκvh(x + κh) (x ∈ G2h).

We have x + κh ∈ Gh for x ∈ G2h. For the Fourier components this leads to

(
R2h

h ϕh(θα, . )
)
(x) =

∑
κ∈J

rκϕh(θα,x + κh) =
∑
κ∈J

rκ exp(i (x + κh)θα/h)

=
∑
κ∈J

rκ exp(iκθα)ϕh(θα,x)

=
∑
κ∈J

rκ exp(iκθα)

︸ ︷︷ ︸
R̃2h

h (θα)

ϕ2h(2θ00,x) (x ∈ G2h) (6.4)
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TABLE 6.1: Fourier symbols for restriction operators
implemented in the accompanying software; d = 2

restriction Fourier symbol R̃2h
h (θα)

full weigthing 1
4 (1 + cos(θα

1 ))(1 + cos(θα
2 ))

half weighting 1
4 (2 + cos(θα

1 ) + cos(θα
2 ))

injection 1

higher-order 1
256 (8 + 9 cos(θα

1 ) − cos(3θα
1 ))

(8 + 9 cos(θα
2 ) − cos(3θα

2 ))

seven point 1
4 (1 + cos(θα

1 ) + cos(θα
2 ) + cos(θα

1 − θα
2 ))

with Fourier symbol R̃2h
h (θα). Equation (6.4) is due to the aliasing effect of

the 2h-harmonics for x ∈ G2h; compare with (6.2) and (6.3). As a consequence
we obtain

R2h
h : F2h(θ) −→ span{ϕ2h(2θ, . )} (θ ∈ Θ2h).

Example 6.1 (Fourier symbol for the full weighting operator). The
Fourier representation of the full weighting operator

R2h
h

∧=
1
16

⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦

2h

h

is governed by

R̃2h
h (θα) =

1
16

(4 + 4 cos(θα
1 ) + 4 cos(θα

2 ) + 2 cos(θα
1 + θα

2 ) + 2 cos(θα
1 − θα

2 ))

=
1
4
(1 + cos(θα

1 ))(1 + cos(θα
2 )).

�

Fourier symbols for two-dimensional restriction operators implemented in the
accompanying software (see also Figure 3.7) are listed in Table 6.1. The
corresponding stencil representations are given in Section 3.4.5.

6.2.4 Fourier representation of prolongation

Dealing with the prolongation operator is to some extent more complicated.
Therefore we firstly derive the Fourier representation for a concrete example—
bilinear interpolation—before the general case is described.

Recall the distinction of the two-dimensional infinite grid into four different
types of grid points

Gh = G00
h ∪G11

h ∪G10
h ∪G01

h ,
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as discussed in Section 5.4.3. The definition of Gα
h is specified in (5.18) and

Table 5.4. Different subsets Gα
h are shown in Figure 6.2. In case of standard

� � �

� � �

� � �

∇ ∇ ∇

∇ ∇ ∇


 



 



 


� �

� � � : G00
h = G2h

� : G11
h


 : G10
h

∇ : G01
h

FIGURE 6.2: Different types of grid points in Gh.

coarsening the coarse grid is given by G2h = G00
h . Applying bilinear interpo-

lation (Ph
2h) to map a coarse-grid function v2h : G2h → C onto the fine grid

yields a fine-grid function
(
Ph

2hv2h

)
( . ) : Gh → C defined by

(
Ph

2hv2h

)
(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v2h(x) for x ∈ G00
h

1
4 (v2h(x1 + h, x2 + h) + v2h(x1 + h, x2 − h)
+v2h(x1 − h, x2 + h) + v2h(x1 − h, x2 − h)) for x ∈ G11

h
1
2 (v2h(x1 + h, x2) + v2h(x1 − h, x2)) for x ∈ G10

h
1
2 (v2h(x1, x2 + h) + v2h(x1, x2 − h)) for x ∈ G01

h .

(6.5)
This distribution of the coarse-grid function governed by bilinear interpolation
can be expressed in stencil notation by

Ph
2h

∧= ]pκ[h2h =
1
4

⎤
⎦1 2 1

2 4 2
1 2 1

⎡
⎣

h

2h

. (6.6)

with κ ∈ J . J ⊂ ZZ2 is a finite index set containing (0, 0), similar as for
discretization and restriction operators. The stencil elements are weighting
factors in a distribution process indicated by the reversed brackets. For exam-
ple, each coarse-grid value v2h(x) (x ∈ G2h = G00

h ) is distributed to its four
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diagonal neighbors weighted by p(1,1) = p(1,−1) = p(−1,1) = p(−1,−1) = 1/4 to
obtain fine-grid values for

(
Ph

2hv2h

)
(x) with x ∈ G11

h ; compare with Figure 6.2
and (6.5).

For the derivation of the Fourier representation of bilinear interpolation
with respect to the 2h-harmonics, we apply similar considerations as discussed
in Section 5.4.3 in connection with smoothing analysis for RB-JAC relax-
ations. The relation between prolongation operators and RB-JAC smoothers
is due to the fact that both kinds of operators are differently defined for dif-
ferent types of grid points (remember that RB-JAC relaxation distinguishes
between red and black points whereas a prolongation operator like bilinear
interpolation distinguishes between G00

h , G11
h , G10

h , and G01
h ). In analogy to

(5.19) one might verify that

ϕh(θ11,x) =

{
ϕh(θ00,x) for x ∈ G00

h ∪G11
h ,

−ϕh(θ00,x) for x ∈ G10
h ∪G01

h .

ϕh(θ10,x) =

{
ϕh(θ00,x) for x ∈ G00

h ∪G01
h ,

−ϕh(θ00,x) for x ∈ G11
h ∪G10

h .
(6.7)

ϕh(θ01,x) =

{
ϕh(θ00,x) for x ∈ G00

h ∪G10
h ,

−ϕh(θ00,x) for x ∈ G11
h ∪G01

h .

Applying (6.7) it can be easily seen that for ψ1(x), . . . , ψ4(x), defined by

ψ1(x) := (ϕh(θ00,x) + ϕh(θ11,x) + ϕh(θ10,x) + ϕh(θ01,x))/4
ψ2(x) := (ϕh(θ00,x) + ϕh(θ11,x) − ϕh(θ10,x) − ϕh(θ01,x))/4
ψ3(x) := (ϕh(θ00,x) − ϕh(θ11,x) − ϕh(θ10,x) + ϕh(θ01,x))/4
ψ4(x) := (ϕh(θ00,x) − ϕh(θ11,x) + ϕh(θ10,x) − ϕh(θ01,x))/4,

the following relations are valid:

ψ1(x) =

{
ϕh(θ00,x) for x ∈ G00

h ,

0 for x /∈ G00
h .

ψ2(x) =

{
ϕh(θ00,x) for x ∈ G11

h ,

0 for x /∈ G11
h .

ψ3(x) =

{
ϕh(θ00,x) for x ∈ G10

h ,

0 for x /∈ G10
h .

ψ4(x) =

{
ϕh(θ00,x) for x ∈ G01

h ,

0 for x /∈ G01
h .

(6.8)

After these preliminary remarks we investigate the mapping of coarse-grid
Fourier components ϕ2h(2θ00, . ) onto the fine grid by bilinear interpolation.
Assuming x ∈ G00

h leads to

(
Ph

2hϕ2h(2θ00, . )
)
(x) = ϕ2h(2θ00,x) = ϕh(θ00,x).
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Using ϕ2h(2θ00,x) = ϕh(θ,x) (x ∈ G00
h , θ = θ00 ∈ Θ2h) one obtains for

x ∈ G11
h

(
Ph

2hϕ2h(2θ00, . )
)
(x) =

1
4
(ϕh(θ, (x1 + h, x2 + h)) + ϕh(θ, (x1 + h, x2 − h))

+ϕh(θ, (x1 − h, x2 + h)) + ϕh(θ, (x1 − h, x2 − h)) )

=
1
4
( exp(i (θ1 + θ2)) + exp(i (θ1 − θ2)) + exp(i (θ2 − θ1))

+ exp(−i (θ1 + θ2)) )ϕh(θ,x)
= cos(θ001 ) cos(θ002 )ϕh(θ00,x).

Similar considerations concerning grid points x ∈ G10
h and x ∈ G01

h yield the
following mapping of ϕ2h(2θ00, . ) onto the fine grid:

(
Ph

2hϕ2h(2θ00, . )
)
(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕh(θ00,x) for x ∈ G00
h ,

cos(θ001 ) cos(θ002 )ϕh(θ00,x) for x ∈ G11
h ,

cos(θ001 )ϕh(θ00,x) for x ∈ G10
h ,

cos(θ002 )ϕh(θ00,x) for x ∈ G01
h .

(6.9)

Due to (6.8) this can be rewritten for an arbitrary x ∈ Gh as(
Ph

2hϕ2h(2θ00, . )
)
(x) = ψ1(x) + cos(θ001 ) cos(θ002 )ψ2(x)

+ cos(θ001 )ψ3(x) + cos(θ002 )ψ4(x)

=
1
4
(1 + cos(θ001 ))(1 + cos(θ002 ))ϕh(θ00,x)

+
1
4
(1 − cos(θ001 ))(1 − cos(θ002 ))ϕh(θ11,x)

+
1
4
(1 − cos(θ001 ))(1 + cos(θ002 ))ϕh(θ10,x)

+
1
4
(1 + cos(θ001 ))(1 − cos(θ002 ))ϕh(θ01,x)

=
1
4

∑
α

(1 + cos(θα
1 ))(1 + cos(θα

2 ))ϕh(θα,x). (6.10)

Summarizing, bilinear interpolation maps a coarse-grid Fourier component
into the corresponding space of 2h-harmonics.

For general prolongation operators

Ph
2h

∧= ]pκ[h2h =

⎤
⎥⎥⎥⎥⎥⎥⎦

...
...

...
· · · p(−1,1) p(0,1) p(1,1) · · ·
· · · p(−1,0) p(0,0) p(1,0) · · ·
· · · p(−1,−1) p(0,−1) p(1,−1) · · ·

...
...

...

⎡
⎢⎢⎢⎢⎢⎢⎣

h

2h

,
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we have to split the index set J referring to nonzero stencil entries:

J = J00 ∪ J11 ∪ J10 ∪ J01 with
J00 = {κ ∈ J | κ1, κ2 even}, J11 = {κ ∈ J | κ1, κ2 odd},

J10 = {κ ∈ J | κ1 odd, κ2 even}, J01 = {κ ∈ J | κ1 even, κ2 odd}.
Jα obviously corresponds to Gα

h . Using this splitting, a general mapping of
a coarse-grid function v2h onto the fine grid can be written as(

Ph
2hv2h

)
(x) =

∑
κ∈Jα

pκv2h(x + κh) for x ∈ Gα
h . (6.11)

Example 6.2 (Splitting of J for bilinear interpolation). Considering
bilinear interpolation (6.6), the index set J is subdivided into

J00 = {(0, 0)}, J11 = {(1, 1), (1,−1), (−1, 1), (−1,−1)},
J10 = {(1, 0), (−1, 0)}, J01 = {(0, 1), (0,−1)}.

The concise definition (6.11) of a general prolongation is broken down into
the different subgrids in (6.5). �

Applying (6.11) yields the mapping of a coarse-grid Fourier component onto
Gh: (

Ph
2hϕ2h(2θ00, . )

)
(x) = P̃α(θ00)ϕh(θ00,x) for x ∈ Gα

h (6.12)

with P̃α(θ00) =
∑

κ∈Jα

pκ exp(i θ00κ).

For example, for bilinear interpolation (6.9) we have

P̃ 00(θ00) = 1, P̃ 11(θ00) = cos(θ001 ) cos(θ002 ),

P̃ 10(θ00) = cos(θ001 ), P̃ 01(θ00) = cos(θ002 ).

Combining (6.12) and (6.8) gives for arbitrary x ∈ Gh:(
Ph

2hϕ2h(2θ00, . )
)
(x) = P̃ 00(θ00)ψ1(x) + P̃ 11(θ00)ψ2(x)

+ P̃ 10(θ00)ψ3(x) + P̃ 01(θ00)ψ4(x)

=
1
4
(P̃ 00(θ00) + P̃ 11(θ00) + P̃ 10(θ00) + P̃ 01(θ00))ϕh(θ00,x)

+
1
4
(P̃ 00(θ00) + P̃ 11(θ00) − P̃ 10(θ00) − P̃ 01(θ00))ϕh(θ11,x)

+
1
4
(P̃ 00(θ00) − P̃ 11(θ00) − P̃ 10(θ00) + P̃ 01(θ00))ϕh(θ10,x)

+
1
4
(P̃ 00(θ00) − P̃ 11(θ00) + P̃ 10(θ00) − P̃ 01(θ00))ϕh(θ01,x).

(6.13)
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A short calculation exploiting the periodicity of the exponential function yields

exp(i θ00κ) =

{
exp(i θ11κ) for κ ∈ J00 ∪ J11,

− exp(i θ11κ) for κ ∈ J10 ∪ J01.

exp(i θ00κ) =

{
exp(i θ10κ) for κ ∈ J00 ∪ J01,

− exp(i θ10κ) for κ ∈ J11 ∪ J10.
(6.14)

exp(i θ00κ) =

{
exp(i θ01κ) for κ ∈ J00 ∪ J10,

− exp(i θ01κ) for κ ∈ J11 ∪ J01.

Note that there is a direct correspondence between (6.14) and (6.7). From
(6.14) it can be easily deduced that

P̃ 00(θ00) + P̃ 11(θ00) − P̃ 10(θ00) − P̃ 01(θ00) =
∑
κ∈J

pk exp(iθ11κ) =: P̃h
2h(θ11),

P̃ 00(θ00) − P̃ 11(θ00) − P̃ 10(θ00) + P̃ 01(θ00) =
∑
κ∈J

pk exp(iθ10κ) =: P̃h
2h(θ10),

P̃ 00(θ00) − P̃ 11(θ00) + P̃ 10(θ00) − P̃ 01(θ00) =
∑
κ∈J

pk exp(iθ01κ) =: P̃h
2h(θ01).

(6.15)

Inserting (6.15) into (6.13) establishes the Fourier representation for general
prolongation operators w.r.t. the 2h-harmonics:

(
Ph

2hϕ2h(2θ00, . )
)
(x) =

1
4

∑
α

P̃h
2h(θα)ϕh(θα,x) (θ ∈ Θ2h, x ∈ Gh).

(6.16)
In particular, one obtains

Ph
2h : span{ϕ2h(2θ, . )} −→ F2h(θ) (θ ∈ Θ2h).

Example 6.3 (Fourier symbol for bilinear interpolation). The Fourier
symbol for bilinear interpolation is given by

P̃h
2h(θα) = (1 + cos(θα

1 ))(1 + cos(θα
2 ));

compare with (6.10). �

The Fourier symbols for other prolongation operators can be calculated anal-
ogously. Several examples are given in Table 6.2.

Remark 6.1 (Adjoint transfer operators). The Fourier symbols of the
full weighting operator and bilinear interpolation—given in Examples 6.1 and
6.3—are related by

R̃2h
h (θα) =

1
4
P̃h

2h(θα). (6.17)
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TABLE 6.2: Fourier symbols for prolongation operators
implemented in the accompanying software; d = 2

prolongation Fourier symbol P̃h
2h(θα)

bilinear (1 + cos(θα
1 ))(1 + cos(θα

2 ))

bicubic 1
64 (8 + 9 cos(θα

1 ) − cos(3θα
1 ))

(8 + 9 cos(θα
2 ) − cos(3θα

2 ))

biquintic 1
16384 (128 − 150 cos(θα

1 ) + 25 cos(3θα
1 ) − 3 cos(5θα

1 ))
(128 − 150 cos(θα

2 ) + 25 cos(3θα
2 ) − 3 cos(5θα

2 ))

constant upwind (1 + exp(i θα
1 ))(1 + exp(i θα

2 ))

seven point 1 + cos(θα
1 ) + cos(θα

2 ) + cos(θα
1 − θα

2 )

The same relation holds for higher-order weighting and bicubic interpolation
and for seven-point restriction and seven-point interpolation, respectively.
(6.17) is generally valid if prolongation and restriction are adjoint to each
other. For d-dimensional transfer operators, the proper scaling is given by
1/2d. �

Remark 6.2 (Operator-dependent transfer operators). Note that ope-
rator-dependent transfers can be represented by a fixed stencil for each x ∈
Gh as long as the underlying discrete operator Lh has constant coefficients.
Regarding this matter it is also possible to apply local Fourier analysis to the
popular class of operator-dependent transfer operators [18, 77]. �

6.2.5 Fourier representation of coarse-grid discretization

We distinguish two different types of coarse-grid discretizations: Discretiza-
tion coarse-grid approximation (DCA) and Galerkin coarse-grid approxima-
tion (GCA). In the first case, L2h is obtained by a straightforward application
of the fine-grid operator on the coarse grid whereas in the second case we have

L2h = Ř2h
h LhP̌

h
2h

with Galerkin transfer operators Ř2h
h and P̌h

2h.

Example 6.4 (DCA and GCA for the Laplacian). DCA for the two-
dimensional Laplacian is given by

LDCA
2h

∧=
1

4h2

⎡
⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 0 0 0
−1 0 4 0 −1
0 0 0 0 0
0 0 −1 0 0

⎤
⎥⎥⎥⎥⎦

h

=
1

4h2

⎡
⎣ −1
−1 4 −1

−1

⎤
⎦

2h

.
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GCA based on full weighting (Ř2h
h ) and bilinear interpolation (P̌h

2h) reads

LGCA
2h

∧=
1

4h2

⎡
⎢⎢⎢⎢⎣
−1/4 0 −1/2 0 −1/4

0 0 0 0 0
−1/2 0 3 0 −1/2

0 0 0 0 0
−1/4 0 −1/2 0 −1/4

⎤
⎥⎥⎥⎥⎦

h

=
1

4h2

⎡
⎣−1/4 −1/2 −1/4
−1/2 3 −1/2
−1/4 −1/2 −1/4

⎤
⎦

2h

The stencil representation of LGCA
2h is calculated using (1.9). �

Both types of operators can be represented by constant coefficient stencils,
L2h

∧= [�κ]2h, as long as Lh, Ř2h
h , and P̌h

2h are constant coefficient operators
as well. Hence, the coarse-grid Fourier components are eigenfunctions of L2h

yielding

L2h : span{ϕ2h(2θ00, . )} −→ span{ϕ2h(2θ00, . )} (θ00 ∈ Θ2h).

The corresponding Fourier symbols read

L̃2h(θ00) =
∑
κ∈J

�κ exp(i 2θ00κ) (θ00 ∈ Θ2h),

similar as for the fine-grid operator.

Example 6.5 (Fourier symbols for coarse-grid discretizations). The
Fourier symbols for the coarse-grid operators from Example 6.4 are given by

L̃DCA
2h (2θ00) =

1
4h2

(4 − 2 cos(2θ001 ) − 2 cos(2θ002 ) and

L̃GCA
2h (2θ00) =

1
4h2

(3 − cos(2θ001 ) − cos(2θ002 )

−1
2

cos(2(θ001 + θ002 )) − 1
2

cos(2(θ001 − θ002 )).

�

Remark 6.3 (Fourier symbol for Galerkin coarse-grid approxima-
tion). There is an alternative way to calculate the Fourier symbol for a
Galerkin coarse-grid discretization. Instead of computing the stencil repre-
sentation of LGCA

2h , L̃GCA
2h (2θ00) might also be obtained using the Fourier

representations of Lh, Ř2h
h , and P̌h

2h:

L̃GCA
2h (2θ00) =⎛
⎜⎜⎜⎜⎜⎝

˜̌R2h

h (2θ00)˜̌R2h

h (2θ11)˜̌R2h

h (2θ10)˜̌R2h

h (2θ01)

⎞
⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎝
L̃h(2θ00) 0 0 0

0 L̃h(2θ11) 0 0
0 0 L̃h(2θ10) 0
0 0 0 L̃h(2θ01)

⎞
⎟⎟⎟⎠ 1

4

⎛
⎜⎜⎜⎜⎜⎝

˜̌Ph

2h(2θ00)˜̌Ph

2h(2θ11)˜̌Ph

2h(2θ10)˜̌Ph

2h(2θ01)

⎞
⎟⎟⎟⎟⎟⎠ .

Of course, both approaches yield the same results. �
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6.2.6 Invariance property of the two-grid operator

Combining the above results concerning the different operators constituting
the coarse-grid correction leads to the invariance property of the complete
two-grid operator with respect to the 2h-harmonics.

In order to ensure that we deal with nonvanishing Fourier symbols L̃h(θ)
and L̃2h(2θ), we restrict our considerations to the following slightly shrunken
subspace (see also [60]):

F2g := F\
⋃

θ∈Ψ2g

F2h(θ) with

Ψ2g :=
{

θ ∈ Θ2h | L̃2h(2θ00) = 0 or L̃h(θα) = 0
}
.

The crucial observation is that the coarse-grid correction operator K2h
h (6.1)

leaves the spaces of 2h-harmonics invariant for an arbitrary Fourier frequency
θ ∈ Θ2g := Θ2h\Ψ2g; that means

K2h
h = Ih − Ph

2hL
−1
2hR

2h
h Lh : F2h(θ) −→ F2h(θ) (θ ∈ Θ2g).

This invariance property is due to the previously derived relations

Ih, Lh : F2h(θ) −→ F2h(θ),
R2h

h : F2h(θ) −→ span{ϕ2h(θ00, . )},
(6.18)

L2h : span{ϕ2h(θ00, . )} −→ span{ϕ2h(θ00, . )},
Ph

2h : span{ϕ2h(θ00, . )} −→ F2h(θ).

From Chapter 5 it is known that the same invariance property holds for
many relaxation methods (JAC, GS-LEX, pattern relaxations, etc.), i.e.,

Sh(ω) : F2h(θ) −→ F2h(θ) (θ ∈ Θ2g). (6.19)

For the concrete Fourier representations Sh(ω)|F2h(θ)
∧= S2g(θ) ∈ C4×4 of

several relaxation methods we refer to Chapter 5 and Appendix A.1.
Summarizing, we have that the two-grid operator (6.1) leaves the spaces of

2h-harmonics invariant:

M2h
h : F2h(θ) −→ F2h(θ) (θ ∈ Θ2g).

More precisely, for each θ ∈ Θ2g the Fourier representation of the two-grid
operator reads:

M2h
h |F2h(θ)

∧= M2g(θ) ∈ C4×4 with (6.20)

M2g(θ) = (S2g(θ))ν2
(
I2g − P 2g(θ)(L2g(θ))−1R2g(θ)L2g(θ)

)
(S2g(θ))ν1 ,
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where the representation of the coarse-grid correction block matrices is given
by

I2g = diag{1, 1, 1, 1} ∈ C4×4, L2g(θ) = L̃2h(2θ00) ∈ C1×1,

L2g(θ) = diag{L̃h(θ00), L̃h(θ11), L̃h(θ10), L̃h(θ01)} ∈ C4×4,
(6.21)

R2g(θ) =
(
R̃2h

h (θ00) R̃2h
h (θ11) R̃2h

h (θ10) R̃2h
h (θ01)

)
∈ C1×4,

P 2g(θ) =
1
4

(
P̃h

2h(θ00) P̃h
2h(θ11) P̃h

2h(θ10) P̃h
2h(θ01)

)T

∈ C4×1.

6.2.7 Definition of the two-grid convergence factor

Using the block representation from (6.20), the spectral radius of the two-
grid iteration matrix and thus the asymptotic two-grid or two-level (2L) con-
vergence factor can be approximated by

ρ(M2L) := sup
θ∈Θ2g

ρ(M2g(θ)). (6.22)

Similarly, one might estimate the spectral norm of the error-reduction opera-
tor and the defect-reduction operator by

‖M2L‖s := sup
θ∈Θ2g

√
ρ(M2g(θ)(M2g(θ))∗),

‖M2L‖d := sup
θ∈Θ2g

√
ρ(L2g(θ)M2g(θ)(L2g(θ))−1(L2g(θ)M2g(θ)(L2g(θ))−1)∗).

Remark 6.4 (Boundedness of two-grid factors). In all examples con-
sidered in this monograph, we have Θ2g = (−π/2, π/2] \ {(0, 0)}, as only
L̃h((0, 0)) and L̃2h(2(0, 0)) are zero. However, the supremum in (6.22) remains
finite, since R̃2h

h ((0, 0))L̃h((0, 0)) is rank deficient, too, for all restrictions un-
der consideration, in such a way that limθ→(0,0) ρ(M2g(θ) ) is bounded; see [9].
This is, however, not generally true for the norm values ‖M2L‖s and ‖M2L‖d.
For example, in connection with injection it may happen that ‖M2L‖s is un-
bounded; compare with Example 6.6. Such phenomena are directly related
to the “high-frequency orders” of the transfer operators under consideration
which are discussed in Section 7.1.2. �

Remark 6.5 (Error versus residual reduction). The residual-reduction
norm ||M2L||d decreases with an increasing number of postrelaxations ν2 in
contrast to the error-reduction norm ||M2L||s which decreases with an increas-
ing ν1. According to this observation, one should choose similar values for ν1
and ν2 and rather ν1 ≥ ν2 than ν1 ≤ ν2 when multigrid is selected as a solver
[60]. This observation carries over to the related three-grid values derived in
Section 6.5. �
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The numerical calculation of ρ(M2L), ‖M2L‖s, and ‖M2L‖d provided by
LFA is based on the discrete set ΘP

2g := Θ2g ∩ Ghθ
in an analogy to the

smoothing analysis, see Remarks 5.2 and 5.4. Then, the two-grid analysis be-
comes an exact analysis for certain model problems on rectangular domains
with periodic boundary conditions. Pure periodic boundary conditions lead
to a singular boundary value problem in general. This necessitates a compat-
ibility condition for every iterative solution method (see, for example, [62]),
which directly corresponds to the exclusion of the zero frequency (0, 0) in the
analysis, as discussed in the preceding Remark.

FIGURE 6.3: Two-grid factors for the Poisson equation; d = 2.

Example 6.6 (Two-grid convergence for the Laplacian). A two-grid
method for the second-order central discretization of the two-dimensional
Laplacian (h = 1/256) consisting of point GS-LEX prerelaxation, no postre-
laxation (ν1 = 1, ν2 = 0), injection, bilinear interpolation, and DCA yields an
asymptotic two-grid convergence factor of 0.5, shown in Figure 6.3. The cor-
responding error-reduction norm is actually unbounded. That is, for h → 0
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(and consequently hθ → 0), we have ‖M2L‖s → ∞. Obviously, this limit
cannot be obtained by the numerical software since the explicit calculation
of ‖M2L‖s is based on a fixed hθ (= 2πh = π/128 in the present example).
However, the information provided by xlfa (‖M2L‖s > 0.4 · 104) is of course
sufficiently significant. �

Remark 6.6 (Analytical formulae for two-grid factors). Two-grid fac-
tors for certain simple examples can be obtained analytically as well [60, 62].
However, apart from such very special situations, the calculation of two-grid
factors has do be done by numerical software. �

6.2.8 Semicoarsening

Next, we consider the necessary modifications for the two-grid analysis in
case of semicoarsening. For the definition of the spaces of harmonics we use
the same criterion as in Section 6.2.1. That is, Fourier components ϕh(θα, . )
that alias on the coarse grid are gathered in one subspace FH(θ).

Definition 6.2 (Spaces of harmonics for semicoarsening, d = 2). The
spaces of harmonics for x1- and x2-semicoarsening are given by

F2h,h(θ) := span{ ϕh(θ, . ), ϕh(θ − (sign(θ1), 0)π, . ) }
with θ ∈ Θ2h,h := {θ ∈ Θ | − π/2 < θ1 ≤ π/2} (= Θlow),
Fh,2h(θ) := span{ ϕh(θ, . ), ϕh(θ − (0, sign(θ2))π, . ) }
with θ ∈ Θh,2h := {θ ∈ Θ | − π/2 < θ2 ≤ π/2} (= Θlow),

respectively. Note that in both cases ΘH = Θlow (low with respect to the
particular coarsening strategy under consideration) holds. �

Remark 6.7 Spaces of harmonics for red-black coarsening and quad-
rupling). Similarly, on might define the spaces of harmonics for red-black
coarsening and quadrupling. For red-black coarsening, we have

F√
2h(θ) := span{ ϕh(θ, . ), ϕh(θ − (sign(θ1), sign(θ2))π, . ) }
with θ ∈ Θ√

2h := {θ ∈ Θ | |θ| ≤ π} (= Θlow),

whereas in the case of quadrupling, the spaces of harmonics coincide with the
4h-harmonics F4h(θ) (θ ∈ Θ4h := (−π/4, π/4]2 = Θlow) from Definition 6.3
in connection with Fourier three-grid analysis (see below). �

Now it can be shown in the same way as it has been done above for stan-
dard coarsening, that the coarse-grid correction operator KH

h based on semi-
coarsening leaves the related spaces of harmonics invariant. For example, for
x1-semicoarsening (H = (2h, h)) we obtain

KH
h : F2h,h(θ) −→ F2h,h(θ)
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which is due to

Ih, Lh : F2h,h(θ) −→ F2h,h(θ),
RH

h : F2h,h(θ) −→ span{ϕH((2θ1, θ2), . )},
LH : span{ϕH((2θ1, θ2), . )} −→ span{ϕH((2θ1, θ2), . )},
Ph

H : span{ϕH((2θ1, θ2), . )} −→ F2h,h(θ).

The invariance properties for the discretization operators Lh and LH are
trivial. The treatment of the transfer operators carries over from standard
coarsening yielding analog formulae for their Fourier symbols. In fact it is
even less complicated since we are dealing with “one-dimensional” transfer
operators regarding semicoarsening for two-dimensional applications. As a
consequence, we only have to distinguish between two types of grid points for
the investigation of the prolongation operator instead of four types of grid
points in case of standard coarsening; compare with Section 6.2.4.

Example 6.7 (Full weighting and linear interpolation for x1-semicoar-
sening, d = 2). Linear interpolation for x1-semicoarsening is defined by

(
Ph

HvH

)
(x) =

{
vH(x) for x ∈ G00

h ∪G01
h

1
2 (vH(x+ h, y) + vH(x− h, y)) for x ∈ G10

h ∪G11
h

for a coarse-grid function vH : GH → C. Note that GH = G00
h ∪ G01

h and
Gh \GH = G10

h ∪G11
h hold. The stencil representations for full weighting and

linear interpolation are given by

RH
h

∧=
1
4
[
1 2 1

]H
h

and Ph
H

∧=
1
2
]
1 2 1

[h
H
,

respectively. The corresponding Fourier symbols read

R̃H
h (θ) =

1
2
(1 + cos(θ1)) and P̃h

H(θ) = 1 + cos(θ1);

compare with (6.4) and (6.15) . �

The Fourier symbols for implemented transfer operators are shown in Ta-
ble 6.3.

Remark 6.8 (Fourier symbols for d-dimensional transfer operators).
Many well-known d-dimensional transfer operators are defined by tensor prod-
ucts of one-dimensional transfers. Popular examples are full weighting or bi-
and trilinear interpolation as discussed in Section 3.4.5. The Fourier symbol
of such a d-dimensional transfer operator is given by the product of Fourier
symbols of the related one-dimensional transfers. For example, the Fourier
symbol of d-dimensional full weighting reads

R̃2h
h (θα) =

d∏
j=1

1
2
(
1 + cos(θα

j )
)
.
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TABLE 6.3: Fourier symbols for transfer operators implemented in
the accompanying software; xj-semicoarsening (j = 1, 2), d = 2

prolongation Fourier symbol P̃H
h (θα)

linear (1 + cos(θα
j ))

cubic 1
8

(
8 + 9 cos(θα

j ) − cos(3θα
j )
)

quintic 1
128

(
128 − 150 cos(θα

j ) + 25 cos(3θα
j ) − 3 cos(5θα

j )
)

constant upwind 1 + exp(i θα
j )

restriction Fourier symbol R̃H
h (θα)

full weigthing 1
2 (1 + cos(θα

j ))

injection 1

higher-order 1
16

(
8 + 9 cos(θα

j ) − cos(3θα
j )
)

More examples can be found by comparing Tables 6.1, 6.2, and 6.5 (referring
to the two- and three-dimensional cases) with Table 6.3. �

Summarizing, a block diagonal representation of KH
h consists of (2 × 2)-

blocks. For JAC- and GS-LEX-type relaxations this means that the complete
two-grid operator is invariant under the spaces of harmonics since the Fourier
components are eigenfunctions of these smoothing methods (see Section 5.3).

However, for pattern relaxation methods the minimal invariant subspaces
differ for the different methods, which has already been discussed in Re-
mark 5.6 for three-dimensional RB-JAC smoothers. The minimal invariant
subspaces for two-dimensional pattern relaxations are specified in Table 6.4.

TABLE 6.4: Minimal invariant subspaces for
two-dimensional pattern relaxations

point RB-JAC, point RB-GS: F√
2h(θ) (θ ∈ Θ√

2h)
4C-JAC, alternating line RB-JAC,
4C-GS, alternating line RB-GS: F2h(θ) (θ ∈ Θ2h)
x1-line RB-JAC, x1-line RB-GS: Fh,2h(θ) (θ ∈ Θh,2h)
x2-line RB-JAC, x2-line RB-GS: F2h,h(θ) (θ ∈ Θ2h,h)

As a consequence, it is not possible to combine a Fourier representation
(w.r.t. the harmonics from Definition 6.2) of KH

h with the Fourier represen-
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tation of an arbitrary pattern relaxation w.r.t. its minimal invariant subspace.
For example, x1-semicoarsening and point RB-JAC relaxation are not com-
patible regarding this matter because the minimal invariant subspaces of the
corresponding operators KH

h and Sh are different. Therefore it is convenient
to derive the Fourier representation of the coarse-grid correction operator in
case of semicoarsening using the 2h-harmonics, as it has already been done
for the relaxation methods in the previous chapter. Then both Fourier repre-
sentations are compatible allowing for an easy calculation of two-grid factors.

Obviously, each space of 2h-harmonics is composed of two spaces of har-
monics referring to semicoarsening. More precisely, we have

F2h(θ) = F2h,h(θ00) ∪ F2h,h(θ01) (θ00 ∈ Θ2h, θ01 ∈ Θ2h,h \ Θ2h)
= span{ϕh(θ00, . ), ϕh(θ10, . )} ∪ span{ϕh(θ01, . ), ϕh(θ11, . )}

F2h(θ) = Fh,2h(θ00) ∪ Fh,2h(θ10) (θ00 ∈ Θ2h, θ10 ∈ Θh,2h \ Θ2h)
= span{ϕh(θ00, . ), ϕh(θ01, . )} ∪ span{ϕh(θ10, . ), ϕh(θ11, . )},

(6.23)

for x1- and x2-semicoarsening, respectively. This observation is illustrated
in Figure 6.4 showing sets of Fourier frequencies generating the different
spaces of harmonics. Note that θ00, θ01 are low frequencies considering x1-
semicoarsening, whereas for x2-semicoarsening θ00, θ10 are low frequencies.

−π/2 π/2−π

0

−π

−π/2

π/2

1

2

0

θ

θ

π

π

−π/2 π/2−π

0

−π

−π/2

π/2

1

2

0

θ

θ

π

π

♦ : θ00, θ01 � : θ11, θ10 ♦ : θ00, θ10 � : θ11, θ01

FIGURE 6.4: Sets of frequencies generating F2h, F2h,h, and Fh,2h. x1-
semicoarsening (left) and x2-semicoarsening (right).
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Combining (6.23) and the invariance property of KH
h w.r.t. the harmonics

from Definition 6.2 one might easily establish that the Fourier representation
of KH

h is given by the following (4× 4)-matrices in case of x1-semicoarsening:

KH
h |F2h(θ)

∧= K2g(θ) ∈ C4×4 with

K2g(θ) = I2g − P 2g(θ)(L2g(θ))−1R2g(θ)L2g(θ) ) and
I2g = diag{1, 1, 1, 1} ∈ C4×4,

P 2g(θ) =
1
2

⎛
⎜⎜⎜⎝
P̃h

H(θ00) 0
0 P̃h

H(θ11)
P̃h

H(θ10) 0
0 P̃h

H(θ01)

⎞
⎟⎟⎟⎠ ∈ C4×2,

(6.24)
L2g(θ) = diag{L̃H(2θ00

1 ,θ
00
2 ), L̃H(2θ01

1 ,θ
01
2 )} ∈ C2×2,

R2g(θ) =

(
R̃H

h (θ00) 0 R̃H
h (θ10) 0

0 R̃H
h (θ11) 0 R̃H

h (θ01)

)
∈ C2×4,

L2g(θ) = diag{L̃h(θ00), L̃h(θ11), L̃h(θ10), L̃h(θ01)} ∈ C4×4.

We would like to point out that the Fourier symbols P̃h
H(θα) are scaled

with 1/2 (instead of 1/4 in connection with standard coarsening) accord-
ing to the “one-dimensional” prolongation operator (see Remark 6.9 for the
d-dimensional case).

For x2-semicoarsening (H = (h, 2h)), the Fourier representation of the
transfer operators and the coarse-grid discretization has to be changed as
follows:

P 2g(θ) =
1
2

⎛
⎜⎜⎜⎝
P̃h

H(θ00) 0
0 P̃h

H(θ11)
0 P̃h

H(θ10)
P̃h

H(θ01) 0

⎞
⎟⎟⎟⎠ ∈ C4×2,

L2g(θ) = diag{L̃H(θ00
1 , 2θ00

2 ), L̃H(θ10
1 , 2θ10

2 )} ∈ C2×2,

R2g(θ) =

(
R̃H

h (θ00) 0 0 R̃H
h (θ01)

0 R̃2h
h (θ11) R̃H

h (θ10) 0

)
∈ C2×4.

Altogether, we obtain the Fourier representation of the complete two-grid
operator using the 2h-harmonics:

MH
h |F2h(θ)

∧= (S2g(θ))ν2K2g(θ)(S2g(θ))ν1 ,

and the definitions of the two-grid factors (ρ(M2L), ‖M2L‖s, ‖M2L‖d) carry
over from standard coarsening. The set of Fourier frequencies that have to
be removed from the analysis has to be modified in case of semicoarsening
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according to

Ψ2g := {θ ∈ Θ2h | L̃H((2θ001 , θ
00
2 )) = 0 or L̃H((2θ011 , θ

01
2 )) = 0 or L̃h(θα) = 0},

Ψ2g := {θ ∈ Θ2h | L̃H((θ001 , 2θ
00
2 )) = 0 or L̃H((θ101 , 2θ

10
2 )) = 0 or L̃h(θα) = 0},

for x1- and x2-semicoarsening, respectively.

Example 6.8 (x1-semicoarsening for the anisotropic diffusion equa-
tion, d = 2). Consider the second-order discretization of the anisotropic
diffusion equation from Section 4.1.1 with mesh size h = 1/128. For a severe
ansiotropy, governed by the parameter ε = 100, it is appropriate to apply
x1-semicoarsening, linear interpolation, full weighting, DCA, and two sweeps
of point RB-JAC relaxation (one pre- and one postrelaxation step). The re-
sulting two-grid convergence is shown in Figure 6.5 �

FIGURE 6.5: Two-grid factors for x1-semicoarsening applied to the
anisotropic diffusion equation; d = 2.
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6.3 TWO-GRID ANALYSIS
FOR 3D SCALAR PROBLEMS

Fourier two-grid analysis for three-dimensional problems is a straightfor-
ward modification of the previously introduced analysis for the two-dimensional
case. Accordingly, we focus on the necessary adjustments.

6.3.1 Standard coarsening

The definition of the spaces of 2h-harmonics for three-dimensional applica-
tions is contained in Definition 5.8 covering the d-dimensional case. They have
been extensively used in Section 5.4 in connection with smoothing analysis for
pattern relaxations. For three-dimensional applications, they consist of one
low frequency and seven high frequencies. More generally, in d dimensions
we have one low frequency and 2d − 1 high frequencies. Again, the spaces of
2h-harmonics turn out to be invariant under the two-grid operator and—as
a consequence—the two grid factors are given by the suprema of the spectral
radii of certain block matrices. Here, we are dealing with (8 × 8)-blocks due
to the dimensionality of F2h(θ) (θ ∈ Θ2h = (−π/2, π/2]3).

In detail, the invariance property of the two-grid operator can be obtained
by an investigation of the different multigrid components yielding analog
relations as they are given in (6.18) and (6.19) for two dimensions. The
Fourier representation of the smoother with respect to the 2h-harmonics,
Sh(ω)|F2h(θ)

∧= S2g(θ) (θ ∈ Θ2h), has been computed in Chapter 5 for many
relaxation methods. The Fourier representation of the remaining multigrid
components constituting the coarse-grid correction can be derived analogously
to Sections 6.2.2 - 6.2.5.

The treatment of fine- and coarse-grid discretizations is trivial again since
the Fourier components are eigenfunctions for these operators. For the re-
striction (R2h

h
∧= [rκ]2h

h ),

(
R2h

h ϕh(θα, . )
)
(x) = R̃2h

h (θα)ϕ2h(2θ000,x) (x ∈ G2h)

results with a Fourier symbol R̃2h
h (θα) =

∑
κ∈J rκ exp(i κθα) similar to that

in (6.4). Several Fourier symbols for three-dimensional restriction operators
can be found in Table 6.5.

Prolongation of three-dimensional grid functions distinguishes eight differ-
ent types of grid points x ∈ Gα

h (5.17). For a general treatment of pro-
longation operators Ph

2h
∧=]pκ[h2h in three dimensions, one has to expand the

considerations from Section 6.2.4. This can be done in a straightforward way
by applying the analog definitions and relations from Section 5.4.3 leading to(

Ph
2hϕ2h(2θ000, . )

)
(x) =

1
8

∑
α

P̃h
2h(θα)ϕh(θα,x) (θ ∈ Θ2h, x ∈ Gh)
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TABLE 6.5: Fourier symbols for transfer operators implemented in
the accompanying software, d = 3

restriction Fourier symbol R̃2h
h (θα)

full weighting
∏3

j=1
1
2 (1 + cos(θα

j ))

half weighting 1
6 (3 + cos(θα

1 ) + cos(θα
2 ) + cos(θα

3 ))

injection 1

higher order
∏3

j=1
1
16

(
8 + 9 cos(θα

j ) − cos(3θα
j )
)

adjoint of 1
8 (1 + cos(θα

1 ) + cos(θα
2 ) + cos(θα

2 ) + cos(θα
1 − θα

2 )
linear + cos(θα

1 − θα
3 ) + cos(θα

2 − θα
3 ) + cos(θα

1 + θα
3 − θα

2 ))

prolongation Fourier symbol P̃h
2h(θα)

trilinear
∏3

j=1(1 + cos(θα
j ))

tricubic
∏3

j=1
1
8

(
8 + 9 cos(θα

j ) − cos(3θα
j )
)

triquintic
∏3

j=1
1

128

(
128 − 150 cos(θα

j ) + 25 cos(3θα
j ) − 3 cos(5θα

j )
)

constant
∏3

j=1

(
1 + exp(i θα

j )
)

linear 1 + cos(θα
1 ) + cos(θα

2 ) + cos(θα
2 ) + cos(θα

1 − θα
2 )

+ cos(θα
1 − θα

3 ) + cos(θα
2 − θα

3 ) + cos(θα
1 + θα

3 − θα
2 )

with Fourier symbol P̃h
2h(θα) =

∑
κ∈J pk exp(iθακ). Fourier symbols of im-

plemented prolongation operators are shown in Table 6.5.

Remark 6.9 (Prolongation for d-dimensional applications). The scal-
ing of Fourier symbols P̃h

2h(θα) with 1/8 is directly connected to the distinc-
tion between eight types of grid points for three-dimensional prolongation
operators. Considering d-dimensional prolongation one has to deal with 2d

different types of grid points (compare with Remark 5.5) leading to a proper
scaling by 1/2d; see (6.24) and (6.16) for the one- and two-dimensional cases,
respectively. �

Consequently, the Fourier representation of the two-grid operator reads

M2h
h |F2h(θ)

∧= M2g(θ) = (S2g(θ))ν2K2g(θ)(S2g(θ))ν1 , (6.25)
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where K2g(θ) is composed of

I2g = diag{1, 1, 1, 1, 1, 1, 1, 1} ∈ C8×8, L2g(θ) = L̃2h(2θ000) ∈ C1×1,

L2g(θ) = diag{�000, �111, �100, �011, �010, �101, �001, �110} ∈ C8×8,
(6.26)

R2g(θ) =
(
r000 r111 r100 r011 r010 r101 r001 r110

) ∈ C1×8,

P 2g(θ) =
(
p000 p111 p100 p011 p010 p101 p001 p110

)T ∈ C8×1.

Here, we used the following abbreviations for the Fourier symbols of the dif-
ferent operators due to space limitations:

�α := L̃h(θα), rα := R̃2h
h (θα), pα := P̃h

2h(θα).

Inserting M2g(θ) from (6.25) into the definitions of ρ(M2L), ‖M2L‖s, and
‖M2L‖d from Section 6.2.7 yields the corresponding two-grid factors for three-
dimensional applications. Again, certain frequencies θ ∈ Ψ2g are excluded
from the analysis, with

Ψ2g := {θ ∈ Θ2h | L̃2h(2θ000) = 0 or L̃h(θα) = 0}.

6.3.2 Semicoarsening

Semicoarsening for three-dimensional applications means that the coarse
grid is obtained by doubling the mesh size in one (x1-, x2-, x3-semicoarsening)
or two ((x1, x2)-, (x1, x3)-, (x2, x3)-semicoarsening) space directions only; see
Figure 3.7. The corresponding minimal invariant subspaces—the harmonics—
for the coarse-grid correction operator KH

h are two- or four-dimensional, re-
spectively.

Example 6.9 (Spaces of harmonics for semicoarsening, d = 3). The
spaces of harmonics for x1- and (x1, x2)-semicoarsening are given by

F2h,h,h(θ) := span{ ϕh(θ, . ), ϕh(θ − (sign(θ1), 0, 0)π, . ) }
with θ ∈ Θ2h,h,h := {θ ∈ Θ | − π/2 < θ1 ≤ π/2} (= Θlow),
F2h,2h,h(θ) := span{ ϕh(θ, . ), ϕh(θ − (sign(θ1), sign(θ2), 0)π, . ),

ϕh((θ − (sign(θ1), 0, 0)π, . ), ϕh(θ − (0, sign(θ2), 0)π, . ) }
with θ ∈ Θ2h,2h,h := {θ ∈ Θ | − π/2 < θ1, θ2 ≤ π/2} (= Θlow),

respectively. �

However, to ensure compatible Fourier representations for coarse-grid correc-
tion and relaxation it is convenient to derive the Fourier representation of
KH

h with respect to the 2h-harmonics; compare with Section 6.2.8. We give
examples for both types of semicoarsening, i.e., doubling the mesh size in one
or two space directions.

© 2005 by Chapman & Hall/CRC Press



172 Practical Fourier Analysis for Multigrid Methods

Example 6.10 (x1-semicoarsening, d = 3). The spaces of harmonics for
x1-semicoarsening (H = (2h, h, h)) and the spaces of 2h-harmonics are con-
nected by

F2h(θ) = F2h,h,h(θ000) ∪ F2h,h,h(θ011) ∪ F2h,h,h(θ010) ∪ F2h,h,h(θ001)

with θ ∈ Θ2h. Combining this relation with the invariance property of KH
h

with respect to the harmonics related to x1-semicoarsening yields

Ih, Lh : F2h(θ) −→ F2h(θ),
RH

h : F2h(θ) −→ span{ϕH((2θα
1 , θ

α
2 , θ

α
3 ), . ) | α1 = 0},

LH : span{ϕH((2θα
1 , θ

α
2 , θ

α
3 ), . ) | α1 = 0}

−→ span{ϕH((2θα
1 , θ

α
2 , θ

α
3 ), . ) | α1 = 0},

Ph
H : span{{ϕH((2θα

1 , θ
α
2 , θ

α
3 ), . ) | α1 = 0} −→ F2h(θ).

Hence the Fourier representation ofKH
h is governed by I2g, L2g(θ) from (6.26)

and

L2g(θ) = diag{L̃H(2θ0001 , θ0002 , θ0003 ), L̃H(2θ0111 , θ0112 , θ0113 ),

L̃H(2θ0101 , θ0102 , θ0103 ), L̃H(2θ0011 , θ0012 , θ0013 )} ∈ C4×4,

R2g(θ) =

⎛
⎜⎜⎝
r000 0 r100 0 0 0 0
0 r111 0 r011 0 0 0 0
0 0 0 0 r010 0 0 r110

0 0 0 0 0 r101 r001 0

⎞
⎟⎟⎠ ∈ C4×8,

P 2g(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p000 0 0 0
0 p111 0 0
p100 0 0 0
0 p011 0 0
0 0 p010 0
0 0 0 p101

0 0 0 p001

0 0 p110 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C8×4.

For a well-defined two-grid operator, we exclude Fourier frequencies

θ ∈ Ψ2g := { θ ∈ Θ2h | L̃H((2θ0001 , θ0002 , θ0003 )) = 0 or

L̃H((2θ0111 , θ0112 , θ0113 )) = 0 or L̃H((2θ0101 , θ0102 , θ0103 )) = 0 or

L̃H((2θ0011 , θ0012 , θ0013 )) = 0 or L̃h(θα) = 0}
from the two-grid analysis. �

Example 6.11 ((x1, x2)-semicoarsening, d = 3). Considering (x1, x2)-
semicoarsening (H = (2h, 2h, h)), we have

F2h(θ) = F2h,2h,h(θ000) ∪ F2h,2h,h(θ001)
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with θ ∈ Θ2h leading to

Ih, Lh : F2h(θ) −→ F2h(θ),
RH

h : F2h(θ) −→ span{ϕH((2θα
1 , 2θ

α
2 , θ

α
3 ), . ) | α1 = α2 = 0},

LH : span{ϕH((2θα
1 , 2θ

α
2 , θ

α
3 ), . ) | α1 = α2 = 0}

−→ span{ϕH((2θα
1 , 2θ

α
2 , θ

α
3 ), . ) | α1 = α2 = 0},

Ph
H : span{{ϕH((2θα

1 , 2θ
α
2 , θ

α
3 ), . ) | α1 = α2 = 0} −→ F2h(θ)

similar to the previous example. The resulting Fourier representations for the
transfer operators and the coarse-grid discretization read

L2g(θ) = diag{L̃H(2θ0001 , 2θ0002 , θ0003 ), L̃H(2θ0011 , 2θ0012 , θ0013 ), } ∈ C2×2,

R2g(θ) =
(
r000 0 r100 0 r010 0 0 r110

0 r111 0 r011 0 r101 r001 0

)
∈ C2×8,

P 2g(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p000 0
0 p111

p100 0
0 p011

p010 0
0 p101

0 p001

p110 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C8×2.

As in the previous example, we have to remove a certain subset of Fourier
frequencies from the analysis: Ψ2g := {θ ∈ Θ2h | L̃H((2θ0001 , 2θ0002 , θ0003 )) =
0 or L̃H((2θ0011 , 2θ0012 , θ0013 )) = 0 or L̃h(θα) = 0}. �

For the Fourier symbols rα = R̃2h
h (θα), and pα = P̃h

2h(θα) referring to the
“one-” and “two-dimensional” transfer operators involved in semicoarsening
for three-dimensional applications, we refer to Tables 6.1, 6.2, and 6.3.

6.4 TWO-GRID ANALYSIS FOR SYSTEMS

Now we consider a discrete system of q partial differential equations

Lhuh(x) =

⎛
⎜⎝
L1,1

h . . . L1,q
h

... · · · ...
Lq,1

h . . . Lq,q
h

⎞
⎟⎠
⎛
⎜⎝
u1

h(x)
...

uq
h(x)

⎞
⎟⎠ =

⎛
⎜⎝
f1

h(x)
...

fq
h(x)

⎞
⎟⎠ = fh(x) (x ∈ Gh).

Fourier two-grid analysis for systems of equations is based on the vector-
valued Fourier components ϕh(θ, . ) introduced in Section 5.1.2 and the cor-
responding spaces of 2h-harmonics, F2h(θ) (θ ∈ Θ2h) which have already
been applied in Section 5.5.
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Similar to the scalar case, we exclude certain Fourier frequencies from the
two-grid analysis to ensure a well-defined two-grid operator. Standard coars-
ening necessitates the exclusion of the following set:

Ψ2g := {θ ∈ Θ2h | det(L̃h(θα)) = 0 or det(L̃2h(2θ(0...0))) = 0}.

An obvious generalization of the above considerations referring to scalar equa-
tions yields the invariance property of the two-grid operator w.r.t. the spaces
of 2h-harmonics. This means that a two-grid operator M2h

h applied to a
d-dimensional system is unitarily equivalent to a block matrix consisting of
(2dq × 2dq)-blocks, i.e.,

M2h
h |F2h(θ)

∧= M2g(θ) = (S2g(θ))ν2K2g(θ)(S2g(θ))ν1 ∈ C2dq×2dq (θ ∈ Θ2g)

with Θ2g := Θ2h \Ψ2g. Then, the asymptotic two-grid convergence factor can
be easily calculated by

ρ(M2L) = sup
θ∈Θ2g

ρ(M2g(θ))

Similarly, the definitions of ‖M2L‖s and ‖M2L‖d carry over from the scalar
case.

The Fourier representation for the relaxation method has been derived in
Section 5.5. The Fourier representation of the coarse-grid correction for two-
dimensional applications reads in detail as

K2g(θ) = I2g − P 2g(θ)(L2g(θ))−1R2g(θ)L2g(θ) ∈ C4q×4q

withI2g = diag{1, . . . , 1} ∈ C4q×4q, L2g(θ) = L̃2h(2θ) ∈ Cq×q,

L2g(θ) = bdiag{L̃h(θ00), L̃h(θ11), L̃h(θ10), L̃h(θ01)} ∈ C4q×4q,
(6.27)

R2g(θ) =
(
R̃

2h

h (θ00) R̃
2h

h (θ11) R̃
2h

h (θ10) R̃
2h

h (θ01)
)
∈ Cq×4q,

P 2g(θ) =
1
4

(
P̃

h

2h(θ00) P̃
h

2h(θ11) P̃
h

2h(θ10) P̃
h

2h(θ01)
)T

∈ C4q×q.

The Fourier symbols of the transfer operators in connection with systems
of equations are given by (q × q)-matrices, similar as for the discretization
operators Lh and L2h (compare Section 5.1.2). They are composed of “scalar”
Fourier symbols

R̃
2h

h (θα) = diag{(R̃2h
h (θα))1, . . . , (R̃2h

h (θα))q} ∈ Cq×q,

P̃
h

2h(θα) = diag{(P̃h
2h(θα))1, . . . , (P̃h

2h(θα))q} ∈ Cq×q

where (R̃2h
h (θα))j and (P̃h

2h(θα))j (j = 1, . . . , q) refer to the transfer of defects
and corrections for the j-th equation, respectively.
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Example 6.12 (Transfer for two equations). Considering a two-dimensi-
onal system of two equations, one obtains the following Fourier representations
for full weighting and bilinear interpolation:

R2g(θ) =
(
r00 0 r11 0 r10 0 r01 0
0 r00 0 r11 0 r10 0 r01

)
∈ C2×8,

P 2g(θ) =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00 0
0 p00

p11 0
0 p11

p10 0
0 p10

p01 0
0 p01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C8×2 (θ ∈ Θ2g)

with rα = R̃2h
h (θα) = 1

4 (1 + cos(θ1))(1 + cos(θ2)) and pα = P̃h
2h(θα) =

(1 + cos(θ1))(1 + cos(θ2)). �

Remark 6.10 (Fourier symbols for transfer operators). If the transfer
of defects and corrections is performed by the same transfer operators for each
equation we have

(R̃2h
h (θα))1 = · · · = (R̃2h

h (θα))q and (P̃h
2h(θα))1 = · · · = (P̃h

2h(θα))q

as in the above example. However, in general one might apply different
transfer operators for different equations. Famous examples are operator-
dependent transfers (see Section 3.4.6) and staggered systems discussed in [10,
46, 70]. �

The necessary adjustments for three-dimensional systems or semicoarsening
are obvious. This is demonstrated by the following examples.

Example 6.13 (Full weighting for three-dimensional systems). The
Fourier representation of full weighting for three-dimensional systems of two
equations applying standard coarsening is given by

R2g(θ) =

(
r000 0 r111 0 r100 0 r011 0 r010 0

0 r000 0 r111 0 r100 0 r011 0 r010
r101 0 r001 0 r110 0

0 r101 0 r001 0 r110

)

with rα = R̃2h
h (θα) =

∏3
j=1

1
2 (1 + cos(θj)). �

Example 6.14 (x1-semicoarsening for systems). Consider x1-semicoar-
sening for a two-dimensional system of two equations. Then, the Fourier
representation of the coarse-grid correction with respect to the 2h-harmonics
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is governed by I2g, L2g from (6.27) and

P 2g(θ) =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00 0 0 0
0 p00 0 0
0 0 p11 0
0 0 0 p11

p10 0 0 0
0 p10 0 0
0 0 p01 0
0 0 0 p01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C8×4

L2g(θ) = bdiag{L̃H(2θ00
1 ,θ

00
2 ), L̃H(2θ01

1 ,θ
01
2 )} ∈ C4×4

R2g(θ) =

⎛
⎜⎜⎝
r00 0 0 0 r10 0 0 0
0 r00 0 0 0 r10 0 0
0 0 r11 0 0 0 r01 0
0 0 0 r11 0 0 0 r01

⎞
⎟⎟⎠ ∈ C4×8

with pα = P̃h
H(θα) and rα = R̃H

h (θα); see (6.24) for the scalar case. The set
of frequencies that has to be excluded from the analysis reads

Ψ2g := { θ ∈ Θ2h | det(L̃H(2θ001 , θ
00
2 )) = 0 or det(L̃H(2θ011 , θ

01
2 )) = 0

or det(L̃h(θα)) = 0}.
�

6.5 THREE-GRID ANALYSIS

In this last section of the chapter we give a comprehensive description of the
Fourier three-grid analysis for two-dimensional scalar applications involving
standard coarsening, to keep the presentation as simple as possible. However,
the generalization to three-dimensional problems and systems of equations is
discussed in Section 6.5.4.

The main idea of the three-grid analysis is to recursively apply the pre-
viously discussed two-grid analysis. This is obviously due to the recursive
structure of a general three- or multigrid method. According to (3.7), the
error transformation by a three-grid cycle is given by e(i)h = M4h

h e
(i−1)
h with

M4h
h = Sv2

h (ω)K4h
h Sv1

h (ω) (6.28)

= Sv2
h (ω)(Ih − Ph

2h(I2h − (M4h
2h )γ)(L2h)−1R2h

h Lh)Sv1
h (ω) ,

where M4h
2h , defined by (3.6) or (6.1) reads as

M4h
2h = Sν2

2h(ω)(I2h − P 2h
4h (L4h)−1R2h

4h)Sν1
2h(ω) . (6.29)
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Of course, it is possible to vary the number of pre- and postsmoothing steps
on the different grids leading to ν1(h), ν1(2h) and ν2(h), ν2(2h).

Instead of inverting L2h, as it is done in the two-grid cycle (6.1), the 2h-
equation is solved approximately by performing γ two-grid iterations M4h

2h

with zero initial approximation. This is reflected by replacing (L2h)−1 from
(6.1) by the expression

(L4h
2h)−1 = (I2h − (M4h

2h )γ)(L2h)−1 (6.30)

in (6.28). To see this, we consider an arbitrary nonsingular linear system (in
matrix notation)

Lu = f,

which is approximately solved by γ steps of a classical iterative method,

Cu(i) = (C − L)u(i−1) + f,

based on the splitting L = C + (L − C); compare with Section 1.2. If a
multigrid method is applied, we obtain

u(i) = Mu(i−1) + C−1f with C−1 = (I − M)L−1.

M denotes the error transformation matrix by one multigrid cycle. Starting
with u(0) = 0, the γ-th iterate can easily be written as

u(γ) = (I − Mγ)L−1f.

In a numerical algorithm, however, L−1 (and in particular (L2h)−1) is, of
course, not applied explicitly.

6.5.1 Spaces of 4h-harmonics

Considering three-grid cycles, it is appropriate to divide the space of infinite
grid functions into the following 16-dimensional subspaces.

Definition 6.3 (4h-harmonics): The 4h-harmonics are defined by

F4h(θ) := span{ϕh(θα
β , . ) | α = (α1 α2), β = (β1 β2);

α1, α2 ∈ {0, 1}; β1, β2 ∈ {0, 1
2
} }

with θ = θ00
00 ∈ Θ4h := (−π/4, π/4]2 and

θ00
β = θ00

00 − (β1 sign(θ1), β2 sign(θ2))π,

θα
β = θ00

β − (α1 sign ((θ1)β) , α2 sign ((θ2)β))π.

�
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π/2−π/4−π/2−π

0

−π

−π/2

−π/4

π/4

π/2

π/4

2

0

1θ

θ

FIGURE 6.6: A set of Fourier frequencies that are coupled by a three-grid
iteration generating a space of 4h-harmoinics; see Definition 6.3.

Figure 6.6 illustrates this somewhat technical definition by indicating the
location of the 16 different frequencies θα

β . It can be motivated in the same
way as it has been done for the two-grid analysis concerning the 2h-harmonics.
In the transition from G2h to G4h, a low frequency θ00

00 ∈ Θ4h is coupled with
three high frequencies θ00

β with β �= (00)

ϕh(θ00
00,x) = ϕh(θ00

1
2

1
2
,x) = ϕh(θ00

1
20,x) = ϕh(θ00

0 1
2
,x) with x ∈ G4h.

(6.31)
Thinking in terms of Fourier components restricted to the coarser grids G2h

and G4h this gives

ϕ2h(2θ00
00,x) = ϕ4h(4θ00

00,x) (= ϕ4h(4θα
β ,x)) with θ00

00 ∈ Θ4h, x ∈ G4h.

We collect the Fourier components from (6.31) in the spaces of (2h, 4h)-
harmonics.

Definition 6.4 (Spaces of (2h, 4h)-harmonics). The spaces of (2h, 4h)-
harmonics are defined by

F4h
2h (θ) := span{ϕh(θ00

β , . ) | β1, β2 ∈ {0, 1
2
} } for θ00

00 = θ ∈ Θ4h.

�
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Furthermore, each θ00
β is coupled with three high-frequency components θα

β

with α �= (00) in the transition from Gh to G2h, see Figure 6.6. It follows that
a three-grid cycle couples 16 frequencies, indicating that the 15 high-frequency
components alias on G4h with the low-frequency component ϕh(θ00

00, . ) =
ϕ4h(4θ00

00, . ).
Comparing Definition 6.1 and Definition 6.3, it immediately follows that

each space of 4h-harmonics consists of four spaces of 2h-harmonics. For an
arbitrary θ ∈ Θ4h we have

F4h(θ) = F2h(θ00
00) ∪ F2h(θ00

1
2

1
2
) ∪ F2h(θ00

1
20) ∪ F2h(θ00

0 1
2
). (6.32)

Remark 6.11 (Meaning of 2h-, 4h-, (2h, 4h)-harmonics). The name
(2h, 4h)-harmonics refers to the fact that those Fourier components are gath-
ered in the spaces of (2h, 4h)-harmonics which coincide on G4h in the transi-
tion from G2h to G4h. Similarly, the labeling 2h-harmonics and 4h-harmonics
reminds of the aliasing of Fourier components on Gh in the transition from
Gh to G2h and the aliasing of Fourier components on G4h in the transition
from Gh to G4h (via G2h), respectively. �

6.5.2 Invariance property of the three-grid operator

Analog to the two-grid analysis, we exclude certain frequencies to obtain a
well-defined three-grid operator leading to the following slightly smaller space:

F3g := F\
⋃

θ∈Ψ3g

F4h(θ) and Θ3g := Θ4h\Ψ3g with

Ψ3g :=
{

θ ∈ Θ4h | L̃4h(4θ00
00) = 0 or L̃2h(2θ00

β ) = 0 or L̃h(θα
β ) = 0

}
.

Using Definition 6.4, (6.32), and the considerations from Section 6.2.6 con-
cerning the invariance property of the two-grid operator, it follows for every
θ ∈ Θ3g := Θ4h \ Ψ3g:

Sh(ω), Lh, Ih : F4h(θ) −→ F4h(θ), L4h
2h : F4h

2h (θ) −→ F4h
2h (θ),

(6.33)
R2h

h : F4h(θ) −→ F4h
2h (θ), Ph

2h : F4h
2h (θ) −→ F4h(θ).

The relation for L4h
2h reads in more detail (see (6.30) and (6.29)):

S2h(ω), L2h, I2h : F4h
2h (θ) −→ F4h

2h (θ),

L4h : span{ϕ4h(4θ00
00, . )} −→ span{ϕ4h(4θ00

00, . )}
R4h

2h : F4h
2h (θ) −→ span{ϕ4h(4θ00

00, . )},
P 2h

4h : span{ϕ4h(4θ00
00, . )} −→ F4h

2h (θ).

Thus, the three-grid operator leaves the spaces of 4h-harmonics invariant,

M4h
h : F4h

2h (θ) −→ F4h
2h (θ),
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yielding a block diagonal representation of M4h
h with the following (16× 16)-

block matrices:

M4h
h |F4h(θ)

∧= M3g(θ) ∈ C16×16 with (6.34)

M3g(θ) = (S3g(θ))ν2
(
I3g − P 3g(θ)(L3g(θ))−1R3g(θ)L3g(θ)

)
(S3g(θ))ν1 .

The different Fourier representations of the operators involved in the block-
matrices M3g(θ) can be expressed by the two-grid representations from Sec-
tion 6.2:

I3g = bdiag{I2g, I2g, I2g, I2g} ∈ C16×16 ,

S3g(θ) = bdiag{S2g(θ00), S2g(θ 1
2

1
2
), S2g(θ 1

20), S
2g(θ0 1

2
)} ∈ C16×16 ,

L3g(θ) = bdiag{L2g(θ00), L2g(θ 1
2

1
2
), L2g(θ 1

2 0), L
2g(θ0 1

2
)} ∈ C16×16 ,

(6.35)
R3g(θ) = bdiag{R2g(θ00), R2g(θ 1

2
1
2
), R2g(θ 1

2 0), R
2g(θ0 1

2
)} ∈ C4×16 ,

P 3g(θ) = bdiag{P 2g(θ00), P 2g(θ 1
2

1
2
), P 2g(θ 1

2 0), P
2g(θ0 1

2
)} ∈ C16×4 ,

(L3g(θ))−1 = ( I2g − (M2g(2θ, 2h))γ )

( diag{L2g(θ00),L2g(θ 1
2

1
2
),L2g(θ 1

2 0),L2g(θ0 1
2
)} )−1 ∈ C4×4 .

Of course, M2g(2θ, 2h) can be calculated using S2g(θ) and (6.21) if we replace
h by 2h and θ by 2θ. Again an ordering for the second multiindex β has to
be prescribed in order to obtain an unique representation, similar as for α.
Here, (00), (1

2
1
2 ), ( 1

20), (0 1
2 ) was applied.

6.5.3 Definition of three-grid convergence factor

Analogous to the two-grid factors from Section 6.2.7, we obtain the asymp-
totic three-grid convergence factor as the supremum of the spectral radii of
certain block-matrices:

ρ(M3L) := sup
θ∈Θ3g

ρ(M3g (θ)) . (6.36)

The spectral norm of the error and the defect reduction three-grid operator
are computed by

‖M3L‖s := sup
θ∈Θ3g

√
ρ(M3g(θ)(M3g(θ))∗),

‖M3L‖d := sup
θ∈Θ3g

√
ρ(L3g(θ)M3g(θ)(L3g(θ))−1(L3g(θ)M3g(θ)(L3g(θ))−1)∗).

The numerical calculation of three-grid factors is carried out with the help of
the discrete set ΘP

3g := Θ3g ∩Ghθ
(compare Remarks 5.2 and 5.4).

The considerations from Remark 6.4 concerning the boundedness of ρ(M2L)
carry over to asymptotic three-grid factors.
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Remark 6.12 (Variable Coefficients). A direct application of the k-grid
analysis is not possible if we deal with operators Lh(x) that are characterized
by variable coefficients. However, Fourier k-grid analysis can be applied to
the locally frozen operator at a fixed grid point ξ, as it was done in the
smoothing analysis; see Remark 5.8. In [8] it is motivated that the two-grid
factor for Lh(x) can be bounded by the supremum over the two-grid factors
for the locally frozen operators. Thus, one may define the following k-grid
convergence factors (k = 2, 3) in the case of variable coefficients:

ρ (MkL(Lh(x))) := sup
ξ∈Ω

ρ (MkL(Lh(ξ))) . (6.37)

Again, for an explicit calculation the supremum in the above definition has
to be replaced by maxξ∈Ωh

. Some examples are discussed in 4.1.7 �

6.5.4 Generalizations

The generalization of the three-grid analysis to three-dimensional appli-
cations or systems of equations is obvious assuming standard coarsening.
One simply has to replace the two-grid Fourier representations (I2g, S2g(θβ)
L2g(θβ), R2g(θβ), P 2g(θβ), M2g(2θ, 2h), L2g(θβ)) occurring in (6.35) by
their relevant counterparts for three dimensions or systems derived in Sec-
tions 6.3 and 6.4, respectively. Moreover, Ψ3g has to be adapted properly.

Remark 6.13 (Generalization to d dimensions, k grids, and systems
of equations). In the most general case, a d-dimensional problem has to be
considered and k-grid cycles are applied to a system of q equations. Then,
every low frequency θ ∈ Θ21−kg := (−21−kπ, 21−kπ]d is coupled with 2d(k−1)−
1 high frequencies. Accordingly, the related 2k−1h-harmonics F2k−1h(θ) are
of dimension 2d(k−1). Each operator of the k-grid cycle acts on the whole
system and the dimensions of the corresponding block-matrices (see (6.21)
and (6.35) for the 2-dimensional scalar case with two- and three-grid cycles,
respectively) are given by

Ikg, Skg(θ), Lkg(θ) ∈ C2d(k−1)q×2d(k−1)q, Rkg(θ) ∈ C2d(k−2)q×2d(k−1)q,

P kg(θ) ∈ C2d(k−1)q×2d(k−2)q, Lkg(θ) ∈ C2d(k−2)q×2d(k−2)q.

The evaluation of k-grid cycles appears to be quite complicated and compu-
tationally expensive for many-level cycles, but one should take into account
that the k-grid operators (3.7) are recursively defined and can be expressed in
terms of two-grid operators. This means that the entries of a k-grid Fourier
representation are given by two-grid Fourier symbols such as in (6.35).

In practice, however, it should be usually enough to perform a three-grid
analysis to obtain sufficient insight into a multigrid method. �
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Chapter 7

FURTHER APPLICATIONS OF
LOCAL FOURIER ANALYSIS

The last chapter of this monograph is dedicated to some further applications
of local Fourier analysis which are not (yet) implemented in the accompanying
software. In contrast to the previous chapters of Part II it is written in a more
condensed style but we give several pointers to further reading.

If Fourier k-grid analysis predicts an unsatisfactory multigrid performance,
it is sometimes not obvious which multigrid component has to be modified
to overcome the particular difficulty at hand. For such situations it might be
useful to analyze the different multigrid components separately in addition to
the investigation of the complete k-grid operator. Two examples for this kind
of analysis have already been given in Chapter 5: The fine-grid discretiza-
tion Lh might be analyzed by means of its measure of h-ellipticity whereas
the relaxation method Sh can be optimized with the help of Fourier smooth-
ing analysis. Similarly, there exist local Fourier analysis techniques for the
remaining components in a multigrid cycle. The correct choice of transfer
operators might be identified by an investigation of the corresponding “or-
ders” specified in Section 7.1. The quality of the coarse-grid discretization is
subject to the “simplified k-grid analysis” presented in Section 7.2. However,
we would like to point out that even if each multigrid component has been
selected with the help of the corresponding Fourier analysis technique (i.e.,
with the help of the measure of h-ellipticity, the smoothing factor, the or-
ders of transfer operators, and the simplified k-grid analysis), it may happen
that the resulting multigrid method exhibits an unsatisfactory convergence
behavior. This crucial observation is due to the fact that the quality of every
multigrid algorithm strongly depends on the correct interplay of the different
multigrid components. This interplay can only be investigated by a complete
k-grid analysis. As an example for such a behavior, recall the application of
MG2 to the Poisson equation discussed in Section 4.1.1. The choice of each
component involved in MG2 is reasonable for the application at hand, but the
interplay of the selected components (in particular the combination of injec-
tion and point RB-JAC relaxation) yields a diverging algorithm which is very
well predicted by Fourier k-grid analysis. Regarding this matter, one should
consider these disconnected analysis techniques for each of the different multi-
grid components only as supplementary analysis tools which cannot replace
the analysis of the complete multigrid operator.

183
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So far we presented the Fourier k-grid analysis only w.r.t. vertex-centered
grids because the accompanying software is based on such a grid structure.
However, the analysis can be easily adapted to other common choices like
cell-centered or staggered grids. This is demonstrated in Section 7.3 for the
cell-centered case. For the analysis on staggered grids, we refer to the litera-
ture [10, 46, 70].

There are basically two principles for the tuning of multigrid components:
optimality and robustness. Optimality means that the components are tuned
in order to obtain a highly efficient but highly specialized solver for one par-
ticular problem whereas robustness means that the components are tuned
to obtain a multigrid method which works well for a large class of problems.
Both principles have their advantages and disadvantages in the scientific area.
An optimized solver is the method of choice if a specialized problem has to
be solved many times. Robustness comes into play when different problems
with a similar structure are to be solved, for example, in scientific software
for solving PDEs. In Chapter 4, we applied local Fourier k-grid analysis in
order to optimize different multigrid components for a large variety of par-
ticular problems and discretizations. In general, it is difficult to construct
robust multigrid methods with fixed multigrid components for large classes
of problems. A popular alternative to construct a robust solver is the use
of multigrid as a preconditioner for a Krylov subspace acceleration method
like GMRES. Hence, it is useful to apply local Fourier analysis to such a com-
bined solution method yielding quantitative convergence estimates. This kind
of analysis is briefly described in Section 7.4 dealing with restarted GMRES
(GMRES(m)) [52] preconditioned by multigrid.

7.1 ORDERS OF TRANSFER OPERATORS

The order of prolongation and restriction is an important issue for the
selection of transfer operators within a multigrid algorithm. We distinguish
between polynomial order, high-, and low-frequency order specified in the
following subsections.

7.1.1 Polynomial order

The polynomial orders mpoly
p and mpoly

r of prolongation and restriction op-
erators, respectively, play a crucial role for the convergence analysis of multi-
grid methods. mpoly

p is defined as the highest order plus one of polynomials
that are interpolated exactly by the prolongation under consideration. The
polynomial order of a restriction operator is defined as that of the adjoint
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prolongation. The well-known rule

mpoly
p +mpoly

r > M, (7.1)

demands that the sum of the polynomial orders of prolongation mpoly
p and

restriction mpoly
r is larger than the highest order M of differentiation of the

original differential operator. Relation (7.1) is a necessary condition to prove
mesh size independent convergence rates for multigrid following the analysis
from [28]. However, at least for cell-centered multigrid discussed in Section 7.3
this condition can be weakened as shown in [3]. As an alternative one might
consider low- and high-frequency orders yielding a similar (but slightly less
restrictive) rule given in (7.2) below.

7.1.2 High- and low-frequency order

The definition of the orders of intergrid transfer operators in the context of
the local Fourier analysis is taken from [7, 30]. It differs from the polynomial
order defined above. R2h

h has a low-frequency ordermlow
r and a high-frequency

order mhigh
r , if for |θ(0...0)| → 0 mlow

r and mhigh
r are the largest numbers

satisfying

R̃2h
h (θ(0...0)) = 1 +O

(
|θ(0...0)|mlow

r

)
,

R̃2h
h (θα) = O

(
|θ(0...0)|mα

r

)
with α �= (0 . . . 0) and

m
high
r = min {mα

r | α = (α1, . . . , αd) �= (0, . . . , 0), αj = 0, 1 (j = 1, . . . , d)} .

Analogously, we define the low-frequency order mlow
p and the high-frequency

order mhigh
p of a prolongation Ph

2h. Several examples for the different orders
of transfer operators are shown in Table 7.1. They can easily be calculated
by Taylor expansion using the corresponding Fourier symbols of Ph

2h and R2h
h

given in the previous chapter.

Remark 7.1 (Relation between m
poly
p and mlow

p , mhigh
p ). The polyno-

mial and the high- and low-frequency orders are directly connected as shown
in [30]: If a prolongation has polynomial order n, then both high- and low-
frequency orders are at least n; i.e., mpoly

p ≤ mlow
p , mhigh

p . �

First of all, it is heuristically clear that mlow
r ,mhigh

r > 0 is a desirable prop-
erty. According to the two-(multi-)grid idea of correcting smooth (or “low”)
error components on the coarse grid, the restriction operator should have the
property that R2h

h ϕh(θ00, . ) is a “good” approximation to ϕ2h(2θ00, . ) for
|θ| → 0, i.e., mlow

r > 0 must hold. Moreover, for mhigh
r > 0, the restric-

tion acts like a filter. Rough (or “high”) error components are damped and
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TABLE 7.1: Orders of transfer
operators, vertex-centered case

prolongation m
poly
p mlow

p m
high
p

(bi-, tri-) linear 2 2 2

(bi-, tri-) cubic 4 4 4

(bi-, tri-) quintic 6 6 6

constant upwind 0 1 1

restriction m
poly
r mlow

r m
high
r

full weigthing 2 2 2

injection 0 ∞ 0

half weighting 0 2 0

seven point 1 2 2

they show up on the coarse grid as smooth components with very small am-
plitudes. This is, again, in accordance with the basic two-(multi-)grid idea
that rough error components should be treated on the fine grid by the re-
laxation procedure and that their spurious contribution on the coarse grid
(in terms of additionally induced smooth error components produced by the
restriction operator) should be controlled. The heuristic explanation for why
mlow

p ,mhigh
p > 0 is preferable is again obvious. The computed correction on

the coarse grid for smooth error components should be transferred to the fine
grid as accurately as possible (mlow

p > 0), whereas the spuriously introduced

rough error components should be kept to a minimum (mhigh
p > 0).

Apart from these heuristic considerations, the high-frequency orders should
satisfy the following condition [7, 30]:

mhigh
r +mhigh

p ≥M. (7.2)

It is shown in [30] that (7.2) is a necessary condition for the eigenvalues of
K̃2h

h (θ) (i.e., the eigenvalues of the Fourier representation of the coarse-grid
correction operator K2h

h , see (6.1)) to remain bounded as |θ| → 0 and thus a
necessary condition for the two-(multi-)grid method to be convergent as the
resolution of the finest grid is increased (unless for certain special situations
where the relaxation operator takes care of such problematic eigenvalues).

Combining (7.2) and Remark 7.1, condition (7.1) seems to be too restrictive
in the framework of local Fourier analysis. In fact, the experiments given
in [44] indicate that for the convergence of cell-centered multigrid, (7.2) is
more relevant and the violation of (7.1) does not lead to severe performance
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degradation.

Remark 7.2 (Boundedness of error and defect reduction norm). To
ensure that the norm values ‖K2h

h ‖s and ‖K2h
h ‖d are bounded, one has to

require

mhigh
r ≥M, mhigh

p ≥ 0, and mhigh
p ≥M, mhigh

r ≥ 0,

respectively [30]. Obviously, mhigh
r ≥ M is violated in case of an injection of

residuals (mhigh
r = 0) applied to the Poisson equation (M = 2). As a conse-

quence, the corresponding error reduction norm of a two-grid cycle ‖M2L‖s

is unbounded as reported in Example 6.6. Switching to the full weighting
operator (mhigh

r = 2) it is possible to fix this deterioration of the error norm;
compare with Remark 6.4. �

7.2 SIMPLIFIED FOURIER k-GRID ANALYSIS

In the previous chapter, we presented the Fourier analysis for the complete
k-grid operator. The so-called simplified k-grid analysis [12, 56] solely focuses
on the relation between the fine-grid discretization and the discretization on
the coarser grids.

For singularly perturbed problems one often observes a coarse-grid correc-
tion difficulty which is caused by an unsatisfactory approximation of certain
“characteristic” very low-frequency Fourier components. Then, it is reason-
able to consider the so-called simplified two-grid or simplified k-grid analysis.
The influence of the smoothing method is neglected or, more precisely, an
“ideal” relaxation is assumed with good smoothing properties for the high-
frequency components and which leaves the low-frequency components un-
changed. In this respect, the simplified analysis can be seen as a counterpart
to the smoothing analysis from Chapter 5 where we have an “ideal” coarse-
grid correction operator (5.25). The analysis is, furthermore, substantially
simplified if

• we neglect the coupling of the harmonics (see Definitions 5.8 and 6.3)
and

• we assume that the transfer operators act like identities which is, in fact,
nearly correct for very low-frequency components.

Moreover, we assume standard coarsening and restrict our considerations to
two-dimensional applications for ease of presentation. Then, one only has to
investigate the strongly simplified “two-grid” Fourier symbol

C̃2h
h (θ) = 1 − L̃h(θ)/L̃2h(2θ).
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Note that C̃2h
h (θ) does not belong to a well-defined operator due to the above

simplifications.
For problems with characteristic directions, as they occur for hyperbolic or

parabolic operators [25], we define

χ2 := lim
θ1→0

C̃2h
h (θc) = lim

θ1→0

(
1 − L̃h(θc)

L̃2h(2θc)

)
with θc = (θ1, cθ1),

where θc = (θ1, cθ1) denotes a frequency along the characteristic direction
θ2 = cθ1 corresponding to the operator under consideration. The generaliza-
tion for systems of q PDEs reads

χ2 := lim
θ1→0

ρ
(
C̃

2h

h (θc)
)

= lim
θ1→0

ρ

(
Iq −

(
L̃2h(2θc)

)−1

L̃h(θc)
)
,

where Iq ∈ Cq×q is the identity matrix. Obviously, the simplified analysis
investigates the ability of the coarse-grid discretization to approximate the
fine-grid discretization for very low-frequency characteristic Fourier compo-
nents.

If the simplified two-grid analysis applies it is, furthermore, possible to give
a rough prediction χk(γ) of the convergence of a k-grid cycle as it is indicated
in [12, 56]. χk(γ) can be calculated using the following recurrence equation:

χi(γ) := 1 − (1 − χ2)
(
1 − (χ(i−1)(γ))γ

)
for i = 3, . . . , k (7.3)

with cycle index γ. For example, the simplified k-grid convergence factor for
a V-cycle (γ = 1) reduces to

χk(1) = 1 − (1 − χ2)k−1. (7.4)

In this monograph, we only consider V-cycles and W-cycles (γ = 1, 2) as a
larger cycle index often leads to less efficient multigrid methods. Note that
there might be a fast deterioration of the k-grid factors χk(γ) for an increasing
number of levels and γ = 1, 2; compare with Table 7.2.

Remark 7.3 (Reliability of χk(γ)). The simplified Fourier analysis can be
considered as a “worst-case” analysis. The limiting k-grid factors χk(γ) can
sometimes be avoided by an appropriate choice of the smoothing procedure
which is neglected by the simplified analysis. For example, an application of
ILU smoothing for the rotated anisotropic diffusion equation (4.6) also takes
care of problematic characteristic low-frequency error components leading to
fast multigrid convergence. However, the definition of robust ILU smoothers
for three-dimensional problems involving mixed derivatives in connection with
standard coarsening is much more difficult than for two dimensions. �

Typical examples for simplified two-grid factors (and thus for the related
k-grid factors from (7.3)) arise from the anisotropic diffusion equation and
convection-dominated flow problems.
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Example 7.1 (Rotated ansiotropic diffusion equation). If the rotated
ansiotropic diffusion equation (4.6) with β = 45◦ is discretized by central
differences (on Ωh and Ω2h), one obtains for the singularly perturbed cases
ε→ 0,∞:

θc = (θ1,±θ1) and χ2 =
3
4
;

see [67]. From Table 7.2 one has to expect a very unsatisfactory multigrid
convergence. Different possibilities to overcome this difficulty are discussed in
Section 4.1.6. �

TABLE 7.2: Simplified k-grid convergence factors
χk(γ) (7.3) for χ2g = 0.5, 0.75

k 2 3 4 5 6 7

V-cycle 0.500 0.750 0.875 0.938 0.969 0.984
W-cycle 0.500 0.625 0.695 0.742 0.775 0.800

V-cycle 0.750 0.938 0.984 0.996 0.999 1.000
W-cycle 0.750 0.891 0.948 0.975 0.988 0.994

Example 7.2 (Convection diffusion equation). In [12], χ2 is calculated
for the convection diffusion equation for a general discretization of p-th order
accuracy assuming a vanishing diffusion coefficient ε→ 0. It is given by

χ2 = 1 − 2−p. (7.5)

Table 7.2 illustrates the deterioration of the multigrid convergence with an
increasing number of levels for p = 1, 2, i.e. χ2 = 1/2, 3/4.

One obtains some additional insight if we allow a nonvanishing ε, especially
for the higher-order upwind discretization from Section 4.1.8. Details can be
found in [67]. We would like to point out that also for convection-dominated
Navier-Stokes-type flows the simplified two-grid factor is governed by (7.5) as
it has been demonstrated in [67]. �

7.3 CELL-CENTERED MULTIGRID

Thinking of multigrid methods, one typically imagines a hierarchy of grids,
where each coarse grid is a coarsening of the previous finer one. In this vertex-
centered case a node of the coarse grid is also a node of the fine grid. In the
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finite element context one thinks of a hierarchy of nested spaces. However, this
is not the only possible situation. Cell-centered discretization like, e.g., finite
volume approaches naturally lead to grid hierarchies, where nodes on coarser
grids do not form a subset of the fine-grid nodes. An example is given in
Figure 7.1. Here, four fine-grid cells are united to form a coarse-grid cell.
Since nodes/unknowns are located in the cell centers this leads to a nonnested
situation. We restrict our considerations to standard coarsening shown in
Figure 7.1.

FIGURE 7.1: Coarsening in cell-centered multigrid: White circles mark
the centers of fine-grid cells, black circles those of coarse-grid cells.

The development of cell-centered multigrid methods is strongly related
to the question, what types of problems can be treated without the use
of problem-dependent transfer operators. It is well known that interface
problems, i.e., problems with jumping coefficients cannot be handled well
by vertex-centered multigrid with standard prolongation operators. One has
to modify the interpolation to reflect the discontinuity, see, e.g., [1, 17, 77].
In cell-centered multigrid one tries to avoid this, possibly at the expense of
requiring more sophisticated smoothers [34, 35, 64].

It has been reported in literature [43, 44] that this different type of grid
hierarchy does not only require different transfer operators, it also leads to
quite a different behavior of the resulting multigrid methods. The interplay
between relaxation and correction is different. This can require changes to
the smoothers, like the introduction of a relaxation parameter. For com-
plicated problems (especially in three dimensions) the application of more
sophisticated smoothers may even be necessary, see, e.g., [34]. Results are
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FIGURE 7.2: Four different types of interpolation operators. The ∗ marks
the position of the coarse-grid node.

also sometimes contradictory to the expectations based on experience from
the vertex-centered case. In this context, the application of local Fourier two-
and three-grid analysis is particularly useful. Especially the three-grid anal-
ysis can be of great benefit here for a deeper understanding of the interplay
between smoothing and coarse-grid correction in the cell-centered case. More-
over, the different behavior of pre- and postsmoothing or V- and W- cycles
can be investigated, which is particularly conspicuous in the cell-centered case.
Several examples for such phenomena are discussed and explained with the
help of Fourier three-grid analysis in [44]; compare also with Section 7.3.4.
Here, we simply focus on the necessary modifications of the local Fourier
analysis in the case of cell-centered grids which are mainly governed by the
transfer operators.

7.3.1 Transfer operators

In literature one finds four main types of interpolation operators Ph
2h. These

are given in Figure 7.2 in stencil notation. The notation shows the weight
with which the value of the coarse-grid function at the coarse-grid node ∗ con-
tributes to the fine-grid function at its neighboring fine-grid nodes. Restriction
operators R2h

h are constructed as the adjoints of the given prolongations.
The simplest prolongation operator is the piecewise constant interpolation

(CP). It has a small stencil, involving a small number of operations, but is
only of first order. Here order refers to the polynomial order of the operator
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defined in Section 7.1.1. A prolongation of second order is bilinear interpo-
lation (BP). However, as can be seen from Figure 7.2 it requires a compact
16-point stencil. Prolongation operators that are also of second order, but em-
ploy sparser stencils, are the ones by Wesseling/Khalil (WP) and Kwak (KP).
Note that the stencil of Wesseling/Khalil with its 10 nonzero entries is only
slightly more costly than the compact 9-point-stencil of bilinear interpolation
in the vertex-centered case.

The stencil by Wesseling and Khalil is based on linear interpolation on
triangles, the vertices of the triangles being the nodes of the coarse grid, see,
e.g., [65]. The stencil by Kwak is derived in [37] from geometric considerations.

All three second-order interpolations involve stencils that will extend out-
side of the problem domain, when applied to a cell in the direct vicinity of the
boundary. This holds even in the simple case of Dirichlet boundary condi-
tions. Thus the stencils must be modified along the boundary for an explicit
implementation. These modifications in the case of Dirichlet and Neumann
boundary conditions are detailed in [44, 65]. However, in connection with
local Fourier analysis—assuming an infinite grid—it is sufficient to stay with
the constant coefficient stencils from Figure 7.2.

In Figure 7.3 the respective stencils for three-dimensional applications are
given, with the exception of piecewise constant prolongation (CP) which is
trivial. The three-dimensional variant of WP is constructed by linear inter-
polation on tetrahedra, whose vertices are formed by the coarse-grid nodes,
see again [65]. Kwak employs in [38] the same geometric ideas as for the
two-dimensional case to derive his stencil. Note, however, that, while a fine-
grid node is interpolated from its four nearest coarse-grid neighbors, this is
not done in a linear fashion as in two dimensions, so the polynomial order
is only 1. However, this need not necessarily imply a worse performance, as
the results in [38] and the investigation of the high- and low-frequency orders
indicate.

Remark 7.4 (Vertex-centered analogs of WP). WP in two dimensions
can be considered as the cell-centered relative to seven-point prolongation in
the vertex-centered case; see Section 3.4.6. The same statement holds for the
three-dimensional variant of WP and the adjoint of (3.12). �

7.3.2 Fourier two- and three-grid analysis

Fourier smoothing analysis is based on an ideal coarse-grid correction (5.25)
and does not distinguish between cell-centered or vertex-centered coarsen-
ing, since the splitting into low- and high-frequency components remains un-
changed. Hence, all considerations presented in Chapter 5 apply in the case
of cell-centered grids, as well, including the corresponding parts of the accom-
panying software. Consequently, we only have to consider the modifications
of the analysis if more levels are involved.
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FIGURE 7.3: Prolongation stencils in three dimensions (from left to right
the planes of the three-dimensional stencil are shown from bottom to top).

Fourier two- and three-grid analysis for cell-centered and for vertex-centered
multigrid differ only w.r.t. the treatment of the transfer operators. Thus, we
concentrate on the calculation of the Fourier representations of R2h

h , Ph
2h and

their related orders which are crucial for an efficient coarse-grid correction.
We consider a discrete elliptic boundary value problem

Lhuh = fh in Ωh , Bhuh = gh on ∂Ωh,

resulting from a cell-centered discretization of its continuous analog. The grid
is given as the intersection Ωh = Ω∩Gh of the problem domain Ω ⊂ IR2 with
a cell-centered infinite grid of mesh size h

Gh =
{

x = κh+ (h/2, . . . , h/2)T
∣∣∣, κ ∈ ZZd

}
. (7.6)

In contrast to the complete three-grid operator which acts on three different
grids (Gh, G2h, G4h), the transfer operators involve only two grids, e.g., Gh

and G2h or G2h and G4h. Thus, it is sufficient to consider the transfer from
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Gh to G2h and reverse. The remaining transfers involved in a three-grid cycle
can be handled analogously.

Consider an arbitrary restriction which is characterized by a stencil R2h
h

∧=
[rκ]2h

h , i.e.,

(
R2h

h wh

)
(x) =

∑
κ∈J

rκwh (x + κh) (x ∈ G2h)

with a finite index set J and κ = (κ1, . . . , κd), κj ∈ {±1/2,±3/2,±5/2, . . . }
(j = 1, . . . , d). Note that

x + κh ∈ Gh for x ∈ G2h

due to the elements of J which reflect the cell-centered grid, compare with
(7.6) and Figure 7.1. For the Fourier components this means that

(
R2h

h ϕh (θα, . )
)
(x) =

∑
κ∈J

rκ exp (i (x + κh) θα/h)

=
∑
κ∈J

rκ exp(i κθα)

︸ ︷︷ ︸
R̃2h

h (θα)

ϕ2h

(
2θ00,x

)
(x ∈ G2h) (7.7)

with Fourier symbol R̃2h
h (θα). (7.7) illustrates the aliasing of the coupled

Fourier components on G2h.
The stencil elements rκ for the restrictions under consideration can easily be

obtained from Figure 7.2 where the stencils for the adjoint prolongations are
given. For example, a proper scaling with 1/4 yields the four stencil elements
of CR in the two-dimensional case:

r(±1/2,±1/2) = 1/4.

Then, one may calculate the Fourier symbols of CR, BR, WR, and KR
using the corresponding stencil representations and (7.7). They are given in
Table 7.3.

Of course, the Fourier symbols of CP, BP, WP, KP are implicitly contained
in Table 7.3 as well, since for each prolongation there is an adjoint restriction.

To carry out Fourier two- and three-grid analysis for cell-centered multigrid,
we simply have to insert the computed Fourier symbols R̃2h

h (θ) and P̃h
2h(θ)

into the representations of M̃2h
h (θ) and M̃4h

h (θ) specified in Chapter 6.

7.3.3 Orders of transfer operators

Recall the definition of high- and low-frequency orders for transfer opera-
tors from Section 7.1.2. The high- and low-frequency orders of the transfer
operators from Section 7.3.1 are given in Table 7.4. Again, the orders of the
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TABLE 7.3: Fourier symbols R̃2h
h (θ) and P̃h

2h(θ) for CR, BR, WR,
KR

two-dimensional case three-dimensional case

CR
∏2

j=1 cos
(

θj

2

) ∏3
j=1 cos

(
θj

2

)
BR/TR

∏2
j=1 cos3

(
θj

2

) ∏3
j=1 cos3

(
θj

2

)
WR cos

(
θ1−θ2

2

)∏2
j=1 cos

(
θj

2

)
cos
(

θ1−θ2−θ3
2

)∏3
j=1 cos

(
θj

2

)
KR 1

2

∏2
j=1 cos

(
θj

2

)∑2
i=1 cos(θi) 1

3

∏3
j=1 cos

(
θj

2

)∑3
i=1 cos(θi)

TABLE 7.4: Orders for CR, BR, WR, KR

two-dimensional case CR BR WR KR

low-frequency order mlow
r 2 2 2 2

high-frequency order mhigh
r 1 3 2 2

polynomial order m
poly
r 1 2 2 2

three-dimensional case CR BR WR KR

low-frequency order mlow
r 2 2 2 2

high-frequency order m
high
r 1 3 2 1

polynomial order mpoly
r 1 2 2 1

prolongation operators are implicitly given by the orders of the restriction,
as the prolongations are the adjoints of the restrictions. We see here that
the local Fourier analysis definition of order contains more information than
the pure polynomial one. It gives us mhigh

r = 3 for BP, which captures the
fact that BP is more precise in the sense that it will also interpolate bilinear
functions correctly. With respect to the order there is no advantage for KP
compared to WP, although its stencil employs more nodes. We also want to
point out that the combination (CP, CR) fulfills (7.2) for differential operators
with M = 2, whereas (7.1) is violated. Note that not only the polynomial but
also the high-frequency orders for KR (and KP) are different in the two- and
three-dimensional cases.

7.3.4 Numerical experiments

To demonstrate the usefulness of Fourier three-grid analysis for cell-centered
multigrid we consider the central second-order discretization of the two-dimen-
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sional Poisson equation on the unit square with Dirichlet boundary conditions.
We apply a simple V(1,1)-cycle with point RB-JAC as a smoother together

with standard coarsening and DCA. In Table 7.5 we compare the prediction
ρ(M3L) of the local Fourier analysis with the asymptotic convergence rate
ρn(3L) for the three-level case and a finest grid Ωh with h = 1/128.

The empirical convergence rates match the prediction from the local Fourier
analysis very well in the majority of cases. However, there are three runaways,
where the local Fourier analysis is much too optimistic. It can be expected
that these discrepancies may be reduced by performing some extra boundary
relaxations. We would like to emphasize that the violation of rule (7.1) for
the (CP, CR) pair does not lead to a diverging algorithm.

Note that the convergence rates themselves are not as good as expected
from the vertex-centered case where one obtains factors around 0.1 for most
of the popular transfer operators (for example, the vertex-centered analogs of
BP/BR and WP/WR). This is not a standalone difficulty of the smoother,

TABLE 7.5: Two-dimensional Poisson
equation: Predictions ρ(M3L) versus empirical
convergence rates for point RB-JAC smoothing;
V(1,1), DCA, h = 1/128

CP BP WP KP

CR 0.161 0.086 0.204 0.086
BR 0.156 0.194 0.301 0.162 local Fourier
WR 0.204 0.237 0.331 0.204 analysis
KR 0.204 0.237 0.331 0.204

CR 0.289 0.155 0.203 0.203
BR 0.155 0.194 0.300 0.236 empirical
WR 0.203 0.236 0.330 0.203 tests
KR 0.203 0.236 0.331 0.203

which gives excellent smoothing factors, as can be seen in Table 7.6. Instead
it is a problem of the combination of smoother and coarse-grid correction. As
a remedy for this Wesseling and Khalil apply in their papers a more pow-
erful relaxation (ILU) which works very well in the cell-centered case. We,
however, stay with simple point-relaxation variants. Then, the performance
can be improved by changing the cycling structure from a V- to a W-cycle
or more efficiently in this situation, since it is less costly and gives a better
convergence rate, by the introduction of an overrelaxation parameter ω lead-
ing to ω-RB-JAC (we used ω = 1.2 in this example). Similar to the classical
SOR situation, this smoother then also reduces low-frequency error compo-
nents more efficiently which seems to be favorable for this combination of
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TABLE 7.6: Local Fourier analysis predictions and empirical
convergence rates for two-dimensional Poisson problem; WP, CR,
DCA, h = 1/128

ρ(S2Q) ρ(M2L) ρ(M3L) ρn(3L) ρn(5L)

GS-LEX V(1,1) 0.250 0.176 0.231 0.227 0.240
RB-JAC V(1,1) 0.063 0.148 0.200 0.203 0.218
RB-JAC W(1,1) 0.063 0.148 0.148 0.148 0.148
ω-RB-JAC V(1,1) 0.105 0.102 0.120 0.118 0.114

multigrid components. Apparently, the use of ILU relaxation yields a similar
implication.

Table 7.6 also shows the superiority of the three-grid Fourier analysis as
compared to the two-grid analysis alone. An increase from ρ(M2l) to ρ(M3L)
typically indicates that the convergence of the multigrid method will deterio-
rate as it becomes “deeper.” We precisely find this behavior for the undamped
relaxations, where ρn(5L) is larger than ρn(3L) for the first two cases, while
it remains constant in the third one.

Comparing the performance of GS-LEX and RB-JAC it is interesting to
note that the superiority of RB-JAC—known from the vertex-centered case—
seems to vanish for certain variants of cell-centered multigrid. This has already
been observed by numerical experiments for other types of pattern relaxations
like zebra line or plane smoothing compared to the lexicographic variants [26,
43] but could not be explained. Using Fourier three-grid analysis this behavior
can be precisely predicted.

7.4 FOURIER ANALYSIS FOR MULTIGRID
PRECONDITIONED BY GMRES

We conclude our discussion of further applications of local Fourier analysis
with the generalization of the Fourier k-grid analysis to multigrid as a right
preconditioner for GMRES(m). For a detailed discussion with respect to the
two-grid analysis we refer to [69].

The typical use of Fourier k-grid analysis in a multigrid context is that
the spectral radius of the error or defect transformation matrix is obtained
theoretically due to a unitary transformation of the k-grid iteration matrix
into a sparse block-diagonal matrix. From this block structure one can, how-
ever, also calculate the whole spectrum of the k-grid matrix which is used in
Section 7.4.2 to obtain asymptotic convergence estimates of multigrid precon-
ditioned GMRES(m). A preconditioned Krylov subspace acceleration method
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like GMRES(m) implicitly builds up a minimal residual polynomial. The de-
termination of the polynomial coefficients is easily possible and can be done
explicitly, with the help of the Fourier analysis which is shown in Section 7.4.1.
Using these coefficients, we derive quantitative convergence estimates for the
combined solution method.

As Krylov subspace methods are commonly described using matrix and
vector notation, we consider the linear system, Lu = f, related to the discrete
boundary value problem Lhuh = fh with eliminated boundary conditions. Re-
call the usual Euclidean inner product of two vectors v = (v1, . . . , vN )T , w =
(w1, . . . ,wN )T ∈ CN which is defined by

〈v,w〉2 :=
N∑

i=1

viwi.

The induced Euclidean 2-norm is then given by ‖v‖2 :=
√〈v,v〉2.

A three-grid (or more general a multigrid) cycle can be described by the
matrix splitting, Cu(i) + (L − C)u(i−1) = f, where u(i) and u(i−1) represent
a new and a previous approximation. This formulation is equivalent to

u(i) = u(i−1) + C−1(f − Lu(i−1)) and r(i) = (I − LC−1)r(i−1)

with the residual vectors r(i), r(i−1) and the residual transformation matrix

I − LC−1 = LML−1, (7.8)

where M denotes the three-grid iteration matrix. GMRES(m) searches for a
new approximation u(i) with corresponding residual r(i) in the Krylov sub-
space

Km(LC−1, r(i−m)) := span[r(i−m), (LC−1)r(i−m), ..., (LC−1)m−1r(i−m)].

It selects the new solution by minimizing the residual in the discrete Euclidean
2-norm

‖r(i)‖2 = min{‖Pm(LC−1)r(i−m)‖2 | Pm ∈ Πm}, (7.9)

where Πm denotes the set of all polynomials of degree at mostm with Pm(0) =
1. For convenience, i ≥ m is assumed. Since we are interested in the asymp-
totic convergence of multigrid preconditioned GMRES with a restart after m
iterations, we focus on the residuals r(m), r(2m), . . . , r(j·m). Then, a “com-
plete” iteration with iteration index j consists of m multigrid preconditioned
GMRES(m) steps. The GMRES(m)-polynomial which characterizes the j-th
complete iteration is denoted by P

(j)
m , leading to the following recursion for

the corresponding residual

r(j·m) = P (j)
m (LC−1)r((j−1)·m). (7.10)
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As unitary transformations do not affect the convergence properties of GM-
RES, we consider the Fourier representations

M̃
3g

:= bdiag
{

[M3g(θ)]θ∈ΘP
3g

}
and L̃

3g
:= bdiag

{
[L3g(θ)]θ∈ΘP

3g

}
(compare with Section 6.5) instead of the representations M and L with re-
spect to the Euclidean basis.

7.4.1 Analysis based on the GMRES(m)-polynomial

To obtain a quantitative result for the convergence of GMRES(m) precon-
ditioned by multigrid, we present an approach which explicitly depends on
the iteration index j. Assuming a repeated application of preconditioned
GMRES(m), the following function g has to be minimized in order to find the
coefficients α(j)

n (n = 1, ...,m) of the j-th GMRES(m)-polynomial P (j)
m (see

(7.8), (7.9), and (7.10)):

g(α(j)
1 , . . . , α(j)

m ) :=〈
P (j)

m

(
I − L̃

3g
M̃

3g
(L̃

3g
)−1
)

r̃((j−1)m), P (j)
m

(
I − L̃

3g
M̃

3g
(L̃

3g
)−1
)

r̃((j−1)m)
〉

2
.

The α(j)
n (n = 1, . . . ,m) are obtained by solving the linear system

∂g

∂α
(j)
�

=

2
m∑

n=1

α(j)
n

〈
(I − L̃

3g
M̃

3g
(L̃

3g
)−1)� r̃((j−1)m), (I − L̃

3g
M̃

3g
(L̃

3g
)−1)nr̃((j−1)m)

〉
2

+2
〈
(I − L̃

3g
M̃

3g
(L̃

3g
)−1)� r̃((j−1)m), r̃((j−1)m)

〉
2

= 0 for � = 1, . . . ,m.

(7.11)

The solution of (7.11) can easily be computed for every iteration index j due

to the sparse block structure of (I − L̃
3g

M̃
3g

(L̃
3g

)−1)� (� = 1, ...,m), if the
previous Fourier transformed residual r̃((j−1)m) is given. We simply prescribe
a randomly chosen initial residual r̃(0). This allows the calculation of α(1)

�

(� = 1, ...,m) by (7.11) and gives r̃(1·m) = P
(1)
m (I−L̃

3g
M̃

3g
(L̃

3g
)−1)r̃(0). Then,

the computation of r̃(j·m) for j > 1 is straightforward due to its recursive
definition, see (7.10). This leads to an average reduction factor ρacc

3 (j,m) for
a complete iteration which can be obtained by the three-grid Fourier analysis:

ρacc
3 (j,m) :=

[(‖r̃(j·m)‖2

‖r̃(0)‖2

)1/m]1/j

. (7.12)
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The superscript “acc” is used as an abbreviation for “accelerated,” since the
combination of multigrid and GMRES(m) can be interpreted as an accel-
eration of the multigrid convergence speed by an additional application of
GMRES(m).
ρacc
3 (j,m) usually tends to a constant for j ≥ 20. Moreover, all resulting

GMRES(m) polynomials are almost identical for j ≥ 20, i.e., P (j)
m becomes

“stationary.” The particular choice of the initial residual r̃(0) does not influ-
ence the average reduction factors for j � 1, which has been confirmed by sys-
tematic test calculations [69]. Thus, it is expected that ρacc

3 (m) := ρacc
3 (20,m)

matches well with numerical reference values.

Remark 7.5 (Relation to optimal weighting parameters). From the
explicit calculation of the polynomial coefficients it is possible to derive a
relation between multiparameter methods like multistage smoothers and an
acceleration with GMRES(m). For example, m-stage point RB-JAC relax-
ation applied to the biharmonic equation—discussed in Section 4.1.5—is con-
nected to multigrid preconditioned GMRES(m) in the following sense: The
optimal multistage parameters constituting them-stage polynomial (3.13) can
be expressed by the coefficients of the “stationary” minimal residual polyno-
mial. Similarly, it is possible to establish a relation between an overweighting
of residuals and an acceleration with GMRES(m). More generally, it can
be concluded that the Krylov subspace acceleration implicitly improves the
coarse-grid correction or the relaxation procedure if one of these multigrid
components clearly hampers the overall multigrid convergence. This acceler-
ation is particularly useful as it is applicable to situations in which it is not
easy to tune a multigrid method. Details are given in [67, 69]. �

7.4.2 Analysis based on the spectrum of the residual
transformation matrix

If we use the above Fourier representation I − L̃
3g

M̃
3g

(L̃
3g

)−1 the corre-
sponding spectrum can be calculated numerically. The common way (see for
example, [52, 53]) to analyze the convergence of GMRES is to exploit infor-
mation about the spectrum σ of the iteration matrix LC−1.

Suppose that all eigenvalues of I− L̃
3g

M̃
3g

(L̃
3g

)−1 are located in an ellipse
E(c, d, a) which excludes the origin. (c, 0) denotes the center, d the focal
distance, and a the major semi-axis. Note that σ is always symmetric with
respect to the real axis, so we only consider ellipses which are aligned with the
axes and where the ordinate of the center equals zero. Then, it is known [53]
that the absolute value of the polynomial

tm(z) := Tm(
c

d
− 1
d
z)/Tm(

c

d
) = Tm(ẑ)/Tm(

c

d
) with z, ẑ := (

c

d
− 1
d
z) ∈ C
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is small on the spectrum of I − L̃
3g

M̃
3g

(L̃
3g

)−1. Here, Tm represents the
Chebychev polynomial of degree m of the first kind, see [53].

If I− L̃
3g

M̃
3g

(L̃
3g

)−1 is diagonalizable, i.e., I− L̃
3g

M̃
3g

(L̃
3g

)−1 = XDX−1

with diagonal matrix D, then (7.9) yields

‖r̃(j·m)‖2 ≤ ‖tm(I − L̃
3g

M̃
3g

(L̃
3g

)−1)‖2 ‖r̃((j−1)m)‖2

≤
[
‖tm(I − L̃

3g
M̃

3g
(L̃

3g
)−1)‖2

]j
‖r̃(0)‖2

≤
[
κ2(X)Tm(

a

d
)/Tm(

c

d
)
]j

‖r̃(0)‖2,

where κ2(X) denotes the spectral condition number of the transformation
matrix X [53]. Using these inequalities, we obtain for an arbitrary complete
iteration j

ρacc
3 (j,m) ≤ NE

m ≤ (κ2(X))1/m TE
m with (7.13)

NE
m := (‖tm(I − L̃

3g
M̃

3g
(L̃

3g
)−1)‖2)1/m and TE

m :=
(
Tm(

a

d
)/Tm(

c

d
)
)1/m

,

as approximations for the average reduction factors of m multigrid precondi-
tioned GMRES(m) steps (see (7.12)).

In [54] it is stated that (7.13) is an asymptotic result and that the actual
residual norm should rather behave like TE

m without κ2(X). This presumption,
in connection with the two-grid Fourier analysis, is validated in [69] where it is
found that the heuristic estimate TE

m gives a certain insight into the asymptotic
accelerated convergence whereas the upper bound NE

m is too pessimistic in
general. However, the main focus lies on ρacc

3 (m).

Remark 7.6 (Determination of ellipses). We would like to point out
that the eigenvalue distribution of the three-grid error transformation matrix
M̃

3g
provided by the accompanying software might be used to determine the

ellipses described above. Note that the spectrum of I − L̃
3g

M̃
3g

(L̃
3g

)−1 is
simply shifted along the real axis by (1, 0)T compared to the spectrum of

M̃
3g

. �
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Appendix A

FOURIER REPRESENTATION OF
RELAXATION

Appendix A provides the Fourier representations S̃RB
h (θ, ω) of block RB-

JAC relaxations for two- and three-dimensional problems. Each smooth-
ing method under consideration consists of two partial steps. The corre-
sponding Fourier symbols are denoted by S̃R

h (θ, ω) = 1
2 (rij)i,j=1,...,2d and

S̃B
h (θ, ω) = 1

2 (bij)i,j=1,...,2d ; compare with Section 5.4.4.

We use notation (5.6) in order to characterize the different smoothing meth-
ods. Note that it is sufficient to specify Ip from Definition 5.5 to obtain
a unique characterization. Then, the two disjoint subsets GR

h and GB
h—

specifying G̃h from (5.6) for each partial step—are given by

GR
h = {x = κh ∈ Gh |

∑
j∈Ip

κj even}, GB
h = {x = κh ∈ Gh |

∑
j∈Ip

κj odd}.

Furthermore, the subspace J0, which characterizes those grid points where
the unknowns are smoothed simultaneously in a block, reads as

J0 = {κ ∈ J | κj = 0 for j ∈ Ip} .

Recall that for RB-JAC relaxations we have J− = J \ J0 and J+ = ∅. Then
it is possible to calculate the Fourier symbols Aα of the corresponding block
JAC relaxations—which constitute the entries of S̃R

h (θ, ω) and S̃B
h (θ, ω)—as

in (5.10):

Aα := A(θα, ω) = 1 − ω
L̃h(θ)

L̃0
h(θ)

(θ(0...0) ∈ Θ2h)

with L̃h(θ) =
∑
κ∈J

lκ exp (iθκ) and L̃0
h(θ) =

∑
κ∈J0

lκ exp (iθκ) .

Summarizing, for each of the following block relaxations we simply have to
specify Ip, S̃R

h (θ, ω) and S̃B
h (θ, ω).

203
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A.1 Two-dimensional case

x1-Line RB-JAC Relaxation: Ip = {2}

S̃R
h (θ, ω) = 1

2

⎛
⎜⎜⎝
A00 + 1 0 0 A01 − 1

0 A11 + 1 A10 − 1 0
0 A11 − 1 A10 + 1 0

A00 − 1 0 0 A01 + 1

⎞
⎟⎟⎠ ,

S̃B
h (θ, ω) = 1

2

⎛
⎜⎜⎝
A00 + 1 0 0 −A01 + 1

0 A11 + 1 −A10 + 1 0
0 −A11 + 1 A10 + 1 0

−A00 + 1 0 0 A01 + 1

⎞
⎟⎟⎠ .

x2-Line RB-JAC Relaxation: Ip = {1}

S̃R
h (θ, ω) = 1

2

⎛
⎜⎜⎝
A00 + 1 0 A10 − 1 0

0 A11 + 1 0 A01 − 1
A00 − 1 0 A10 + 1 0

0 A11 − 1 0 A01 + 1

⎞
⎟⎟⎠ ,

S̃B
h (θ, ω) = 1

2

⎛
⎜⎜⎝
A00 + 1 0 −A10 + 1 0

0 A11 + 1 0 −A01 + 1
−A00 + 1 0 A10 + 1 0

0 −A11 + 1 0 A01 + 1

⎞
⎟⎟⎠ .

A.2 Three-dimensional case

Due to space limitations, we only specify the nonzero entries rij and bij of
S̃R

h (θ, ω) and S̃B
h (θ, ω), respectively, in the three-dimensional case.

x1-Line RB-JAC Relaxation: Ip = {2, 3}

r11 = A000 + 1, r14 = A011 − 1, r22 = A111 + 1, r23 = A100 − 1,

r32 = A111 − 1, r33 = A100 + 1, r41 = A000 − 1, r44 = A011 + 1,

r55 = A010 + 1, r57 = A001 − 1, r66 = A101 + 1, r68 = A110 − 1,

r75 = A010 − 1, r77 = A001 + 1, r86 = A101 − 1, r88 = A110 + 1.
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b11 = A000 + 1, b14 = −A011 + 1, b22 = A111 + 1, b23 = −A100 + 1,

b32 = −A111 + 1, b33 = A100 + 1, b41 = −A000 + 1, b44 = A011 + 1,

b55 = A010 + 1, b57 = −A001 + 1, b66 = A101 + 1, b68 = −A110 + 1,

b75 = −A010 + 1, b77 = A001 + 1, b86 = −A101 + 1, b88 = A110 + 1.

x2-Line RB-JAC Relaxation: Ip = {1, 3}
r11 = A000 + 1, r16 = A101 − 1, r22 = A111 + 1, r25 = A010 − 1,

r33 = A100 − 1, r37 = A001 + 1, r44 = A011 − 1, r48 = A110 + 1,

r52 = A111 + 1, r55 = A010 − 1, r61 = A000 + 1, r66 = A101 − 1,

r73 = A100 − 1, r77 = A001 + 1, r84 = A011 − 1, r88 = A110 + 1.

b11 = A000 + 1, b16 = −A101 + 1, b22 = A111 + 1, b25 = −A010 + 1,

b33 = −A100 + 1, b37 = A001 + 1, b44 = −A011 + 1, b48 = A110 + 1,

b52 = A111 + 1, b55 = −A010 + 1, b61 = A000 + 1, b66 = −A101 + 1,

b73 = −A100 + 1, b77 = A001 + 1, b84 = −A011 + 1, b88 = A110 + 1.

x3-Line RB-JAC Relaxation: Ip = {1, 2}
r11 = A000 + 1, r18 = A110 − 1, r22 = A111 + 1, r27 = A001 − 1,

r33 = A100 − 1, r35 = A010 + 1, r44 = A011 − 1, r46 = A101 + 1,

r53 = A100 + 1, r55 = A010 − 1, r64 = A011 + 1, r66 = A101 − 1,

r72 = A111 − 1, r77 = A001 + 1, r81 = A000 − 1, r88 = A110 + 1.

b11 = A000 + 1, b18 = −A110 + 1, b22 = A111 + 1, b27 = −A001 + 1,

b33 = −A100 + 1, b35 = A010 + 1, b44 = −A011 + 1, b46 = A101 + 1,

b53 = A100 + 1, b55 = −A010 + 1, b64 = A011 + 1, b66 = −A101 + 1,

b72 = −A111 + 1, b77 = A001 + 1, b81 = −A000 + 1, b88 = A110 + 1.

(x1, x2)-Plane RB-JAC Relaxation: Ip = {3}
r11 = A000 + 1, r17 = A001 − 1, r22 = A111 + 1, r28 = A110 − 1,

r33 = A100 − 1, r36 = A101 + 1, r44 = A011 − 1, r45 = A010 + 1,

r54 = A011 + 1, r55 = A010 − 1, r63 = A100 + 1, r66 = A101 − 1,

r71 = A000 − 1, r77 = A001 + 1, r82 = A111 − 1, r88 = A110 + 1.
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b11 = A000 + 1, b17 = −A001 − 1, b22 = A111 + 1, b28 = −A110 − 1,

b33 = −A100 − 1, b36 = A101 + 1, b44 = −A011 − 1, b45 = A010 + 1,

b54 = A011 + 1, b55 = −A010 − 1, b63 = A100 + 1, b66 = −A101 − 1,

b71 = −A000 − 1, b77 = A001 + 1, b82 = −A111 − 1, b88 = A110 + 1.

(x1, x3)-Plane RB-JAC Relaxation: Ip = {2}

r11 = A000 + 1, r15 = A010 − 1, r22 = A111 + 1, r26 = A101 − 1,

r33 = A100 − 1, r38 = A110 + 1, r44 = A011 − 1, r47 = A001 + 1,

r51 = A000 + 1, r55 = A010 − 1, r62 = A111 + 1, r66 = A101 − 1,

r74 = A011 − 1, r77 = A001 + 1, r83 = A100 − 1, r88 = A110 + 1.

b11 = A000 + 1, b15 = −A010 − 1, b22 = A111 + 1, b26 = −A101 − 1,

b33 = −A100 − 1, b38 = A110 + 1, b44 = −A011 − 1, b47 = A001 + 1,

b51 = A000 + 1, b55 = −A010 − 1, b62 = A111 + 1, b66 = −A101 − 1,

b74 = −A011 − 1, b77 = A001 + 1, b83 = −A100 − 1, b88 = A110 + 1.

(x2, x3)-Plane RB-JAC Relaxation: Ip = {1}

r11 = A000 + 1, r13 = A100 − 1, r22 = A111 + 1, r24 = A011 − 1,

r31 = A000 − 1, r33 = A100 + 1, r42 = A111 − 1, r44 = A011 + 1,

r55 = A010 + 1, r58 = A110 − 1, r66 = A101 + 1, r67 = A001 − 1,

r76 = A101 − 1, r77 = A001 + 1, r85 = A010 − 1, r88 = A110 + 1.

b11 = A000 + 1, b13 = −A100 + 1, b22 = A111 + 1, b24 = −A011 + 1,

b31 = −A000 + 1, b33 = A100 + 1, b42 = −A111 + 1, b44 = A011 + 1,

b55 = A010 + 1, b58 = −A110 + 1, b66 = A101 + 1, b67 = −A001 + 1,

b76 = −A101 + 1, b77 = A001 + 1, b85 = −A010 + 1, b88 = A110 + 1.
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