
Cálculo Variacional 

 

O Problema da Braquistócrona 

 

 Uma partícula cai do ponto (1) ao ponto (2), deslizando sem atrito sobre uma 

curva y = y(x). Determinar a curva correspondente ao tempo mínimo de queda. 

 

 

 

Solução:  

 O tempo de queda é: 
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 Pelo princípio da conservação da energia (admite-se um sistema conservativo): 
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 Em (1), I é uma função especial, denominada funcional. O funcional do 

problema da braquistócrona depende de uma variável independente, x, de uma variável 

dependente, y, e de sua derivada primeira, 'y . 

 Genericamente: 
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 O problema, contudo, ainda não foi solucionado, pois a expressão de y não é 

conhecida. Esse é o problema do Cálculo Variacional, que consiste em determinar as 

funções que extremizam o funcional: para o problema da braquistócrona, a trajetória y 

que produz um tempo mínimo de queda. Essas funções são obtidas após serem 

estabelecidas as condições necessárias à extremização do funcional, seguindo um 

procedimento análogo ao da procura de pontos extremos de uma função. 



Equação de Euler-Lagrange – Primeira Variação 

 

 O valor do funcional depende da função escolhida, função que corresponde ao 

caminho entre x1 e x2. 

 

 

 

 Admite-se a existência de um certo caminho, y(x), que extremiza o funcional em 

relação aos caminhos vizinhos, ou variados, ( )y x . Uma família de caminhos variados, 

dependentes de um parâmetro , é definida como: 

 

  ( ) ( ) εη( )y x y x x= +   (3) 

 

onde (x) é uma função derivável, arbitrariamente escolhida, que se anula em x1 e x2, 

isto é: (x1) = (x2) = 0. Note-se que, qualquer que seja a escolha de (x), quando  = 0 

os caminhos variados coincidem com o caminho extremizante. 

 Considerando os caminhos variados, o funcional 
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tem o seu valor extremo dado por: 
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uma vez que, por hipótese, y extremiza o funcional.  

 Substituindo (3) em (4), tem-se: 
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 Em (6), o funcional está escrito como função do parâmetro . Analogamente ao 

caso de uma função y = f(x), a condição necessária para que I  seja extremo em  = 0 é 

dada por: 
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 De (6): 
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 Como em  = 0 tem-se y y=  e ' 'y y= , a expressão (8) pode ser escrita como: 
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 Efetuando integração por partes, elimina-se η' : 
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 Note-se que o primeiro termo à direita é nulo, pois (x1) = (x2) = 0. 

Substituindo (10) em (9): 
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Lema Fundamental do Cálculo das Variações 
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com f(x) contínua e (x) continuamente derivável e anulando-se em x1 e em x2, então 

f(x) = 0 no intervalo considerado. 

 

 De (11), levando-se em conta o Lema Fundamental do Cálculo das Variações, 

tem-se que: 
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que é a Equação de Euler-Lagrange, e é a condição a que y deve obedecer para que seja 

extremo do funcional.  



Solução do Problema da Braquistócrona 

 

 O funcional: 
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pode ser particularizado, admitindo: 

 

 v1 = 0 

 ponto (1) na origem 

 sentido do eixo y invertido 

 O funcional, agora, é escrito como: 
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 Para a aplicação da equação de Euler-Lagrange, são calculados: 
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 Finalmente, obtém-se uma equação diferencial: 
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 Para a solução da equação diferencial, faz-se uma mudança de variáveis: 
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e, portanto, 
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 A equação é reescrita como: 
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 Integrando: 
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 Resolvendo para 'y : 
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 Da equação anterior: 
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e, então: 
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tem-se: 
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 O resultado da integração é: 
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 Para t = 0, x = 0, de onde vem: 0 0x = . 
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 As equações acima são as equações paramétricas da ciclóide. 

 Ciclóide é a curva descrita por um ponto de uma circunferência que rola, sem 

deslizar, sobre uma reta; A é o raio da circunferência. 

 

 


