Problemas com a varidvel tempo
1.Sistema massa-mola sujeito a acdo de uma forca dependente do tempo
O problema € descrito pela equagdo:
mui +cu+ku = p(t) (1.2)
comt>0e:
m é a massa,

¢ é o coeficiente de amortecimento e

k é a rigidez da mola.

A forca p(t) pode ter uma variagdo qualquer no tempo.

As condigdes iniciais sao:

u(0) =y, (12)
du .
E|t:0 =U, (1.3)

A solucdo analitica é dada por:
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Para resolver o problema com diferencas finitas, sdo feitas as substitui¢oes:

Uj,, —2U; +U;

Uj = A (1.5)
e
u..—u.
- Tl j-1
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O indice j refere-se ao tempo t; = jAt e At é 0 passo ou incremento de tempo.
A versdo discretizada da equacéo diferencial, apds a substituicdo das derivadas

pelas suas aproximacoes € escrita como:
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Para j =0,1,2,...0s valores de uj+1 sdo obtidos sucessivamente a partir dos valores
ja conhecidos de uj, uj-1, além de p;j que é sempre conhecido. O processo de marcha no
tempo tem inicio com j = 0. Porém, com j = 0 aparece o0 termo u-1, que corresponde a

u(=At), ou seja, a um valor fora do dominio. Das formulas de aproximacéo (1.5) e (1.6),

pode-se esCrever.



Uiy A (1.9)
e

U, = ulz_Al:-l (1.10)

Da equacéo (1.10) obtém-se:

u, = 2Atu, +u_, (1.11)

Substituindo a expressdo acima na equacéo (1.9), pode-se escrever:

i, = 2AtU, + u_Alt; 2Uy+U, (1.12)

Resolvendo para u-1:

u_, = U, — Atu, + %Atzl'jo (1.13)

Os valores de u, e de U, sdo conhecidos a partir das condicdes iniciais e, da
propria equacéo diferencial pode-se determinar o valor de Uj,:
Po —CU, — I(uo

f, =0 "% (1.14)
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2. Equacéo da difuséo
A equacdo da difusdo € escrita como:

2
M Da—l:, D é constante (2.1)
ot OX

e pode representar tanto o fenémeno da transferéncia de massa como da transferéncia
de calor; D representa o coeficiente de difusdo e sera admitido constante. Para a
obtencdo da versdo discretizada da equacdo da difusdo, deve-se considerar um ponto
Xi = IAX e um tempo tj = jAt. Assim, tem-se:

u u .

ou i+l Yij
> — it T 2.2
G’t X\t At ( )
e
o°u U, —2U . +U .
v e (23)
OX ! AX
A versao discretizada é:
U j+l —U; i ui+lj _2ui i +ui—1j
’ 1 =D—= ’ ’ (2.4)
At AX?
Resolvendo para u; ;.,:
T (U +(1—2r)ui'j +TU | (2.5)
com:
DAt
r= 2.6
AX? (26)

Uma formula do tipo da (2.5), na qual os valores no tempo tj+1 sdo obtidos

diretamente dos valores conhecidos nos instantes anteriores é denominada explicita.



Exemplo:

Resolver a equacdo da difusdo no dominio 0 < x <L, com a condi¢do inicial:

uo(x):%x, para0<x<L/2
2
uo(x):E(L—x), L/2<x<L

Adotar D=1eL =1, com Ax = L/10.
Utilizar At = 0,001, At = 0,005, At = 0,0051 e At =0,006.

Solucdo:

As respostas estdo apresentadas na figura abaixo.

1 o=

At=0.001
- At =0.005

At =0.0051

At=10.006

0.4 —

02 —

tempo

Solucdo da equacdo da difusdo com diferentes valores de At em x = L/2.



Os métodos explicitos sdo condicionalmente estaveis, ou seja, para valores de
um passo de tempo maiores que um passo de tempo critico, ocorre uma instabilidade
numérica que conduz a resultados inaproveitaveis. Para a equagdo (2.5), o passo de

tempo critico é:

2
At <2 2.7)
2D

Em termos de r:

= Zfzt g% 2.8)

Para o exemplo:

At r
0,001 0,1
0,005 0,5
0,0051 0,51
0,006 0,6

Apesar da simplicidade dos métodos explicitos, para a sua utilizacdo €
necessario o uso de passos de tempo muito pequenos. O valor de Ax também deve ser

suficientemente pequeno.
O método de Crank-Nicholson é estavel para todos os valores de r. Neste

método, a equacdo diferencial é atendida no ponto (iAx, (j + 1/2)At) e ulox? é

substituida pela média das aproximacdes nos passos de tempo jAt e (j + 1)At, isto é:

ui,j+l _ui'j _ 1 ui+]_’j+l _zui,j+l +ui71,j+l + ui+l,j _2ui,j +uifl,j (2-9)
At 2

AX? AX?
0 que fornece a seguinte expressao:

_rui—l,j+l + (2 + 2r)ui,j+1 - rui+1,j+1 = rui—l,j + (2 - zr)ui,j - rui+1,j (2-10)



Um método no qual a determinacdo das varidveis no instante tj1 requer a

solucdo de um sistema de equacgdes é denominado implicito.



Consisténcia, Convergéncia e Estabilidade

Para que a solucdo fornecida por um esquema numérico represente uma
aproximacdo razoavel da solucdo exata do problema matematico, é necessario que o
esquema utilizado apresente propriedades de consisténcia, convergéncia e estabilidade.
Estas propriedades estdo inter-relacionadas na solu¢do numérica e sdo fungdes dos erros

envolvidos.

Consisténcia: um esquema de diferencas finitas € dito consistente quando, ao
refinarem-se as aproximacfes, no limite as equacOes aproximadas tornam-se
matematicamente equivalentes as equacOes diferenciais originais. Assim, se AXx — 0,

Ay — e At —» 0, e —> 0 (¢ € 0 erro de truncamento da equacdo aproximada).

Convergéncia: a solucdo numérica tende para a solucdo exata quando se
diminuem os incrementos espaciais e 0 incremento de tempo. Se, no ponto X = Xi, Ui
representa a solugdo exata e U; representa a solugdo aproximada, o esquema é
convergente quando o erro de discretizagdo w; = ui — Ui tende para zero, em qualquer

ponto i a medida que se refina a discretizacéo.

Estabilidade: é uma propriedade relacionada, basicamente, com o esquema de
integracdo no tempo. Quando um esquema numeérico qualquer é instavel, uma pequena
perturbacdo (um erro de truncamento, por exemplo) tende a crescer a medida que o
processo de calculo avancga no tempo, conduzindo a erros acima de valores toleraveis e
comprometendo irremediavelmente a solucdo numeérica. Por exemplo, o método da
diferenca central, utilizado no exemplo do sistema massa-mola so é estavel para valores

do passo de tempo At inferiores a um valor critico definido pela expresséo:

onde o, é a freqiiéncia natural do sistema.



TEOREMA DE LAX

De acordo com o teorema de Lax, se uma aproximacao em diferencgas finitas de
um problema de valores iniciais é consistente, entdo a estabilidade é uma condicéo

necessaria e suficiente para a convergéncia.



3. Equacéo da onda

A equagéo
10%u o
o (3.1)

governa o problema da propagacdo de onda e pode representar varios problemas, entre
0s quais: vibragdo transversal de uma de uma corda ou vibracdo longitudinal de uma

barra. No primeiro caso,

\F
c=,[—
Yo,

onde T € a tensd@o na corda e p € a densidade linear do material.

No segundo caso,

T
c= /—
o)

onde E € o mddulo de elasticidade longitudinal do material.
Para obter a versdo discreta da equacdo (3.1) sdo utilizadas as formulas de

diferenca central para as derivadas parciais e obtém-se:

iui,jﬂ _2ui,j +ui,j—1 ui+l,j _Zui,j +ui—l,j

= 3.2
C2 AtZ AXZ ( )
Resolvendo para u; ;.,:
cAt )
U jn = E (ui+l,j _2ui,j +Uiy )+ 2ui,j —Ui (3-3)

ou:



u U, | +(2—2r)u” +rU = (3.4)

ij+l

CAt ?
comr=|—|.
AX

A equacdo (3.4) é caracteristica de um método explicito, que ndo é

condicionalmente estavel. Sugestdo para escolha do passo de tempo: cAt < AX.



