
Problemas com a variável tempo 

 

1.Sistema massa-mola sujeito à ação de uma força dependente do tempo 

 

 O problema é descrito pela equação: 

 

( )mu cu ku p t+ + =  (1.1) 

 

com t  0 e:  

 

m é a massa, 

c é o coeficiente de amortecimento e 

k é a rigidez da mola. 

 

A força p(t) pode ter uma variação qualquer no tempo. 

 

 As condições iniciais são: 
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 A solução analítica é dada por: 
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 Para resolver o problema com diferenças finitas, são feitas as substituições: 
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 O índice j refere-se ao tempo tj = jt e t é o passo ou incremento de tempo. 

 A versão discretizada da equação diferencial, após a substituição das derivadas 

pelas suas aproximações é escrita como: 
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com: 
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 Para j = 0,1,2,...os valores de uj+1 são obtidos sucessivamente a partir dos valores 

já conhecidos de uj, uj−1, além de pj que é sempre conhecido. O processo de marcha no 

tempo tem início com j = 0. Porém, com j = 0 aparece o termo u−1, que corresponde a 

u(−t), ou seja, a um valor fora do domínio. Das fórmulas de aproximação (1.5) e (1.6), 

pode-se escrever: 
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 Da equação (1.10) obtém-se: 

 

 
1 0 12u tu u−=  +  (1.11) 

 

 Substituindo a expressão acima na equação (1.9), pode-se escrever: 
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 Resolvendo para u−1: 
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 Os valores de 0u  e de 0u  são conhecidos a partir das condições iniciais e, da 

própria equação diferencial pode-se determinar o valor de 0u : 
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2. Equação da difusão  

 

 A equação da difusão é escrita como: 
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e pode representar tanto o fenômeno da transferência de massa como da transferência 

de calor; D representa o coeficiente de difusão e será admitido constante. Para a 

obtenção da versão discretizada da equação da difusão, deve-se considerar um ponto 

xi = ix e um tempo tj = jt. Assim, tem-se: 
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 A versão discretizada é: 
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 Resolvendo para , 1i ju + : 
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 Uma fórmula do tipo da (2.5), na qual os valores no tempo tj+1 são obtidos 

diretamente dos valores conhecidos nos instantes anteriores é denominada explícita. 



Exemplo:  

Resolver a equação da difusão no domínio 0  x  L, com a condição inicial: 
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 Adotar D = 1 e L = 1, com x = L/10.  

 Utilizar t = 0,001, t = 0,005, t = 0,0051 e t = 0,006. 

 

Solução:  

As respostas estão apresentadas na figura abaixo. 

 

 

Solução da equação da difusão com diferentes valores de t em x = L/2. 

 

 

 



 Os métodos explícitos são condicionalmente estáveis, ou seja, para valores de 

um passo de tempo maiores que um passo de tempo crítico, ocorre uma instabilidade 

numérica que conduz a resultados inaproveitáveis. Para a equação (2.5), o passo de 

tempo crítico é: 
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 Em termos de r: 
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 Para o exemplo: 

t r 

0,001 0,1 

0,005 0,5 

0,0051 0,51 

0,006 0,6 

 

 Apesar da simplicidade dos métodos explícitos, para a sua utilização é 

necessário o uso de passos de tempo muito pequenos. O valor de x também deve ser 

suficientemente pequeno.  

 O método de Crank-Nicholson é estável para todos os valores de r. Neste 

método, a equação diferencial é atendida no ponto (ix, (j + 1/2)t) e 2u/x2 é 

substituída pela média das aproximações nos passos de tempo jt e (j + 1)t, isto é: 
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o que fornece a seguinte expressão: 

 

 1, 1 , 1 1, 1 1, , 1,(2 2 ) (2 2 )i j i j i j i j i j i jru r u ru ru r u ru− + + + + − +− + + − = + − −  (2.10) 



 Um método no qual a determinação das variáveis no instante tj+1 requer a 

solução de um sistema de equações é denominado implícito. 

 



Consistência, Convergência e Estabilidade 

 

 Para que a solução fornecida por um esquema numérico represente uma 

aproximação razoável da solução exata do problema matemático, é necessário que o 

esquema utilizado apresente propriedades de consistência, convergência e estabilidade. 

Estas propriedades estão inter-relacionadas na solução numérica e são funções dos erros 

envolvidos. 

 

 Consistência: um esquema de diferenças finitas é dito consistente quando, ao 

refinarem-se as aproximações, no limite as equações aproximadas tornam-se 

matematicamente equivalentes às equações diferenciais originais. Assim, se x → 0, 

y → e t → 0,  → 0 ( é o erro de truncamento da equação aproximada). 

 

 Convergência: a solução numérica tende para a solução exata quando se 

diminuem os incrementos espaciais e o incremento de tempo. Se, no ponto x = xi, ui 

representa a solução exata e Ui representa a solução aproximada, o esquema é 

convergente quando o erro de discretização wi = ui − Ui tende para zero, em qualquer 

ponto i à medida que se refina a discretização. 

 

 Estabilidade: é uma propriedade relacionada, basicamente, com o esquema de 

integração no tempo. Quando um esquema numérico qualquer é instável, uma pequena 

perturbação (um erro de truncamento, por exemplo) tende a crescer à medida que o 

processo de cálculo avança no tempo, conduzindo a erros acima de valores toleráveis e 

comprometendo irremediavelmente a solução numérica. Por exemplo, o método da 

diferença central, utilizado no exemplo do sistema massa-mola só é estável para valores 

do passo de tempo t inferiores a um valor crítico definido pela expressão:  
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onde n é a freqüência natural do sistema. 



 

 

TEOREMA DE LAX 

 

 De acordo com o teorema de Lax, se uma aproximação em diferenças finitas de 

um problema de valores iniciais é consistente, então a estabilidade é uma condição 

necessária e suficiente para a convergência. 

 



3. Equação da onda 

 A equação  
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governa o problema da propagação de onda e pode representar vários problemas, entre 

os quais: vibração transversal de uma de uma corda ou vibração longitudinal de uma 

barra. No primeiro caso,  
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onde T é a tensão na corda e  é a densidade linear do material. 

 No segundo caso,  
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onde E é o módulo de elasticidade longitudinal do material. 

 Para obter a versão discreta da equação (3.1) são utilizadas as fórmulas de 

diferença central para as derivadas parciais e obtém-se: 
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 Resolvendo para , 1i ju + : 
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 A equação (3.4) é característica de um método explícito, que não é 

condicionalmente estável. Sugestão para escolha do passo de tempo: c t x   . 

 

 

 


