
O Método de Rayleigh-Ritz 
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com condições de contorno y(x1) = y(x2) =0, no Método de Rayleigh-Ritz a função y, 

que extremiza o funcional, é substituída por uma função aproximada y , definida como: 

 

  1 1 2 2

1

α α ... α α
n

n n i i

i

y
=

=  +  + +  =    (2) 

 

na qual as funções i , i = 1,2,...,n são conhecidas e linearmente independentes e os 

coeficientes α i , desconhecidos, devem ser determinados. 

 Substituindo y , definida em (2), no funcional (1), obtém-se um funcional 

aproximado 
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 Como as funções i  são conhecidas resulta que, tanto y  quanto 'y  dependerão 

somente dos parâmetros α i . Portanto, o funcional aproximado I  dependerá somente 

dos parâmetros α i . Logo, se 
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então 
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 Da condição de extremização, pode-se escrever: 

 

 
2

1

(1)

1 2

1 2

δ δα δα ... δα
α α α

x

n

nx

F F F
I dx

   
= + + + = 

   
  

 
2 2 2

1 1 1

1 2

1 2

δα δα ... δα
α α α

x x x

n

nx x x

F F F
dx dx dx

  
= + + + =

      

 
2 2 2

1 1 1

1 2

1 2

δα δα ... δα
α α α

x x x

n

nx x x

Fdx Fdx Fdx
  

= + + + =
      

 
1 2

1 2

δα δα ... δα 0
α α α

n

n

I I I  
= + + + =
  

 (5) 

 

 Como as variações δαi
 são arbitrárias, (1)δ I  só se anula quando: 
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 A equação (6) gera um sistema de equações cuja solução fornece os valores dos 

α i  que correspondem à melhor forma aproximada do tipo descrito em (2). Quando as 

soluções aproximadas atendem às condições de convergência do método, um aumento 

do número n de termos produz uma melhor representação da solução exara do 

problema. As condições de convergência são: 

 

1) as soluções aproximadas devem ser contínuas e suas derivadas devem ser contínuas 

até uma unidade a menos que a ordem do operador diferencial que aparece no funcional; 

 

2) as soluções aproximadas devem satisfazer exatamente as condições de contorno 

essenciais do problema; 

 

3) a sequência de funções deve ser tal que, no limite, quando n tende a infinito, o erro 

quadrático médio se anula: 
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 Por exemplo, dado o funcional 
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que representa a energia potencial total para a flexão de uma viga, obter uma solução 

aproximada para w que atenda às condições de contorno w(0) = w(L) = 0. 

 

Solução: 

 

 Primeira tentativa:  

 Fazendo α ( )w x x L= − , tem-se: ( )α 2
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 Substituindo as expressões anteriores no funcional, tem-se: 
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 Integrando: 
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 A condição de extremização é: 
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de onde vem: 
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e, portanto: 
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 A expressão da solução aproximada é: 
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do deslocamento máximo analítico. 

 

 Segunda tentativa: 
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 O funcional aproximado é: 
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 Integrando: 
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 Para a extremização, há duas condições: 
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 Da primeira condição de extremização: 
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 Da segunda condição: 
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 A solução aproximada: 
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é a solução analítica do problema. 

 Graficamente: 

 

 

 



Problemas propostos 

 

1. A partir do funcional da energia potencial total para a flexão de uma viga, encontre 

uma solução aproximada para uma viga de vão L engastada em x = 0 e livre em x = L, 

com carregamento constante, uniformemente distribuído, igual a q. Utilize um só 

parâmetro. 

 

2. A partir do funcional da energia potencial total para a flexão de uma viga, encontre 

uma solução aproximada para uma viga de vão L engastada em x = 0 e em x = L, com 

carregamento constante, uniformemente distribuído, igual a q. Utilize um só parâmetro. 

 

 Comparar as soluções aproximadas com as analíticas. 

 

 


