1 Introduction and finite-difference formulae

The mathematical formulation of most problems in science in-
volving rates of change with respect to two or more independent
variables, usually representing time, length or angle, leads either
to a partial differential equation or to a set of such equations.
Special cases of the two dimensional second-order equation
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where a, b, ¢, d, e, f, and g may be functions of the independent
variables x and y and of the dependent variable ¢, occur more
frequently than any other because they are often the mathemati-
cal form of one of the conservation principles of physics.
For reasons that are given in Chapter 4 this equation is said to
be elliptic when b?>—4ac <0, parabolic when b?>—4ac =0, and
hyperbolic when b*>—4ac>0.

Two-dimensional elliptic equations

These equations, of which the best known are Poisson’s equation
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and Laplace’s equation
624) *¢

=0,
ax> ay

are generally associated with equilibrium or steady-state prob-
lems. For example, the velocity potential for the steady flow of
incompressible non-viscous fluid satisfies Laplace’s equation and
is the mathematical way of expressing the idea that the rate at
which such fluid enters any given region is equal to the rate at
which it leaves it. Similarly, the electric potential V' associated
with a two-dimensional electron distribution of charge density p
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satisfies Poisson’s equation 8> V/dx?+9>V/dy>+ p/e =0, where ¢ is
the dielectric constant. This is the partial differential equation
form of the well-known theorem by Gauss which states that the
total electric flux through any closed surface is equal to the total
charge enclosed.

The analytical solution of a two-dimensional elliptic equation
is a function of the space co-ordinates x and y which satisfies the
partial differential equation at every point of the area S inside a
plane closed curve C and satisfies certain conditions at every point
on this boundary curve C (Fig. 1.1). The function ¢, for instance,
from which we can calculate the displacements and shear stresses
within a long solid elastic cylinder in a state of torsion satisfies
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at every point of a right cross-section, and has a constant value
round the perimeter of the cross-section. Similarly, the steady
motion of incompressible viscous fluid through a straight uniform
tube can be found from a function that satisfies Laplace’s equa-
tion at every point of the cross-section and equals 3(x*+y?) at
each point on the boundary.

The condition that the dependent variable must satisfy round
the boundary curve C is termed the boundary condition.
To the present, only a limited number of special types of
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elliptic equations have been solved analytically and the usefulness
of these solutions is further restricted to problems involving
shapes for which the boundary conditions can be satisfied. This
not only eliminates all problems with boundary curves that are
undefined in terms of equations, but also many for which the
boundary conditions are too difficult to satisfy even though the
equations for the boundary curves are known. In such cases
approximation methods, whether analytical or numerical in
character, are the only means of solution, apart from the use of
analogue devices. Analytical approximation methods often pro-
vide extremely useful information concerning the character of the
solution for critical values of the dependent variables but tend to
be more difficult to apply than the numerical methods, and will
not be discussed in this book. Of the numerical approximation
methods available for solving differential equations those em-
ploying finite-differences or finite elements are more frequently
used and more universally applicable than any other, although
finite elements are not considered in this book. Before outlining
these methods however, the reader should be aware of the
manner in which the term ‘approximation method’ is used.
Finite-difference methods are approximate in the sense that deriv-
atives at a point are approximated by difference quotients over a
small interval, i.e., d¢/ax is replaced by 8¢/8x where 8x is small
and y is constant, but the solutions are not approximate in the
sense of being crude estimates. The data of the problems of
technology are invariably subject to errors of measurement,
besides which, all arithmetical work is limited to a finite number
of significant figures and contains rounding errors, so even analyt-
ical solutions provide only approximate numerical answers.
Finite-difference methods generally give solutions that are either
as accurate as the data warrant or as accurate as is necessary for
the technical purposes for which the solutions are required. In
both cases a finite-difference solution is as satisfactory as one
calculated from an analytical formula. In future, all non-
analytical approximation methods will be called numerical
methods

They are not of course restricted to problems for which no
analytical solutions can be found. The numerical evaluation of an
analytical solution is often a laborious task, as can be seen by
inspecting the solution of the torsion problem for a rectangular
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cross-section defined by x = +a, y = +b, namely
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and numerical methods generally provide adequate numerical
solutions more simply and efficiently. This is certainly so with
finite-difference methods for solving partial differential equations.

In these methods (Fig. 1.1), the area of integration of the
elliptic equation, i.e. the area S bounded by the closed curve C, is
overlayed by a system of rectangular meshes formed by two
sets of equally spaced lines, one set parallel to Ox and the
other parallel to Oy, and an approximate solution to the differ-
ential equation is found at the points of intersection
P,1, Py, ..., P ... of the parallel lines, which points are called
mesh points. (Other terms in common use are pivotal, nodal,
grid, or lattice points.) This solution is obtained by approximating
the partial differential equation over the area S by n algebraic
equations involving the values of ¢ at the n mesh points internal
to C. The approximation consists of replacing each derivative of
the partial differential equation at the point P;; (say) by a
finite-difference approximation in terms of the values of ¢ at P;;
and at neighbouring mesh points and boundary points, and in
writing down for each of the n internal mesh points the algebraic
equation approximating the differential equation. This process
clearly gives n algebraic equations for the n unknowns ¢, ,,
b1, ... bij ... . Accuracy can usually be improved either by
increasing the number of mesh points or by including ‘correction
terms’ in the approximations for the derivatives.

Parabolic and hyperbolic equations

Problems involving time ¢t as one independent variable lead
usually to parabolic or hyperbolic equations.

The simplest parabolic equation, dU/dt=kd>U/ax?, derives
from the theory of heat conduction and its solution gives, for
example, the temperature U at a distance x units of length from
one end of a thermally insulated bar after t seconds of heat
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conduction. In such a problem the temperatures at the ends of a
bar of length [ (say) are often known for all time. In other words,
the boundary conditions are known. It is also usual for the
temperature distribution along the bar to be known at some
particular instant. This instant is usually taken as zero time and
the temperature distribution is called the initial condition. The
solution gives U for values of x between 0 and [ and values of ¢
from zero to infinity. Hence the area of integration S in the x—t
plane (Fig. 1.2), is the infinite area bounded by the x-axis and the
parallel lines x=0,x=1 This is described as an open area
because the boundary curves marked C do not constitute a closed
boundary in any finite region of the x—t plane.

Applications of finite-difference methods of solution to
parabolic equations are no different from their application to
elliptic equations in so far as the integration of the differential
equation over S is approximated by the solution of algebraic
equations. The structure of the algebraic equations is different
however in that it propagates the solution forward from one
time row to the next in a step-by-step fashion.

Hyperbolic equations generally originate from vibration prob-
lems, or from problems where discontinuities can persist in time,
such as with shock waves, across which there are discontinuities
in speed, pressure and density. The simplest hyperbolic equation
is the one-dimensional wave equation 8*U/at>= c23*U/ox?, giv-
ing, for example, the transverse displacement U at a distance x
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from one end of a vibrating string of length [ after a time t. As
the values of U at the ends of the string are usually known for all
time (the boundary conditions) and the shape and velocity of the
string are prescribed at zero time (the initial conditions), it is seen
(Fig. 1.2), that the solution is similar to that of a parabolic
equation in that the calculation of U for a given x and ¢,
(0=<x <), entails integration of the equation over the open area
S bounded by the open curve C. Although hyperbolic equations
can be solved numerically by finite-difference methods, those
involving only two independent variables, x and ¢ say, are often
dealt with by the method of characteristics, especially if the initial
conditions and/or boundary conditions involve discontinuities.
This method finds special curves in the x—t plane, called charac-
teristic curves, along which the solution of the partial differential
equation is reduced to the integration of an ordinary differential
equation. This ordinary equation is generally integrated by num-
erical methods.

In conclusion, it is worth noting that whereas changes to the
shape of the area of integration or to the boundary and initial
conditions of partial differential equations often make their
analytical solutions impossible, such changes do not fundamen-
tally affect finite-difference methods although they sometimes
necessitate rather complicated modifications to the methods.

Finite-difference approximations to derivatives

When a function U and its derivatives are single-valued, finite
and continuous functions of x, then by Taylor’s theorem,

U(x+h)=U(x)+hU'(x)+1h2U"(x) +ih3U"(x) +. ..
1.1)

and
U(x—h)=U(x)—hU'(x) +ih%u"(x)-ih3U"(x).... (1.2)
Addition of these expansions gives
U(x+h)+U(x—h)=2U(x)+h2U"(x)+ O(h%), (1.3

where O(h?) denotes terms containing fourth and higher powers
of h. Assuming these are negligible in comparison with lower
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powers of h it follows that,

d? 1
U'(x)= (:172,) =3z {U(x+h)-2UX)+U((Xx—-h)}, (1.4
with a leading error on the right-hand side of order h2.
Subtraction of eqn (1.2) from eqn (1.1) and neglect of terms of:
order h? leads to

U'(x)= (g(—]) =—1—{U(x+h)— U(x—h)}, (1.5)
dx /,_, 2h
with an error of order h2.

Equation (1.5) clearly approximates the slope of the tangent at
P by the slope of the chord AB, and is called a central-difference
approximation. We can also approximate the slope of the tangent
at P by either the slope of the chord PB, giving the forward-
difference formula,

U’(x)=;1l-{U(x+ h)—U(x)}, (1.6)

or the slope of the chord AP giving the backward-difference
formula

1
U’(x)=ﬁ{U(x)— U(x—h)}. 1.7)
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Both (1.6) and (1.7) can be written down immediately from eqns
(1.1) and (1.2) respectively, assuming second and higher powers
of h are negligible. This shows that the leading errors in these
forward and backward-difference formulae are both O(h).

Notation for functions of several variables

Assume U is a function of the independent variables x and t.
Subdivide the x—t plane into sets of equal rectangles of sides
8x = h, 6t =k, by equally spaced grid lines parallel to Oy, defined
by x; =ih, i=0,+1,+2,..., and equally spaced grid lines paral-
lel to Ox, defined by t;=jk,j=0,1,2,..., as shown in Fig. 1.4.

Denote the value of U at the representative mesh point
P(ih, jk) by

Up = U(lh, ]k) = Ui,]"
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Then by eqn (1.4),
(w) _ (a2_u> _U{(i+ Dh, jk}—2U{ih, jk} + U{(i — 1)h, jk}
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with a leading error of order h2. Similarly,
62U> Uij+1—2Uij+ Uii—l
5 = AT koL 1.9
(6t2 o k? (1.9)

with a leading error of order k2.
With this notation the forward-difference approximation for

aUJot at P is
a_L_]= Ui,]‘+1_ U,

L)
o X , (1.10)

with a leading error of O(k).



