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Abstract

This paper introduces a finite difference numeric scheme designed for the computa-
tional solution of the nonlinear heat conduction problem in a homogeneous silicon
rod. It is shown that the numerical method is consistent with the conservation law,
is conditionally stable and convergent. Focusing on the implicit schemes, an effi-
cient Newton multigrid method with Gauss-Seidel red-black smoother is developed.
Computational experiments confirm the stability theory as well as the robustness of
the multigrid method.
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1 Introduction

Nonlinear heat equations describe a significant diversity of processes, including the
numerical modeling of gas filtration in porous media [1], the description of the phe-
nomenon of thermal oxidation of silicon [2, 3], the study of heat transfer in human
tissue [4], the problem of observer design, important in the microchip manufacturing
process in the semiconductor industry [5], the analysis of composite materials used
in the modern aerospace and nuclear industries [6], among others.

In this work, we address the following nonlinear heat equation for modeling ther-
mal conduction in a homogeneous silicon rod [7-9]:

ou 0 ou
pcl)& = 87‘% (K(u)aiﬁ) , TE (U,, b)7 t> 07 (1)

where the variable u(x, t) represents the temperature at position x at an instant ¢,
while p refers to the density and ¢, to the heat capacity at constant pressure, which
are assumed constant in the present model.

Thermal conductivity x often depends on temperature [10, 11], and in semicon-
ductor materials it usually assumes an exponential form [12, 13]:

k(u) = koeX", )

where kg is the value of its thermal conductivity at a reference temperature and x is
the temperature dependence coefficient associated with «. This work adopts Dirichlet
boundary conditions and, together with the initial conditions, complete the physical
model. They are represented by:

u(z,0) =uo(z), =z €la,b], ulat)=uq.(t) and wu(bt)=uy(t), t>0. (3)

Existence and uniqueness results for this model were demonstrated by Rincon,
Limaco and Liu [14].

In nonlinear diffusive problems, Dirichlet boundary conditions are fundamental.
Hristov [15], analyzing models of fluid penetration in wood capillaries, showed that
the relaxing Dirichlet boundary condition is physically more appropriate, considering
that real wood impregnation processes occur in infinite baths. In the computational
approach to modeling the glaciation of sea offshore pipelines completely exposed to
seawater, Krivovichev [16] uses a mathematical model based on the Dirichlet prob-
lem for the nonlinear heat equation in the domain with fixed boundaries.

Computer simulations using thermal numerical models play a crucial role in
improving technologies that are beneficial to several areas of science and engineer-
ing [17-19]. These computational models are primarily required to be accurate and
stable. Classical central discretization schemes have higher accuracy, but can gener-
ate unphysical or spurious numerical fluctuations that generally reduce the quality of
the numerical solution to an unusable level [19-21]. This numerical phenomenon,
common in computational fluid dynamics (CFD), was revealed by VonNeumann and
Richtmyer [22].
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The analysis of finite difference schemes for nonlinear heat equations has been the
subject of study by several researchers. Katayama et al. [23] demonstrated sufficient
conditions for the stability of an explicit Euler scheme. From an empirical perspec-
tive, Filipov et al. [8] reported evidence of robustness and stability in first-order tem-
poral discretizations using the implicit Euler method. Experiments with second-order
discretizations by the Crank-Nicolson (CN) method, on the other hand, can demon-
strate strong unphysical oscillations, as pointed out by Jooma and Harley [24].

In this work, we establish sufficient conditions for the stability of a family of
explicit and implicit numerical schemes (6 method), designed for the computational
solution of the nonlinear heat conduction model described by Egs. (1)-(3), used, in
particular, for semiconductor materials such as silicon. The focus, however, is on
the implicit formulation, which will be addressed in an integrated manner with the
multigrid method [25-28].

The rest of this paper is organized as follows. In Sect. 2 we present the develop-
ment of the numerical model, followed by the consistency and stability properties. In
Sect. 3 we describe the multigrid algorithm to accelerate convergence. In Sect. 4, we
conduct numerical experiments designed to evaluate the schemes in terms of stabil-
ity, accuracy and robustness. In Sect. 5, we discuss the main findings.

2 Numerical scheme and stability analysis

In this section, we present the development of the numerical model and some proper-
ties. Since x = 0 is the linear case, we can reformulate by rewriting the right-hand
side of Eq. (1) as (k(w)uz)e = (k(w))zz/x, for x # 0, so that this equation then
becomes:

ou  10%k(u
pcpa = -

~—

X 8.’1?2 ) X 7é 07 x € (CL,b), t > 0 (4)

The numerical model will be developed from a spatial mesh of the form:
Q" = {z; € a,b]; zi=a+ (i —1)h, 1 <i<ng},

where n,, is the number of points in the discretization and h = (b — a)/(n, — 1) is
the spatial increment. We similarly define a temporal mesh as t,, = nt € [0, tf],
with 0 < n < n,, where 7 = t;/n, is the time step, ¢ is the final time of the analysis
and n; is the number of time steps.

We conduct the discretization of Eq. (4) by applying the finite difference method
(FDM) using the central difference scheme (CDS) in the spatial direction, as well as
the 6 method [29] for the temporal approximation, with 8 € [0, 1]:

% (up —ul ) =0fi(u™) + (L=0)f;(u" "), 1<i<ng, 1<n<ng (5)

. »UZI) and

Where ’U,;L = u(xi’tn)’ u” = (u’f" P 7u7.74

it
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n n
Kig — 2K + R
xh?

fi(u™) = , K =r(l), 1<i<mn,. (6)

K2 ?

Equation (5) defines a family of explicit (if § = 0) and implicit (if 0 < 8 < 1) numer-
ical schemes for the computational solution of the partial differential equation (PDE)
(4). In particular, for & = 0 we have an explicit Euler discretization, # = 1 we have
an implicit Euler discretization, while for § = 1/2, a CN discretization.

2.1 Consistency

This section is dedicated to the study of consistency and has as its main result the
following Theorem:

Theorem 1 The scheme defined by Eq. (5) approximates the PDE (4) with discretiza-
tion error

_ (20— D)7 OPu
5(}1,7’,0) - 2 atz (l’“t )
> B alu (71)l 1

_ -1~ %/ N - -

pCpl;T ot (i tn)—— (1= 0) 1] .

9 X h2(l—1) 92k 52
2D [V ) + (= Ot

=2

Proof Consider the following finite difference formulas:

ou up —ul & =1 ol
= (@i, 1) = % + Z(_ : (Tiytn),
=2

ot ot
%(mi,tn) = R 2;:27 R 2 :02 ff;ll)!l)gil;(mi,tn)a
222(:5“7571 1) = ?Hl — 2’43; e h 22 hz(ll !1) gzlm (@istn—1)-

Substituting the expressions appropriately in Eq. (4) evaluated at the points (x;, t,,)
and (x;,t,—1), we obtain, respectively:
lTl 1 ()l KD

o0
Plp (ur —ul ") 1
ul —u? ™) + pey E -1) T w7 (@i, t) =
T = i ot

n n
— 2K} + K}y _

xh?
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o -1 g1, n—1_ o n-1_ .n-1
T du Kig1 — 2K R

C, _
/)T—P (uf —u™t) - /}sz Tw(”h-qu) = NE
=2

)

2 > h2(l—1) 0k
— —— (T, th—1)-
X & @) g (T tn1)

Adding Egs. (8) and (9) multiplied by 6 and 1 — 6 respectively, we obtain:

P (up — ™) = 0fi(u") + (1= ) fi(w" )
- 10w olu i1
oy SO Gt~ =0 G ) [T

2 > 52l/€ 82ZI€ h2(l71)
- = 0 (T, tn 1=0) 55 (@i tn-1) ¢~
X = { g (Tirtn) + (1= 0) 5 (@ 1)} 20!

We use the Taylor series

Au Ou - T
ﬁ(xi,tn,ﬂ = W(xi,tn) +) (-1 HW(
k=1

xiatn)7 l 2 17

to simplify the discretization error shown in Eq. (10), writing it as:

>  _I-1 alu

Ehm0) = —pey > = [0 =1+ 01| F i)

+(1—H)pcpZ%Z(—l)kﬁw(wi,tn) (11)

2 e 92k 9%k h2(l71)
_— 0 (i, tn)+ (1 — 0) o (4, by) &~
X i { T (CCZ, L)+ ( )(9{)321 (JCZ ] 1)} (21)'

By developing the double summation of the right-hand side of Eq. (11), we find:

IR o (e e Y A i
— ! — k! oti+k T 2l 1! ot3 2! Ot4 3! Otd
4 a6 2 1 94 2 95
IV RN W (Y Sl AC S i
T T }* 3! {( Viaram + 0V 55

s O 4#877‘+...}+T?’{(_1)17185“+

(=1) 3! Ot6 (=1) 41 ot7 4! 11 95
2 06 3 a7 4 a8
577 0%u 37 0'u 4T 0%
(’)5% (’)§W+(*1) Aos Tt

Next, we group similar terms together:
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0 7_l—l S ) ka 8l+ku B 2 83
Z ! Z<_ ) k! otl+k = (1! 2111 93
=2 k=1
(=1)*  (=D'| 50"
Tl T | T ae
‘ (12
+ (-1)° + (-1)*  (-1' 455 I :
213! 312! 411! s
oo -2 k
E:E: '
k(1 k ot!

=3 k=1

Substituting Eq. (12) into Eq. (11) and organizing the sums, we find

cp(20 — 1)1 0%u
E(h,T,0) = % o012 (ziytn)

0(-1)' +6 -1 — (-1)F
){ _(l_e)gk!(l—k)!} (13)

1-190
T e 1
2 h2(l 1) 82l a2ll€
z . 1—0)—" (st .
23w (Vg )+ (-0 et}
From the Binomial Theorem [29], for [ > 3, we have
l -2
PN I ety ke N(=1)° n-nx =0t =1t
(-1 _Zk!(l—/c)!l TR0y Rl s VA T
k=0 k=1
that is,
1—2
-1 -1 !
=—1-1(-1)""—(-1)" 1>3.
Pt kNl —k)
With this, we can simplify the term that appears in Eq. (13)
O(-1) +6—1 _(1_9)’§ (—1)k _ )
Il K=k )
k=1
where
(-1} +6—-1 1 1(—1)—1 — (—1) 1yl
si0) = )”* 7(179){ ( )“ ( ”}J 13 (1= 0) —1].(14)
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O

Finally, substituting Eq. (14) into Eq. (13), we obtain Eq. (7) for the discretization
error.

Provided that one chooses 6 such that § — ¢ when 7 — 0, for some constant
¢ € R, Theorem 1 shows that £(h, T,0) — 0 when h,7 — 0 and so the scheme is
consistent. In particular, this holds for 0 fixed within the interval [0, 1].

It is clear that for 6 = 1/2 (CN), the asymptotic order of the discretization error
is 2, while for fixed values of 8 € [0, 1] \ {1/2}, the asymptotic order becomes 1. A
more general strategy for achieving second-order accuracy is presented below:

Corollary 1.1 Let c € R. If0 € [0, 1] is such that 20 — 1 = 76’, for some fixed 0’ or
with 0" — cwhen T — 0, and —1 < 70’ < 1, then scheme (5) is consistent and the
asymptotic order of the discretization error is O(72, h?).

Proof Indeed, the definition 20 — 1 = 76’ implies that 6 — 1/2 when 7 — 0 and
the scheme is consistent. Furthermore, 0 < 6 < 1 implies that —1 <20 —1 < 1.
Finally, the discretization error becomes:

pep0'T% 0%u

E(h,T,0) = 5 w(%tnwom) + O(h?),

= O(72,h?).

O

In this work, another form of consistency is considered: the one that relates the
flux functions of the conservation law and the discrete model [30]. Thus, to proceed,
note that the scheme given in Eq. (5) can be rewritten in conservative form as:

u? = u?_l - % [F (ugl?u?—i-l?u?_lvu?-{-_ll) - F (u?—lau?au?—_f?u?_l)} 9 (15)
where
F (s ™ ) = = —— [ () — e ()]
L L T 7 pCth

(16)
1-6 n—
SO D e e ),

denotes the numerical flux.
A method written as in Eq. (15) is consistent with the underlying conservation law ifits
numerical flux reduces to the true flux in the case of constant flow [20, 30-32]. Thus,

let u(x,t) = u be constant, since the true flux of Eq. (4) is —(pc,x) "0k (u) /0, we
conclude by analyzing Eq. (16) that:
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1 Ok(u)

F(a,a,a,7) = 0= —
(.7, 3,7) e

Furthermore, since F is continuous and differentiable on every open V' € R?, it fol-
lows that F' is Lipschitz continuous on every bounded open set V. Thus, scheme (15),
and therefore (5), is consistent with conservation law (4).

2.2 Stability

In this section we will use the concept of total variation (TV) stability, defined accord-
ing to LeVeque [30] as follows:

Definition 1 [30] A numerical method is total variation stable, or simply TV-stable, if
all the approximations for 7 < 7y lie in some fixed set of the form

K={ueLir: TVp(u) <R and supp(u(-,t)) C[-M,M] Vtel0,T]},(17)

where R > 0 and M > 0 may depend on the initial data and the flux function, but
not on 7.

In Definition 1, supp(u(-,t)) represents the support of the function w(-,¢) and
supp(u(-,t)) C [-M, M] means that u(-,t) = 0 for all || > M (under these condi-
tions, u is said to have compact support). Furthermore, L;  designates the space of
functions consisting of all functions of « and ¢ in which the norm || - ||1 7 is finite
and is computed as:

T T oo
|mnT=/|wmwMﬁ=/‘/ (i, )| drd.
0 0 —00

Finally, the quantity TV translated to mesh functions is calculated as [30]:

T/ o)
TVr(u") = Z [TTV(u") + ||u"Jr1 — u"| }1] and TV(u") = Z |u;‘+1 — u;‘| .

n=0 i=—00

In LeVeque [30] and in Harten [31] one can find the demonstration of the following
convergence result concerning the TVs methods:

Theorem 2 [30] Suppose u" is generated by a numerical method in conservation
form with a Lipschitz continuous numerical flux, consistent with some scalar con-
servation law. If the method is TV-stable, then method converges to a weak solution.

The consistency associated with the conservation law was discussed and verified
in Sect. 2.1. Therefore, in order for Theorem 2 to be employed, TV stability must be
proven.

To ensure the compactness required in Definition 1, we assume initial data with
bounded total variation and with compact support on the contours. Furthermore, it
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is assumed that the mesh functions are zero for all points outside the boundaries. To
achieve the requirement of TV stability related to the existence of a constant R > 0,
we will use the following concept:

Definition 2 [31]. A numerical scheme is total variation diminishing stable (TVD-
stable), when it is possible to obtain:

TV (u"t) < TV (u"), (18)

for all mesh functions u™ associated with the method.

It can be shown that, for initial data with bounded total variation, the inequality (18)
implies the existence of R > 0, such that TV (u™) < R, so that Definition 1 is satis-
fied [30].

Definition 3 [30]. A numerical method is /1 -contracting if, for any two grid functions
u™~ ! and v?~! for which u”~! — v"~! has compact support, the grid functions u™
and v" satisfy

o ="y < "t = v,

Additionally, it can be shown that every [;-contracting method is TVD and holds Eq.
(18) [30]. In short, for a numerical method to be TVD-stable, it is sufficient that it be
l1-contracting. In this context, we present the main result of this section:

Theorem3 Let 0 <0< 1. 1If

1
0<(1- 9)%'%(/3) < —, with mjn{u?_z,v?_l} <p< max{u?_l,v{"_l},(l9)
h* pcy 2 i i

whatever the mesh functions u™~ 1 and v*~, then the numerical scheme in Eq. (5)
is l;-contracting.

Proof Let two mesh functions u” ! and v"*~! be those in which u”~! — v*~! has
compact support, and consider the functions u”™ and v" generated by the numerical
scheme (5). Then,

n n _ . n—1 n—1
u; —v; =u; ~ —uv; +

T 01 (™) — £ (V] 4 (= 0) [fi (un) = fi (v

PCp

(20)

From the mean value theorem, for some 3 between ' and v]*, we write:
r(ui') = s(vi') = xr(B}") (ui" — o),

so we can simplify the term f; (u™) — f; (v™), with f; defined according to Eq. (6),
as follows:
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fi") = fi(v") =
XE(BE1) (U?H - 1)zn+1> = 2xk(BF) (uf — o) + xk(Bl 1) (u?—1 - U?—1)
xh? '

Thus, after considering w}' = u}* — v}’, we can rewrite Eq. (20) as:

T n n n n n
+ P {0 [c(B] 1 )wiy — 26(B7 ) w} + K(BF_ 1 )wi 1] +
PCp

(1 =) [w(Br ) win! — 26(8) ™ wi ™ + (875w}

or even,

or
pC h2 [ ( L+l)wz+1+

. (21
KB )wi ] + (1=9) [R(BrDwit + R8T wi ]

n 2(1_9)7 n— n—

With the auxiliary parameter

al' = lﬁ(&)’
Y2 pey

we use Eq. (21) to establish the following inequality:
11+ 200 | [w}] < |1 —2(1—0)af | |w)!

+0 |y | |wi | + 0oy | [wiy]
+ 1 -0 |az+1 ’ ‘wﬂ-l | + 1 -0 ’a?:ll‘ |wzn:11

)

which is used to form the following sums:

oo [ee) [ee)
h Z 1+ 20a]||w!| <h Z |1—201- 9)04?_1| |w;"_1| +6h Z |y | Jw)t ] +

i=—00 i=—00 i=—00

Oh Z |a ||wz 1‘+\179|h Z }a2+1||wl+1 |+|179\h Z |o¢?:11||w?:11

i=—o00 i=—00 i=—00

(22)

Then, using hypothesis (19), the fact that 0 < ¢ < 1 and o > 0, we can combine the
terms of the index of the summation, in order to obtain:
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hy o +200f) fwp| <h > =201 =0)af ] [wp T+ 0n Y of lwi|+

3

o 3 o+ (L= 0k 3o a7 |+ 10k Do a7 fup ™|

Since the terms cancel, we finally conclude that:

o0 o0
" =vPlli=h Y e <h Y fwptt = et v

i=—00 i=—00

and the scheme Eq. (5) is /;-contracting.o0

The convergence follows directly from the fact that scheme (5) is a weak contrac-
tion in the /; norm. Indeed, if v(z,t) € C* ([a,b] x [0,¢y)) is a solution to Eq. (4)
that satisfies condition (19), then v satisfies the scheme (5) except for the discretiza-
tion error, Eq. (7), as shown in Eq. (10). It follows from this that if v}’ is a solution
produced by the numerical scheme for a certain set of initial data satisfied by v and
if B = v(x;,t,) — ul, then an estimate for the error can be obtained by (following
the proof of the mentioned Theorem):

IE"ls < [[E"H[i + O (%), 1<n<ny,
implying that:
IE"]s < [[E°[1 + O (1,h%), 1<n<n.

Theorem 2 establishes, however, that the differentiability assumption can be consid-
erably relaxed since, being TVD-stable, it converges to a weak solution.

Remark 1 Analyzing the issue of well-posedness for an initial-boundary value prob-
lem (IBVP) defined by a more general one-dimensional PDE, Rincon, Limaco and
Liu [14] adopted as their main assumption the boundedness of the functions x(u),
ug(z) and their derivatives. Oleinik and Kruzhkov [33], in a previous work, also
adopted this boundedness assumption on compact domains to establish the well-pos-
edness of an even more general multidimensional problem. In this sense, the IBVP
(1)-(3) satisfies these assumptions and is well-posed. Furthermore, an IBVP with
Neumann boundary conditions was investigated by Gavrilut and Morosanu [34].

A direct consequence of Theorem 3 is the following Corollary:

Corollary 3.1 The implicit Euler method applied to Eq. (4) is unconditionally
TVD-stable.

Proof 1t suffices to note that, when 6 = 1, constraint (19) holds, regardless of the
mesh parameters.
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63 Page 12 of 22 A.R. de Melo et al.

Similar results were reported by Harten [31], Yee, Warming and Harten [20] and
Yee [32].

2.3 Stability versus accuracy
The criterion established in Corollary 1.1, for schemes of order 2, consists of writing

 in such a way that we have 20 — 1 = 76’, with —1 < 76’ < 1. On the other hand,
from the stability condition (19) imposed by Theorem 3, we obtain:

TR\,
1—(}12 pcp> <76 <1. (23)

The inequality (23) indicates that any relation of the type 7 = ch, ¢ > 0, degenerates
the precision of the scheme to order 1, as the mesh is refined, since we have in this
case:

h—0 h—0
<r9<1 = 710251 = 6251,

h pep
¢ k(B)

that is, the scheme tends to the implicit Euler method.
In the following section we discuss how to include the multigrid accelerator in
solving the system of equations generated by the discretization.

3 Newton-MG solver

The multigrid method (MG) can be described as an iterative technique designed for
the efficient solution of large-scale linear systems, obtained as discrete models for
PDEs [25-28]. It uses a hierarchy of grids, where information flows through the
restriction operator 17, which transfers information from the fine grid Q" to the
immediately coarser grid Q7 and the prolongation operator I?, which transfers
information from the coarse grid Q¥ to the immediately finer grid Q". A commonly
used way to generate the Q¥ grid is the standard coarsening strategy, which consists
of doubling the Q" grid spacing in all directions [25]. In this case, we say that the
coarsening ratio (cr) is 2, that is, H = 2h.

The desired numerical solution is calculated on the finer grid, while on the coarser
grids, where the smoothers are more efficient [35], the correction estimates are calcu-
lated. The number of smoothings preceding the restriction and prolongation operators
are denoted by 11 (number of pre-smoothings) and v5 (number of post-smoothings),
respectively, while the manner in which the grids are visited is called a cycle. In this
work, cycles of type V will be used, also denoted by V' (v1, v2) [25, 36, 37].

Corrections can be made using two approaches: the correction scheme (CS),
which uses only the residual in the correction process, and the full approximation
scheme (FAS), which, in addition to the residual, also uses the approximate solution
itself in its correction strategy [25, 36]. In the context of nonlinear problems, both
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approaches can be used [38]. The CS strategy, however, must be preceded by a global
linearization.

In this paper we use a Newton linearization in conjunction with the CS scheme.
Algorithm 1 describes the CS scheme with cycles of type V (v1,v2) and standard
coarsening ratio (cr = 2), for the smoothing of the linear system at the grid level .
This algorithm implements the Gauss-Seidel red-black (GS-RB) smoother, which
updates the even rows first and only then updates the odd rows.

Algorithm 1 MG(1).
Require: Input data, initial and boundary conditions
1: while Stopping criterion is not reached do

if | = Ly.x then
solve the system A!"v!" = f'* on the coarse grid 02'h

else
smooth v; times Av!* = f* on the grid 02" with the GS-RB solver
compute the defect r' = ft» — Ay!P on the grid 02'h
restrict the defect fU+DP = Ig;;lhrlh from grid Q2" to grid Q27
solve at the next level: MG(l + 1)
interpolate and correct the approximation: v* « v* 4+ Igllfl R vtk
smooth v times Av!h = £ on the grid Q2" with the GS-RB solver

11: end if

12: end while

© %® > Tk wN

,_.
=4

Algorithm 2 incorporates the MG technique with the time-stepping (TS) sweep
[39], so that at each time step n a proper linear system is defined, via Newton’s
method, which is smoothed with Algorithm 1. Among the listed objects, J™*~1 is
the Jacobian matrix and r™* ~! is the residual, both calculated from Eq. (5), using the
approximation of iterate v — 1.

Algorithm 2 TS-NEWTON-MG.
Require: Input data, initial and boundary conditions
1: forn=2:n; do
2 initialize: v, w™¥~t, r™¥~! and J»¥ 1!
3: while Stopping criterion is not reached do
4 set AP = Jn,ufl’ vh = 0, fh = prov—1
solve the linear system A*v" = f* using Algorithm 1: MG(1)

5:

6: update u™¥ w4 vt
7: compute J™ and r"™"

8: update v <+ v +1

9: end while

10: end for
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4 Numerical experiments

In this section we discuss the computational experiments designed to evaluate the
numerical schemes and the implemented code for solving the nonlinear heat transfer
problem in a silicon rod. The purpose is also to confirm the theory detailed in this
paper. We focus on the implicit Euler and CN methods, so when referring to the Euler
method it should be clear that it is the implicit formulation.

The values of the physical parameters adopted in the experiments follow
Filipov and Farag6 [7], and consider a thin and homogeneous rod in the interval
x € [1, 3], excluding heat or radiation sources, with constant Dirichlet boundary con-
ditions: u(1,t) = 2 and u(3,t) = 1, ¢ > 0. The following initial temperature profile
is assumed:

rz—1

u(z,0) =2 — +(z—-1(x-3), ze][l,3].

The density and heat capacity associated with silicon were fixed at p = 2.33 and
¢p = 0.7, respectively [40]. The parameters x¢ and x, on the other hand, were varied.
The final time was ¢ty = 2 s, during which the steady state was reached in most of the
cases listed.

The source code was implemented in the Fortran language with the GNU Fortran
compiler (GFortran), uses double precision and was executed on an operating system
equipped with an Intel® Core™i5-7200U processor, featuring a central processing
unit (CPU) operating at 2.50 GHz and 16 GB of RAM.

The MG stopping criterion is the infinite norm of the dimensionless residual of
the k-th iteration with respect to the initial estimate, according to a tolerance € 6:

[Ir*lo
[0 oo

<emag =107 E>1. (24)

Regarding the stopping criterion associated with linearizations, an estimate of the
relative error calculated in the infinite norm was used, taking the increment corre-
sponding to consecutive linearizations divided by the current approximation, and
subject to a tolerance €., :

||un,u _ un,ufl | ‘oo

n,v
[[u™” |0

Finally, the other MG settings were: cycles of type V(1,1), standard coarsening
(cr = 2), restriction operator 12" by full weighting and prolongation operator %, by
linear interpolation [25, 36, 37].

<ern=10"1" v >1 2<n<n,. (25)

Remark 2 The one-dimensional case presented in this paper is intended for compari-
son with results in the literature, in particular with the work of Filipov and Faragd
[7] and Zen et al. [9]. All the numerical tools used here can be extended to the two-
dimensional case and are currently under development.
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4.1 Formation of non-physical oscillations

In order to confirm the theory, we begin this section with simulations that employ a
mesh configuration of the type 7 = h.

We vary the parameter 6 (with increments of 0.05) and consider four settings for
the pair (kg, X), chosen to provide different smoothness patterns in the numerical
solution. To compute h, we use n, = 2"¢ 4 1, where n is the number of grid levels.
In this experiment, we set ny = 5. Table 1 contains the average number of lineariza-
tion and MG cycles. For 6 below 0.45, all cases considered either diverged or did not
converge (in the limit of 50 linearizations/MG cycles).

For a qualitative perception, in Fig. 1 we consider the graphs of the numerical
solutions calculated at the central point (x = x.), for 6 equal to 0.5 (CN), 0.75 and 1
(Euler). Euler’s method is stable in all cases, as theory predicts. The mixed method
(6 = 0.75) starts to show oscillations in the last parameter configuration tested, while
the CN method shows oscillation in two configurations.

Additionally, we observe that the CN method is more oscillatory the more intense
the nonlinearity is (expressed by the magnitude of the parameters «¢ and x). For
example, the combination ko = 0.5 and xy = 0.1 indicates little intensity in the ther-
mal conductivity K = kgeX", generating a smooth solution, and the CN method works
well. In the combination ko = 100.0 and x = 2.0, on the other hand, we observe an
abrupt change in temperature in the initial milliseconds, causing strong instability.
For a global perception about this oscillatory pattern, Fig. 2 shows the numerical
solutions in the space/time domain computed by the CN and Euler methods.

In the next experiment, we modify the mesh parameter configuration to fulfill
the condition of Theorem 3. Table 2 presents the data from this simulation. There
was convergence in all cases. Furthermore, the average linearization number and the
number of MG cycles were both relatively low.

In particular, in Fig. 3 we show the behavior of the Euler and CN solutions,
computed at the central point z., adopting the equality 7/h? = pcp/Kmax, Where
Fmax = max{x(u!"")} and h is calculated using n, = 5. The temperature reaches

%

Table 1 Average linearization 0 (%0, X)

number and number of MG cy- 0.5,0.1) (1.0.1.0) (100, 1.0) (100.0,2.0)

cles (in parentheses), calculated — — — ——

with ng = 5 grids and different < 0.40 * * * *

values of 6, considering a mesh 0.45 4.8 (6.8) * * *

configuration 7 = h 0.50 3.5 (8.0) 4.0 (6.1) 45 (3.9) 7.2 (3.0)
0.55 3.5(8.9) 33(7.2) 3.6(3.8) 3.7(3.0)
0.60 3.5(8.9) 3.1(8.0) 3.03.7) 2.8(3.0)
0.65 3.5(8.9) 3.1(8.1) 2.7 (3.6) 2.2(3.0)
0.70 3.5(8.9) 3.1(8.0) 2.2(3.5) 1.9 (3.0)
0.75 3.5(8.9) 3.1(8.0) 2.0(3.5) 1.8 (3.0)
0.80 3.5(8.8) 3.2 (8.0) 1.8 (3.4) 1.6 (3.0)
0.85 3.5(8.7) 3.2(7.9) 1.7 (3.3) 1.5(3.0)
0.90 3.5(8.7) 3.2(7.9) 1.7 (4.2) 1.5 (3.0)

Note: The asterisk (*) indicates 0.95 3.5(8.6) 3.2(78) 1840 143.0)

divergence or non-convergence 1.00 3.5(8.6) 3.2(7.7) 1.8 (4.2) 1.3 (3.0)
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Ko=0.5,x=0.1 Ko=1.0,x=1.0
/20 e e 22T T T T T T T T T T T T

u(x,t)
u(x,f)

1.0
0.8—5 —— Euler

] —©— CN
0.6 - 6=0.75

O B B e e LA s e e O e o e e A ama E e
00 02 04 06 08 10 12 14 16 18 20 00 02 04 06 08 10 12 14 16 18 20
t t

Ko=10.0, x =1.0 Ko =100.0, x = 2.0
2.2 T T T 2.2 T T T

o—

—_ . | 3
= S ATV TS 6 E
ES s 129 || H . o ]
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—o— Euler 08| | © —— Euler |3
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Fig. 1 Numerical solutions by the CN, Euler and mixed methods (8 = 0.75), computed in z., con-
sidering the degree of smoothness associated with the combinations between the parameters g and x

Fig. 2 Numerical solutions by the CN (left) and Euler (right) methods for ko = 100.0 and x = 2.0

steady state within the first few thousandths of a second. As expected by theory, we
see that unphysical oscillations no longer occur.

4.2 Apparent order

For code verification, we use the concept of the apparent order py of the discreti-
zation error of the numerical solution, indicated when the analytical solution is
unknown [41]. This metric allows us to computationally verify whether the order of
the numerical solution tends to the asymptotic order py, of the discretization error, as
the mesh spacing h is reduced. It can be calculated as follows [9]:
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nearsations mdmmberof ¢ o)
MG cycles (in parentheses), (0.5,0.1) (1.0, 1.0) (10.0, 1.0) (100.0, 2.0)
calculated with ngy = 5 grids 0.05 2.2 (3.0) 2.1(3.0) 1.1 (3.0) 1.0 (5.0)
and different values of 6, 0.10 2.3(3.6) 2.2(3.8) 1.1 (3.2) 1.0 (5.0)
considering a stabilized mesh 0.15 2.4 (4.0) 2.2 (4.0) 1.1 (4.0) 1.0 (5.0)
configuration 0.20 2.4 (4.0) 2.2 (4.0 1.1 (4.0) 1.0 (5.0)
0.25 2.4 (4.9) 2.2 (5.0) 1.1 (5.0) 1.6 (4.9)
0.30 2.5(5.0) 2.2(5.0) 1.1 (5.0) 1.0 (5.0)
0.35 2.5(5.6) 2.2(5.8) 1.1(5.2) 1.0 (5.0)
0.40 2.5(6.0) 2.3 (6.0) 1.1(5.2) 1.0 (5.0)
0.45 2.5(6.0) 2.3 (6.0) 1.1 (6.0) 1.0 (6.0)
0.50 2.6 (6.8) 2.3(6.9) 1.2 (5.4) 1.0 (5.0)
0.55 2.6 (7.0) 2.3(7.0) 1.7 (7.0) 1.0 (5.0)
0.60 2.6(7.5) 2.3(7.8) 1.2 (5.6) 1.0 (5.0)
0.65 2.6 (7.7) 2.3(7.9) 1.2 (5.6) 1.0 (5.0)
0.70 2.7 (8.0) 2.3(8.0) 1.2 (5.7) 1.0 (5.0)
0.75 2.7 (8.6) 2.4 (8.3) 1.2 (5.3) 1.0 (5.0)
0.80 2.8 (8.7) 2.4 (8.8) 1.2(5.9) 1.0 (5.0)
0.85 2.8(8.9) 2.4(9.0) 1.2 (5.9) 1.0 (5.0)
0.90 3.0(9.5) 2.5(9.8) 1.2 (6.1) 1.0 (5.0)
0.95 3.2(9.6) 2.6 (9.3) 1.2 (8.4) 1.0 (5.0)
1.00 3.6(8.9) 3.3(8.0) 1.9 (4.3) 1.3 (3.0)
Fig. 3 Numerical solution by 18T TT T 11T .
the Euler and CN methods, ] ]
evaluated at ., considering 1.6 =
T/h? = pcp/Kmax (CN stabil- ] E
ity condition), ko = 100.0 and 1.4 1 E
x=20 = 127 -
E ] ]
S 1.0 -
0.8 =
0.6 — CcN | ]
] O Euler | J
0.4 e e e
0.000 0.001 0.002 0.003 0.004 0.005 0.006
t
log $2 — ¢3
_ $1— ¢2 (26)
Pu = 1 s
0g(q)

where ¢1, ¢2 and ¢3 are the numerical solutions calculated in the fine, coarse and
super-coarse meshes, with respective spacings h1, hy and hs, and refinement ratio

q = hg/hg = hg/hl.

In calculating pr7, we used g = 2, quadruple precision, and enough iterations for
Egs. (24) and (25) to reach rounding error. This approach seeks to isolate the effects

of discretization error, in order to minimize other sources of error [9].
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Figure 4 shows a graphical representation of the test implemented for two vari-
ables: average temperature (u.,,) and temperature at the center of the domain (u.),
both calculated at the last time step, considering the case kg = 0.1 and x = 0.5. As
expected, as the mesh is refined, the apparent order py tends towards the asymptotic
orders p;, = 1 (Euler) or p;, = 2 (CN), depending on the method used.

After code verification, we proceed with the numerical results related to the MG
method.

4.3 Average convergence factor

To evaluate the MG method, we use the average convergence factor p,;, a metric that
represents the average reduction factor of the residual after one MG cycle [25, 37].
In this work, it is calculated from the arithmetic mean of the asymptotic convergence
factor pF, [42]:

1 Lin

iense, | TG

> ok, ph = g e, (27)
[[xO]]
k:1 o0

1 :
PM = g ;ﬂfm Do = itoin
where it ;¢ is the number of MG cycles of the k-th linearization, it ;,, is the number
of linearizations in the j-th time step and n; the total number of time steps.

Figures 5 and 6 show the evolution of the average convergence factor pps in terms
of the number of unknowns N = n(n, — 2), calculated for various combinations of
the parameters kg and x, for 8 = 1 (Euler) and 0.75 (Fig. 5) and # = 0.5 (CN) and
0.25 (Fig. 6).

MG methods are more efficient the closer to zero pjs is and, conversely, the closer
to unity the lower their efficiency [36]. We observe that p,; stabilizes at values
below 0.107 (when @ = 1) as the mesh is refined, regardless of the choice of physical
parameters, indicating efficiency and robustness of the MG.

The MG method proved to be independent of the stability criterion set out in Theo-
rem 3. Indeed, the average convergence factor pjs of the CN method, in the same
settings as the Euler method (with 7 = h), produces results similar to those in Fig. 5

Fig.4 pyrcalculated for u. 25777 T T T T T T
and um, at the final analysis ] ]
time ¢ 7, with the Euler and CN 204 m’;@’;"é J
methods ] 7
15 =
> ] ]
[ i N
107 .
E —©— u, - Euler E
0.5 | —&— Uum- Euler -
1| = u.-CN ]
1| & um-CN ]
0.0 ——r7 : — T T — T

103 102 10!
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] b ]
0.02 3 0.02 3
0.00 — ; — ; ] 0.00 - . . T .
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Fig.5 ppsversus N, calculated for the Euler and mixed (0 = 0.75) method, with different combina-
tions of parameters
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00471+ 0.04
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Fig.6 pasversus N, calculated for the CN and mixed (6 = 0.25) method, with different combinations
of parameters

@ Springer



63 Page 20 of 22 A.R. de Melo et al.

(values below 0.105). The CN method with the relation 7 = min{pc,h*/Kmax, h},
on the other hand, results in Fig. 6, which reinforces the robustness of the method
when we impose the stability criterion.

5 Final considerations

In this paper, we analyzed a family of finite difference schemes for a nonlinear heat
equation, applied to a homogeneous silicon rod with Dirichlet boundary conditions.
We show that the method is consistent with the conservative form of the nonlinear
PDE, is conditionally TVD-stable and therefore converges to a weak solution. The
focus is on implicit schemes, accelerated with an efficient Newton multigrid method,
developed in composition with the Gauss-Seidel red-black smoother. Numerical
experiments confirm the theory and show that the multigrid algorithm is robust to
a range of values of the physical parameters, as well as being independent of the
stability condition. The numerical tools used in this work can be extended to the two-
dimensional case and are currently under development.
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