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Abstract
This paper introduces a finite difference numeric scheme designed for the computa-
tional solution of the nonlinear heat conduction problem in a homogeneous silicon 
rod. It is shown that the numerical method is consistent with the conservation law, 
is conditionally stable and convergent. Focusing on the implicit schemes, an effi-
cient Newton multigrid method with Gauss-Seidel red-black smoother is developed. 
Computational experiments confirm the stability theory as well as the robustness of 
the multigrid method.
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1  Introduction

Nonlinear heat equations describe a significant diversity of processes, including the 
numerical modeling of gas filtration in porous media [1], the description of the phe-
nomenon of thermal oxidation of silicon [2, 3], the study of heat transfer in human 
tissue [4], the problem of observer design, important in the microchip manufacturing 
process in the semiconductor industry [5], the analysis of composite materials used 
in the modern aerospace and nuclear industries [6], among others.

In this work, we address the following nonlinear heat equation for modeling ther-
mal conduction in a homogeneous silicon rod [7–9]: 

	
ρcp

∂u

∂t
= ∂

∂x

(
κ(u)∂u

∂x

)
, x ∈ (a, b), t > 0,� (1)

where the variable u(x, t) represents the temperature at position x at an instant t, 
while ρ refers to the density and cp to the heat capacity at constant pressure, which 
are assumed constant in the present model.

Thermal conductivity κ often depends on temperature [10, 11], and in semicon-
ductor materials it usually assumes an exponential form [12, 13]: 

	 κ(u) = κ0eχu,� (2)

where κ0 is the value of its thermal conductivity at a reference temperature and χ is 
the temperature dependence coefficient associated with κ. This work adopts Dirichlet 
boundary conditions and, together with the initial conditions, complete the physical 
model. They are represented by: 

	 u(x, 0) = u0(x), x ∈ [a, b], u(a, t) = ua(t) and u(b, t) = ub(t), t > 0.� (3)

Existence and uniqueness results for this model were demonstrated by Rincon, 
Límaco and Liu [14].

In nonlinear diffusive problems, Dirichlet boundary conditions are fundamental. 
Hristov [15], analyzing models of fluid penetration in wood capillaries, showed that 
the relaxing Dirichlet boundary condition is physically more appropriate, considering 
that real wood impregnation processes occur in infinite baths. In the computational 
approach to modeling the glaciation of sea offshore pipelines completely exposed to 
seawater, Krivovichev [16] uses a mathematical model based on the Dirichlet prob-
lem for the nonlinear heat equation in the domain with fixed boundaries.

Computer simulations using thermal numerical models play a crucial role in 
improving technologies that are beneficial to several areas of science and engineer-
ing [17–19]. These computational models are primarily required to be accurate and 
stable. Classical central discretization schemes have higher accuracy, but can gener-
ate unphysical or spurious numerical fluctuations that generally reduce the quality of 
the numerical solution to an unusable level [19–21]. This numerical phenomenon, 
common in computational fluid dynamics (CFD), was revealed by VonNeumann and 
Richtmyer [22].
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The analysis of finite difference schemes for nonlinear heat equations has been the 
subject of study by several researchers. Katayama et al. [23] demonstrated sufficient 
conditions for the stability of an explicit Euler scheme. From an empirical perspec-
tive, Filipov et al. [8] reported evidence of robustness and stability in first-order tem-
poral discretizations using the implicit Euler method. Experiments with second-order 
discretizations by the Crank-Nicolson (CN) method, on the other hand, can demon-
strate strong unphysical oscillations, as pointed out by Jooma and Harley [24].

In this work, we establish sufficient conditions for the stability of a family of 
explicit and implicit numerical schemes (θ method), designed for the computational 
solution of the nonlinear heat conduction model described by Eqs. (1)-(3), used, in 
particular, for semiconductor materials such as silicon. The focus, however, is on 
the implicit formulation, which will be addressed in an integrated manner with the 
multigrid method [25–28].

The rest of this paper is organized as follows. In Sect. 2 we present the develop-
ment of the numerical model, followed by the consistency and stability properties. In 
Sect. 3 we describe the multigrid algorithm to accelerate convergence. In Sect. 4, we 
conduct numerical experiments designed to evaluate the schemes in terms of stabil-
ity, accuracy and robustness. In Sect. 5, we discuss the main findings.

2  Numerical scheme and stability analysis

In this section, we present the development of the numerical model and some proper-
ties. Since χ = 0 is the linear case, we can reformulate by rewriting the right-hand 
side of Eq. (1) as (κ(u)ux)x = (κ(u))xx/χ, for χ ̸= 0, so that this equation then 
becomes: 

	
ρcp

∂u

∂t
= 1

χ

∂2κ(u)
∂x2 , χ ̸= 0, x ∈ (a, b), t > 0.� (4)

The numerical model will be developed from a spatial mesh of the form: 

	 Ωh = {xi ∈ [a, b]; xi = a + (i − 1)h, 1 ≤ i ≤ nx},

where nx is the number of points in the discretization and h = (b − a)/(nx − 1) is 
the spatial increment. We similarly define a temporal mesh as tn = nτ ∈ [0, tf ], 
with 0 ≤ n ≤ nt, where τ = tf /nt is the time step, tf  is the final time of the analysis 
and nt is the number of time steps.

We conduct the discretization of Eq. (4) by applying the finite difference method 
(FDM) using the central difference scheme (CDS) in the spatial direction, as well as 
the θ method [29] for the temporal approximation, with θ ∈ [0, 1]: 

	
ρcp

τ

(
un

i − un−1
i

)
= θfi(un) + (1 − θ)fi(un−1), 1 < i < nx, 1 ≤ n ≤ nt,� (5)

where un
i = u(xi, tn), un =

(
un

1 , · · · , un
i , · · · , un

nx

)
 and 
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fi(un) =

κn
i+1 − 2κn

i + κn
i−1

χh2 , κn
i = κ(un

i ), 1 < i < nx.� (6)

Equation (5) defines a family of explicit (if θ = 0) and implicit (if 0 < θ ≤ 1) numer-
ical schemes for the computational solution of the partial differential equation (PDE) 
(4). In particular, for θ = 0 we have an explicit Euler discretization, θ = 1 we have 
an implicit Euler discretization, while for θ = 1/2, a CN discretization.

2.1  Consistency

This section is dedicated to the study of consistency and has as its main result the 
following Theorem:

Theorem 1  The scheme defined by Eq. (5) approximates the PDE (4) with discretiza-
tion error 

	

E(h, τ, θ) = −ρcp(2θ − 1)τ
2

∂2u

∂t2 (xi, tn)

− ρcp

∞∑
l=3

τ l−1 ∂lu

∂tl
(xi, tn) (−1)l−1

l!
[(1 − θ)l − 1]

− 2
χ

∞∑
l=2

h2(l−1)

(2l)!

[
θ

∂2lκ

∂x2l
(xi, tn) + (1 − θ)∂2lκ

∂x2l
(xi, tn−1)

]
.

� (7)

Proof  Consider the following finite difference formulas: 

	

∂u

∂t
(xi, tn) = un

i − un−1
i

τ
+

∞∑
l=2

(−1)l τ l−1

l!
∂lu

∂tl
(xi, tn),

∂u

∂t
(xi, tn−1) = un

i − un−1
i

τ
−

∞∑
l=2

τ l−1

l!
∂lu

∂tl
(xi, tn−1),

∂2κ

∂x2 (xi, tn) =
κn

i+1 − 2κn
i + κn

i−1
h2 − 2

∞∑
l=2

h2(l−1)

(2l)!
∂2lκ

∂x2l
(xi, tn),

∂2κ

∂x2 (xi, tn−1) =
κn−1

i+1 − 2κn−1
i + κn−1

i−1
h2 − 2

∞∑
l=2

h2(l−1)

(2l)!
∂2lκ

∂x2l
(xi, tn−1).

Substituting the expressions appropriately in Eq. (4) evaluated at the points (xi, tn) 
and (xi, tn−1), we obtain, respectively: 

	

ρcp

τ

(
un

i − un−1
i

)
+ ρcp

∞∑
l=2

(−1)l τ l−1

l!
∂lu

∂tl
(xi, tn) =

κn
i+1 − 2κn

i + κn
i−1

χh2 −

2
χ

∞∑
l=2

h2(l−1)

(2l)!
∂2lκ

∂x2l
(xi, tn),

� (8)
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ρcp

τ

(
un

i − un−1
i

)
− ρcp

∞∑
l=2

τ l−1

l!
∂lu

∂tl
(xi, tn−1) =

κn−1
i+1 − 2κn−1

i + κn−1
i−1

χh2 −

2
χ

∞∑
l=2

h2(l−1)

(2l)!
∂2lκ

∂x2l
(xi, tn−1).

� (9)

Adding Eqs. (8) and (9) multiplied by θ and 1 − θ respectively, we obtain: 

	

ρcp

τ

(
un

i − un−1
i

)
= θfi(un) + (1 − θ)fi(un−1)

− ρcp

∞∑
l=2

{
θ(−1)l ∂lu

∂tl
(xi, tn) − (1 − θ)∂lu

∂tl
(xi, tn−1)

}
τ l−1

l!

− 2
χ

∞∑
l=2

{
θ

∂2lκ

∂x2l
(xi, tn) + (1 − θ)∂2lκ

∂x2l
(xi, tn−1)

}
h2(l−1)

(2l)!
.

� (10)

We use the Taylor series 

	

∂lu

∂tl
(xi, tn−1) = ∂lu

∂tl
(xi, tn) +

∞∑
k=1

(−1)k τk

k!
∂l+ku

∂tl+k
(xi, tn), l ≥ 1,

to simplify the discretization error shown in Eq. (10), writing it as: 

	

E(h, τ, θ) = −ρcp

∞∑
l=2

τ l−1

l!

[
θ − 1 + θ(−1)l

] ∂lu

∂tl
(xi, tn)

+ (1 − θ)ρcp

∞∑
l=2

τ l−1

l!

∞∑
k=1

(−1)k τk

k!
∂l+ku

∂tl+k
(xi, tn)

− 2
χ

∞∑
l=2

{
θ

∂2lκ

∂x2l
(xi, tn)+ (1 − θ)∂2lκ

∂x2l
(xi, tn−1)

}
h2(l−1)

(2l)!
.

� (11)

By developing the double summation of the right-hand side of Eq. (11), we find: 

	

∞∑
l=2

τ l−1

l!

∞∑
k=1

(−1)k τk

k!
∂l+ku

∂tl+k
= τ1

2!

{
(−1)1 τ1

1!
∂3u

∂t3 + (−1)2 τ2

2!
∂4u

∂t4 + (−1)3 τ3

3!
∂5u

∂t5 +

(−1)4 τ4

4!
∂6u

∂t6 + · · ·
}

+ τ2

3!

{
(−1)1 τ1

1!
∂4u

∂t4 + (−1)2 τ2

2!
∂5u

∂t5 +

(−1)3 τ3

3!
∂6u

∂t6 + (−1)4 τ4

4!
∂7u

∂t7 + · · ·
}

+ τ3

4!

{
(−1)1 τ1

1!
∂5u

∂t5 +

(−1)2 τ2

2!
∂6u

∂t6 + (−1)3 τ3

3!
∂7u

∂t7 + (−1)4 τ4

4!
∂8u

∂t8 + · · ·
}

+ · · ·

Next, we group similar terms together: 
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∞∑
l=2

τ l−1

l!

∞∑
k=1

(−1)k τk

k!
∂l+ku

∂tl+k
= (−1)1 τ2

2!1!
∂3u

∂t3

+

[
(−1)2

2!2!
+ (−1)1

3!1!

]
τ3 ∂4u

∂t4

+

[
(−1)3

2!3!
+ (−1)2

3!2!
+ (−1)1

4!1!

]
τ4 ∂5u

∂t5 + · · · ,

=
∞∑

l=3

l−2∑
k=1

(−1)k

k!(l − k)!
τ l−1 ∂lu

∂tl
.

� (12)

Substituting Eq. (12) into Eq. (11) and organizing the sums, we find: 

	

E(h, τ, θ) = −ρcp(2θ − 1)τ
2

∂2u

∂t2 (xi, tn)

− ρcp

∞∑
l=3

τ l−1 ∂lu

∂tl
(xi, tn)

{
θ(−1)l + θ − 1

l!
− (1 − θ)

l−2∑
k=1

(−1)k

k!(l − k)!

}

− 2
χ

∞∑
l=2

h2(l−1)

(2l)!

{
θ

∂2lκ

∂x2l
(xi, tn) + (1 − θ)∂2lκ

∂x2l
(xi, tn−1)

}
.

�(13)

From the Binomial Theorem [29], for l ≥ 3, we have: 

	
(1 − 1)l =

l∑
k=0

l!
k!(l − k)!

1n−k(−1)k = l!(−1)0

0!l!
+

l−2∑
k=1

l!(−1)k

k!(l − k)!
+ l!(−1)l−1

(l − 1)!1!
+ l!(−1)l

l!0!
,

that is, 

	

l−2∑
k=1

l!(−1)k

k!(l − k)!
= −1 − l(−1)l−1 − (−1)l, l ≥ 3.

With this, we can simplify the term that appears in Eq. (13): 

	

θ(−1)l + θ − 1
l!

− (1 − θ)
l−2∑
k=1

(−1)k

k!(l − k)!
= Sl(θ),

where 

	
Sl(θ) = θ(−1)l + θ − 1

l!
− (1 − θ)

[
−1 − l(−1)l−1 − (−1)l

l!

]
= (−1)l−1

l!
[(1 − θ)l − 1] .�(14)
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□
Finally, substituting Eq. (14) into Eq. (13), we obtain Eq. (7) for the discretization 

error.
Provided that one chooses θ such that θ → c when τ → 0, for some constant 

c ∈ R, Theorem 1 shows that E(h, τ, θ) → 0 when h, τ → 0 and so the scheme is 
consistent. In particular, this holds for θ fixed within the interval [0, 1].

It is clear that for θ = 1/2 (CN), the asymptotic order of the discretization error 
is 2, while for fixed values of θ ∈ [0, 1] \ {1/2}, the asymptotic order becomes 1. A 
more general strategy for achieving second-order accuracy is presented below:

Corollary 1.1  Let c ∈ R. If θ ∈ [0 , 1 ] is such that 2θ − 1 = τθ′, for some fixed θ′ or 
with θ′ → c when τ → 0 , and −1 ≤ τθ′ ≤ 1 , then scheme (5) is consistent and the 
asymptotic order of the discretization error is O(τ2 , h2 ).

Proof  Indeed, the definition 2θ − 1 = τθ′ implies that θ → 1/2 when τ → 0 and 
the scheme is consistent. Furthermore, 0 ≤ θ ≤ 1 implies that −1 ≤ 2θ − 1 ≤ 1. 
Finally, the discretization error becomes: 

	

E(h, τ, θ) = −ρcpθ′τ2

2
∂2u

∂t2 (xi, tn) + O(τ2) + O(h2),

= O(τ2, h2).

 □
In this work, another form of consistency is considered: the one that relates the 

flux functions of the conservation law and the discrete model [30]. Thus, to proceed, 
note that the scheme given in Eq. (5) can be rewritten in conservative form as: 

	
un

i = un−1
i − τ

h

[
F

(
un

i , un
i+1, un−1

i , un−1
i+1

)
− F

(
un

i−1, un
i , un−1

i−1 , un−1
i

)]
,� (15)

where 

	

F
(
un

i , un
i+1, un−1

i , un−1
i+1

)
= − θ

ρcpχh

[
κ

(
un

i+1
)

− κ (un
i )

]

− (1 − θ)
ρcpχh

[
κ

(
un−1

i+1
)

− κ
(
un−1

i

)]
,

� (16)

denotes the numerical flux.
 

A method written as in Eq. (15) is consistent with the underlying conservation law if its 
numerical flux reduces to the true flux in the case of constant flow [20, 30–32]. Thus, 
let u(x, t) ≡ ū be constant, since the true flux of Eq. (4) is −(ρcpχ)−1∂κ(u)/∂x, we 
conclude by analyzing Eq. (16) that: 

1 3
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F (ū, ū, ū, ū) = 0 = − 1

ρcpχ

∂κ(ū)
∂x

.

Furthermore, since F  is continuous and differentiable on every open V ∈ R4, it fol-
lows that F  is Lipschitz continuous on every bounded open set V . Thus, scheme (15), 
and therefore (5), is consistent with conservation law (4).

2.2  Stability

In this section we will use the concept of total variation (TV) stability, defined accord-
ing to LeVeque [30] as follows:

Definition 1  [30] A numerical method is total variation stable, or simply TV-stable, if 
all the approximations for τ < τ0 lie in some fixed set of the form 

	 K = {u ∈ L1,T : TVT (u) ≤ R and supp (u(·, t)) ⊂ [−M, M ] ∀ t ∈ [0, T ]} ,�(17)

where R > 0 and M > 0 may depend on the initial data and the flux function, but 
not on τ .
In Definition 1, supp(u(·, t)) represents the support of the function u(·, t) and 
supp(u(·, t)) ⊂ [−M, M ] means that u(·, t) ≡ 0 for all |x| > M  (under these condi-
tions, u is said to have compact support). Furthermore, L1,T  designates the space of 
functions consisting of all functions of x and t in which the norm || · ||1,T  is finite 
and is computed as: 

	
||v||1,T =

ˆ T

0
||v(·, t)||1dt =

ˆ T

0

ˆ ∞

−∞
|v(x, t)|dxdt.

Finally, the quantity TV translated to mesh functions is calculated as [30]: 

	
TVT (un) =

T/τ∑
n=0

[
τTV (un) +

∣∣∣∣un+1 − un
∣∣∣∣

1

]
and TV (un) =

∞∑
i=−∞

∣∣un
i+1 − un

i

∣∣ .

In LeVeque [30] and in Harten [31] one can find the demonstration of the following 
convergence result concerning the TVs methods:

Theorem 2  [30] Suppose un  is generated by a numerical method in conservation 
form with a Lipschitz continuous numerical flux, consistent with some scalar con-
servation law. If the method is TV-stable, then method converges to a weak solution.

The consistency associated with the conservation law was discussed and verified 
in Sect. 2.1. Therefore, in order for Theorem 2 to be employed, TV stability must be 
proven.

To ensure the compactness required in Definition 1, we assume initial data with 
bounded total variation and with compact support on the contours. Furthermore, it 
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is assumed that the mesh functions are zero for all points outside the boundaries. To 
achieve the requirement of TV stability related to the existence of a constant R > 0, 
we will use the following concept:

Definition 2  [31]. A numerical scheme is total variation diminishing stable (TVD-
stable), when it is possible to obtain: 

	 TV (un+1) ≤ TV (un),� (18)

for all mesh functions un associated with the method.
It can be shown that, for initial data with bounded total variation, the inequality (18) 
implies the existence of R > 0, such that TVT (un) ≤ R, so that Definition 1 is satis-
fied [30].

Definition 3  [30]. A numerical method is l1-contracting if, for any two grid functions 
un−1 and vn−1 for which un−1 − vn−1 has compact support, the grid functions un 
and vn satisfy 

	 ||un − vn||1 ≤ ||un−1 − vn−1||1.

Additionally, it can be shown that every l1-contracting method is TVD and holds Eq. 
(18) [30]. In short, for a numerical method to be TVD-stable, it is sufficient that it be 
l1-contracting. In this context, we present the main result of this section:

Theorem 3  Let 0 ≤ θ ≤ 1 . If 

	
0 ≤ (1 − θ) τ

h2
κ(β)
ρcp

≤ 1
2

, with min
i

{
un−1

i , vn−1
i

}
≤ β ≤ max

i

{
un−1

i , vn−1
i

}
,�(19)

whatever the mesh functions un−1  and vn−1 , then the numerical scheme in Eq. (5) 
is l1 -contracting.

Proof  Let two mesh functions un−1 and vn−1 be those in which un−1 − vn−1 has 
compact support, and consider the functions un and vn generated by the numerical 
scheme (5). Then,

	

un
i − vn

i =un−1
i − vn−1

i +
τ

ρcp
{θ [fi (un) − fi (vn)] + (1 − θ)

[
fi

(
un−1)

− fi

(
vn−1)]

}.
�(20)

From the mean value theorem, for some βn
i  between un

i  and vn
i , we write: 

	 κ(un
i ) − κ(vn

i ) = χκ(βn
i ) (un

i − vn
i ) ,

so we can simplify the term fi (un) − fi (vn), with fi defined according to Eq. (6), 
as follows:
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fi (un) − fi (vn) =
χκ(βn

i+1)
(
un

i+1 − vn
i+1

)
− 2χκ(βn

i ) (un
i − vn

i ) + χκ(βn
i−1)

(
un

i−1 − vn
i−1

)
χh2 .

Thus, after considering wn
i = un

i − vn
i , we can rewrite Eq. (20) as: 

	

wn
i = wn−1

i

+ τ

ρcph2

{
θ

[
κ(βn

i+1)wn
i+1 − 2κ(βn

i )wn
i + κ(βn

i−1)wn
i−1

]
+

(1 − θ)
[
κ(βn−1

i+1 )wn−1
i+1 − 2κ(βn−1

i )wn−1
i + κ(βn−1

i−1 )wn−1
i−1

]
},

or even, 

	

[
1 + 2θτ

ρcph2 κ (βn
i )

]
wn

i =
[
1 − 2(1 − θ)τ

ρcph2 κ
(
βn−1

i

)]
wn−1

i + θτ

ρcph2

[
κ(βn

i+1)wn
i+1+

κ(βn
i−1)wn

i−1
]

+ (1 − θ)τ
ρcph2

[
κ(βn−1

i+1 )wn−1
i+1 + κ(βn−1

i−1 )wn−1
i−1

]
.

�(21)

With the auxiliary parameter 

	
αn

i = τ

h2
κ(βn

i )
ρcp

,

we use Eq. (21) to establish the following inequality: 

	

|1 + 2θαn
i | |wn

i | ≤
∣∣1 − 2(1 − θ)αn−1

i

∣∣ ∣∣wn−1
i

∣∣
+ θ

∣∣αn
i+1

∣∣ ∣∣wn
i+1

∣∣ + θ
∣∣αn

i−1
∣∣ ∣∣wn

i−1
∣∣

+ |1 − θ|
∣∣αn−1

i+1
∣∣ ∣∣wn−1

i+1
∣∣ + |1 − θ|

∣∣αn−1
i−1

∣∣ ∣∣wn−1
i−1

∣∣ ,

which is used to form the following sums: 

	

h
∞∑

i=−∞
|1 + 2θαn

i | |wn
i | ≤ h

∞∑
i=−∞

∣∣1 − 2(1 − θ)αn−1
i

∣∣ ∣∣wn−1
i

∣∣ + θh
∞∑

i=−∞

∣∣αn
i+1

∣∣ ∣∣wn
i+1

∣∣ +

θh
∞∑

i=−∞

∣∣αn
i−1

∣∣ ∣∣wn
i−1

∣∣ + |1 − θ|h
∞∑

i=−∞

∣∣αn−1
i+1

∣∣ ∣∣wn−1
i+1

∣∣ + |1 − θ|h
∞∑

i=−∞

∣∣αn−1
i−1

∣∣ ∣∣wn−1
i−1

∣∣ .

�(22)

Then, using hypothesis (19), the fact that 0 ≤ θ ≤ 1 and αn
i > 0, we can combine the 

terms of the index of the summation, in order to obtain: 
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h
∞∑

i=−∞
[1 + 2θαn

i ] |wn
i | ≤ h

∞∑
i=−∞

[
1 − 2(1 − θ)αn−1

i

] ∣∣wn−1
i

∣∣ + θh
∞∑

i=−∞
αn

i |wn
i | +

θh
∞∑

i=−∞
αn

i |wn
i | + (1 − θ)h

∞∑
i=−∞

αn−1
i

∣∣wn−1
i

∣∣ + (1 − θ)h
∞∑

i=−∞
αn−1

i

∣∣wn−1
i

∣∣ .

Since the terms cancel, we finally conclude that: 

	
||un − vn||1 = h

∞∑
i=−∞

|wn
i | ≤ h

∞∑
i=−∞

∣∣wn−1
i

∣∣ = ||un−1 − vn−1||1,

and the scheme Eq. (5) is l1-contracting.□
The convergence follows directly from the fact that scheme (5) is a weak contrac-

tion in the l1 norm. Indeed, if v(x, t) ∈ C4 ([a, b] × [0, tf )) is a solution to Eq. (4) 
that satisfies condition (19), then v satisfies the scheme (5) except for the discretiza-
tion error, Eq. (7), as shown in Eq. (10). It follows from this that if un

i  is a solution 
produced by the numerical scheme for a certain set of initial data satisfied by v and 
if En

i = v(xi, tn) − un
i , then an estimate for the error can be obtained by (following 

the proof of the mentioned Theorem): 

	 ||En||1 ≤ ||En−1||1 + O
(
τ, h2)

, 1 ≤ n ≤ nt,

implying that: 

	 ||En||1 ≤ ||E0||1 + O
(
τ, h2)

, 1 ≤ n ≤ nt.

Theorem 2 establishes, however, that the differentiability assumption can be consid-
erably relaxed since, being TVD-stable, it converges to a weak solution.

Remark 1  Analyzing the issue of well-posedness for an initial-boundary value prob-
lem (IBVP) defined by a more general one-dimensional PDE, Rincon, Límaco and 
Liu [14] adopted as their main assumption the boundedness of the functions κ(u), 
u0(x) and their derivatives. Oleinik and Kruzhkov [33], in a previous work, also 
adopted this boundedness assumption on compact domains to establish the well-pos-
edness of an even more general multidimensional problem. In this sense, the IBVP 
(1)-(3) satisfies these assumptions and is well-posed. Furthermore, an IBVP with 
Neumann boundary conditions was investigated by Gavrilut and Morosanu [34].

A direct consequence of Theorem 3 is the following Corollary:

Corollary 3.1  The implicit Euler method applied to Eq. (4) is unconditionally 
TVD-stable.

Proof  It suffices to note that, when θ = 1, constraint (19) holds, regardless of the 
mesh parameters.
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Similar results were reported by Harten [31], Yee, Warming and Harten [20] and 
Yee [32].

2.3  Stability versus accuracy

The criterion established in Corollary 1.1, for schemes of order 2, consists of writing 
θ in such a way that we have 2θ − 1 = τθ′, with −1 ≤ τθ′ ≤ 1. On the other hand, 
from the stability condition (19) imposed by Theorem 3, we obtain: 

	
1 −

(
τ

h2
κ(β)
ρcp

)−1

≤ τθ′ ≤ 1.� (23)

The inequality (23) indicates that any relation of the type τ = ch, c > 0, degenerates 
the precision of the scheme to order 1, as the mesh is refined, since we have in this 
case: 

	
1 − h

c

ρcp

κ(β)
≤ τθ′ ≤ 1 ⇒ τθ′ h→0−−−→ 1 ⇒ θ

h→0−−−→ 1,

that is, the scheme tends to the implicit Euler method.
In the following section we discuss how to include the multigrid accelerator in 

solving the system of equations generated by the discretization.

3  Newton-MG solver

The multigrid method (MG) can be described as an iterative technique designed for 
the efficient solution of large-scale linear systems, obtained as discrete models for 
PDEs [25–28]. It uses a hierarchy of grids, where information flows through the 
restriction operator IH

h , which transfers information from the fine grid Ωh to the 
immediately coarser grid ΩH , and the prolongation operator Ih

H , which transfers 
information from the coarse grid ΩH  to the immediately finer grid Ωh. A commonly 
used way to generate the ΩH  grid is the standard coarsening strategy, which consists 
of doubling the Ωh grid spacing in all directions [25]. In this case, we say that the 
coarsening ratio (cr) is 2, that is, H = 2h.

The desired numerical solution is calculated on the finer grid, while on the coarser 
grids, where the smoothers are more efficient [35], the correction estimates are calcu-
lated. The number of smoothings preceding the restriction and prolongation operators 
are denoted by ν1 (number of pre-smoothings) and ν2 (number of post-smoothings), 
respectively, while the manner in which the grids are visited is called a cycle. In this 
work, cycles of type V  will be used, also denoted by V (ν1, ν2) [25, 36, 37].

Corrections can be made using two approaches: the correction scheme (CS), 
which uses only the residual in the correction process, and the full approximation 
scheme (FAS), which, in addition to the residual, also uses the approximate solution 
itself in its correction strategy [25, 36]. In the context of nonlinear problems, both 
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approaches can be used [38]. The CS strategy, however, must be preceded by a global 
linearization.

In this paper we use a Newton linearization in conjunction with the CS scheme. 
Algorithm 1 describes the CS scheme with cycles of type V (ν1, ν2) and standard 
coarsening ratio (cr = 2), for the smoothing of the linear system at the grid level l. 
This algorithm implements the Gauss-Seidel red-black (GS-RB) smoother, which 
updates the even rows first and only then updates the odd rows. 

Algorithm 2 incorporates the MG technique with the time-stepping (TS) sweep 
[39], so that at each time step n a proper linear system is defined, via Newton’s 
method, which is smoothed with Algorithm 1. Among the listed objects, Jn,ν−1 is 
the Jacobian matrix and rn,ν−1 is the residual, both calculated from Eq. (5), using the 
approximation of iterate ν − 1. 
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4  Numerical experiments

In this section we discuss the computational experiments designed to evaluate the 
numerical schemes and the implemented code for solving the nonlinear heat transfer 
problem in a silicon rod. The purpose is also to confirm the theory detailed in this 
paper. We focus on the implicit Euler and CN methods, so when referring to the Euler 
method it should be clear that it is the implicit formulation.

The values of the physical parameters adopted in the experiments follow 
Filipov and Faragó [7], and consider a thin and homogeneous rod in the interval 
x ∈ [1, 3], excluding heat or radiation sources, with constant Dirichlet boundary con-
ditions: u(1, t) = 2 and u(3, t) = 1, t > 0. The following initial temperature profile 
is assumed: 

	
u(x, 0) = 2 − x − 1

2
+ (x − 1)(x − 3), x ∈ [1, 3].

The density and heat capacity associated with silicon were fixed at ρ = 2.33 and 
cp = 0.7, respectively [40]. The parameters κ0 and χ, on the other hand, were varied. 
The final time was tf = 2 s, during which the steady state was reached in most of the 
cases listed.

The source code was implemented in the Fortran language with the GNU Fortran 
compiler (GFortran), uses double precision and was executed on an operating system 
equipped with an Intel® Core™i5-7200 U processor, featuring a central processing 
unit (CPU) operating at 2.50 GHz and 16 GB of RAM.

The MG stopping criterion is the infinite norm of the dimensionless residual of 
the k-th iteration with respect to the initial estimate, according to a tolerance εMG: 

	
||rk||∞
||r0||∞

< εMG = 10−10, k ≥ 1.� (24)

Regarding the stopping criterion associated with linearizations, an estimate of the 
relative error calculated in the infinite norm was used, taking the increment corre-
sponding to consecutive linearizations divided by the current approximation, and 
subject to a tolerance εLin: 

	
||un,ν − un,ν−1||∞

||un,ν ||∞
< εLin = 10−10, ν ≥ 1, 2 ≤ n ≤ nt.� (25)

Finally, the other MG settings were: cycles of type V (1, 1), standard coarsening 
(cr = 2), restriction operator I2h

h  by full weighting and prolongation operator Ih
2h by 

linear interpolation [25, 36, 37].

Remark 2  The one-dimensional case presented in this paper is intended for compari-
son with results in the literature, in particular with the work of Filipov and Faragó 
[7] and Zen et al. [9]. All the numerical tools used here can be extended to the two-
dimensional case and are currently under development.
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4.1  Formation of non-physical oscillations

In order to confirm the theory, we begin this section with simulations that employ a 
mesh configuration of the type τ = h.

We vary the parameter θ (with increments of 0.05) and consider four settings for 
the pair (κ0, χ), chosen to provide different smoothness patterns in the numerical 
solution. To compute h, we use nx = 2ng + 1, where ng is the number of grid levels. 
In this experiment, we set ng = 5. Table 1 contains the average number of lineariza-
tion and MG cycles. For θ below 0.45, all cases considered either diverged or did not 
converge (in the limit of 50 linearizations/MG cycles). 

For a qualitative perception, in Fig. 1 we consider the graphs of the numerical 
solutions calculated at the central point (x = xc), for θ equal to 0.5 (CN), 0.75 and 1 
(Euler). Euler’s method is stable in all cases, as theory predicts. The mixed method 
(θ = 0.75) starts to show oscillations in the last parameter configuration tested, while 
the CN method shows oscillation in two configurations. 

Additionally, we observe that the CN method is more oscillatory the more intense 
the nonlinearity is (expressed by the magnitude of the parameters κ0 and χ). For 
example, the combination κ0 = 0.5 and χ = 0.1 indicates little intensity in the ther-
mal conductivity κ = κ0eχu, generating a smooth solution, and the CN method works 
well. In the combination κ0 = 100.0 and χ = 2.0, on the other hand, we observe an 
abrupt change in temperature in the initial milliseconds, causing strong instability. 
For a global perception about this oscillatory pattern, Fig. 2 shows the numerical 
solutions in the space/time domain computed by the CN and Euler methods. 

In the next experiment, we modify the mesh parameter configuration to fulfill 
the condition of Theorem 3. Table 2 presents the data from this simulation. There 
was convergence in all cases. Furthermore, the average linearization number and the 
number of MG cycles were both relatively low. 

In particular, in Fig. 3 we show the behavior of the Euler and CN solutions, 
computed at the central point xc, adopting the equality τ/h2 = ρcp/κmax, where 
κmax = max{κ(un−1

i )} and h is calculated using ng = 5. The temperature reaches 

θ (κ0, χ)
(0.5, 0.1) (1.0, 1.0) (10.0, 1.0) (100.0, 2.0)

≤ 0.40 * * * *
0.45 4.8 (6.8) * * *
0.50 3.5 (8.0) 4.0 (6.1) 4.5 (3.9) 7.2 (3.0)
0.55 3.5 (8.9) 3.3 (7.2) 3.6 (3.8) 3.7 (3.0)
0.60 3.5 (8.9) 3.1 (8.0) 3.0 (3.7) 2.8 (3.0)
0.65 3.5 (8.9) 3.1 (8.1) 2.7 (3.6) 2.2 (3.0)
0.70 3.5 (8.9) 3.1 (8.0) 2.2 (3.5) 1.9 (3.0)
0.75 3.5 (8.9) 3.1 (8.0) 2.0 (3.5) 1.8 (3.0)
0.80 3.5 (8.8) 3.2 (8.0) 1.8 (3.4) 1.6 (3.0)
0.85 3.5 (8.7) 3.2 (7.9) 1.7 (3.3) 1.5 (3.0)
0.90 3.5 (8.7) 3.2 (7.9) 1.7 (4.2) 1.5 (3.0)
0.95 3.5 (8.6) 3.2 (7.8) 1.8 (4.1) 1.4 (3.0)
1.00 3.5 (8.6) 3.2 (7.7) 1.8 (4.2) 1.3 (3.0)

Table 1  Average linearization 
number and number of MG cy-
cles (in parentheses), calculated 
with ng = 5 grids and different 
values of θ, considering a mesh 
configuration τ = h

Note: The asterisk (*) indicates 
divergence or non-convergence

 

1 3

Page 15 of 22     63 



A. R. de Melo et al.

steady state within the first few thousandths of a second. As expected by theory, we 
see that unphysical oscillations no longer occur. 

4.2  Apparent order

For code verification, we use the concept of the apparent order pU  of the discreti-
zation error of the numerical solution, indicated when the analytical solution is 
unknown [41]. This metric allows us to computationally verify whether the order of 
the numerical solution tends to the asymptotic order pL of the discretization error, as 
the mesh spacing h is reduced. It can be calculated as follows [9]: 

Fig. 2  Numerical solutions by the CN (left) and Euler (right) methods for κ0 = 100.0 and χ = 2.0

 

Fig. 1  Numerical solutions by the CN, Euler and mixed methods (θ = 0.75), computed in xc, con-
sidering the degree of smoothness associated with the combinations between the parameters κ0 and χ
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pU =

log
∣∣∣∣
ϕ2 − ϕ3

ϕ1 − ϕ2

∣∣∣∣
log(q)

,
� (26)

where ϕ1, ϕ2 and ϕ3 are the numerical solutions calculated in the fine, coarse and 
super-coarse meshes, with respective spacings h1, h2 and h3, and refinement ratio 
q = h3/h2 = h2/h1.

In calculating pU , we used q = 2, quadruple precision, and enough iterations for 
Eqs. (24) and (25) to reach rounding error. This approach seeks to isolate the effects 
of discretization error, in order to minimize other sources of error [9].

Fig. 3  Numerical solution by 
the Euler and CN methods, 
evaluated at xc, considering 
τ/h2 = ρcp/κmax (CN stabil-
ity condition), κ0 = 100.0 and 
χ = 2.0

 

θ (κ0, χ)  
(0.5, 0.1) (1.0, 1.0) (10.0, 1.0) (100.0, 2.0)

0.05 2.2 (3.0) 2.1 (3.0) 1.1 (3.0) 1.0 (5.0)
0.10 2.3 (3.6) 2.2 (3.8) 1.1 (3.2) 1.0 (5.0)
0.15 2.4 (4.0) 2.2 (4.0) 1.1 (4.0) 1.0 (5.0)
0.20 2.4 (4.0) 2.2 (4.0) 1.1 (4.0) 1.0 (5.0)
0.25 2.4 (4.9) 2.2 (5.0) 1.1 (5.0) 1.6 (4.9)
0.30 2.5 (5.0) 2.2 (5.0) 1.1 (5.0) 1.0 (5.0)
0.35 2.5 (5.6) 2.2 (5.8) 1.1 (5.2) 1.0 (5.0)
0.40 2.5 (6.0) 2.3 (6.0) 1.1 (5.2) 1.0 (5.0)
0.45 2.5 (6.0) 2.3 (6.0) 1.1 (6.0) 1.0 (6.0)
0.50 2.6 (6.8) 2.3 (6.9) 1.2 (5.4) 1.0 (5.0)
0.55 2.6 (7.0) 2.3 (7.0) 1.7 (7.0) 1.0 (5.0)
0.60 2.6 (7.5) 2.3 (7.8) 1.2 (5.6) 1.0 (5.0)
0.65 2.6 (7.7) 2.3 (7.9) 1.2 (5.6) 1.0 (5.0)
0.70 2.7 (8.0) 2.3 (8.0) 1.2 (5.7) 1.0 (5.0)
0.75 2.7 (8.6) 2.4 (8.8) 1.2 (5.8) 1.0 (5.0)
0.80 2.8 (8.7) 2.4 (8.8) 1.2 (5.9) 1.0 (5.0)
0.85 2.8 (8.9) 2.4 (9.0) 1.2 (5.9) 1.0 (5.0)
0.90 3.0 (9.5) 2.5 (9.8) 1.2 (6.1) 1.0 (5.0)
0.95 3.2 (9.6) 2.6 (9.8) 1.2 (8.4) 1.0 (5.0)
1.00 3.6 (8.9) 3.3 (8.0) 1.9 (4.3) 1.3 (3.0)

Table 2  Average number of 
linearizations and number of 
MG cycles (in parentheses), 
calculated with ng = 5 grids 
and different values of θ, 
considering a stabilized mesh 
configuration
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Figure 4 shows a graphical representation of the test implemented for two vari-
ables: average temperature (um) and temperature at the center of the domain (uc), 
both calculated at the last time step, considering the case κ0 = 0.1 and χ = 0.5. As 
expected, as the mesh is refined, the apparent order pU  tends towards the asymptotic 
orders pL = 1 (Euler) or pL = 2 (CN), depending on the method used. 

After code verification, we proceed with the numerical results related to the MG 
method.

4.3  Average convergence factor

To evaluate the MG method, we use the average convergence factor ρM , a metric that 
represents the average reduction factor of the residual after one MG cycle [25, 37]. 
In this work, it is calculated from the arithmetic mean of the asymptotic convergence 
factor ρk

m [42]: 

	
ρM = 1

nt

nt∑
j=1

ρj
m, ρj

m = 1
itLin

itLin∑
k=1

ρk
m, ρk

m = itMG

√
||ritMG ||∞

||r0||∞
,� (27)

where itMG is the number of MG cycles of the k-th linearization, itLin is the number 
of linearizations in the j-th time step and nt the total number of time steps.

Figures 5 and 6 show the evolution of the average convergence factor ρM  in terms 
of the number of unknowns N = nt(nx − 2), calculated for various combinations of 
the parameters κ0 and χ, for θ = 1 (Euler) and 0.75 (Fig. 5) and θ = 0.5 (CN) and 
0.25 (Fig. 6). 

MG methods are more efficient the closer to zero ρM  is and, conversely, the closer 
to unity the lower their efficiency [36]. We observe that ρM  stabilizes at values 
below 0.107 (when θ = 1) as the mesh is refined, regardless of the choice of physical 
parameters, indicating efficiency and robustness of the MG.

The MG method proved to be independent of the stability criterion set out in Theo-
rem 3. Indeed, the average convergence factor ρM  of the CN method, in the same 
settings as the Euler method (with τ = h), produces results similar to those in Fig. 5 

Fig. 4  pU calculated for uc 
and um, at the final analysis 
time tf , with the Euler and CN 
methods
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Fig. 6  ρM versus N, calculated for the CN and mixed (θ = 0.25) method, with different combinations 
of parameters

 

Fig. 5  ρM versus N, calculated for the Euler and mixed (θ = 0.75) method, with different combina-
tions of parameters
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(values below 0.105). The CN method with the relation τ = min{ρcph2/κmax, h}, 
on the other hand, results in Fig. 6, which reinforces the robustness of the method 
when we impose the stability criterion.

5  Final considerations

In this paper, we analyzed a family of finite difference schemes for a nonlinear heat 
equation, applied to a homogeneous silicon rod with Dirichlet boundary conditions. 
We show that the method is consistent with the conservative form of the nonlinear 
PDE, is conditionally TVD-stable and therefore converges to a weak solution. The 
focus is on implicit schemes, accelerated with an efficient Newton multigrid method, 
developed in composition with the Gauss-Seidel red-black smoother. Numerical 
experiments confirm the theory and show that the multigrid algorithm is robust to 
a range of values of the physical parameters, as well as being independent of the 
stability condition. The numerical tools used in this work can be extended to the two-
dimensional case and are currently under development.
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