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ABSTRACT. In this paper we compare the implicit schemes for the solution of the two-dimensional wave 

equation using Singlegrid and Multigrid methods. The discretization is performed using the Finite 

Difference Method, weighted in time by an established parameter. The parallelization of the algorithms is 

ensured by employing the Waveform Relaxation method, where numerical stability is achieved by applying 

the method of subdomains in time. The primary innovation of this work lies in the development of a high-

order method that harnesses the parallelizability and robustness of the Multigrid method, enabling efficient 

solutions to the 2D wave equation. These methods also effectively mitigate oscillations that would 

otherwise significantly increase the maximum residual, a concern arising from the application of the 

standard Waveform Relaxation method. 
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Introduction 

According to Pierce (1990) the hyperbolic partial differential equation that describes wave propagation is 

given by,  

1

𝑐2

𝜕2𝑢

𝜕𝑡2
 = ∇2𝑢, (1) 

where 𝑢 is the displacement at position over time 𝑡 >  0, for a given constant 𝑐 associated to the density and 

the stress field and ∇2 represents the Laplacian operator. Obtaining reliable, and accurate approximate 

solutions to the wave equation problem is of paramount importance, being fundamental for understanding 

problems in acoustics, elastic and electromagnetic phenomena. According to Kocher and Bause (2014), 

numerical simulation of ultrasonic wave propagation in carbon fiber-reinforced polymers is a relatively new 

technique that serves damage detection and structural health assessment. 

Solving the wave equation for large times in a standard way can be a challenge, which is even greater when 

trying to perform parallelization of the algorithms (Haut, Babb, Martinsson, Wingate, 2016; Dai & Maday, 

2013). A new method, with slightly more stable characteristics, was proposed by Nguyen and Tsai (2020), 

showing good performance for smooth and constant wave speeds. However, this method proves to be less 

efficient for problems with discontinuity, in which error propagation occurs during the iterative process. 

According to Gander, Halpern, Rannou, and Ryan (2019) although parallelization schemes are successfully 

applied to diffusion problems, most of them fail when applied to the wave equation, and this is a research 

topic that should be addressed in more detail. Therefore, these authors proposed a diagonalization scheme 

with Newmark’s method, which proved to be effective for this new class of problems. The authors also 

performed the application of this procedure to calculate the response of a laminate composite made of 

Carbon/Epoxy when subjected to an impact load. 

In that context, a new method was developed: Waveform Relaxation (WR), which is an iterative method 

proposed to solve large systems of Ordinary Differential Equations (ODEs), but which can be adapted to time-

dependent PDEs. In WR, the spatial domain is decomposed by a set of points, and for each of these points, a 

http://orcid.org/0000-0003-3525-1750


Page 2 of 19 Malacarne et al. 

Acta Scientiarum. Technology, v. 47, e70187, 2025 

system of ODEs is solved in all time steps (Lelarasmee, Ruehli, & Vincentelli, 1982). A WR method was 

developed to solve the poroelasticity problem (Franco et al., 2019) which is modeled by a system of parabolic 

PDEs. Other works that apply parallelization are presented in Bellen and Zennaro (1989) and Chartier and 

Philippe (1993) for initial value problems and in Keller (1992) for boundary value problems.  

To non-steady state problems, the WR algorithms differ from the standard time sweep methods (Time-

Stepping) because their iterates are time functions (Gander, 2015). The Partial Differential Equations are 

transformed into a large set of Ordinary Differential Equations, and an iterative algorithm can be used to solve 

this system. This numerical solution needs a high computational effort due to the necessity of solving systems of 

large dimensions at each step point. WR iterations are designed to decouple the original large system into smaller 

subsystems: in this way, the iteration process can be implemented in a parallel computational environment, since 

each subsystem can be treated by a single processor (Conte, D’Ambrosio, & Paternoster, 2016). 

The instabilities encountered when trying to apply parallelization to hyperbolic problems are also detailed 

in Ruprecht (2018), where the mathematical theory needed to better understand how these problems arise is 

explored. A significant contribution is made by noting that for increasing final time or for larger wave 

numbers, there is an overestimation of the amplitudes that are not damped at the beginning of the process. 

Important literature review work on solving partial differential equations (PDEs) using parallelization has 

been done by Ong and Schroder (2020), in which the authors highlight the importance of developing codes 

that use methods such as Multigrid, Waveform Relaxation, Subdomains, and Space-Time, as these methods 

can be employed to increase the degree of parallelization, both spatially and temporally. 

The Space Time method was also addressed in Giladi and Keller (2002) for the diffusion and advection 

problem with domain decomposition using red-black ordering solver, in which high convergence rates were 

obtained. A variation of the discontinuous Space Time method is proposed in Klaij, Van Der Vegt, and van der 

Ven (2006), to solve the Navier-Stokes equation using Finite Element Method (FEM), usually this method 

presents difficulties when working with large deformations in the mesh, but this strategy proved accurate 

even in these cases. 

In Gander and Neumuller (2016) the application of the Multigrid method with Space Time for the heat 

equation, with discretization using the Finite Element Method in space, was performed, where detailed 

analyses on convergence and the choice of optimal parameters for total coarsening in time were presented. 

The Multigrid method with time reduction (MGRIT) proposed in Falgout, Friedhoff, Kolev, MacLachlan, 

and Schroder (2014) aims to increase the degree of parallelization of existing algorithms, since it allows for 

simultaneous spatial and temporal parallelization, because, despite the evolution of data architecture, the 

processing capacity is limited if only one core is used. This method produces good results, especially if many 

cores are used. 

The MGRIT method as well as other parallelization methods treat the time domain as an extension of the 

spatial domain. In a simplified way, we can say that this method is based on obtaining approximate solutions 

on coarse meshes in time, then these solutions can be adopted as initial estimates on more refined meshes 

and thus the time domain can be divided into subsets, which are solved separately (this process is called F 

relaxation). This allows parallelization in time to be performed, as in Dobrev, Kolev, Petersson, and Schroder 

(2017) where an analysis of the convergence of the MGRIT method for two mesh levels is performed. 

An important comparison between Multigrid with Space Time, Multigrid with Waveform Relaxation, and 

MGRIT methods was performed by Falgout et al. (2017) for the diffusion problem. The results showed that all 

three methods are effective in solving this type of problem, but Multigrid with Space Time has some 

advantages over MGRIT, especially when a relatively large number of processors are not available. 

The Multigrid Method is widespread in literature, having applications to a variety of problems, such as 

poroelasticity (Franco et al., 2018b; Rodrigues et al., 2022; Franco & Pinto, 2023), diffusive problems (De Oliveira, 

Franco, & Pinto, 2018; Pinto, Rodrigo, Gaspar, and Oosterlee, 2016), and hyperbolic equations (Malacarne, Pinto, 

& Franco, 2022). Promising results for the Multigrid method were presented by Franco et al. (2018a) for the heat 

equation with Space-Time.  The authors innovated by proposing a standard form of coarsening, which is based on 

the degree of anisotropy of the discretized operator. This parameter is calculated using Local Fourier Analysis, 

resulting in an algorithm with a robust and efficient adaptive smoothing strategy. 

Domain Decomposition Methods consist of techniques for solving PDEs where the problem domain can be 

decomposed into a set of spatial and temporal subdomains, and where parallelization exists when each 

subdomain is solved independently. Such strategies can be used in various methods, among them are the 

Finite Difference Method (FDM) and the Finite Element Method (FEM) (Foltyn, Lukas, & Peterek, 2020). 
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In Ong and Mandal (2018) the Domain Decomposition method combined with the parallelizable Neumann-

Neumann and Dirichlet-Neumman Waveform Relaxation methods was used, in which the algorithms were 

analyzed. The results showed a dependence of the solution on the number of Waveform cycles, which in this 

case is informed initially, but without a reliable stopping criterion. The main disadvantages of this 

methodology are the computational effort when the number of Waveform Relaxation cycles is larger than 

necessary, and the lack of precision of the solution obtained when the number of Waveform Relaxation cycles 

is insufficient. 

In Benedusi, Minion, and Krause (2021) two parallel in time approaches applied to a reaction-diffusion 

problem were treated. Starting from the continuous time-dependent problem, the methods PFASST (Parallel 

Full Approximation Scheme in Space and Time) and Multigrid Space Time strategies were compared, where 

the two showed similar characteristics and results for linear cases, but with a slight advantage when using the 

PFASST method. For more details on the mathematical formulation of the PFASST method, see Bolten, Moser, 

and Speck (2017), where Local Fourier Analysis is performed for diffusion and advection problems. 

Since obtaining solutions to the wave equation with parallelizable methods is a recurrent theme in 

literature and of paramount importance, it still presents challenges to be overcome. In this work, we employ 

the Subdomains in Time method with Waveform Relaxation and compare the results obtained with the 

Singlegrid and Multigrid methods. Our main innovations are in the reductions of the initial oscillations that 

exist when applying the standard Waveform Relaxation method and in the improvement of numerical 

parameters, such as convergence factors and processing time. 

Material and methods 

In this section we will present the mathematical formulation that describes two- dimensional wave 

propagation and the discretization using time-weighted Finite Difference Method (FDM). The two-

dimensional wave equation can be used to model, for example, the problem of a vibrating rectangular 

membrane, in which the goal is to find the displacement 𝑢(𝑥, 𝑦, 𝑡), with the independent variables, 0 <  𝑥 <

 𝑙𝑥 and 0 <  𝑦 <  𝑙𝑦, representing the plane’s spatial coordinates, at time 𝑡 >  0. Assuming a positive scalar 

𝛼2 = 1/𝑐2, that is related to the superficial density and local tension, we define the two-dimensional wave 

equation (see Olver, 2014) as  

∂2𝑢

∂𝑡2
  = α2 (

∂2𝑢

𝜕𝑥2
+

∂2𝑢

𝜕𝑦2
), (2) 

𝑢|𝑡=0 = 𝑓(𝑥, 𝑦), (3) 

∂𝑢

∂𝑡
|
𝑡=0

= 𝑔(𝑥, 𝑦), (4) 

𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, 𝑙𝑦, 𝑡) = 𝑢(0, 𝑦, 𝑡) = 𝑢(𝑙𝑥 , 𝑦, 𝑡) = 0, 𝑡 > 0, (5) 

where 𝑓 (𝑥, 𝑦) is the initial setup, 𝑔(𝑥, 𝑦) is the initial speed and Equation (5) represents the boundary 

conditions.  

Using FDM to discretization and considering the problem defined by Equations. (2) to (5), and a square 

membrane of side 𝐿, that is, 𝑙𝑥  =  𝑙𝑦  =  𝐿, we define the size of each spatial element by ℎ𝑥  =
𝐿

𝑁𝑥
 and ℎ𝑦  =

𝐿

𝑁𝑦
, 

and a time increment by 𝜏 =  𝑡𝑓 𝑁𝑡, where 𝑁𝑥, 𝑁𝑦 and 𝑁𝑡 are the numbers of the spatial and temporal intervals, 

respectively, at time 𝑡𝑓  >  0. By admitting an approximation 𝑣𝑖,𝑗
𝑘  for the solution 𝑢, at a point of coordinates 

(𝑥𝑖 , 𝑦𝑗), with time 𝑘 (see Figure 1), and using implicit discretization in time and central difference in space, the 

two-dimensional problem can be discretized, expanding the methodology employed for the one-dimensional 

case (for more details, see Malacarne, Pinto and Franco, 2022). Thus, we have 

𝑣𝑖,𝑗
𝑘−1 −2𝑣𝑖,𝑗

𝑘 +𝑣𝑖,𝑗
𝑘+1

𝜏2
−

𝜏2

12

𝜕4𝑣𝑖,𝑗

𝜕 𝑡4
−⋯ = (6) 

𝜂 (
(𝑣𝑖−1,𝑗

𝑘+1 − 2𝑣𝑖,𝑗
𝑘+1 + 𝑣𝑖+1,𝑗

𝑘+1 )

ℎ𝑥
2

−
ℎ𝑥
2

12

𝜕4𝑣𝑖,𝑗
𝑘+1

𝜕𝑥4
−⋯) 

+𝛼2(1 − 2𝜂) (
(𝑣𝑖−1,𝑗

𝑘 − 2𝑣𝑖,𝑗
𝑘 + 𝑣𝑖+1,𝑗

𝑘 )

ℎ𝑥
2

−
ℎ𝑥
2

12

𝜕4𝑣𝑖,𝑗
𝑘

𝜕𝑥4
−⋯) 
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+𝛼2𝜂 (
(𝑣𝑖−1,𝑗

𝑘−1 − 2𝑣𝑖,𝑗
𝑘−1 + 𝑣𝑖+1,𝑗

𝑘−1 )

ℎ𝑥
2

−
ℎ𝑥
2

12

𝜕4𝑣𝑖,𝑗
𝑘−1

𝜕𝑥4
−⋯) 

+𝛼2𝜂 (
(𝑣𝑖−1,𝑗

𝑘+1 − 2𝑣𝑖,𝑗
𝑘+1 + 𝑣𝑖+1,𝑗

𝑘+1 )

ℎ𝑦
2

−
ℎ𝑦
2

12

𝜕4𝑣𝑖,𝑗
𝑘+1

𝜕𝑦4
−⋯) 

+𝛼2(1 − 2𝜂) (
(𝑣𝑖−1,𝑗

𝑘 − 2𝑣𝑖,𝑗
𝑘 + 𝑣𝑖+1,𝑗

𝑘 )

ℎ𝑦
2

−
ℎ𝑦
2

12

𝜕4𝑣𝑖,𝑗
𝑘

𝜕𝑦4
−⋯) 

+𝛼2𝜂 (
(𝑣𝑖−1,𝑗

𝑘−1 − 2𝑣𝑖,𝑗
𝑘−1 + 𝑣𝑖+1,𝑗

𝑘−1 )

ℎ𝑦
2

−
ℎ𝑦
2

12

𝜕4𝑣𝑖,𝑗
𝑘−1

𝜕𝑦4
−⋯) 

where η is a weighting parameter, being responsible for weighing the influence of each direction. This process 

of spatial and temporal discretization is applied in symmetric and orthogonal grids, as illustrated in Figure 1. 

 
Figure 1. Space and time discretization. 

Assuming ℎ =  ℎ𝑥  =  ℎ𝑦, 𝜆, given by 

𝜆 =
𝛼2𝜏2

ℎ2
, (7) 

and rearranging the terms of the previous equation, we obtain 

 𝑎𝑝𝑣𝑖,𝑗
𝑘+1 = 𝑎𝑤 𝑣𝑖−1,𝑗 

𝑘+1 + 𝑎𝑒 𝑣𝑖+1,𝑗
𝑘+1 + 𝑎𝑠 𝑣𝑖,𝑗−1

𝑘+1 + 𝑎𝑛 𝑣𝑖,𝑗+1
𝑘+1 + 𝑏𝑝, (8) 

where, 

𝑎𝑝 = 1 + 4𝜂, (9) 

𝑎𝑤 = 𝑎𝑒 = 𝑎𝑠 = 𝑎𝑛 = 𝜂 (10) 

 𝑏𝑝  = 𝜆 ((1 − 2𝜂)(𝑣𝑖−1,𝑗
𝑘 + 𝑣𝑖+1,𝑗

𝑘 + 𝑣𝑖,𝑗−1
𝑘 + 𝑣𝑖,𝑗+1

𝑘 ) +  𝜂(𝑣𝑖−1,𝑗
𝑘−1 + 𝑣𝑖+1,𝑗

𝑘−1 + 𝑣𝑖,𝑗−1
𝑘−1 + 𝑣𝑖,𝑗+1

𝑘−1 )) + (11) 

(2 − 4𝜆 +  8𝜂 𝜆)𝑣𝑖,𝑗
𝑘 + (−1 − 4𝜂𝜆)𝑣𝑖,𝑗

𝑘−1. 

In this case, the truncation error is given by 

𝜀 =
𝜏4

12

𝜕4𝑣𝑖,𝑗

𝜕𝑡4
  + ⋯ −

𝛼2 𝜏2
2 ℎ2 𝜂

12

𝜕4 𝑣𝑖,𝑗
𝑘+1

𝜕𝑥4
−⋯ −

𝛼2𝜏2 ℎ2

12
(1 − 2𝜂)

𝜕4𝑣𝑖,𝑗
𝑘

𝜕𝑥4
−⋯−

𝛼2 𝜏2
2 ℎ2 𝜂

12

𝜕4 𝑣𝑖,𝑗
𝑘−1

𝜕𝑥4
−⋯ (12) 

 −
𝛼2 𝜏2

2 ℎ2 𝜂

12

𝜕4 𝑣𝑖,𝑗
𝑘+1

𝜕𝑦4
−⋯−

𝛼2𝜏2 ℎ2

12
(1 − 2𝜂)

𝜕4𝑣𝑖,𝑗
𝑘

𝜕𝑦4
−⋯−

𝛼2 𝜏2
2 ℎ2 𝜂

12

𝜕4 𝑣𝑖,𝑗
𝑘−1

𝜕𝑦4
−⋯, 

with truncation error order 𝑂(ℎ2𝜏2, ℎ2𝜏2, 𝜏4). 

In order to calculate 𝑣𝑖,𝑗
𝑘+1, it is necessary to know the solutions of the two previous time steps, 𝑣𝑖,𝑗

𝑘 and 𝑣𝑖,𝑗
𝑘−1  

To initiate the process, 𝑣𝑖,𝑗
𝑘−1 is given by the initial setup and  𝑣𝑖,𝑗

𝑘 is calculated with central differencing scheme 

by Equation (13), for more details see Burden and Faires (2016). 

 𝑣𝑖,𝑗
𝑘 = (1 − 𝜆)𝑓𝑖,𝑗 +

𝜆

2
 [𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 + 𝑓𝑖+1,𝑗 + 𝑓𝑖+1,𝑗] + 𝜏𝑔𝑖,𝑗 + 𝑂(ℎ

2).       (13) 
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In some cases, when discretizing PDEs that model physical problems, we can obtain sparse and large linear 

systems as exemplified by Equation (14), which can be rewritten as 

𝐴𝑢=𝑏 (14) 

These systems can be solved by using direct or iterative methods, referred to as solvers herein. Given the 

characteristics of these systems, direct methods become unfeasible due to their high computational cost 

(Burden & Faires, 2016). In such cases, we opt for iterative methods. However, these methods generally 

exhibit adequate smoothing properties only at the beginning of the iterative process. 

After a few iterations, the approximation error becomes smooth but not necessarily small. This problem 

arises from the inherent nature of classical iterative methods, which quickly smooth out high frequency errors 

(oscillatory modes), leaving only low frequency errors (smooth modes) (Wesseling, 1995). 

In this context, the Multigrid method (Brandt, 1977) can be applied. It is employed to accelerate the 

convergence in obtaining solutions for this type of system. By using a set of grids, it is possible to smooth 

both the oscillatory and smooth modes, given that the smooth modes on fine grids become more oscillatory 

on coarser grids (Trottenberg, Oosterlee, & Schuller, 2000). This approach allows the Multigrid iterative 

process to address all error components (Elman, Ernst, & O’leary, 2001). 

The way it progresses through the different grid levels is referred to as cycle. In this work, we used the V-

cycle, illustrated in Figure 2, which provides an example of a V-cycle for which three levels of coarsening: 

from fine grid Ωℎ to the desired or coarsest grid Ω4ℎ. Note that we use the coarsening ratio 𝑞 =  2, with ℎ being 

the spacing in the fine grid and 2h the spacing in the immediately coarser grid. 

 
Figure 2. An example of V-cycle. 

In this cycle, the system of equations is smoothed 𝜈1 times (pre-smoothing) on the fine grid. Afterward, 

we restrict its residue to the immediately coarser grid using the restriction operators (𝐼ℎ
2ℎ). In this work, we 

employed the operator, given by (Trottenberg & Clees, 2009) 

𝑟2ℎ(𝑥𝑖 , 𝑦𝑗)  =  𝐼ℎ
2ℎ 𝑟ℎ(𝑥𝑖 , 𝑦𝑗)  =

1

8
 [4𝑟ℎ(𝑥𝑖 , 𝑦𝑗) + 𝑟ℎ(𝑥𝑖+1, 𝑦𝑗) + 𝑟ℎ(𝑥𝑖−1, 𝑦𝑗) + 𝑟ℎ(𝑥𝑖 , 𝑦𝑗+1) + 𝑟ℎ(𝑥𝑖 , 𝑦𝑗−1)]   (15) 

where 𝑟ℎ and 𝑟2ℎ represent the residue on the fine and coarse grids, respectively. This process is repeated until 

the coarsest grid is reached, at which point the problem is then solved. 

Next, the corrections are prolonged using the interpolation operator (𝐼2ℎ
ℎ ), as described in Trottenberg and 

Clees, 2009, 

𝑣ℎ(𝑥𝑖 , 𝑦𝑗) = 𝐼2ℎ
ℎ 𝑣2ℎ(𝑥𝑖 , 𝑦𝑗) =

{
 
 
 

 
 
 
1

2
[𝑣2ℎ(𝑥𝑖−1, 𝑦𝑗) + 𝑣2ℎ(𝑥𝑖+1, 𝑦𝑗)],

1

2
[𝑣2ℎ(𝑥𝑖 , 𝑦𝑗−1) + 𝑣2ℎ(𝑥𝑖 , 𝑦𝑗+1)],

1

2
[𝑣2ℎ(𝑥𝑖−1, 𝑦𝑗) + 𝑣2ℎ(𝑥𝑖+1, 𝑦𝑗) +

𝑣2ℎ(𝑥𝑖 , 𝑦𝑗−1) + 𝑣2ℎ(𝑥𝑖 , 𝑦𝑗+1)] ,

𝑣2ℎ(𝑥𝑖 , 𝑦𝑗).

                (16) 

The interpretation of the four cases of the prolongation operator can also be seen in Figure 3. 
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Figure 3. Where those in orange are injection interpolation, those in green and blue are linear interpolation, and those in red are 

bilinear interpolation. 

The solution is then corrected, and the system of equations is smoothed 𝜈2  times (post-smoothing). This 

iterative process continues until the finer grid Ωℎ is reached, where the solution is smoothed 𝜈2 times (Briggs, 

Henson, & McCormick, 2000; Wesseling & Oosterlee, 2001). The V-cycle is repeated until the stopping 

criterion is met. This approach allows for the smoothing of all error components (smooth and oscillatory) 

(Falgout et al., 2017).  

Waveform Relaxation (WR) is an iterative method initially proposed to solve large systems of Ordinary 

Differential Equations (ODEs) (Lelarasmee et al., 1982). However, it can also be applied to time dependent PDEs in 

cases where the spatial domain is decomposed into a set of points, and for each of them, a system of ODEs is solved 

in all time steps (Liu & Jiang, 2011; Vandewalle, 2013). This method allows for the parallelization of algorithms for 

transient PDEs. The WR method transforms PDEs into an ODE system with the form, 

𝑑2𝑣𝑖,𝑗

𝑑𝑡2
= 𝐺𝑖,𝑗(𝑣𝑖,𝑗 , 𝑡), (17) 

where 𝐺𝑖,𝑗 represents vectors or functions that contain temporal information foreach spatial coordinates 𝑖 and 

𝑗, and which is calculated with the values of 𝑣𝑖,𝑗  =  (𝑣1,1, 𝑣1,2, . . . , 𝑣1,𝑑 , 𝑣2,1, 𝑣2,2, . . . , 𝑣2,𝑑 , . . . , 𝑣𝑑,1, 𝑣𝑑,2, . . . , 𝑣𝑑,𝑑), 

where 𝑑2 is the dimension of the system. Thus, for each node 𝑥𝑖,𝑗 in the spatial discretization, a temporal ODE 

is independently solved up to the final time. Each component of the system given in Equation (22) can be 

written as an ODE, as follows, 

{
 
 
 
 
 

 
 
 
 
 

𝑑2𝑣1,1

𝑑𝑡2
= 𝐺1,1(𝑣1,1, … , 𝑣1,𝑑 , … , 𝑣𝑑,𝑑 , 𝑡) with 𝑣1,1(0) = 𝑣1,1

0  and
𝑑𝑣1,1

𝑑𝑡
= 𝑔1,1

0 ,
…

𝑑2𝑣1,𝑑

𝑑𝑡2
= 𝐺1,𝑑(𝑣1,1, … , 𝑣1,𝑑 , … , 𝑣𝑑,𝑑 , 𝑡) with 𝑣1,𝑑(0) = 𝑣1,𝑑

0  and
𝑑𝑣1,𝑑

𝑑𝑡
= 𝑔1,𝑑

0 ,

𝑑2𝑣2,1

𝑑𝑡2
= 𝐺2,1(𝑣1,1, … , 𝑣1,𝑑 , … , 𝑣𝑑,𝑑 , 𝑡) with 𝑣2,1(0) = 𝑣2,1

0  and
𝑑𝑣2,1

𝑑𝑡
= 𝑔2,1

0 ,
…

𝑑2𝑣2,𝑑

𝑑𝑡2
= 𝐺2,𝑑(𝑣1,1, … , 𝑣1,𝑑 , … , 𝑣𝑑,𝑑 , 𝑡) with 𝑣2,𝑑(0) = 𝑣2,𝑑

0  and
𝑑𝑣2,𝑑

𝑑𝑡
= 𝑔2,𝑑

0 ,
…

𝑑2𝑣𝑑,𝑑

𝑑𝑡2
= 𝐺𝑑,𝑑(𝑣1,1, … , 𝑣1,𝑑 , … , 𝑣𝑑,𝑑 , 𝑡) with 𝑣𝑑,𝑑(0) = 𝑣𝑑,𝑑

0  and
𝑑𝑣𝑑,𝑑

𝑑𝑡
= 𝑔𝑑,𝑑

0 ,

        (18) 

where 1 ≤  𝑖, 𝑗 ≤  𝑑, indicate respectively, the initial configurations and velocities for each point of the spatial 

discretization. Each line of the system of Equations. (23) can be solved separately using a core for each line, as 

illustrated in Figure 4. 

Each temporal EDOs must be solved independently at all spatial nodes, with theupdate of unknowns 

performed at the end of a WR cycle. As a result, we have aniterative method of repeating the procedure until 

a stopping criterion is met (Crow & Ilic, 1990). We can achieve full spatial parallelization by using a colored 

ordering scheme in the solver, such as red-black Gauss-Seidel (RBGS) (Vandewalle, 2013). 

It is possible to combine Waveform Relaxation with the Multigrid method whenperforming coarsening 

only in the spatial direction because WR is continuous in time. This ensures that the number of temporal 

discretization points remains constant (Vandewalle, 2013). For instance, for a fine grid Ωℎ with 

𝑁𝑥  ×  𝑁𝑦  ×  𝑁𝑡  =  33 ×  33 ×  33 points, the coarser grids, with a coarsening ratio 𝑞 =  2, are Ω2ℎ, Ω4ℎ, Ω8ℎ 

and Ω16ℎ, which respectively contain 17 ×  17 ×  33, 9 ×  9 ×  33, 5 ×  5 ×  33 and 3 ×  3 ×  33 points. Then, 

a Multigrid cycle is performed at all spatial points for all time steps. The structure of the Waveform Relaxation 

and Multigrid approach for solving the system 𝐴ℎ(𝑡)𝑣ℎ(𝑡)  =  𝑓ℎ(𝑡). 
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Figure 4. Standard two-dimensional Waveform Relaxation method. 

In Gander, Kwok, and Mandal (2021) a variation of the Waveform Relaxation method is introduced, which 

can be applied to PDEs. In this approach, the domain Ω is divided into 𝐾 spatial subdomains that can be 

independently solved until the final time, which generates a parallelizable strategy. See Figure 5 for 𝐾 =  4. 

It’s worth noting that parallelization can be achieved by dedicating a processing core to each spatial subdomain. 

Both Gander, Kwok and Mandal (2021) and Gong, Gander, Graham, Lafontaine, Spence, and (2021) include studies 

to assess the stability of this approach when applied to heat and Helmholtz equations, as well as the ways of 

exchanging information between the subdomains. The authors also mention that at the start of the iterative 

process, convergence is negatively affected, and oscillations may occur in the approximate solution. However, as 

the iterative process advances, the solution converges to the desired values. 

 
Figure 5. Division of the domain Ω into 𝐾 =  4 subdomains. 

In Gander, Kwok, and Mandal (2021) convergence is demonstrated for the one-dimensional heat transfer 

problem using a method called Dirichlet-Neumann Waveform Relaxation. The authors point out that the 

initial oscillations tend to be more pronounced when the final time is extended and/or when there are more 

subdomains in space. Here we face a significant challenge: while increasing the number of spatial and 

temporal subdomains enhances parallelization, it also tends to amplify the initial oscillations.  

Another approach is proposed in Ong and Mandal (2018), where, besides the division in 𝐾 spatial 

subdomains (see Figure 5), there is also a division in 𝐽 temporal subdomains (see Figure 6). The combination 

of these two methods results in a highly parallelizable approach. 
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In Figure 6 the Waveform Relaxation method is first applied to the Ω1 domain, whichruns from 𝑡0 to 𝑡𝑓1 . 

Subsequently, the solution at time 𝑡𝑓1 serves as initial estimatefor the Ω2 domain, covering the time interval 

from 𝑡𝑓1 to 𝑡𝑓2. This process is repeateduntil the desired solution is reached, which in this example occurs at 

𝑡𝑓3  =  𝑡𝑓. It isimportant to note that the approach proposed in Gong et al. (2021) is a specific case of the 

approach presented in Ong and Mandal (2018), which adopts J =  1.  

In this work, we propose an in-depth analysis of the second methodology, which employs the minimum 

number of spatial subdomains (𝐾 =  1) and a reduced number of temporal subdomains, to solve the wave 

equation with the WR method while mitigating the initial oscillations. To achieve this goal, we analyze the 

effect of parameters such as time and space intervals, physical properties of the wave, number of temporal 

subdomains, among others. 

  
Figure 6. Subdomain method in time for J =  3. 

Results and discussion 

In this section, we begin by verifying the results obtained through the application of the Waveform 

Relaxation Method in a standard manner. This initial step confirms the limitations of this methodology, as 

described in Gander, Kwok, and Mandal (2021). Subsequently, we present and discuss the contributions of 

this work, which are achieved by combining the Waveform Relaxation strategy with the Subdomain Method 

in time. Solution models using Multigrid and Singlegrid Methods, average convergence factors, speedups, and 

processing time are also compared.  

We perform the verification of the codes used, involving numericalsimulations and a posteriori analysis of 

the results obtained with the Multigrid and Singlegrid formulations, with standard Waveform Relaxation and 

combined with the Subdomain Method in time. The discretization was carried out using the Weighted Finite 

Difference Method with RBGS as smoother. 

Discretization error 

The first step is to compare the numerical solutions with the analytical solutions for the transient problem 

that models wave propagation over a square membrane (2D problem), described by Equations (2) to (5). This 

problem is solved assuming 𝛼 =  2, initial configuration 𝑓(𝑥, 𝑦)  =  𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦) and initial velocity 
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𝑔(𝑥, 𝑦)  =  0. We adopt the same number of points in both spatial and temporal discretization, ie, 𝑁 =  𝑁𝑥  =

 𝑁𝑦  =  𝑁𝑡, with 𝜏 =  ℎ𝑥  =  ℎ𝑦, parameter 𝜂 =  0.5, length 𝐿 =  𝑙𝑥  =  𝑙𝑦  =  1.0 m, and final time 𝑡𝑓  =  1.0 s. 

The choice of these parameters for verification is based on the work of Malacarne, Pinto, and Franco (2022). 

The discretization error is related to the size of the grid components used (Table 1). For verifying the 

behavior of this type of error, in this section we neglected rounding and iteration error, considering solely the 

discretization error. The SG and M G represent the Singlegrid and Multigrid methods, respectively. In the first 

column, the number of points for the problem is 𝑁3. 

Table 1. Discretization error for different grids. 

𝑵 ||𝑬𝑺𝑮||∞ ||𝑬𝑴𝑮||∞ 

𝟐𝟑 + 𝟏 1.23215155E+00 1.23215155E+00 

𝟐𝟒 + 𝟏 3.42788395E-01 3.42788395E-01 

𝟐𝟓 + 𝟏 7.83783302E-02 7.83783302E-02 

𝟐𝟔 + 𝟏 1.88555766E-02 1.88555766E-02 

𝟐𝟕 + 𝟏 4.67832780E-03 4.67832780E-03 

𝟐𝟖 + 𝟏 1.16979496E-03 1.16979494E-03 

𝟐𝟗 + 𝟏 2.92791365E-04 2.92791376E-04 

 

We verified a desirable characteristic in approximations: the discretization error decreases as the grid are 

refined. It is important to note that by adopting a certain value of 𝑁, regardless of the method used - whether 

it is standard Waveform Relaxation or Waveform Relaxation with Subdomains in Time (for any J), using 

Singledrid or Multigrid - the discretization error is virtually the same, as the problem was solved up to the 

rounding error. We point out that in the method of subdomains in time, the accuracy of the solution is the 

same for any value of J. In contrast to Malacarne, Pinto, and Franco (2022), in this work we use the Waveform 

Relaxation method and its variations with the Subdomains in Time. 

Effective and apparent orders 

Studies that explore methodologies for qualitatively verifying numerical solutions are valuable in various 

fields of computer simulation. In Da Silva, Rutyna, Righi, and Pinto (2021), the authors showed how to use 

the effective 𝑃𝑒 and apparent 𝑃𝑢 order of accuracy to assess the coherence of numerical solutions in 

computational heat transfer problems. Notably, in Da Silva, Marchi, Meneguette, and Foltran, 2022, the 

authors confirmed the robustness of this methodology, showing its applicability even in discretization that 

do not use meshes, for example, using the SPH method. The advantage of the apparent order of accuracy lies 

in the fact that the analytical solution may be unknown, and numerical error analyzes are shown in Da Silva 

et al., (2021) for several cases. In this work, we apply to the Richardson estimator based on the effective and 

apparent orders of numerical error. The results are presented in Table 2.  

Table 2. Apparent and effective orders. 

𝒉  𝑷𝒖 𝑷𝒆 

1/8   1.75002700E+00 1.84580825E+00 

1/16  2.15123967E+00  2.12877283E+00 

1/32   2.06986367E+00  2.05546357E+00 

1/64   2.01463782E+00  2.01092641E+00 

1/128   2.00021321E+00  1.999737269E+00 

1/256   1.999816227E+00  1.998755489E+00 

1/512   - 1.998310716E+00 

 

The results indicate that the method employed in this work exhibits apparent and effective orders tending 

to asymptotic order 𝑝𝐿  =  2. These findings are aligned with the literature in the work of Malacarne, Pinto 

and Franco (2022), where the Time-Stepping method was employed. These results validate our solution 

methodology, using Standard Waveform Relaxation and Waveform Relaxation with Subdomains in Time. 

Standard waveform relaxation 

In this section, we demonstrate the oscillatory behavior of the solution during the iteration, using the 

standard Waveform Relaxation method. To do so, we solve a two-dimensional problem modeled by Equations 
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(2) to (5), using Singlegrid (SG) and Gauss Seidel with Red Black ordering as the solver, on a grid with 𝑁 =

 129, ie, 1293 total number of points. Figure 7 and Figure 8 depict the solutions for the profile at 𝑦 =  0.5 𝑚, 

after 5 and 50 iterations, and Figure 9 and Figure 10 display the solutions after 200 and 1500 iteration, both 

using final time 𝑡𝑓  =  1.0 𝑠.  

Remark: In the range of Figures 7 to 9, due to the scale, the configuration of the analytical solution is not 

visible. However, as the iterations progress, convergence occurs, and this configuration becomes evident, as 

shown in Figure 10. The analytical solution is obtained directly. 

We verified significant initial oscillations when applying the standard Waveform Relaxation method, even 

when using coarser grids (with fewer points). Despite the pronounced oscillation at the beginning of the 

process, the numerical solution converges with the desired values as the number of iterations increases.  

In Figure 11 it is possible to observe the behavior of the infinity norm of the residue as the iterations are 

performed, using Singlegrid method and standard Waveform Re- laxation method. 

The initial oscillations lead to increased error in the approximate solutions whichis an undesirable 

characteristic in the approximation process. Although it is well-documented in the literature, the causes of 

this increase remain unknown and negatively impact the convergence factors and CPU time (Gander, Kwok, 

& Mandal, 2021). By using the Multigrid method, we are not able to reduce the order of the residue; despite 

performing fewer cycles, the order of perturbation of the residue is the same. 

 
Figure 7. Solution with 5 iterations. 

 

Figure 8. Solution with 50 iterations. 
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Figure 9. Solution with 200 iterations. 

 

Figure 10. Solution with 1500 iterations. 

 
Figure 11. Residue versus iterations for Singlegrid with standard Waveform Relaxation 

Average convergence factor for Waveform Relaxation  

In this section, we apply the standard Waveform Relaxation method to the problem described in the 

previous section, varying final time. To do so, let the convergence factor be 𝜌 = ||𝑟𝑖𝑡||∞/||𝑟
𝑖𝑡−1||∞, with 𝑟𝑖𝑡 
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being the residue generated in the iteration 𝑖𝑡. A value of 𝜌 ≈  0 results in more efficient methods, while 𝜌 ≈

 1 means the opposite (Briggs et al., 2000) 𝜌 ≈  1 means that with each new iteration, the improvement in the 

approximate solution is almost imperceptible). We also define the average convergence factor 𝜌𝑚 

(Trottenberg & Clees, 2009), given by 

ρ𝑚 = √
||𝑟𝑖𝑡||∞

||𝑟0||∞

𝑖𝑡
 (19) 

According to Vandewalle and Horton (1993) 𝜆 =  𝛼2𝜏2/ℎ2 can be considered a measure of the anisotropy level 

in the discretized operator within a given grid. Such anisotropy can impact the performance of the solver. As 𝜆 

depends on the temporal and spatial increments adopted in the discretization and on the velocity of the 

propagation of the wave, 𝜆 thus represents a measure of physical and geometrical anisotropy of the wave equation.  

We can express the final time depending directly on 𝜆 and 𝛼, using the expression𝑡𝑓  =  √𝜆/𝛼. Then, we 

present the test results where we vary the parameter 𝜆 andcalculate 𝜌𝑚 for a wide range of problems, covering 

most real cases of wavepropagation. To verify the behavior of the standard Waveform Relaxation method 

using the Singlegrid and Multigrid Methods, see Figure 12. 

 
Figure 12. 𝜌𝑚 versus 𝜆 with standard Waveform Relaxation using Multigrid and Singlegrid. 

As observed in Figure 12, as 𝜆 increases, the average convergence factors of the Multigrid and Singlegrid 

Methods also increase, becoming 𝜌𝑚  ≈  1.0, which is not favorable. Consequently, we conclude that the 

solution model is neither efficient nor robust for intermediate or large 𝜆 values (cases with many unkwows 

and longer final times). This result supports the hypothesis that it is inefficient to apply the standard 

Waveform Relaxation method to solve the wave equation, whether using the Multigrid or Singlegrid methods. 

The hyperbolic transient wave computational simulation problem can be solved in different ways, but most of 

these approaches have limitations, especially for relatively large final times. In such cases, explicit schemes exhibit 

instabilities that compromise the reliability of the approximate solution (Bailly & Juve, 2000). As observed, even 

implicit methods present difficulties in solving these cases, because at the beginning of the iterative process, the 

approximate solutions present strong oscillations, which are smoothed out as the number of iterations increases 

(see Figure 7 and 9). However, this significantly affects the efficiency of such methods. Therefore, we aim to 

enhance the applicability of parallelizable methods, such as the Waveform Relaxation Method. To achieve this, we 

combine the methodologies developed so far with the Subdomains in Time method, as illustrated in Figure 6.  

Waveform relaxation with subdomain in time 

From this section on, we present the results of the Waveform Relaxation Method combined with the 

Subdomain in time method. For this analysis, set 𝐾 = 1 for the number of spatial subdomains. Regarding the 

number J of subdomains in time, we choose the smallest possible value that can provide satisfactory average 

convergence factors (𝜌𝑚). In Table 1 are the values used for J, which may vary depending on the values of 𝑁3 =

𝑁𝑥𝑁𝑦𝑁𝑡 and 𝜆. It is important to note that numerous simulations were conducted, exploring various 

combinations in the number of subdomains, where the choice of J was based on empirical analysis of this data. 

The results present in Table 3 were chosen to achieve an average convergence factor of 𝜌𝑚  ≈  0.4 or less. 

This criterion is used to determine the acceptability of the implicit numerical model (Trottenberg & Clees, 



Parallelizable two-dimensional wave propagation with Multigrid and Waveform Relaxation Page 13 of 19 

Acta Scientiarum. Technology, v. 47, e70187, 2025 

2009). We should also note that, for large J, the number of spatial meshes within each temporal subdomain 

will be small, which may reduce the level of parallelization of the method. Therefore, it is always advantageous 

to have the smallest possible value for J, but in the case of J =  1, we have the standard Waveform Relaxation 

method, which we already know is inefficient.  

Table 3. Number J of subdomain in time according to the ranging of  𝑁3  and 𝜆. 

𝑵𝟑\𝝀 𝟏𝟎−𝟐 𝟏𝟎−𝟏 𝟏𝟎𝟎 𝟏𝟎𝟏 𝟏𝟎𝟐 𝟏𝟎𝟑 𝟏𝟎𝟒 𝟏𝟎𝟓 𝟏𝟎𝟔 𝟏𝟎𝟕 

𝟗𝟑  1 1 1 2 2 2 2 2 2 2 

𝟏𝟕𝟑 1  1 2 2 2 2 2 2 2 2 

𝟑𝟑𝟑 1 1 2 2 2 2 2 2 2 2 

𝟔𝟓𝟑 1 1 4 4 4 4 4 4 4 4 

𝟏𝟐𝟗𝟑 1 2 8 8 8 8 8 8 8 8 

𝟐𝟓𝟕𝟑 1 4 8 16 16 16 16 16 16 16 

 

It is also possible to notice that for domains with small 𝑁, the largest number of subdomains in time are J 

=  2, regardless of the value of 𝜆. However, for problems with large 𝑁, the choice of J depends on 𝜆 since very 

small values of J can lead to instabilities in the standard Waveform Relaxation technique, negatively 

impacting the values of 𝜌𝑚. Looking at Tab. 3, we can state that it is necessary to work with at most 16 spatial 

meshes within each temporal subdomain to ensure efficient solving (see Figure 13).  

 
Figure 13. Residue versus J, for 𝑡𝑓  =  1.0 𝑠 and 𝐾 =  1, varying N, with Singledrid and Waveform Relaxation with Subdomain in Time. 

In Figure 13 we depict the behavior of the maximum residue order concerning thenumber of temporal 

subdomains J, as well as the values of 𝑁, considering 𝐾 =  1. We also solved the example of Figures 7 to 9 using 

Waveform Relaxation Method withSubdomain in Time (for J =  8). Figure 14 and 15 presents the solutions for the 

profile on the 𝑦 =  0.5𝑚, for 5 and 50 iterations, and Figure 16 displays the solutions for 200 iterations.  

 

Figure 14. Solution with 5 iterations. 
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Figure 15. Solution with 50 iterations. 

 
Figure 16. Solution with 200 iterations. 

We found that the initial oscillations were significantly reduced when using the Waveform Relaxation 

Method with the Subdomain in Time, requiring fewer iterations to approach the analytical solution. The 

number of iterations performed with Singlegrid is lower here, approximately 241 versus 1510 iterations when 

using standard Waveform Relaxation. Furthermore, the residue is on the order of 101 (see Figure 17), smaller 

than the 1026 that was obtained in the Figure 11. 

 

Figure 17. Residue versus iterations for Singlegrid with Waveform Relaxation Subdomain in Time (for J = 8). 
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Average convergence factor for waveform relaxation with subdomain in time 

In Figure 18 we present the results obtained for 𝜌𝑚 when applying the Waveform Relaxation method with 

subdomains in time, with Multigrid and Singlegrid, for the same range of problems described previously in this work. 

It is worth noticing that unlike in Figure 12, in Figure 18 the 𝜌𝑚 values of the Multigridmethod tend to stabilize 

𝜌𝑚  ≈  0.35, as 𝜆 and 𝑁 increase. These results demonstratethe efficiency and robustness of Multigrid. We also notice 

that the average convergence factors of the Singlegrid method remain close to unity 𝜌𝑚  ≈  1.0 as 𝜆 and 𝑁 increase. 

 

Figure 18. 𝜌𝑚 versus 𝜆 with Waveform Relaxation with Subdomain in time. 

The number of subdomains used in Figure 18 can be found in Tab. 1, where we observe larger values of J 

when working with large 𝑁 and 𝜆. Additionally, we can observe that for intermediate 𝜆 values, we have the 

worst 𝜌𝑚 values for the Multigrid method, but in general, they are smaller than those achieved with the 

Singlegrid method. 

Speedup 

Next, we examine the relationship between the computational time of the Singlegrid(𝑇𝑐𝑝𝑢𝑆𝐺) and Multigrid 

(𝑇𝑐𝑝𝑢𝑀𝐺) and the increase in the number of points, wherethe 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑇𝑐𝑝𝑢𝑆𝐺)/𝑇𝑐𝑝𝑢𝑀𝐺). See Figure 19, for 

different values of λ. We adopted the total numbers of unknowns (U) as the total number of inner unknowns, 

excluding boundary points.  

 
Figure 19. Speedup versus total numbers of unknowns. 

We observed that for all cases, the Speedup increases with higher values of U, which is desirable property, and 

it significantly increases with higher values of 𝜆. For example, with 𝜆 =  101 and 𝑁 = 129, that is, with 2146689 

points and 2048383 total numbers of unknowns, using the Multigrid method, we have 𝑇𝑐𝑝𝑢𝑀𝐺  = 455.19 s for J = 1 

and 𝑇𝑐𝑝𝑢𝑀𝐺 = 80.78 s for J = 8. In this case, the maximum residue decreases from 5.19E+27 for 2.39E+03. 
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When the same example is solved using Singledrid method, we observe similar orders for the maximum 

residue, but the computational time changes from 𝑇𝑐𝑝𝑢𝑀𝐺  = 2447.46 s to 𝑇𝑐𝑝𝑢𝑆𝐺  = 495.29 s. In other words, 

by using the Multigrid method with J = 8, we solve the problem approximately 30 times faster than with 

Singlegrid with J = 1. Looking at Figure 19, we can see that this difference between the Multigrid and Singlegrid 

methods become more pronounced for larger 𝑁 or 𝜆.  

As another example, with 𝜆 =  105, N = 129 and J = 1, using the Multigrid method, we have 𝑇𝑐𝑝𝑢𝑀𝐺  = 222.68 

s while using the Singlegrid method, we have 𝑇𝑐𝑝𝑢𝑆𝐺  = 26262.72 s. This means that we obtain the same 

solution approximately 122 times faster when using Multigrid method. This result is even more favorable for 

J = 8 since in, this case Multigrid solves the problem 381 times faster. In the next section we will present the 

analysis of the effects of each method separately. 

Other comparisons 

Up to this point, we have seen that the combination of the Subdomains method with the Multigrid method 

yields excellent results. However, which of these methods has the greatest impact on this improvement? To 

answer this question, we present the results for the maximum residue ||𝑟||∞, processing time 𝑇𝑐𝑝𝑢, and average 

convergence factor 𝜌𝑚 in Table 4. Here, we keep 𝜆 = 101, 𝑁 = 129 and vary the J number of subdomains. The 𝑁 

adopted here generates a relatively large problem.  

Table 4. Multigrid and Singlegrid with Subdomain method with Waveform Relaxation for 𝜆 = 101 and N = 129. 

J 𝑻𝒄𝒑𝒖𝑺𝑮 𝑻𝒄𝒑𝒖𝑴𝑮 ||𝒓||∞ 𝝆𝒎−𝑺𝑮 𝝆𝒎−𝑴𝑮 

1 2447.46s 455.19s 5.19E+27 9.997E-01 9.994E-01 

2 1324.46s  214.58s 7.10E+13 9.904E-01 9.224E-01 

4 768.75s 120.05s 1.09E+06 9.827E-01 6.027E-01 

8 495.29s 80.78s 2.39E+03 9.718E-01 4.133E-01 

16 351.34s 61.18s 8.70E+01 9.565E-01 2.149E-01 

 

In Table 4, we can verify the interference of the number of subdomains on the threeparameters analyzed 

for both methods (Multigrid and Singlegrid). We observed that the maximum residual ||𝑟||∞  went from 

5.19E+27 with J = 1, to 8.70E+01 with J = 16. There is also a reduction in the average convergence factors 𝜌𝑚, 

although this reduction is less evident in the Singlegrid method, going from 9.997E-01 to 9.565E-01. For the 

Multigrid method, the reduction is more significant, going from 9.994E-01 to 2.149E-01. The processing time 

𝑇𝑐𝑝𝑢 decreases significantly as the number of subdomains increases, going from 2447.46 s to 351.34 s with 

Singlegrid and from 455.19 s to 61.18 s with Multigrid. 

As we have observed earlier, for problems with large 𝑁, we use large values for 𝜆 to refine spatial meshes or extend 

final times. Therefore, we solved the same problemgiven by Table 4, but now using λ = 105, as shown in Table 5.  

Table 5. Multigrid and Singlegrid with Subdomain method with Waveform Relaxation for 𝜆 = 105 and 𝑁 =  129. 

J 𝑻𝒄𝒑𝒖𝑺𝑮 𝑻𝒄𝒑𝒖𝑴𝑮 ||𝒓||∞ 𝝆𝒎−𝑺𝑮 𝝆𝒎−𝑴𝑮 

1 26262.72s 222.68s 3.627E+03 9.995E-01 7.958E-01 

2 23751.65s 132.95s 3.627E+03 9.994E-01 6.748E-01 

4 22920.39s 87.15s 3.627E+03 9.994E-01 5.047E-01 

8 21695.46s 68.87s 3.627E+03 9.993E-01 3.354E-01 

16 25469.29s 61.10s 3.627E+03 9.993E-01 2.038E-01 

 

We observe in Table 3 that the difference between the Multigrid and Singlegridmethods is even more 

pronounced 𝜆 = 105. In this case, there was no decrease in the maximum residual, but the values are not as 

large as those presented in Table 2. In this case, the reduction of the average convergence factors of the 

Singlegrid method is almost negligible, going from 9.995E-01 to 9.993E-01. In contrast, for the Multigrid 

method, this parameter goes from 7.958E-01 to 2.038E-01. With 𝜆 =  105, the processing time of the 

Singlegrid method does not change to the same extent as it did in the case where 𝜆 =  101. 

However, the Multigrid method still exhibits similar behavior in both cases. This indicates that the 

Subdomains method, when applied without the Multigrid method, is not so efficient for the problems 

addressed in this work. However, when the two methods are combined, we have an excellent solution method 

for the wave propagation problem. We can see this by looking at the processing time of the Singlegrid method 
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which changes from 26262.72 s to 25469.29 s, while the processing time of the Multigrid method goes from 

222.68 s to 61.10 s. This represents an approximate difference of up to 423 times faster when using the 

Multigrid method compared to Singlegrid. 

Conclusion 

In this study, we conducted a series of tests and comparisons between Multigrid andSinglegrid methods while 

employing both the parallelizable standard Waveform Relaxation and Waveform Relaxation with Subdomains in 

Time to solve two-dimensional wave propagation problems. The results obtained with standard Waveform 

Relaxation revealed substantial limitations, due to an increase in oscillations at the beginning of the iterative 

process, resulting in an inefficient approach for this class of problems. It is also important to highlight that applying 

the Multigrid method without the Subdomains in time leads to limited improvements. Equally inefficient results 

are obtained if the Subdomains in time method is applied without the Multigrid method, indicating a strong 

interdependence between these methods. We emphasize that the key innovation of this work lies in the 

combination of the Waveform Relaxation with Subdomains in Time and the Multigrid methods. This integration 

has significantly produced improvements in the parameters analyzed, especially in terms of average convergence 

factors, speedups, and reduction of initial oscillations, which have led to a substantial decrease in processing time. 
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