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Poroelasticity studies fluid-solid interactions in deformable porous media, crucial for 

accurate models in engineering, medicine, and geology. It is represented by partial 

differential equations involving displacement and pressure, creating a saddle point 

problem that can cause numerical instabilities and hinder solutions. Traditional 

approaches rely on classical solvers and time sweeps. This article introduces a new 

approach combining advanced numerical methods with a space-time sweeping 

technique to address these challenges. Our study focuses on the 2D poroelasticity 

problem using the Finite Volume Method for spatial discretization and the implicit 

Euler method for time discretization. Unlike conventional methods, our approach uses 

a novel Uzawa solver with a distinct space-time sweep that decouples equations, 

allowing displacement calculations before pressure updates. Multigrid is integrated to 

improve convergence, especially for elliptic problems in the post-decoupling analysis. 

Our results highlight the effectiveness of the space-time sweep, with an average 

convergence factor below 0.31 across cases. These findings underline the potential of 

the proposed approach in solving complex real-world poroelasticity problems with 

enhanced computational efficiency. Computational time is greatly reduced compared to 

the Singlegrid method, achieving a speed-up of about 4800 on the 1024×1024 mesh. 

The space-time sweep is highly parallelizable, offering substantial advantages in 

processing time and convergence rates. 
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1. INTRODUCTION

Poroelasticity refers to the dynamic interrelation between 

fluid flow and solid deformation within porous media, 

characterized by solid structures containing fluid-filled pores. 

External loads exerted on the porous medium influence the 

entire system. Pressure variations within the fluid-filled pores 

subsequently influence fluid movement, while the solid 

material undergoes elastic deformation in response [1]. 

Karl von Terzaghi’s (1883-1963) work on the one-

dimensional theory of soil consolidation, rooted in empirical 

observations, and Maurice A. Biot’s (1905-1985) approach, 

which incorporates the compressibility of the solid component 

within porous media, jointly established the framework for 

understanding the coupling between porous elastic solid 

deformation and the linear viscous fluid flow. Since then, it 

has been established that the principles of continuous 

poroelasticity and Darcy’s law are derived from the 

microscopic Navier equations, which dictate the deformation 

of the elastic solid constituting the porous medium’s solid 

component, and the Navier-Stokes equations, which govern 

flow at the pore scale [2].  

The study of behavior in poroelasticity is fundamental for 

developing accurate models that describe porous materials 

across various contexts. Poroelasticity facilitates modeling 

applications such as subsurface exploration for oil [3, 4], 

groundwater flow using brine in porous media [5, 6], assessing 

displacements of geotechnical structures [7, 8], examining 

mechanical properties of bones and biological tissues [9-11], 

analyzing noise generated by pile driving in the wind power 

industry through seabed modeling [12], agricultural 

engineering [13] and numerous other applications. 

The mathematical model of the poroelasticity problem 

encompasses two key relationships: the displacement and 

pressure of the fluid within the porous medium, and the 

structural displacement of the porous matrix, as elucidated by 

Biot’s theory. This results in a system of equations comprising 

the momentum balance equation for the porous system and the 

mass conservation equation for the fluid within the pores. 

One approach to solving the resultant system of differential 

equations is through numerical methods, necessitating the 

discretization of the differential equations. This discretization 

can be achieved using various techniques, including the finite 

difference method [14], and finite volume method [15], among 

others. 

Saddle point problems frequently arise in the numerical 

analysis of solutions to partial differential equations (PDEs) 

with constraints, such as diffusion-advection problems, Stokes 
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problems, and Darcy problems. Effectively addressing saddle 

point problems necessitates the utilization of smoothers 

capable of efficiently managing the coupling between 

displacement and pressure [16]. 

Several studies have been conducted in the domain of 

poroelasticity problem resolution. Oosterlee and Gaspar [17] 

introduced the Vanka smoother, which addresses variables in 

a mutually dependent manner concerning both the Stokes 

equations and the incompressible poroelasticity problem, 

focusing on the 2D spatial context. Their findings indicated 

superior performance, particularly on collocated meshes. 

Borregales et al. [18] proposed a methodology aimed at 

resolving the 2D and 3D poroelasticity problem, leveraging an 

updated version of the Fixed-Stress method. This approach 

integrates the temporal variable as an additional dimension to 

effectively parallelize the Biot problem. Through a series of 

numerical experiments and convergence analyses, they 

provided empirical evidence of the method’s robustness. 

The Parallel Full Approximation Scheme in Space and Time 

(PFASST) methodology operates by interleaving Spectral 

Deferred Corrections (SDC) iterations with varied resolutions, 

similar to the Parareal algorithm. It incorporates a Full 

Approximation Scheme (FAS) correction to enhance the 

accuracy of coarser SDC iterations. Parallelization along the 

time direction facilitates the computation of solutions at 

subsequent time steps based on solutions obtained at preceding 

time points, employing spectral corrections [19].  

Franco and Pinto [20] employed colored ordering in 

conjunction with the Vanka smoother within the Finite 

Difference Method framework to address the poroelasticity 

problem. Their approach also integrated the Multigrid method 

and Waveform Relaxation temporal sweep technique. 

Adler et al. [21] introduced a finite element discretization 

approach to tackle the poroelasticity problem. They developed 

block preconditioners coupled with Multigrid and Fixed-

Stress techniques, demonstrating a robust methodology 

capable of accommodating fluctuations in physical parameters, 

mesh sizes, and time steps inherent to the poroelasticity 

problem. 

The Uzawa solver stands as an efficient iterative technique 

for addressing saddle point systems. Due to its simplicity and 

low memory requirements, it has garnered extensive 

utilization [22]. Subsequently, recent investigations into the 

classical iteration of this method or its integration with other 

methodologies, aimed at enhancing convergence, are outlined. 

Miao and Zhang [22] introduced the Uzawa Single-Step 

Iteration (Uzawa-SSI) method as a solution for both non-

Hermitian nonsingular and singular saddle point problems. 

Their study involved a comparative analysis with other Uzawa 

variants, highlighting the simplicity of convergence conditions 

in Uzawa-HSS (Uzawa Hermitian and Skew-Hermitian 

Splitting). They provided numerical evidence showcasing the 

efficiency of the Uzawa-SSI method. However, it is worth 

noting that this method entails the evaluation of a parameter 𝜆, 

which can pose challenges in practice. 

Axelsson and Karátson [23] proposed a Krylov-Uzawa 

method tailored for the Stokes problem, aimed at accelerating 

convergence. Their analysis established that the Krylov-

Uzawa iteration may demonstrate superlinear convergence. 

Keram and Huang [24] devised a Uzawa-type algorithm 

leveraging the mixed finite element method for resolving the 

steady-state natural convection model. Comparing it with the 

conventional Uzawa algorithm, they noted a reduction in CPU 

time with the proposed approach. 

Wu and Gao [25] introduced a diagonally preconditioned 

Uzawa Splitting method tailored for saddle point problems, 

offering a sufficient condition to guarantee convergence. Their 

findings illustrated that the proposed method outperforms 

certain existing methodologies in the literature. Furthermore, 

they observed that the preconditioner can enhance the 

efficiency of associated Krylov subspace methods. 

Uzawa methods coupled with the Multigrid technique offer 

the benefit of accelerated convergence. This notion is 

supported by several references: 

Luo et al. [26] implemented the Uzawa smoother in solving 

the 2D poroelasticity equations utilizing finite volume 

discretization, in conjunction with the Multigrid method. Their 

proposed smoother combines Symmetric Gauss-Seidel 

iterations for displacements with Richardson iterations for the 

Schur complement within the pressure field. The relaxation 

parameters were determined through Local Fourier Analysis. 

Numerical simulations corroborated the efficacy and 

reliability of the proposed approach. 

Badea [27] showcased the convergence of Uzawa and 

Arrow-Hurwicz algorithms integrated with Multigrid for 

resolving general saddle point problems, characterized by 

constrained optimizations. 

In a related study, Spies et al. [28] conducted a comparative 

analysis of three relaxation scheme options – Braess-Sarazin, 

Vanka, and Schur-Uzawa – utilizing a block triangular 

preconditioner and Multigrid method to address saddle point 

problems associated with the Stokes equations and the Oseen 

equation. 

In contrast to previous works, this article proposes a 

solution to the poroelasticity problem through a novel 

parallelizable spatio-temporal scanning approach, combining 

the Uzawa method with Multigrid techniques. 

The structure of the paper unfolds as follows: Section 2 

delineates the mathematical and numerical models 

underpinning the problem; Section 3 delineates the Multigrid 

method; Section 4 introduces the novel time sweep method; 

Section 5 elucidates the numerical outcomes of the simulations; 

and finally, Section 6 encapsulates the conclusions drawn from 

the study. 

 

 

2. MATHEMATICAL AND NUMERICAL MODELS  

 

2.1 Poroelasticity equations 

 

The classical formulation of the poroelasticity problem 

assumes a saturated, homogeneous, and isotropic porous 

medium, along with an incompressible fluid [29]. The two-

dimensional problem is described by the system of differential 

equations Eqs. (1)-(3): 

 

−(𝜆 + 2𝜇)
𝜕2𝑢

𝜕𝑥2
− 𝜇

𝜕2𝑢

𝜕𝑦2
− (𝜆 + 𝜇)

𝜕2𝑣

𝜕𝑥𝑦
+

𝜕𝑝

𝜕 𝑥
= 𝒰 (1) 

 

−(𝜆 + 𝜇)
𝜕2𝑢

𝜕𝑥𝑦
− 𝜇

𝜕2𝑣

𝜕𝑥2
− (𝜆 + 2𝜇)

𝜕2𝑣

𝜕𝑦2
+

𝜕𝑝

𝜕𝑦
= 𝒱 (2) 

 

𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) − 𝐾 (

𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
) = 𝒫 (3) 

 

The terms 𝜆 =
𝜈 𝐸

(1+𝜈)(1−2𝜈)
 and 𝜇 =

𝐸

2(1+𝜈)
 denote the Lamé 

constants, which are related to Young’s modulus 𝐸  and 
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Poisson’s ratio 𝜈  (shear of homogeneous and isotropic 

materials). Here, 𝐾  represents the hydraulic conductivity, 

expressing the ease of fluid movement within the solid matrix 

of the porous medium. 

The terms 𝒰 and 𝒱 denote the density of the force applied 

to the body, while 𝒫 represents the force of fluid injection or 

extraction within the porous medium.  

The variables of interest include the displacement, 

represented by 𝑢(𝑥, 𝑦, 𝑡)  and 𝑣(𝑥, 𝑦, 𝑡)  and the pressure, 

denoted by 𝑝(𝑥, 𝑦, 𝑡), which depend on spatial position and 

time, as well as the time interval (0, 𝑡𝑓], where, 𝑡𝑓 signifies the 

final time, and the two-dimensional spatial domain Ω. This 

problem incorporates boundary conditions featuring fixed 

displacement and free drainage, commonly referred to as 

Dirichlet conditions, which can be applied in a reservoir 

simulation, i.e., 𝑢𝑏 = 𝑣𝑏 = 𝑝𝑏 = 0 [26, 30, 31]. 

For comparison purposes, analytical solutions given by the 

following functions have been proposed: 

 

𝑢 = 𝑣 = 𝑝 = sin(𝜋𝑥)sin(𝜋𝑦)𝑒−𝑡 (4) 

 

Thus, the source terms fulfilling the problem were derived, 

represented by the functions: 

 

𝒰 = 𝜋𝑒−𝑡(𝜆 + 3𝜇)𝜋 sin(𝜋𝑥) sin(𝜋𝑦) +

−𝜋𝑒−𝑡(cos(𝜋𝑥) ((𝜆 + 𝜇)𝜋 cos(𝜋𝑦) + sin(𝜋𝑦))
 (5) 

 

𝒱 = 𝜋𝑒−𝑡(𝜆 + 3𝜇)𝜋sin(𝜋𝑥)sin(𝜋𝑦) +

−𝜋𝑒−𝑡 (cos(𝜋𝑦)((𝜆 + 𝜇)𝜋cos(𝜋𝑥) + sin(𝜋𝑥)))
 (6) 

 

𝒫 = 𝜋𝑒−𝑡2𝐾𝜋sin(𝜋𝑥)sin(𝜋𝑦) 

−𝜋𝑒−𝑡sin(𝜋(𝑥 + 𝑦)) 
(7) 

 

Gaspar et al. [32] introduced a reformulated version of the 

problem, incorporating an additional smoothing term in the 

pressure equation (Eq. (3)). This term, aimed at enhancing the 

stability of the system for numerical solutions, is expressed as 

follows: 

 

−
ℎ2

4𝐸

𝜕

𝜕𝑡
(

𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
) (8) 

 

2.2 Discretization of the mathematical model 

 

The spatial domain Ω  is discretized utilizing the Finite 

Volume Method, employing a uniform mesh that subdivides it 

into control volumes with uniform spacings ℎ𝑥  and ℎ𝑦 , 

respectively in the 𝑥 and 𝑦 directions, composing a mesh such 

that each point of the mesh is centered on a volume. A typical 

central control volume, with its central point being 𝑃, and the 

adjacent volumes are represented in Figure 1. 

The points of the surrounding volumes are indicated by 𝑊, 

𝐸 , 𝑆 , and 𝑁 , representing the west, east, south, and north 

neighboring volumes, respectively. The faces between these 

volumes and the central volume 𝑃  are indicated by the 

corresponding lowercase letters. The adopted mesh adheres to 

the characteristics depicted in Figure 1, featuring a uniform 

orthogonal mesh with a collocated arrangement. The nodal 

points are situated at the center of each control volume, 

implying that the pressure 𝑝 and the displacements 𝑢  and 𝑣 

are located at the center of the control volume. 

After discretizing the domain, the governing equations are 

integrated over each control volume utilizing the Gauss 

Divergence Theorem [33]. This entails evaluating the integrals 

of spatial derivatives through the corresponding fluxes on the 

faces of the volumes. These fluxes are approximated by 

discrete differences involving neighboring control volumes. 

The derivatives are approximated using second-order Central 

Difference Schemes (CDS), while the integral of the source 

term over the control volume is approximated using the 

midpoint rule [15]. 
 

 
 

Figure 1. 2D mesh and representation of the central control 

volume 

 

For the boundary conditions, the ghost cells technique was 

employed, as depicted in Figure 2 [15]. 
 

 
 

Figure 2. Representation of the ghost cell 

 

Considering a uniform mesh, the spatial domain Ω =
[0, 𝐿] × [0, 𝐿]  is divided into 𝑁𝑥  control volumes in the 𝑥 -

direction and 𝑁𝑦 in the 𝑦-direction, resulting in ℎ𝑥 =
𝐿

𝑁𝑥
, ℎ𝑦 =

𝐿

𝑁𝑦
. In this work, ℎ = ℎ𝑥 = ℎ𝑦 . The temporal approximation 

and the spatial/temporal connection are made using the 

Implicit Euler method. The time step 𝜏 is defined as 𝜏 =
𝑡𝑓−𝑡0

𝑁𝑡
, 

where, 𝑡𝑓 represents the final time, 𝑡0 depicts the initial time, 

and 𝑁𝑡 signifies the number of time steps. 

Adding Eq. (8) to the left side of Eq. (3) and discretizing the 

new Eqs. (1)-(3), we have the system of equations formed by: 
 

(2𝜆 + 6𝜇)

ℎ2
𝑢𝑃 −

(𝜆 + 2𝜇)

ℎ2
(𝑢𝐸 + 𝑢𝑊) −

𝜇

ℎ2
𝑢𝑁 

−
𝜇

ℎ2
𝑢𝑆 +

𝜆 + 𝜇

4ℎ2
(𝑣𝑁𝐸 − 𝑣𝑁𝑊 − 𝑣𝑆𝐸 + 𝑣𝑆𝑊) 

+
1

2ℎ
(𝑝𝐸 − 𝑝𝑊) = 𝒰 

(9) 

 

(2𝜆 + 6𝜇)

ℎ2
𝑣𝑃 −

𝜆 + 2𝜇

ℎ2
(𝑣𝑁 + 𝑣𝑆) −

𝜇

ℎ2
𝑣𝐸  

−
𝜇

ℎ2
𝑣𝑊 +

𝜆 + 𝜇

4ℎ2
(𝑢𝑁𝐸 − 𝑢𝑁𝑊 − 𝑢𝑆𝐸 + 𝑢𝑆𝑊) 

+
1

2ℎ
(𝑝𝑁 − 𝑝𝑆) = 𝒱 

(10) 
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4𝜏𝐾(𝜆 + 2𝜇) + ℎ2

𝜏ℎ2(𝜆 + 2𝜇)
𝑝𝑃 −

(4𝜏𝐾(𝜆 + 2𝜇) + ℎ2)

𝜏ℎ2(𝜆 + 2𝜇)
𝑝𝐸  

−
(4𝜏𝐾(𝜆 + 2𝜇) + ℎ2)

𝜏ℎ2(𝜆 + 2𝜇)
(𝑝𝑊 + 𝑝𝑁 + 𝑝𝑆) 

+
1

2ℎ𝜏
(𝑢𝐸 − 𝑢𝑊 + 𝑣𝑁 − 𝑣𝑆) = 𝒫 

−
1

2ℎ𝜏
(𝑢𝐸

0 − 𝑢𝑊
0 + 𝑣𝑁

0 − 𝑣𝑆
0) 

+
1

4𝜏(𝜆 + 2𝜇)
(𝑝𝐸

0 + 𝑝𝑊
0 − 4𝑝𝑃

0 + 𝑝𝑁
0 + 𝑝𝑆

0) 

(11) 

 

It is worth noting that in Eq. (11), the values of the 

displacement and pressure variables at the previous time step 

are required for the calculation of the current variable, 

represented by 𝑢0, 𝑣0, and 𝑝0. 

Impermeable conditions are applied to the outer boundary 

of the porous medium, so that, for simplicity, both the 

boundary and the initial conditions lead to the proposed 

solution [20].  

 

2.3 Physical parameters 

 

The hydraulic conductivity 𝐾 of the soil, closely associated 

with hydraulic permeability 𝜅, represents a constant indicating 

the ease with which water permeates through it, holding 

significant importance for soil and water management [1]. 

Various values of 𝐾 are provided in Table 1. 

 

Table 1. Realistic values of hydraulic permeability (𝜅) and 

hydraulic conductivity (𝐾) 

 

Type of Rock 

Hydraulic 

Permeability 𝜿 

[m2] 

Hydraulic 

Conductivity 

𝑲 [m/s] 

Sand to sandstone 10-12 10-5 

Sandstone to limestone 10-15 10-8 

Granite to shale 10-18 10-11 

 

According to Ranjan and Rao [34], the value of Young’s 

modulus of soil elasticity varies depending on factors such as 

the historical stress value, density, and the presence of water. 

These values are typically derived from laboratory testing, pile 

loading tests, or empirical correlations based on experience. 

The following Table 2 correlates the soil type with the range 

of Young’s modulus of elasticity [34]. 
 

Table 2. Realistic values of Young’s modulus of elasticity 
 

Soil Type Soil Density 
Modulus of 

Elasticity 𝑬 [MPa] 

Silt very soft 0.2-2 

Clay very soft to hard/sandy 2-500 

Sand/gravel silty/loose to dense 7-190 

 

 

3. MULTIGRID AND SOLVERS 

 

The Eqs. (9)-(11) give rise to large-scale sparse linear 

systems, for which direct methods are not recommended [14]. 

Classical iterative techniques for solving such linear systems, 

such as Gauss-Seidel methods, excel at eliminating only the 

oscillatory components of errors associated with dependent 

variables (high-frequency Fourier modes). However, they 

typically struggle to efficiently eliminate smooth error 

components (low-frequency Fourier modes). As a result, these 

methods are often referred to as smoothers, given their 

tendency to smooth out errors. Consequently, at the outset of 

the iterative process, a high convergence rate is observed, 

stemming from the rapid elimination of oscillatory 

components [35].  

The Multigrid method’s effectiveness lies in its ability to 

solve systems of equations, both linear and nonlinear, by 

employing multiple grid levels. This approach accelerates the 

convergence of the iterative method used for smoothing by 

going through the entire spectrum of Fourier error modes, 

thereby transforming smooth error modes into more 

oscillatory ones. 

The Multigrid cycle combines iterations on fine and coarse 

grids, starting at the finest grid level (referred to as h), 

smoothing the system of equations, and then restricting to the 

immediately coarser grid (denoted as 2h). This process iterates 

until reaching the coarsest grid level, followed by prolongation 

and return to the immediately finer grid. The method involves 

alternating restriction and interpolation operations between 

fine and coarse grids. 

As outlined by Wesseling [36], the sequence in which the 

various grids are traversed determines the Multigrid cycle. The 

most prevalent cycles include the V, W, and F types. The W-

cycle is adopted in this article for its robustness, as it is the 

preferred choice for problems involving poroelasticity [17, 37]. 

Figure 3 illustrates a W-cycle for four levels of grids, i.e., 

ngl=4, where 𝑛𝑔𝑙 is the number of grid levels. 

 

 
 

Figure 3. Representation of the W-cycle for 4 levels of grid 

 

In the context of transferring information among different 

grids, the choice between residue and/or solution transfer 

depends on the nature of the problem. For linear problems, the 

correction scheme (CS) is deemed more suitable as it 

exclusively transfers the residue. Conversely, for nonlinear 

problems, the full approximation scheme (FAS) is preferred as 

it transfers both residue and solution [35, 36]. Given that the 

problem under consideration in this work is fundamentally 

linear, only the CS scheme is employed. Algorithm 1 outlines 

a W-cycle with CS. 

In this algorithm, 𝐴 represents the coefficient matrix, while 

𝑓  denotes the vector of independent terms obtained by 

discretizing the Eqs. (5)-(7). 

Here, Λ  represents a generic variable, and Λ̅  is its 

approximation. 𝐼ℎ
𝐻  and 𝐼𝐻

ℎ  represent, respectively, the space 

restriction and prolongation operators (utilized at each time 

step), while 𝜈1 and 𝜈2 indicate the numbers of pre- and post-

smoothing steps, respectively. 

Within the Multigrid method, various smoothers can be 

employed, including classical solvers such as Gauss-Seidel 

with different formulations like Zebra, Red Black, and 

incomplete LU decomposition [32]. Zebra-type smoothers 

involve partitioning the domain into planes, sequentially 

solving each odd plane before addressing each even plane 

independently [19]. 
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Algorithm 1. MG-W-cycle (𝑙) 
if 𝑙 represents the coarsest grid level then 

 Solve system 𝐴(𝑙) Λ(𝑙) = 𝑓(𝑙)  in the coarsest grid 

Ω2(𝑙−1)ℎ 

else   

 Smooth 𝜈1 times 𝐴(𝑙) Λ(𝑙) = 𝑓(𝑙) in grid Ω2(𝑙−1)ℎ  
 Calculate and restrict the residual 

𝑓(𝑙+1) = 𝐼
2(𝑙−1)ℎ
2𝑙ℎ  (𝑓(𝑙)  −  𝐴(𝑙) Λ̅(𝑙)) 

 for cycle = 1: 2 do 

  Solve in the next grid MG-W-cycle (𝑙 + 1) 

 end  

 Interpolate and correct the approximation with  

Λ̅(𝑙) ←  Λ̅(𝑙) + 𝐼
2𝑙ℎ
2(𝑙−1)ℎ Λ̅(𝑙+1) 

 Smooth 𝜈2 times 𝐴(𝑙) Λ(𝑙) = 𝑓(𝑙) in grid Ω2(𝑙−1)ℎ 

end   

 

The Uzawa method is a smoother that involves 

decomposing the coefficient matrix obtained in the 

discretization (Eqs. (9-11)) into two matrices, as described in 

the system of equations Eq. (12) [38, 26]: 

 

[𝐴 𝐵𝑡

𝐵 −𝐶
] = [

𝑀𝐴 0

𝐵 −𝜔−1𝐼
] − [

𝑀𝐴 − 𝐴 −𝐵𝑡

0 𝐶 − 𝜔−1𝐼
] (12) 

 

where, 𝜔 is a positive term called the relaxation parameter and 

𝑀𝐴 represents a preconditioner for the positive definite matrix 

𝐴 that makes the process less expensive for each iteration. 

The matrix 𝐵  represents the negative discrete divergence 

matrix, 𝐵𝑡  stands for the discrete gradient matrix, and 𝐼 

denotes the identity matrix. 𝐶 is a diagonal matrix primarily 

comprising negligible values due to its composition of 

hydraulic permeability, which tends to be very small. 

Additionally, it integrates the time discretization parameter 𝜏 

as a multiplication factor, which can be arbitrarily small.  

As a solver, Uzawa utilizes the Symmetric Gauss-Seidel 

method, which can be described as an incomplete LU 

decomposition [26].  

The algorithm for the standard Uzawa method involves 

updating the variables 𝒖 = (𝑢, 𝑣)  (displacement) and 𝑝 

(pressure) vectors based on their values at the previous 

iteration 𝒖0 and 𝑝0 as described below: 

 

𝒖 = 𝐴−1(𝒰 − 𝐵𝑡𝒖0) (13) 

 

𝑝 = 𝑝0 + 𝜔(𝐵𝒖 − 𝒫) (14) 

 

Therefore, the decoupled Uzawa method is equivalent to 

one iteration of the Richardson method, which can be 

employed to determine an optimal 𝜔 in terms of the maximum 

and minimum eigenvalues of the Schur complement matrix 

𝑆 = 𝐵𝐴−1𝐵𝑡 [39, 40].  

Luo et al. [26] conducted a systematic analysis of the 

relaxation parameter 𝜔  using Local Fourier Analysis, 

convergence, and acceleration techniques to enhance 

efficiency and accuracy in solving complex poroelastic 

problems. 

The algorithm for the solution using the Uzawa smoother 

initially smooths the 𝒖 vector for all control volumes, using 𝑝0 

and 𝒖0. The systems of this iterative process make use of the 

Symmetric Gauss-Seidel method as a solver. Subsequently, 

with this data, the pressure residual is determined and then 𝑝 

is updated.  

Algorithm 2. Uzawa (𝑙) 
for 𝐼𝑡𝑖𝑛𝑡  =  1 ∶  𝑖𝑡𝑢𝑣 do 

 Solve the system given by Eqs. (9)-(10) using MG-

W-cycle (1) 

else   

Compute 𝑟𝑒𝑠(𝑝) (given by Eq. (11) 

Update the variable 𝑝 ←  𝑝 + 𝜔. 𝑟𝑒𝑠(𝑝) 

 

Above is Algorithm 2 for solving the poroelasticity problem 

using the Uzawa method with Multigrid: 

Unlike the classical Uzawa solver, here we propose 

Multigrid in the inner step (and in this case, limited to two 

cycles). In this algorithm, 𝐼𝑡𝑖𝑛𝑡 represents the number of inner 

smoothings, 𝑖𝑡𝑢𝑣  denotes the number of smoothings of the 

displacement variables 𝑢 and 𝑣 that are performed within the 

W-cycle, 𝑟𝑒𝑠(𝑝) corresponds to the residue of the pressure, 

and 𝜔 depicts the relaxation parameter that is calculated on the 

finest grid in the Multigrid cycle, defined for 𝜏 = 1 by [26]: 

 

𝜔 =
2ℎ2(𝜆 + 2𝜇)

10𝐾(𝜆 + 2𝜇)
 (15) 

 

 

4. NOVEL TEMPORAL SWEEP METHOD 

 

The time-stepping approach is a classical method for 

solving transient problems, yet it lacks the capability to 

parallelize the time variable. In the current era of advanced 

technologies and high-performance computing, there is a 

pressing need to devise algorithms capable of leveraging a 

large number of cores for data processing. This is crucial for 

enhancing efficiency in solving problems involving partial 

differential equations (PDEs) [41]. 

Another temporal sweep method known in the literature is 

Waveform Relaxation (WR) [42]. WR is an iterative method 

applied to time-dependent PDEs, where the spatial domain is 

decomposed into a set of points. For each point, a system of 

Ordinary Differential Equations (ODEs) is solved over all time 

intervals. This method enables the parallelization of 

algorithms for time-dependent PDEs, allowing each temporal 

ODE to be solved at all spatial nodes separately. The update 

of unknowns can then be performed at the end of a WR cycle 

[41]. 

Additionally, there is the Space-Time (ST) temporal sweep 

[43], which has a specific characteristic for the Multigrid 

method. It adopts a semi-coarsening strategy in space and time 

based on the anisotropy factor, which is the ratio between the 

time and space steps at each grid level. Space-time methods 

offer advantages when local refinement in the space and time 

domain is required. This method is characterized by using a 

point smoother, where at each iteration, all points in space and 

time have their information updated [44, 45]. 

Franco and Pinto [20] describe an adaptation of the Space-

Time (ST) method. Its components are based on an adaptive 

smoothing strategy utilizing zebra-type relaxation in the 𝑥𝑡 

and 𝑦𝑡  planes, and standard coarsening using Red-Black 

smoothing for the Multigrid method in the 𝑥𝑦 plane. 

In this work, we propose a new space-time sweep, described 

in Algorithm 3, where 𝐼ℎ
𝐻 and 𝐼𝐻

ℎ are, respectively, the space-

time restriction and prolongation operators; ℎ represents the 

spacing in the fine mesh, 𝐻 represent the spacing in the coarse 

mesh; and 𝜈1 and 𝜈2 , represent the numbers of pre- and post-

smoothing, respectively. 
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Algorithm 3. New-STMG-W-cycle (𝑙) 
Input data 

Compute coefficients and source terms 

Compute 𝑢, 𝑣 and 𝑝 for all control volumes 

Compute residuals of 𝑢, 𝑣, and 𝑝 

while not reaching the stopping criterion 

 if 𝑙 is the coarsest grid level 

  Solve the system given by Eqs. (9)-(11) on 

grid Ω2(𝑙−1)ℎ using Uzawa (𝑙) 
 else   

  Smooth 𝜈1  times the system given by Eqs. 

(9)-(11) on grid Ω2(𝑙−1)ℎ using Uzawa (𝑙) 
  Calculate and restrict constrain the residue 

of 𝑢, 𝑣 and 𝑝 with operator 𝐼
2(𝑙−1)ℎ
2𝑙ℎ  

  for 𝐼𝑡𝑖𝑛𝑡 = 1 ∶  2 do 

   Solve the system given by Eqs. (9)-

(11) using New-STMG-W-cycle (𝑙 +
1) 

  end  

  Interpolate and correct the approximation 

with 𝐼
2𝑙ℎ
2(𝑙−1)ℎ 

  Smooth 𝜈2 times given by Eqs. (9)-(11) on 

the grid Ω2(𝑙−1)ℎ 

 end  

end    

 

It is evident that such a sweep is highly parallelizable, as it 

facilitates parallelization in both time and space. Note that 

steps 7 and 9 of Algorithm 3 can be executed for all time steps 

in parallel, and step 2 of Algorithm 2 can be performed using 

a parallel solver in space. 

The Multigrid method exhibited a high convergence rate, as 

demonstrated by the convergence factor, which is consistent 

with the results reported in the literature. In this article, in 

addition to applying Multigrid, we employ the Uzawa method 

and propose the decoupling of displacement and pressure 

variables, enabling parallel execution to obtain the solution. 

The Multigrid method was applied in two stages: first, 

during the smoothing process using the Uzawa method to 

update the displacement and pressure variables; and second, in 

the smoothing of the variables associated with displacement, 

using stationary equations. The combination of the Multigrid 

method with the sweeping approach in the Uzawa solver 

provided significant benefits, including improved 

convergence speed and a reduction in the number of Multigrid 

cycles, in line with the literature. 

 

 

5. NUMERICAL RESULTS 

 

In this section, we present some numerical experiments 

aiming to demonstrate the robustness, efficiency, and good 

performance of the proposed Space-time Multigrid method 

outlined in the previous section. For this paper, we relied on 

Wang [1], which utilizes the values of the constants 𝐸 

(Young’s modulus) and 𝐾  (hydraulic conductivity) with 

realistic values, chosen as follows: 

Case 1: 𝐾 = 1 and 𝐸 = 1 for verification purposes; 

Case 2: 𝐾 = 10−9  and 𝐸 = 106  representing a material 

equivalent to clay; 

Case 3: 𝐾 = 10−6  and 𝐸 = 104  representing a material 

equivalent to silt; 

Case 4: 𝐾 = 10−3  and 𝐸 = 106  representing a material 

equivalent to sand. 

For comparison purposes, we used the same relaxation 

parameter 𝜔, time step Δt and mesh size ℎ parameters as in the 

study [26]. 

 

5.1 Computational details 

 

For the proposed problem, we utilized the W-cycle 

Multigrid method, employing a full weighting restriction 

operator and a piecewise constant interpolation operator [15]. 

The choice of the W-cycle is consistent with reference [37], 

which asserts that the W-cycle is more robust than the V-cycle 

for poroelasticity problems. We set 𝜈1 = 𝜈2 = 𝜈 = 1 for both 

pre- and post-smoothing. For relaxation in the plane, the 

Uzawa solver is applied with 𝑖𝑡𝑀𝐶 = 2 for the variables 𝑢 and 

𝑣, where 𝑖𝑡𝑀𝐶  denotes the number of Multigrid cycles. The 

parallelizable Symmetrical Gauss-Seidel Red-Black method is 

used. The number of grid levels ( 𝑛𝑔𝑙 ) for Multigrid was 

limited to 𝑛𝑔𝑙 = 13 , i.e., 𝑁𝑥𝑦 = 𝑁𝑥 × 𝑁𝑦 = 213 × 213 =

8192 × 8192 volumes in the spatial mesh, and in Singlegrid 

with 𝑁𝑥𝑦 = 𝑁𝑥 × 𝑁𝑦 = 210 × 210 = 1024 × 1024  volumes 

in the spatial mesh. These limits were set due to memory and 

computational time usage, respectively. Additionally, the final 

time was defined as 𝑡𝑓 = 10  s. The stopping criterion was 

based on the reduction of the dimensionless residual from the 

initial estimate, set to 10−8, as follows: 

 

𝑟𝑒𝑠 =∥ 𝑟𝑒𝑠𝑢 ∥∞ +∥ 𝑟𝑒𝑠𝑣 ∥∞ +∥ 𝑟𝑒𝑠𝑝 ∥∞, (16) 

 

where 𝑟𝑒𝑠𝑢, 𝑟𝑒𝑠𝑣  and 𝑟𝑒𝑠𝑝  represent, respectively, the residue 

obtained in the variables 𝑢, 𝑣, and 𝑝 [20, 46]. 

The computational code was implemented using MATLAB 

R2023b - Academic. The tests were conducted on a computer 

equipped with a 13th Gen Intel (R) Core (TM) i5-13600K 

processor running at 3500 Mhz, featuring 14 cores and 20 

logical processors, with 64 GB of RAM, and a 64-bit 

Microsoft Windows 11 Home operating system. 

The verification of the code used in this article was carried 

out by comparing the solutions with those presented in Luo et 

al. [26] and Franco et al. [30]. 

The results were obtained using the implicit Euler method, 

which is unconditionally stable [14], and tested in conjunction 

with Multigrid. 
 

5.2 Singlegrid and Multigrid comparison 
 

In this work, to compare the performances of the Singlegrid 

and Multigrid methodologies, the average convergence factor, 

the order of complexity, and speed-up are employed. 

 

5.2.1 Convergence factor 

The convergence factor, which approximates the 

asymptotic convergence factor, is calculated by [35]: 
 

𝜌 =
∥ 𝑟𝑒𝑠𝑀𝐶 ∥∞

∥ 𝑟𝑒𝑠𝑀𝐶−1 ∥∞

 (17) 

 

where, 𝑟𝑒𝑠𝑀𝐶  represents the value of the residual in the 𝑀𝐶-

th Multigrid cycle or iteration of the Singlegrid. Thus, the 

average convergence factor is given by: 
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𝜌𝑚 = √
∥ 𝑟𝑒𝑠𝑀𝐶 ∥∞

∥ 𝑟𝑒𝑠0 ∥∞

𝑀𝐶

 (18) 

 

where, 𝑟𝑒𝑠0  denotes the value of the residual in the initial 

estimate.  

In Figure 4, the comparison of the average convergence 

factor 𝜌𝑚  with mesh refinement for the Multigrid method 

(MG) and Singlegrid (SG) is presented, considering the 

constants 𝐾 and 𝐸 for the 4 cases studied. Here, 𝑛𝑔𝑙 denotes 

the number of grid levels in the Multigrid method and 

represents 2𝑛𝑔𝑙  control volumes in each spatial direction. 

 

 
 

Figure 4. Comparison of 𝜌𝑚 between Singlegrid and 

Multigrid for the 4 cases studied 

 

The results obtained for the 4 cases are similar; that is, 𝜌𝑚 

for Singlegrid converges to the constant 1, while for Multigrid, 

it consistently remains close to 0 [35, 36]. 

Accurate solutions can be obtained by combining the 

Multigrid method with Repeated Richardson Extrapolation 

(RRE) [47]. 

 

 
 

Figure 5. Comparison of 𝜌𝑚 for Multigrid defined for the 4 

cases studied 

 

Figure 5 depicts the average convergence factor ( 𝜌𝑚 ) 

related to 2𝑛𝑔𝑙  control volumes for the Multigrid method 

across the various cases studied. 

It is observed that 𝜌𝑚 for Cases 2, 3, and 4 (realistic values 

of 𝐾 and 𝐸) for Multigrid is below 0.1 for the most refined 

meshes, demonstrating high efficiency. The convergence 

factor 𝜌  for the first iteration of the Uzawa solver is very 

efficient, obtaining values tending to 0. However, subsequent 

iterations do not exhibit the same efficiency, and the average 

convergence factor 𝜌𝑚 tends to 0.31 for Case 1, and tends to 

zero in the other cases studied. 

The results of 𝜌𝑚 in this work are better compared to Luo et 

al. [26] and Franco et al. [30]. 

Table 3 presents the number of W-cycles required until the 

stopping criterion is reached with mesh refinement. 

 

Table 3. Number of W-cycles 

 
Case\ngl 5 6 7 8 9 10 11 12 13 

Case 1 16 16 16 16 16 16 16 16 16 

Case 2 11 10 9 8 7 6 6 6 6 

Case 3 21 12 11 10 9 7 6 6 6 

Case 4 6 6 6 6 6 6 6 6 6 

 

From Table 3, it becomes evident that in every case 

examined, the number of iterations stabilizes with mesh 

refinement. This is a highly desirable characteristic. 

Luo et al. [37] presented the number of cycles W(1,1) 

ranging from 30 to 45 for different values of hydraulic 

conductivity, which is three times higher than the number of 

cycles reported in this paper. 

 

5.2.2 Complexity 

Considering the computational time 𝑡𝑐𝑝𝑢 of the simulations, 

it is possible to perform a geometric fit to assess the 

complexity of the algorithm utilizing the equation [14]: 

 

𝑡𝑐𝑝𝑢 = 𝑐. 𝑵𝛾 (19) 

 

where, 𝑐 represents a coefficient depending on the method and 

solver adopted, 𝛾 denotes the complexity order of the solver 

associated with the employed method (graphically, it is the 

slope of the fitting curve), and 𝑵 = 𝑁𝑥 ×  𝑁𝑦 × 𝑁𝑡 is the total 

number of unknowns of the problem. Theoretically, values of 

𝛾 close to 1 and c tending to 0 represent better performances 

of the employed algorithm. Particularly in Multigrid, they 

mean that CPU time increases linearly with the mesh size. 

Table 4 presents the results obtained for all cases studied. 

 

Table 4. Parameters 𝛾 and 𝑐 of Eq. (19) 

 

Case 𝜸 𝒄 

Case 1 1.0303 1.1697×10-5 

Case 2 0.9819 9.9678×10-6 

Case 3 0.9953 9.3261×10-5 

Case 4 1.0031 6.8265×10-6 

 

The complexity presented agrees with the findings in the 

literature [35, 36]. 

 

5.2.3 Computational time and speed-up 

In this section, our objective is to assess the performance of 

both the Singlegrid and Multigrid methods, employing 

computational time (𝑡𝑐𝑝𝑢) and speed-up (𝑆) as pivotal metrics. 

In Figure 6, the computational time 𝑡𝑐𝑝𝑢 , in seconds, is 

depicted with mesh refinement using both the Singlegrid and 

Multigrid methods for Cases 1 and 4. It is evident that the 

Singlegrid time is notably higher compared to Multigrid one 
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and escalates further with refinement. This trend renders it 

impractical to execute simulations for problems using 

Singlegrid with more than 𝑁𝑥 × 𝑁𝑦 = 210 × 210  control 

volumes in the mesh. 

 

 
 

Figure 6. CPU Time for Singlegrid (SG) and Multigrid (MG) 

with mesh refinement 

 

 
 

Figure 7. Speed-up for Case 4 

 

Finally, we evaluate the speed-up (𝑆), which is a metric 

adopted to measure the increase in the speed of the Multigrid 

algorithm compared to Singlegrid, given by [48]: 

 

𝑆 =
𝑡𝑐𝑝𝑢(𝑆𝐺)

𝑡𝑐𝑝𝑢(𝑀𝐺)
 (20) 

 

Note that from Figure 7, for example, for Case 4 (𝐾 = 10−3 

and 𝐸 = 106 ), with 𝑛𝑔𝑙 = 10  we have 𝑡𝑐𝑝𝑢(𝑆𝐺) =

389514.11 s, approximately 108 hours, 𝑡𝑐𝑝𝑢(𝑀𝐺) = 79.79 s, 

and 𝑆 = 4881.74. This implies a substantial advantage of the 

Multigrid method, as it is approximately 4881 times faster than 

the Singlegrid, as evident from Figure 7 for Case 4. 

Additionally, the notable increasing behavior of the curve 

indicates the rise of S with the increase of the number of grid 

levels ngl, a highly desirable property. Analogous results were 

achieved for the other cases studied. 

The process used in this paper is the same as presented by 

Luo et al. [26], applied to the Time Stepping scan, and yielded 

better results when applied to the new space-time sweep. 

In the study conducted by Luo et al. [37], a comparison is 

made between the Uzawa and Vanka methods, noting that the 

Uzawa method saves 50% of operations compared to the 

Vanka method, which justifies the preference for Uzawa. 

Furthermore, Uzawa is 30% more computationally efficient. 

 

 

6. CONCLUSION 

 

The mathematical problem of poroelasticity with free 

drainage was solved by means of discretization using the 

Finite Volume Method, resulting in a system of partial 

differential equations for the displacement functions 𝑢 and 𝑣 

and the pressure function 𝑝, which depend on spatial variables, 

𝑥 and 𝑦, and the temporal variable, 𝑡. 

We applied the Uzawa solver in combination with the W-

cycle Multigrid method. To address the challenges involving 

spatial and temporal variables, we introduce a novel space-

time sweep.  

The key results indicate that: 

(1) The average convergence factor tends to values lower 

than 0.31  when the Multigrid W-cycle method is 

applied to with realistic constants 𝐾 and 𝐸, validating 

the effectiveness of the method for these parameters and 

confirming its robustness.  

(2) The computational time with Multigrid is significantly 

lower compared to Singlegrid, reinforcing the 

efficiency of the proposed method. 

(3) The computational complexity implies that 𝛾 

approaches 1, while 𝑐 tends to zero, and the CPU time 

increases linearly with the number of unknowns [35, 

36]. 

(4) An advantage is the decoupling of the problem-solving 

process, which would otherwise rely on other solvers, 

such as Vanka. 

(5) The integration of the Uzawa solver with the Multigrid 

method and the new temporal sweep demonstrates high 

efficiency and parallelization, with the algorithm fully 

parallelizable in both space and time. 

The impact of this sweep is that it ensures the method 

performs effectively across a range of realistic values. 

These results highlight the computational efficiency of the 

proposed approach and its capability to effectively address 

complex poroelasticity problems with accuracy. For example, 

it facilitates solving problems in geomechanics [8], petroleum 

engineering [3, 4], biology [11]. 

Choosing the relaxation parameter 𝜔  is crucial, as an 

improper selection may prevent the method from converging, 

and it has to be carefully determined [26]. 

The continuation of this research could further contribute to 

the development of even more robust algorithms for 

applications across various engineering disciplines. 
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NOMENCLATURE 

 

𝑢, 𝑣 Displacement (m)  

𝑝 Pressure (Pa) 

𝑥, 𝑦 Spatial position (m) 

𝑡 Time coordinate (s) 

𝒰,𝒱 Density of the force applied to the body (N/m3) 

𝒫 Force of fluid injection or extraction within the 

porous medium (N/m3)  

E Young’s modulus (N/m2) 

𝐾 Hydraulic conductivity (m/s) 

ℎ Spatial step / Spacing between discretized volumes 

𝑛𝑔𝑙 Number of grid levels 

𝑡𝑐𝑝𝑢 Computational time (s) 

S Speed-up 

𝑁 Total number of unknowns 

𝑐 Method coefficient 

𝐼ℎ
𝐻 , 𝐼𝐻

ℎ Restriction and prolongation operator 

𝐼𝑡𝑖𝑛𝑡 Number of iterations 

cycle Number of cycles in the Multigrid 

𝑖𝑡𝑢𝑣 Number of iterations on plane xy 

 

Greek symbols 

 

𝜔 Relaxation parameter 

𝜈 Poisson’s ratio 

𝜅 Hydraulic permeability (m2) 

𝜆, 𝜇 Lamé constants (N/m2)  

𝜏 Time interval between time steps 

Ω Spatial domain (m2)  

𝜌 Asymptotic convergence factor 

𝜌𝑚 Average convergence factor 

𝜈1 Number of pre-smoothing 

𝜈2 Number of post-smoothing 

𝛾 Complexity order 

 

Subscripts 

 

𝑊, 𝐸 West and east neighboring volumes 

𝑃 Central volume 

𝑆, 𝑁 South and north neighboring volumes 
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