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nonlinear silicon problem with relaxing boundary conditions

Priscila Dombrovski Zena , Marcio Augusto Villela Pintob , and Sebasti~ao Romero 
Francoc 

aGraduate Program in Numerical Methods in Engineering, Federal University of Paran�a, Curitiba, Brazil; 
bDepartment of Mechanical Engineering, Federal University of Paran�a, Curitiba, Brazil; cDepartment of 
Mathematics, State University of Centro-Oeste, Irati, Brazil 

ABSTRACT 
This paper introduces a multigrid FAS Waveform Relaxation method (FAS- 
MGWR) for solving a heat transfer model in a thin and homogeneous sili
con bar with constant density and heat capacity. This method exhibits ver
satility, making it applicable to a range of problems including electronic 
device engineering, numerical simulation of nanofluids, among others. The 
Finite Difference Method with central differences (CDS) for spatial discret
ization and the Crank-Nicolson method for temporal approximation were 
utilized. Comparison with literature results and code verification demon
strated that irrespective of the combinations of physical and numerical 
parameters, the apparent order of discretization error converges to the 
theoretical asymptotic order. The study underscores the superior perform
ance of the proposed FAS-MGWR method, notable for its parallel architec
ture, particularly in terms of computational time, compared to existing 
literature. Notably, the FAS-MGWR method was found to have excellent 
convergence factor and speed-up in relation to its singlegrid version, 
underscoring its efficiency and practical advantage in addressing complex 
thermal problems.
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1. Introduction

Nonlinear heat equations play a central role in several areas of research, encompassing applica
tions ranging from the thermal processing of materials and semiconductors to the study of heat 
transfer in porous media, laser thermotherapy and the analysis of heat transfer in a variety of 
contexts [1–7]. Within these areas, heat transfer by conduction performs is fundamental role, 
with applications including the modeling of temperature-dependent thermal conductivity, studies 
involving nanofluids and their application in the processing of semiconductor chips, as well as 
the analysis of heat transfer in human tissues and topological optimization, among others [8–10].

The solution of nonlinear heat equations has been approached through the development of 
several numerical techniques. For example, Filipov et al. [5] explored the dependence of thermal 
conductivity in semiconductors, using the Finite Difference Method and Newton’s method for 
nonlinear systems; Zhuang et al. [8] used Newton’s method to treat nonlinear heat conduction 
problems, involving topological optimization and complex constraints. Schaum et al. [7] observed 
the surface temperature of silicon wafers in production processes employing nonlinear heat equa
tions in one dimension and cylindrical coordinates.
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Among the numerical techniques widely used to solve systems of equations (among them, lin
ear and nonlinear ones), the multigrid method stands out [11, 12]. This method is very useful in 
solving systems resulting from the discretization of differential equations that describe a variety 
of physical phenomena [13–16]. The multigrid method utilizes a hierarchy of grids and applies 
smoothing at these different levels to accelerate convergence. Studies have shown that this 
approach often results in faster convergence compared to conventional iterative methods that do 
not benefit from multigrid [17].

In the context of applying the multigrid method to nonlinear problems, [18] discusses two 
fundamental approaches. The first involves the use of a linearization scheme followed by the mul
tigrid method to solve the linear system generated at each iteration. In this case, it is possible use, 
for example, Newton’s method (referred to as Newton-MG). The second approach, described in 
Henson [18] and Brandt [19], discusses the Full Approximation Scheme (FAS), applying multi
grid concepts directly in nonlinear contexts.

A comparison between the FAS and the Newton-MG approaches was carried out by Brabazon 
et al. [20]. In that work, the results are provided for elliptical and parabolic problems discretized 
with the Finite Element Method, demonstrating a shorter execution time, as well as greater stabil
ity of the Newton-MG iteration. Furthermore, the same authors demonstrate that the FAS iter
ation may be more advantageous than a Newton iteration in certain situations due to lower 
memory requirements. This characteristic makes the FAS iteration preferable in scenarios with 
large-scale problems, where memory available can be a limiting factor. Apart from its memory 
efficiency, the FAS method is distinguished by its flexibility in selecting algorithm components.

Luo et al. [21] conducted a comparison between the FAS and Newton-MG approaches in solv
ing the system of poroelasticity equations for an incompressible fluid, considering hydraulic 

Nomenclature 

a, b Spatial ends of the silicon rod 
c Mean heat transfer coefficient 
cp Thermal capacity under constant pressure 
h Spacing between discretized points 
it Number of iterations (in the singlegrid 

case) or cycles (in the multigrid case) 
n Time step n 
N Total number of unknowns 
Nt Number of time steps in discretization 
Nx Number of points in spatial discretization 
p Complexity order 
pL Asymptotic order discretization error 
pU Apparent order discretization error 
q Refinement ratio 
Q Volume flow rate 
r0 Initial residue 
rit Infinity norm of dimensionless residue at 

it-th iteration or cycle 
S Speed-up 
t Time coordinate 
tCPU Computational time 
T Temperature in the tank 
T0 Initial temperature in the tank 
Tr Liquid temperature in the tank 
u Temperature variable 
uc Temperature at the central node 
um Average temperature 

v Tank volume 
x Spatial direction 

Greek symbols 

b Constant in Dirichlet boundary condition
/1 Solution in fine grid Xh1

/2 Solution in coarse grid Xh2

/3 Solution in super-coarse grid Xh3

c Method coefficient
j Thermal conductivity of silicon
j0 Silicon density
�1 Number of pre-smoothing
�2 Number of post-smoothing
q Density of the silicon rod
qm Average convergence factor
s Time interval between time steps
v Temperature distribution constant
� Stopping criterion

Acronyms 

FAS Full Approximation Scheme
GSWR Gauss-Seidel Waveform Relaxation
MG Multigrid method
SG Singlegrid method
WR Waveform Relaxation
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conductivity dependent on stress and fluid pressure (characterizing a nonlinear problem). The 
numerical results demonstrated a good convergence performance for all strategies and also indi
cated that the FAS with Gauss-Seidel smoother with lexicographic ordering exhibited highly satis
factory convergence.

In addition to the above, we can think of different time sweeps, such as the Waveform 
Relaxation (WR) method [22]. This method has attracted considerable attention as an efficient 
iterative approach to solving large linear systems that arise from the discretization of transient 
differential equations. Its origins are traced back to researchers such as [22–24], who demon
strated the basic WR process and that it can be accelerated using multigrid concepts. Gaspar and 
Rodrigo [3] developed an efficient approach to the heat problem using the time-fractional WR 
method, obtaining robust and efficient results, while Franco et al. [4] proposed the MGWR 
method as a space-time solver for poroelasticity equations. Malacarne et al. [25] employed an 
approach combining WR with division into temporal subdomains to solve the 1D and 2D wave 
equations, achieving accurate results and notable improvements in convergence factors, acceler
ation, and reduction of initial oscillations. This approach resulted in a significant reduction in 
data processing time.

Several realistic nonlinear problems solved with different numerical techniques can be seen 
below. The problem of convective transport of pulsatile multilayer hybrid nanofluid flow and bio
convected tangent hyperbolic nanofluid flow, are studied in Jakeera et al. [26] and Ramasekhar 
et al. [27].

The study of entropy production as a means of quantifying energy dissipation in biological 
systems has garnered growing interest among biomedical engineers and clinicians. An analysis of 
the heat transfer behavior of the magnetohydrodynamic blood based Casson hybrid nanofluid in 
the occurrence of a non-Fourier heat flux model can be found in Shanmugapriyan and 
Jakeer [28].

Studies by Jakeer et al. [29] and Jakeer et al. [30] delve into a numerical simulation of bio- 
magnetic nanofluid flow in the human circulatory system and a study of the influence of induced 
magnetic fields and double-diffusive convection on Carreau nanofluid flow through diverse 
geometries.

In this paper, we present the nonlinear heat transfer equation, which includes relaxing 
boundary conditions, in a setting involving a silicon rod. Recently, Filipov et al. [9] addressed 
relaxing boundary conditions together with convective and Dirichlet conditions using the Finite 
Difference Method (MDF), Euler’s Method, and Newton’s method for solving linear systems 
directly. Such boundary conditions were first introduced in diffusion processes and later applied 
to other heat transfer problems. In general terms, a relaxing boundary condition is a transient 
boundary condition that continually approaches the steady state. Such a condition can be of the 
Dirichlet, Neumann or Robin type [31].

Moreover, we propose to solve the nonlinear silicon rod problem with relaxing boundary con
ditions, as addressed by [9], in improve the convergence of the solution. To achieve this goal, we 
emphasize the use of the multigrid method, particularly focusing on the Full Approximation 
Scheme (FAS) approach, which has proven effective in addressing the nonlinearity of the prob
lem. Additionally, we introduce the concept of Waveform Relaxation (WR), a method that favors 
parallel architecture and integrates seamlessly with the multigrid method and FAS, referred to 
here as FAS-MGWR.

The structure of this paper is organization as follows: In Section 2, we discuss the mathemat
ical model and discretization of the nonlinear problem, along with its boundary conditions, using 
Finite Difference Methods and the Crank-Nicolson scheme. In Section 3, we present the 
Waveform Relaxation method associated with multigrid, with a focus on the FAS technique. 
In Section 4 includes code verification and showcases the main results of this work. Finally, 
Section 5 highlights the main conclusions.
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2. Nonlinear heat equation and its discretization

In this section, we present a mathematical model of a physical problem involving heat convection 
in a silicon rod. This problem entails a nonlinear aspect due to the variation of thermal conduct
ivity with temperature, and it is accompanied by relaxing boundary conditions.

Let us consider a silicon rod positioned along the x axis, with x 2 ½a, b�, as illustrated in 
Figure 1. The temperature of the rod over time represented by uðx, tÞ:

At the point x ¼ a in this Figure 1, the rod is in thermal contact with a tank filled with liquid. 
Heat can flow freely through the contact surface in both directions. In addition to thermal con
tact with the silicon, the tank is thermally insulated. The temperature within the tank, denoted by 
TðtÞ, is homogeneous, expect for a thin layer near the contact surface with the silicon. Two pipes 
are connected to the tank: one pumps liquid at temperature Tr into the tank at a constant flow 
rate, and the other allows the liquid at temperature TðtÞ to leave the tank at the same flow rate. 
We assume that the liquid in the tank is stirred throughout the process, ensuring that the incom
ing liquid quickly mixed with the liquid inside the tank. Furthermore, we assume that the density 
and thermal capacity of the liquid do not vary with temperature [9], as depicted in Figure 1.

Therefore, the transient nonlinear partial differential equation that describes the convection of 
heat in this silicon rod, is given by [9]

q cp
@u
@t
¼
@

@x
j uð Þ

@u
@x

� �

, x 2 a, bð Þ, t > 0, (1) 

where uðx, tÞ represents the temperature at a position x and at an instant of time t, while q refers 
to the density of the silicon rod, and cp represents the thermal capacity under constant pressure. 
The thermal conductivity of silicon is depicted by j uð Þ ¼ j0evu, where j0 and v denote, respect
ively, the physical parameters silicon density and temperature distribution constant [9, 31, 32]. 
This representation allows for the initial temperature distribution on the silicon rod at the 
moment t ¼ 0 to be expressed as

u x, 0ð Þ ¼ u0 xð Þ, x 2 ½a, b�: (2) 

We will consider that the temperature in the tank, in t ¼ 0 is given by T0: If the inlet liquid 
temperature Tr is different from T0, the temperature in the tank TðtÞ will change over time. This 
transfer of energy through the tubes is convective, meaning that liquid with a certain energy 
density replaces liquid with a different energy density. Therefore, the total energy in the tank is 
changing. Under this condition, the temperature at the boundary gradually increases or decreases 
with time, approaching a finite value. Thus, using the initial condition T0, we obtain

T tð Þ ¼ Tr þ T0 − Trð Þe−Q
vt , (3) 

where Q and v represent, respectively, the flow rate of the inlet liquid volume and tank volume. 
It is worth noting that, under this condition, the temperature at this boundary gradually increases 

Figure 1. Physical system.
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with time, approaching a finite value. This approximation is given by a function that relaxes 
exponentially.

At the boundary condition at x ¼ a, referred to as the convective boundary condition, the 
energy flow expressed through the thermal conductivity and temperature gradient in silicon is 
equated to the same energy flow given by the transport properties and the state of the liquid sys
tem. In other words,

−j u a, tð Þð Þ
@u x, tð Þ

@x

�
�
�
�

x¼a
¼ c T tð Þ − u a, tð Þ
� �

, t > 0, (4) 

where c denotes the average convective heat transfer coefficient. The condition given by Equation 
(4) is valid for solid-liquid contact surfaces, where the heat transport mechanism is mainly due to 
convection in the liquid system. For this type of boundary condition, the temperature on the sur
face uða, tÞ is considered essentially different from the temperature TðtÞ inside the tank. As can 
be seen from Equation (3), as time increases, the function TðtÞ approaches the constant value Tr:

Therefore, the condition given by Equation (4) will be referred to as the convective relaxing 
boundary condition [9].

For the right boundary, x ¼ b, we will consider the Dirichlet boundary condition

u b, tð Þ ¼ b, t > 0, (5) 

where b is a constant.
When modeling important problems like this, which are analytically difficult or even 

impossible to solve, we resort to numerical methods for this task.
Using the chain rule on @jðuÞ

@u , we obtain j0vevu ¼ vjðuÞ: Thus, we can rewrite Equation (1) as

qcp
@u
@t
¼ vj uð Þ

@u
@x

� �2

þ j uð Þ
@2u
@x2 : (6) 

We introduce a uniform spatial grid in

x 2 a, b½ � : xi ¼ a ¼ i − 1ð Þh, (7) 

with i ¼ 1, 2, 3, � � � , Nx and h ¼ b−a
Nx−1 where Nx is the number of points in the discretization.

For temporal approximation, we have

tn ¼ ns, s ¼
tf − t0

Nt − 1
, n ¼ 1, 2, 3, :::, Nt , (8) 

where t0 and tf represent the initial time and final time, respectively, and Nt is the total number 
of in time.

Using the Crank-Nicolson Method (CN) for temporal approximation and the Finite Difference 
Method (MDF) with second-order central approximations (CDS) for spatial discretization, we 
have

qcp

 
unþ1

i − un
i

s

!

¼
1
2

"

vj unþ1
i

� � unþ1
iþ1 − unþ1

i−1
2h

� �2

þ j unþ1
i

� � unþ1
iþ1 − 2unþ1

i − unþ1
i−1

h2

� �

þvj un
i

� � un
iþ1 − un

−1
2h

� �2

þ j un
i

� � un
iþ1 − 2un

i − un
i−1

h2

� �#

: (9) 
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Regrouping the terms, we can rewrite them as

qcp

s
þ

jðunþ1
i Þ

h2

� �

unþ1
i ¼

v

8h2 j unþ1
i

� �
unþ1

iþ1 − unþ1
i−1

� �2
þ

1
2h2 j unþ1

i
� �

unþ1
i−1 þ unþ1

iþ1

� �

þ
v

8h2 j un
i

� �
un

iþ1 − un
i−1

� �2
þ

1
2h2 j un

i
� �

un
i−1 − 2un

i þ un
iþ1

� �
þ

qcp

s
un

i :

(10) 

Considering

aw ¼
1

2h2 , aw2 ¼
v

8h2 , apa ¼
qcp

s
, (11) 

in Equation (10), we have the following for inner points

apa þ 2awj unþ1
i

� �h i

unþ1
i ¼ aw2j unþ1

i
� �

unþ1
iþ1 − unþ1

i−1

� �2
þ awj unþ1

i
� �

unþ1
i−1 þ unþ1

iþ1

� �

þ aw2 j un
i

� �
un

iþ1 − un
i−1

� �2
þ awj un

i
� �

un
i−1 − 2un

i þ un
iþ1

� �
þ apaun

i :

(12) 

For the left boundary, in x ¼ a, i.e. i ¼ 1, and using CDS in Equation (4), we have the follow
ing expressions for the time steps nþ 1 and n:

unþ1
0 ¼ unþ1

2 þ
2hc T tð Þ − unþ1

1
� �

jðunþ1
1 Þ

, (13) 

and

un
0 ¼ un

2 þ
2hc T t − sð Þ − un

1
� �

jðun
1Þ

: (14) 

Thus, at i ¼ 1 in Equation (12), we have

apa þ 2awj unþ1
1

� �h i

unþ1
1 ¼ aw2j unþ1

1
� �

unþ1
2 − unþ1

0
� �2

þ awj unþ1
1

� �
unþ1

0 þ unþ1
2

� �

þ aw2j un
1

� �
un

2 − un
0

� �2
þ awj un

1
� �

un
0 − 2un

1 þ un
2

� �
þ apaun

1 : (15) 

3. FAS-MGWR solver

Partial Differential Equations (PDEs) play an essential role in modeling physical phenomena, pro
viding a powerful mathematical framework to describe the behavior of physical systems over time 
and space. However, due to the complexity of many real-world systems, obtaining analytical solu
tions for such PDEs is often impractical or even impossible. As a result, the numerical approach 
becomes a valuable and necessary tool for understanding these phenomena.

In this context, the discretization of PDEs is common in numerical modeling, leading to the 
emergence of large systems of equations that need to be solved to obtain an approximate solu
tion. However, solving these systems using direct methods is often inadvisable due to the high 
computational cost associated with inverting the coefficient matrix [33]. To efficiently solve these 
discretized systems, iterative methods are often employed, such as the weighted Jacobi method 
and the Gauss-Seidel (GS) method [33, 34]. However, these iterative methods encounter efficiency 
challenges when dealing with highly refined grids. As the number of iterations increases, the 
method tends to lose their ability to reduce the entire spectrum of errors rapidly. They may 
quickly reduce high-frequency errors (oscillatory modes) but struggle to address low-frequency 
errors (smooth modes).

6 P. D. ZEN ET AL.



The multigrid method, extensively studied by [12], stands out as a highly effective strategy in 
the iterative solution of systems of equations derived from the discretization of differential equa
tions in modeling physical phenomena. References [11, 12, 35, 36] attest to its notable superiority 
in terms of convergence speed when compared to conventional iterative methods that do not 
incorporate this approach, referred to here as singlegrid method.

The multigrid method is based on essential principles that include the use of a hierarchy of 
grids and smoothing techniques at each grid level, thereby addressing error across all frequencies. 
This is achieved by transferring information between grids using restriction operators (which 
transfer information from the finer to the immediately coarser grid) and prolongation operators 
(which transfer information from the coarser to the immediately finer grid). The number of 
smoothings performed in the restriction and prolongation process is called, respectively, pre- 
smoothing ð�1Þ and post-smoothing ð�2Þ: The way the method goes through the grids is referred 
to as a cycle; for this work, we use the V-cycle Vð�1, �2Þ [36].

Two main approaches are adopted with the multigrid method to tackle this type of problem. 
The correction scheme (CS), which focuses on correction through the residue, is indicated for lin
ear problems. On the other hand, the Full Approximation Scheme (FAS), which focuses on cor
rection through the residual and system solution, is more appropriate for addressing nonlinear 
problems. This scheme applies the concepts of the multigrid method directly to the nonlinear 
problem, transferring information related to both the residue and the solutions to the coarser 
grids involved. This eliminates the need to perform global linearizations and demonstrating its 
ability to smooth out irregularities in the error. [3]

In the discretization of nonlinear transient equations, the Waveform Relaxation (WR) method 
[3, 4, 22] stands out for its effectiveness in the temporal approach to differential equations. The 
WR algorithm differs from traditional time sweep approaches, such as the Time-Stepping (TS) 
method [37, 38], by transforming a Partial Differential Equation (PDE) into a system of Ordinary 
Differential Equations (ODEs). This transformation results in functions over time, where at each 
spatial point, an ODE is resolved in all time steps [4]. This iterative approach has demonstrated 
success in solving complex systems, favoring parallel programming architecture.

Algorithm 1 describes in detail the implementation of the FAS-MGWR method for the 
Vð�1, �2Þ cycle. In this case, the algorithm utilizes the Gauss-Seidel smoother with red-black 
ordering, together with the Waveform Relaxation (WR) method (GSWR). For the stopping criter
ion, we adopted the infinity norm of the dimensionless residue at the it-th iteration relative to 
the initial estimate, denoted by it and r0, respectively, given by

kritk1
kr0k1

< e: (16) 

Algorithm 1: FAS-MGWR(l)
1 Input data, initial, and boundary conditions.
2 while Stopping criterion is not reached do
3  if l ¼ Lmax then
4   Solve the system Al �

lð Þ ¼ f l on the coarse grid X2l−1h:

5   Compute the correction on the coarse grid wl ¼ vl − vl:

6  else 
7   Smooth �1 times Al vlð Þ ¼ f l on the grid X2l−1h using GSWR.
8   Compute and restrict the defect rlþ1 ¼ I2lh

2l−1h f l − Al vlð Þ
� �

:

9   Restrict the solution: vlþ1 ¼ I2lh
2l−1hvl:

10   Compute the right-hand side f lþ1 ¼ rlþ1 þ Alþ1vlþ1:

11   Solve at the next level: FAS-MGWR(l 1 1).
12   Interpolate the correction: wl ¼ I2l−1h

2lh wlþ1

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 7



13   Correct the solution: vl  vl þ wl:

14   Smooth �2 times Al vlð Þ ¼ f l on the grid X2l−1h using GSWR.
15   Compute the correction: wl ¼ vl − vl:

16  end if
17 end while

4. Results and discussions

In this section, we address transient nonlinear heat transfer in a thin silicon rod in thermal con
tact with a liquid medium undergoing convection-base heating or cooling. Additionally, we pre
sent the results of the numerical implementation of this scenario. To evaluate the implemented 
code, we perform a code verification by comparing the results obtained with those presented in 
[9]. Specifically, we consider a setting involving a thin and homogeneous rod along the axis x, 
with x 2 ½1, 3�, excluding sources of heat or radiation.

The source code was developed using the Fortran language and compiled with Microsoft’s 
Visual Studio 2022 development environment. It was executed on a system equipped with a 
IntelVR CoreTM i7 − 10510U processor, featuring a central processing unit (CPU) operating at 1:80 
GHz and 16 GB of RAM.

In the case of the singlegrid (single-mesh method), we use the Gauss-Seidel solver solver with 
red-black ordering to numerically solve the generated systems. In all simulations involving the 
multigrid, the Vð1Þ cycle was used.

4.1. Code verification

Firstly, a comparison was made a comparison between the numerical solutions obtained by [9] 
and the numerical solutions implemented with our singlegrid and multigrid methods.

The problem parameters were defined based on the characteristics of the experiment [9], and 
their specifications are as follows: density ðqÞ and heat capacity ðcpÞ are unitary constants. The 
values of the other constants used were c ¼ 0:1, j0 ¼ 0:1, and v ¼ 0:5: On the left boundary, in 
x ¼ 1, we have a convective relaxing boundary condition, given by Equation (4) and to the right, 
in x ¼ 3, we have a Dirichlet condition, with b ¼ 1, i.e. u 3, tð Þ ¼ 1: The initial condition and the 
estimate of the inner points of the domain for t > 0, are unitary.

Figure 2 depicts the comparison between the solutions obtained using our code implemented 
with singlegrid (SG) and multigrid (MG) methods, alongside the solutions presented in the article 
by [9]. The comparison was made using a tolerance of e ¼ 10−12 in Equation (16). From this 
comparison, we observe a close agreement between our numerical results and the reference solu
tion of [9]. This confirms the accuracy of the code implementation.

In this work, we will calculate the discretization error orders of numerical approximations, 
namely the apparent order pU and asymptotic order pL: The pU is an important metric to evalu
ate the order of convergence of numerical methods. It allows checking a posteriori whether the 
order of numerical solutions tends to the asymptotic order of discretization errors as the spacing 
h is reduced. In the context of our study, where we do not have an analytical solution to analyze 
the behavior of the discretization error, we use the apparent order, which contributes to the 
robustness of the technique. For this, nodal solutions are required on three different grids.

Considering /1, /2 and /3 the solutions in fine ðXh1Þ, coarse ðXh2Þ and super-coarse grids 
ðXh3Þ, related, respectively to the spacing h1, h2 and h3, and q ¼ h3

h2
¼ h2

h1 
the refinement ratio, we 

have [39]
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pU ¼
log /2−/3

/1−/2

�
�
�

�
�
�

log ðqÞ
: (17) 

It is important to highlight that in our numerical simulations, we applied the Central 
Difference Scheme (CDS) method for spatial discretization and the Crank-Nicolson (CN) method 
for temporal discretization, both with an asymptotic order pL ¼ 2: Therefore, the asymptotic 
order of this numerical scheme must be pL ¼ 2:

In this work, the stopping criterion was adopted based on the drop in the dimensionless 
residual by the initial estimate. In this specific test, quadruple precision was used. Furthermore, 
the number of iterations performed was determined so that Equation (16) achieves the rounding 
error. This procedure was adopted to isolate the effects of discretization error, thus minimizing 
other sources of error.

In Figure 3, we consider the variables of interest to be the average temperature umð Þ and the 
temperature at the central point of the domain ucð Þ, both in the last time step and for some val
ues of j0 and v: Note that regardless of the specific combinations of j0 and v, the apparent order 
ðpUÞ converges to 2 as the grid is refined. This pattern is consistent with our previous analysis, in 
which we used second-order methods for both the spatial and temporal discretizations of the 
problem.

It can be noted that in cases where j0 ¼ 10:0, there is a greater oscillation of the apparent 
order pU around the asymptotic order pL for coarser grids, but it approaches the asymptotic order 
with grid refinement.

4.2. Numerical results

In this section, we will present the numerical results, for settings with combinations of j0 ¼ 0:1 
and 10:0, with v ¼ 0:5 and 2:0 and using e ¼ 10−12 as a stopping criterion in Equation (16). We 
will also use the parameters presented in the previous section.

Figure 2. Comparison between Filipov/FASWR solutions.
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4.2.1. Average convergence factor
In this results section, we will first analyze the average convergence factor ðqmÞ of the singlegrid 
and multigrid methods. To do this, we calculate the asymptotic convergence factor ðqÞ through 
the following expression [12]

q itð Þ ¼
kresitk1
kresit−1k1

, (18) 

Figure 3. Apparent order.
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where the value of it represents the number of iterations (in the singlegrid case) or cycles (in the 
multigrid case) performed.

Secondly, we analyze the average convergence factor given by [12]

qm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q 1ð Þ:q 2ð Þ: � � � :qðitÞit
q

: (19) 

Figure 4 displays the average convergence factor qmð Þ versus total number of unknowns N ¼
Nx − 1ð Þ � Nt − 1ð Þ (spatial and temporal unknowns).

Figure 3. Continued.
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As the grid is refined, we observe that qm tends to value close to zero, regardless of the phys
ical parameters adopted. As we know, qm close to zero indicates more efficient methods, while 
qm close to unity indicates the opposite [11]. Therefore, Figure 4 indicates robustness and effi
ciency of the multigrid method.

4.3. CPU time, complexity, and speed-up

Now we will evaluate the performance of the singlegrid and multigrid methods using the concepts 
of complexity and speed-up. Evaluating the performance of such methods often considers compu
tational time as a fundamental metric.

Figure 5 provides, on a two-logarithmic scale, a representation of computational time ðtCPUÞ in 
relation to N, for the singlegrid method ðtCPUðSGÞÞ, multigrid ðtCPUðMGÞÞ, and the parameters 
adopted j0 and v:

Notably, the multigrid method demonstrates a significant advantage compared to the single
grid method in the tCPU simulation run. For example, in the case with j0 ¼ 0:1 and v ¼ 0:5 (also 
present in [9]), for Nx ¼ Nt ¼ 2049 nodes, making up N ¼ 4194304 unknowns, the multigrid 
method took approximately 4:4s to reach the stopping criterion, while the singlegrid method 
required around 8200s:

To evaluate the order of complexity of the algorithms, which is a measure that indicates the 
amount of computational resources needed to solve the problem, we analyze the slope of the 
computational time lines ðtCPUÞ in relation to the number of unknowns, as already illustrated in 
Figure 5. Notably, the multigrid method demonstrates a significant advantage compared to the 
singlegrid method in the slope of its straight lines.

To evaluating such complexity, denoted as p, we applied a nonlinear adjustment [34, 40, 41], 
given by

tCPU Nð Þ ¼ cNp, (20) 

where c represents the method coefficient, p corresponds to the order of complexity and N is the 
total number of unknowns in the problem.

Figure 4. Average convergence factor. qm
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According to reference studies [11, 12, 35], the multigrid method is considered ideal when the 
order of complexity p approaches unity and c tends to zero.

Table 1 presents the values of c and p for the SG and MG methods for the physical parameters 
presented. As can be seen, these results agree with the literature.

Finally, we evaluate the Speed-up ðSÞ, a metric was adopted to measure the increase in speed 
of the multigrid algorithm in relation to the singlegrid, given by

S ¼
tCPU SGð Þ

tCPUðMGÞ
: (21) 

Note that in Figure 5, for example, for j0 ¼ 0:1 and v ¼ 0:5 (values used in [9]), with N ¼
2048� 2048, we have tCPU SGð Þ � 8200s, tCPU MGð Þ � 4:4s and S � 1860: This means that the 
multigrid method is approximately 1860 times faster than singlegrid method, which is evident in 
Figure 6, where we have S versus N for some parameter values j0 ¼ 0:1 and v ¼ 0:5: We can 
notice the significant advantage of the multigrid method for even larger values of N, for example, 
S � 200000 for j0 ¼ 0:1 and v ¼ 0:5 in Figure 6.

Furthermore, the increasing behavior of the curves is notable, indicating an increase in S with 
the increase of N, which is a highly desirable property.

Remark: As demonstrated in this section, numerical experiments were conducted to analyze 
the nonlinear heat equation with convective relaxation boundary condition. These experiments 

Figure 5. Computational time.

Table 1. Order of complexity.

singlegrid multigrid

j0 v c p c p

0:1 0:5 1:897E-9 2:0408 7:071E − 7 1:0297
0:1 2:0 1:372E − 8 2:0256 1:358E − 6 0:9798
10:0 0:5 8:861E − 8 2:0619 2:752E − 6 0:9729
10:0 2:0 1:272E − 7 2:0046 1:820E − 6 0:9632
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investigated various physical parameters, including silicon density (j0), temperature distribution 
constant (v), specific thermal capacity (cp), material density (q), among others. The obtained 
results have broad applications, particularly in electronic device engineering, facilitating enhanced 
comprehension and control of nonlinear heat transfer phenomena. The methods developed in 
this study provide effective solutions to such challenges.

5. Conclusion

In this study, we introduced the Full Approximation Scheme multigrid method with temporal 
sweeping Waveform Relaxation (FAS-MGWR) for tackling nonlinear problems. Specifically, we 
addressed a one-dimensional nonlinear heat equation, modeling heat conduction in a silicon rod 
with relaxing boundary conditions. Our numerical approach involved employing the Crank- 
Nicolson method for temporal approximation and the Finite Difference Method (FDM) with a 
Central Difference Scheme (CDS) for spatial discretization. Through code verification and com
parison with existing literature, we validated our methodology. The results, including the average 
convergence factor qm, order of complexity p and Speed-up ðSÞ underscored the efficiency and 
reliability of the FAS-MGWR method across various scenarios. These findings not only contribute 
to the advancement of numerical methods for tackling intricate thermal problems but also hold 
practical significance across industries, notably in the semiconductor sector.
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This study was funded partly by the Coordenaç~ao de Aperfeiçoamento de Pessoal de N�ıvel Superior (CAPES), 
Brazil–Finance Code 001.

ORCID

Priscila Dombrovski Zen http://orcid.org/0000-0001-7826-4928 
Marcio Augusto Villela Pinto http://orcid.org/0000-0003-4166-4674 
Sebasti~ao Romero Franco http://orcid.org/0000-0002-4580-5924 

References

0[1] F. P. Incropera, D. P. De Witt, T. Bergman and A. Lavine, Fundamentals of Heat and Mass Transfer. 6th 
ed. NJ, USA: John Wiley & Sons, 2006.

0[2] M. Becker, “Nonlinear transient heat conduction using similarity groups,” Int. J Heat Mass Transfer, vol. 
122, no. 1, pp. 33–39, 2000. DOI: 10.1115/1.521434.

0[3] F. J. Gaspar and C. Rodrigo, “Multigrid waveform relaxation for the time-fractional heat equation,” SIAM 
J. Sci. Comput., vol. 39, no. 4, pp. A1201–A1224, 2017. DOI: 10.1137/16M1090193.

0[4] S. R. Franco, C. Rodrigo, F. J. Gaspar, and M. A. V. Pinto, “A multigrid waveform relaxation method for 
solving the poroelasticity equations,” Comp. Appl. Math, vol. 37, no. 4, pp. 4805–4820, 2018. DOI: 10.1007/ 
s40314-018-0603-9.

0[5] S. M. Filipov and I. Farag�o, “Implicit Euler time discretization and FDM with Newton method in nonlinear heat 
transfer modeling,” Int. Sci. J. Math. Model, vol. 2, no. 3, pp. 94–98, 2018. DOI: 10.48550/arXiv.1811.06337.

0[6] X. Wang, T. Zeng, G. Xu, K. Zhang, and S. Yu, “Predicting the equivalent thermal conductivity of pyram
idal lattice core sandwich structures based on Monte Carlo model,” Int. J. Therm. Sci., vol. 161, pp. 106701, 
2021. DOI: 10.1016/j.ijthermalsci.2020.106701.

0[7] A. Schaum, et al., “Observer design for a nonlinear heat equation: application to semiconductor wafer 
processing,” J. Process Control, vol. 119, pp. 34–43, 2022. DOI: 10.1016/j.jprocont.2022.09.004.

0[8] C. Zhuang, Z. Xiong, and H. Ding, “Temperature-constrained topology optimization of nonlinear heat 
conduction problems,” J. Comput. Des. Eng, vol. 8, no. 4, pp. 1059–1081, 2021. DOI: 10.1093/jcde/qwab032.

0[9] S. M. Filipov, I. Farag�o, and A. Avdzhieva, “Mathematical modelling of nonlinear heat conduction with 
relaxing boundary conditions,” Int. Conf. Numer. Methods Appl, vol. 13858, pp. 146–158, 2022. DOI: 10. 
1007/978-3-031-32412-3_13.

[10] C. D. Santiago, G. R. Str€oher, M. A. V. Pinto and S. R. Franco, “A multigrid waveform relaxation method 
for solving the Pennes bioheat equation,” Numer. Heat Transf. Part A, vol. 83, no. 9, pp. 976–990, 2023. 
DOI: 10.1080/10407782.2022.2156411.

[11] W. L. Briggs, V. E. Henson, and S. F. Mccormick, A Multigrid Tutorial, 2nd ed. Philadelphia, PA: SIAM, 2000.
[12] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid. London, UK: Academic Press, 2001.
[13] R. Suero, M. A. V. Pinto, C. H. Marchi, L. K. Araki, and A. C. Alves, “Analysis of algebraic multigrid 

parameters for two-dimensional steady-state heat diffusion equations,” Appl. Math. Model, vol. 36, no. 7, 
pp. 2996–3006, 2012. DOI: 10.1016/j.apm.2011.09.088.

[14] C. H. Marchi, et al., “Repeated Richardson extrapolation applied to the two-dimensional Laplace equation 
using triangular and square grids,” Appl. Math. Model, vol. 37, no. 7, pp. 4661–4675, 2013a. DOI: 10.1016/ 
j.apm.2012.09.071.

[15] M. A. V. Pinto, C. Rodrigo, F. J. Gaspar, and C. W. Oosterlee, “On the robustness of ILU smoothers on 
triangular grids,” Appl. Math. Model, vol. 106, pp. 37–52, 2016. DOI: 10.1016/j.apnum.2016.02.007.

[16] S. R. Franco and M. A. V. Pinto, “A space-time multigrid method for poroelasticity equations with random 
hydraulic conductivity,” Numer. Heat Transf. Part B, vol. 106, pp. 1–10, 2023. DOI: 10.1080/10407790.2023. 
2262746.

[17] M. F. Malacarne, M. A. V. Pinto, and S. R. Franco, “Performance of the multigrid method with time- 
stepping to solve 1D and 2D wave equations,” Int. J. Comput. Methods. Eng. Sci. Mech., Taylor Francis, 
vol. 23, no. 1, pp. 45–56, 2022. DOI: 10.1080/15502287.2021.1910750.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 15

https://doi.org/10.1115/1.521434
https://doi.org/10.1137/16M1090193
https://doi.org/10.1007/s40314-018-0603-9
https://doi.org/10.1007/s40314-018-0603-9
https://doi.org/10.48550/arXiv.1811.06337
https://doi.org/10.1016/j.ijthermalsci.2020.106701
https://doi.org/10.1016/j.jprocont.2022.09.004
https://doi.org/10.1093/jcde/qwab032
https://doi.org/10.1007/978-3-031-32412-3_13
https://doi.org/10.1007/978-3-031-32412-3_13
https://doi.org/10.1080/10407782.2022.2156411
https://doi.org/10.1016/j.apm.2011.09.088
https://doi.org/10.1016/j.apm.2012.09.071
https://doi.org/10.1016/j.apm.2012.09.071
https://doi.org/10.1016/j.apnum.2016.02.007
https://doi.org/10.1080/10407790.2023.2262746
https://doi.org/10.1080/10407790.2023.2262746
https://doi.org/10.1080/15502287.2021.1910750


[18] V. E. Henson, “Multigrid methods nonlinear problems: an overview,” Comp. Imaging, vol. 5016, pp. 36–48, 
2003. DOI: 10.1117/12.499473.

[19] A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math. Comp, vol. 31, no. 138, 
pp. 333–390, 1977. DOI: 10.2307/2006422.

[20] K. J. Brabazon, M. E. Hubbard, and P. K. Jimack, “Nonlinear multigrid methods for second order differen
tial operators with nonlinear diffusion coefficient,” Comput. Math. Appl., vol. 68, no. 12, pp. 1619–1634, 
2014. DOI: 10.1016/j.camwa.2014.11.002.

[21] P. Luo, C. Rodrigo, F. J. Gaspar, and C. W. Oosterlee, “Multigrid method for nonlinear poroelasticity equa
tions,” Comput. Visual Sci, vol. 17, no. 5, pp. 255–265, 2015. DOI: 10.1007/s00791-016-0260-8.

[22] S. Vandewalle and R. Piessens, “Numerical experiments with nonlinear multigrid waveform relaxation on a 
parallel processor,” Appl. Numer. Math., Elsevier, vol. 8, no. 2, pp. 149–161, 1991. DOI: 10.1016/0168- 
9274(91)90048-5.

[23] E. Lelarasmee, A. E. Ruehli, and S. A. L. Vincentelli, “The waveform relaxation method for time-domain 
analysis of large-scale integrated circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 1, no. 
3, pp. 131–145, 1982. DOI: 10.1109/TCAD.1982.1270004.

[24] C. Lubich and A. Ostermann, “Multigrid dynamic iteration for parabolic equations,” BIT Numer. Math, 
vol. 27, no. 2, pp. 216–234, 1987. DOI: 10.1007/BF01934186.

[25] M. F. Malacarne, M. A. V. Pinto, and S. R. Franco, “Subdomain method in time with waveform relaxation 
in space applied to the wave equation combined with the multigrid method,” Rev. Int. M�et. Num�er. 
C�alculo. Dise~no. Ing, vol. 38, no. 4, pp. 39, 2022. DOI: 10.23967/j.rimni.2022.11.001.

[26] S. Jakeer, R. R. Reddy, M. Rupa, and H. Basha, “Convective transport of pulsatile multilayer hybrid 
nanofluid flow in a composite porous channel,” NAMC, vol. 29, no. 2, pp. 330–348, 2024. DOI: 10.15388/ 
namc.2024.29.34489.

[27] G. Ramasekhar, et al., “Heat transfer exploration for bioconvected tangent hyperbolic nanofluid flow with 
activation energy and joule heating induced by Riga plate,” Case Stud. Therm. Eng., vol. 55, pp. 104100, 
2024. DOI: 10.1016/j.csite.2024.104100.

[28] N. Shanmugapriyan and S. Jakeer, “Biomedical aspects of entropy generation on MHD flow of TiO2-Ag/ 
blood hybrid nanofluid in a porous cylinder,” Comput. Methods Biomech. Biomed. Eng., pp. 1–18, 2023. 
DOI: 10.1080/10255842.2023.2245520.

[29] S. Jakeer, N. Shanmugapriyan, and S. R. R. Reddy, “Numerical simulation of bio-magnetic nanofluid flow 
in the human circulatory system,” Numer. Heat Transf. Part A. Appl., pp. 1–29, 2024. DOI: 10.1080/ 
10407782.2024.2304046.

[30] S. Jakeer, S. R. R. Reddy, S. V. Easwaramoorthy, H. T. Basha, and J. Cho, “Exploring the influence of 
induced magnetic fields and double-diffusive convection on carreau nanofluid flow through diverse geome
tries: a comparative study using numerical and ANN approaches,” Math, vol. 11, no. 17, pp. 3687, 2023. 
DOI: 10.3390/math11173687.

[31] Hriston, J., “On a non-linear diffusion model of wood impregnation: analysis, approximate solutions, and 
experiments with relaxing boundary conditions,” Adv. Math. Mod., Appl. Anal. Comp., pp. 25–53, 2022. 
DOI: 10.1007/978-981-19-0179-9_2.

[32] J. A. Gbadeyan, E. O. Titiloye, and A. T. Adeosun, “Effect of variable thermal conductivity and viscosity on 
Casson nanofluid flow with convective heating and velocity slip,” Heliyon, Elsevier, vol. 6, no. 1, 
pp. e03076, 2020. DOI: 10.1016/j.heliyon.2019.e03076.

[33] G. H. Golub and J. M. Ortega, Scientific Computing and Differential Equations: An Introduction to 
Numerical Methods, New York: Academic Press, 1992.

[34] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis, 10th ed. Cengage Learning, 2016.
[35] P. Wesseling, An Introduction to Multigrid Methods, Chichester: Wiley, 1992.
[36] W. Hackbusch, Multi-Grid Methods and Applications, Berlin: Springer Science & Business Media, vol. 4, 2013.
[37] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM: Philadelphia, 2004.
[38] R. Wienands and W. Joppich, Practical Fourier Analysis for Multigrid Methods, Washington, 

USA: Chapman Hall/CRC Press, vol. 4, 2005.
[39] L. P. da Silva, B. B. Rutyna, A. R. S. Righi, and M. A. V. Pinto, “High order of accuracy for Poisson 

equation obtained by grouping of repeated Richardson extrapolation with fourth order schemes,” Comput. 
Model. Eng. Sci., vol. 128, no. 2, pp. 699–715, 2021. DOI: 10.32604/cmes.2021.014239.

[40] F. Oliveira, S. R. Franco, and M. A. V. Pinto, “The effect of multigrid parameters in a 3D heat diffusion 
equation,” Int. J. Appl. Mech. Eng., vol. 23, no. 1, pp. 213–221, 2018. DOI: 10.1515/ijame-2018-0012.

[41] M. L. Oliveira, M. A. V. Pinto, S. F. T. Gonçalves, and G. V. Rutz, “On the robustness of the 
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