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Abstract
Two-phase flow problems in porous media can be found in several areas, such
as Geomechanics, Hydrogeology, Engineering and Biomedicine, for example.
Typically, these processes are mathematically modeled by a highly nonlinear
system of coupled partial differential equations. The nonlinearity of the system
makes the design and implementation of robust numerical solvers a challenging
task. In this work we consider the flow of two immiscible and incompressible
fluids within a non-deformable porous medium. A mixed pressure-saturation
formulation is adopted, allowing the transition from the unsaturated to satu-
rated zones and maintaining numerical mass conservation. A cell-centered finite
volume method and an implicit Euler scheme are considered for the spatial
and time discretization of the problem. In this work, we propose a solution
method for two-phase flow problems which is based on the combination of the
modified Picard linearization method and a very simple cell-centered multigrid
algorithm that performs efficiently even for heterogeneous random media. This
is shown in the numerical experiments, where two test problems are presented
to demonstrate the robustness of the proposed solver.
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1 INTRODUCTION

Numerical simulation of multiphase flow problems in porous media is highly important in different areas as
Geomechanics, Hydrogeology, Petroleum Engineering, and Biomechanics, for example. Nuclear waste management,
CO2 storage, groundwater remediation, and tumor growth are just a few examples of its applications. These problems
can be mathematically modeled by a coupled system of time-dependent nonlinear partial differential equations (PDEs),
including the Darcy’s law, the equation of mass conservation for each phase, the constraint of the saturations, and the
dependency of capillary pressure on the wetting saturation. Typically there are a number of different possibilities to select
a set of primary variables for the system, resulting in different mathematical formulations for the same model. The choice
of the proper formulation can strongly influence both the performance of the numerical scheme and the solver. Anyway,
the representation in mathematical models becomes complex, as generate systems of highly nonlinear coupled partial
differential equations. The major computational bottleneck lies in the solution of the resulting large systems of equations.
Thus, numerical simulation is often difficult, resulting a great challenge to find efficient and robust solvers to enable
large-scale simulations.
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Various degrees of implicitness in the discretization and coupling in the nonlinear solver can be considered in the
numerical solution of two-phase flow models. The fully implicit method (FIM)1-5 and the implicit pressure explicit satu-
ration (IMPES)6 method are the main strategies to solve numerically this nonlinear coupled system of partial differential
equations. This latter is one of the most common solution methods, despite its stability problems and need of restrictions
on the size of the time step. The computation becomes remarkably simple because only one linear system for the pressure
must be solved per time step. Improved versions of IMPES scheme have been presented in References 7-13. In contrast,
a larger and highly nonlinear system of equations must be solved per time step if a fully implicit approach is used. These
methods seem to be more reliable with respect to robustness, due to the fully implicit and fully coupled treatment of the
governing equations. They avoid any restrictions on the time step, but need an efficient algorithm for solving the result-
ing nonlinear system. The main iterative linearization methods used for this type of nonlinear problems are the Newton
method, modified Picard, L-scheme, or combinations of them.

A common approach is the use of Newton method14,15 which has quadratic convergence, but paying the price of a
costly computation of derivatives at each iteration. It is worthy to mention that the convergence of the Newton method
for degenerate cases was proved rigurously in Reference 16. Picard linearization techniques are also widely used. The
linearization based on the mixed form of the equation, which allows the transition from the unsaturated to saturated
zones and maintains numerical mass conservation, is referred to as a “modified Picard” linearization. It was introduced
by Celia in 1990, first for Richard’s equation17 and later for the two-phase flow problem in porous media.18 A concern
of Newton’s and Picard’s methods is the need to use a regularization term for degenerate problems which may alter the
quality of the solution.16 Finally, the L-scheme3,5,19 is another linearization method which is extremely common due to
its simplicity, since it replaces the Newton iteration by a simple fixed point iteration. Its robustness, however, comes at
the price of slower convergence (generally linear convergence). The modified L-scheme, proposed in Reference 20, shows
stability similar to the L-scheme while having much faster convergence rates (scaling with respect to the time step size).
A comparison among Newton, modified Picard and L-scheme approaches for linearization of the surfactant transport
in porous media was presented in Reference 21. With any of these linearization techniques, linear iterative schemes are
required. In this paper, we will focus on how to efficiently solve these resulting linear problems.

The development of efficient iterative solvers for fully-implicit simulation of complex multiphase flow problems has
been widely studied over the last decades. One of the most popular approaches in the reservoir simulation community
is based on the combination of Krylov subspace methods with a constrained pressure residual (CPR) multistage precon-
ditioning technique.22,23 Its standard implementation24-30 couples an algebraic multigrid (AMG) preconditioner for the
usually elliptic pressure block and an incomplete factorization, that is effective for the hyperbolic part. Moreover, differ-
ent variants of CPR preconditioning have been proposed.31-33 Other alternatives, however, can be found in the literature.
In Reference 34, the authors consider an approximate Jacobian construction as an alternative to the conventional New-
ton method, with exact Jacobian construction, as a nonlinear solver. In Reference 35, a highly parallel solver in which the
resultant nonlinear system arising at each time step is solved in a monolithic way by using a Newton-Krylov-Schwarz type
algorithm was proposed. Recently, different methods based on a Schur Complement Reduction have been presented.36,37

In Reference 38, the authors consider an original block preconditioner which exploits the block structure of the Jacobian
matrix while coping with the nonsymmetric nature of the individual blocks. Same authors propose in Reference 39 a
novel preconditioning technique (EDFA) based on the approximation of the decoupling factors of the system matrix by
using appropriate restriction operators for the sake of the Schur complement computation.

In this work, our focus is on the iterative solution of the linear systems arising in a fully implicit cell-centered finite
volume discretization of a two-phase flow system, with the phases being incompressible and immiscible, and the skeleton
matrix non-deformable. In particular, we consider a combination of the modified Picard iteration and a cell-centered
multigrid method for the solution of the resulting linear system. Here, we would like to remark that the proposed linear
solver is not restrictive to the use of the modified Picard method. The same linear solver can also be used if L-scheme or
modified L-scheme are the chosen linearization techniques. In fact, in the numerical experiments section, results of the
combination of L-scheme with the proposed cell-centered multigrid method are presented.

It is well known that multigrid methods40-42 are among the fastest numerical techniques for solving the large systems
of equations arising from the discretization of PDEs, and they have shown optimal complexity in solving many prob-
lems in different areas of application.43 In the context of two-phase flow problems in porous media, multigrid methods
have been applied, on the one hand, for the solution of the pressure equation within a decoupled approach (IMPES) in
References 44 and 45. On the other hand, multigrid has been also applied to the fully implicit fully coupled approach in
References 46-48. Although the solution of nonlinear equations by multigrid is possible with two different approaches: a
linearization-multigrid approach (a global linearization, usually Newton’s method, is performed and the resulting linear
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equations are solved with multigrid) or nonlinear multigrid (the linearization is only done within the smoothing iter-
ation), in Reference 48 Molenaar compared both approaches finding that the first approach is computationally more
efficient. Here, we follow this latter approach and we propose the use of a basic cell-centered multigrid algorithm for
solving the linear system of equations obtained after linearizing the mixed formulation of the problem by means of the
modified Picard method. It is well-known that the performance of a multigrid method strongly depends on the choice of
its components, and therefore they have to be carefully chosen. The proposed algorithm considers a simple Gauss-Seidel
iteration as the smoother, a piecewise constant prolongation operator and its adjoint as the restriction, and a direct dis-
cretization technique to define the discrete operators on the coarse grids. We will see that such a basic multigrid algorithm
converges well even in the context of random heterogeneous fields. A similar multigrid algorithm was proposed in
Reference 49 for solving Richard’s equation.

The rest of the paper is organized as follows. Section 2 is devoted to introduce the mathematical model together with
its numerical approximation, including the linearization of the mixed formulation of the two-phase flow model and the
spatial and time discretization techniques for the resulting system of PDEs. The cell-centered multigrid method proposed
for the solution of the obtained linear system is described in Section 3. In Section 4, we present two numerical tests to
show the robustness of the proposed solver. Finally, conclusions are drawn in Section 5.

2 MATHEMATICAL MODEL AND NUMERICAL APPROXIMATION

The flow of two immiscible fluids in a rigid porous medium is described by two coupled partial differential equations

𝜕(𝜙𝜌𝛼S𝛼)
𝜕t

+ ∇ ⋅ (𝜌𝛼v𝛼) = F𝛼, 𝛼 = w,n, (1)

where 𝛼 = w,n represents the wetting and non-wetting fluid phases respectively, 𝜙 is the porosity, S𝛼 is the saturation,
𝜌𝛼 is the density, v𝛼 is the Darcy velocity and F𝛼 is the source term of phase 𝛼. The symbol ∇⋅ represents the divergence
operator. The Darcy velocity is given by the generalized Darcy’s Law for the multiphase case

v𝛼 = −
kr𝛼

𝜇𝛼
K
(
∇p𝛼 − 𝜌𝛼g

)
, 𝛼 = w,n, (2)

where kr𝛼 = kr𝛼(S𝛼) is the relative permeability, 𝜇𝛼 is the viscosity, K is the intrinsic permeability tensor, p𝛼 is the pressure,
g is the gravitational acceleration vector.

To close the system, we have the auxiliary relation with the capillary pressure pc(Sw) = pn − pw and the constraint
Sw + Sn = 1.

Substitution of Equation (2) into Equation (1) yields the following system of partial differential equations:

𝜕(𝜙𝜌𝛼S𝛼)
𝜕t

− ∇ ⋅
(
𝜌𝛼

kr𝛼

𝜇𝛼

K∇p𝛼 − 𝜌2
𝛼g
)
= F𝛼, 𝛼 = w,n. (3)

To complete the formulation of the problem, functions that relate capillary pressure to saturation and relative permeability
to saturation are required. Here, we consider the van Genuchten parametrization.50,51 For the saturation, van Genuchten
proposed the following analytic formula

Sw(pc) = (1 +
(||||

pc

pe

||||

n)−m

, (4)

where pe is a scaling parameter, and n and m = 1 − n−1 are parameters related to the texture of the considered porous
medium. For the relative permeability krw, the following analytic expression was proposed

krw(pc) = Sw(pc)1∕2(1 − (1 − Sw(pc)1∕m)m)2. (5)

Different mathematical formulations for this model can be chosen. Moreover, there exist mathematical formulations
using new (artificial) unknowns that have favorable mathematical properties. The selection of the proper formulation can
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strongly influence the behavior of the numerical simulations and in particular of the efficiency of the solver. Therefore
such choice is of primary importance. Following Reference 17, we consider the mixed formulation given in (3). Numerical
methods based on the hybrid form like finite volumes are popular as they result in mass conservation schemes. The
linearization based on the hybrid form of the system (3) is known in the literature as modified Picard linearization.17 Next,
we briefly describe the implicit Euler modified Picard linearization for solving (3). For simplicity we consider density
constant and gravitation is neglected. Let 𝜏 be the time discretization parameter of an uniform temporal grid. The time
level will be denoted by the superscript j and the iteration number within a time step is denoted by the superscript k. By
simplicity we introduce the moisture content 𝜃𝛼(pc) = 𝜙S𝛼(pc), and we will use the simplified notation 𝜃j,k

𝛼 = 𝜃𝛼(pj,k
c ) and

Kj,k
𝛼 = K

kr𝛼

(
pj,k
𝛼

)

𝜇
𝛼

. The implicit Euler scheme of system (3) is then written by the system

𝜃
j+1,k+1
𝛼 − 𝜃j

𝛼

𝜏
− ∇ ⋅ Kj+1,k

𝛼 ∇pj+1,k+1
𝛼 = F𝛼. (6)

The key idea of the modified Picard iteration is the use of a first order Taylor expansion for 𝜃j+1,k+1
𝛼 with respect to pc, i.e.,

𝜃
j+1,k+1
𝛼 ≈ 𝜃j+1,k

𝛼 +
𝜕𝜃

j+1,k
𝛼

𝜕pc

(
pj+1,k+1

c − pj+1,k
c

)
, (7)

where 𝜕𝜃
𝛼

𝜕pc
= C𝛼 is analytically computed from (4). Substituting (7) in (6), we get

Cj+1,k
w

𝛿pj+1,k
w − 𝛿pj+1,k

n

𝜏
− ∇ ⋅

[
Kj+1,k

w ∇
(
𝛿pj+1,k

w

)]
= ∇ ⋅

[
Kj+1,k

w ∇
(

pj+1,k
w

)]
+ Fj+1

w −
𝜃

j+1,k
w − 𝜃j

w

𝜏
, (8)

Cj+1,k
w

𝛿pj+1,k
n − 𝛿pj+1,k

w

𝜏
− ∇ ⋅

[
Kj+1,k

n ∇
(
𝛿pj+1,k

n

)]
= ∇ ⋅

[
Kj+1,k

n ∇
(

pj+1,k
n

)]
+ Fj+1

n −
𝜃

j+1,k
n − 𝜃j

n

𝜏
, (9)

where 𝛿pj+1,k
𝛼 = pj+1,k+1

𝛼 − pj+1,k
𝛼 .

As a result, at time tj+1, a coupled system of PDEs with variables 𝛿pj+1,k
n and 𝛿pj+1,k

w has to be solved. With this purpose,
we consider a cell-centered finite volume method (FVM) for spatial discretization, which is known for its mass conser-
vation property. For simplicity, we consider a uniform partitioning of the domain Ω = (0,Lx) × (0,Ly) into equally sized
cells, that is

Ωh =
{
(xi, yj) | xi = (i − 1∕2)hx, i = 1, … ,Nx, yj = (j − 1∕2)hy, j = 1, … ,Ny

}
,

with Nx and Ny being the number of volumes in space in the x− and y−directions, respectively, hx =
Lx
Nx

and hy =
Ly

Ny
.

Thus, for each interior cell with center (xi, yj), we obtain two equations associated to variables 𝛿pj+1,k
𝛼 . For simplicity in

the presentation, we show below the equation corresponding to the wetting phase (𝛼 = w), that is,

ch,w
i,j 𝛿p̃w

i,j + wh,w
i,j 𝛿p̃w

i−1,j + eh,w
i,j 𝛿p̃w

i+1,j + sh,w
i,j 𝛿p̃w

i,j−1 + nh,w
i,j 𝛿p̃w

i,j+1 + ch,n
i,j 𝛿p̃n

i,j = f̃ h,w
i,j , (10)

with 𝛿p̃𝛼 denoting 𝛿pj+1,k
𝛼 , and

wh,w
i,j = − 2𝜏

hxhy

K̃w
i,jK̃

w
i−1,j

K̃w
i,j + K̃w

i−1,j

, eh,w
i,j = − 2𝜏

hxhy

K̃w
i,jK̃

w
i+1,j

K̃w
i,j + K̃w

i+1,j

,

sh,w
i,j = − 2𝜏

hxhy

K̃w
i,jK̃

w
i,j−1

K̃w
i,j + K̃w

i,j−1

, nh,w
i,j = − 2𝜏

hxhy

K̃w
i,jK̃

w
i,j+1

K̃w
i,j + K̃w

i,j+1

,

ch,w
i,j = −

(
wh,w

i,j + eh,w
i,j + nh,w

i,j + sh,w
i,j

)
+ C̃w

i,j, ch,n
i,j = −C̃w

i,j,
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where C̃w = Cj+1,k
w and the interblock conductivities have been computed based on the harmonic averaging of the

hydraulic conductivities from the adjacent cells,52,53 denoting K̃w
i,j the conductivity Kj+1,k

w associated with cell (i, j). Notice
that the above formulae are valid if uniform meshes are used. Of course, when non-uniform grids are considered the way
to compute such conductivities has to be properly adapted.

Finally, the source term in (10) is an approximation of the right-hand side in (8) in the corresponding cell (i, j).
The equation corresponding to the non-wetting phase is analogous, and the previous five-point scheme is modified
appropriately for cells close to the boundary.

Thus, in each time step, we must solve a linear system of the form

[
Aw B
B An

][
𝛿pw

𝛿pn

]

=

[
fw

fn

]

, (11)

where, Aw and An are five-banded symmetric and positive definite matrices of order Nx × Ny, and B is a diagonal matrix
of the same size.

3 LINEAR SOLVER: CELL- CENTERED MULTIGRID METHOD

To solve the linear system arising from the above discretization of the modified Picard iteration, we consider a geometric
multigrid method. This algorithm is based on the two-grid cycle, which performs the following steps:

1. Apply 𝜈1 iterations of a classical iterative method, called smoother, on the target fine grid Ωh (pre-smoothing step).
2. Compute the residual of the current fine grid approximation, and restrict it to the coarse gridΩ2h by using a restriction

operator R2h
h .

3. Solve the residual equation on the coarse grid.
4. Interpolate the obtained correction to the fine grid Ωh by using a prolongation operator Ph

2h and add the interpolated
correction to the current fine grid approximation.

5. Apply 𝜈2 iterations of a classical iterative method (post-smoothing step).

The standard multigrid algorithm is obtained by applying the same algorithm in a recursive way by using a hierarchy
of coarser meshes. The performance of the method depends on the choice of the components involved in the previously
defined steps. In particular, we need to specify how to construct the hierarchy of grids, the coarse grid operators, the type
of cycle, the intergrid transfer operators, and the smoother. Thus, in the following we explain our choices in this work.

The multigrid hierarchy is based on a standard coarsening, i.e., the ratio between the cell-width on the fine and coarse
grid is two. Therefore, each coarse cell is the union of four fine cells, and, since the unknowns are located in the cell
centers, this results in a nonnested hierarchy of grids. As the smoothing method, a collective lexicographic Gauss-Seidel
relaxation scheme is used, i.e., at each cell the two associated equations are solved simultaneously. This means that a
small linear 2 × 2 system of equations has to be solved at each cell. A simple piecewise constant interpolator Ph

2h is chosen
as prolongation operator. In classical stencil notation, it is given by

Ph
2h =

⎤
⎥
⎥
⎥
⎦

1 1
⋆

1 1

⎡
⎢
⎢
⎢
⎣

h

2h

, (12)

where ⋆ denotes the position of a coarse cell center. The classical stencil notation shows the contribution of the coarse
grid node to the neighboring fine grid nodes. The restriction operator R2h

h is chosen as the adjoint of the prolongation,
given in stencil form by

R2h
h = 1

4

⎡
⎢
⎢
⎢
⎣

1 1
⋆

1 1

⎤
⎥
⎥
⎥
⎦

2h

h

. (13)
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The coarse grid operators are obtained by direct discretizations defining the diffusion coefficients at the edges of the coarse
cells appropriately. As explained above, the flux over an edge, dependent on the solution in the two adjacent cells, is cal-
culated based on the harmonic average. However, the diffusion coefficient at coarse edges, is calculated as the arithmetic
average of the corresponding fine grid coefficients. As it was pointed in References 53 and 54, this direct discretization
procedure is equivalent to the Galerkin approach, i.e., L2h = 1

2
R2h

h LhPh
2h, but computationally more efficient. The factor

1∕2 in the previous expression is due to the lack of consistency of the operator R2h
h LhPh

2h with the differential operator.55

We have chosen a W(2, 2)−cycle since it was found in References 54 and 49 to be a very robust and efficient multigrid
cycling strategy. The stopping criterion for the multigrid solver is set to reduce the initial residual by a factor TOLMG, i.e.
∥Rm∥∞∕∥R0∥∞⩽ TOLMG, where R0 and Rm are the initial residual and the residual in the iteration m respectively.

Remark 1. Notice that a similar multigrid approach can be extended to different types of grids in order to deal
with more complex configurations of the problem. As done in Reference 56 by some of the authors for other
problem, logically rectangular grids can be considered to take advantage of the recent trends in computer
architectures: many-core and accelerated architectures that achieve their best performance when structured
data can be used. In addition, the geometric multigrid method can be easily extended to semi-structured
triangular grids in order to deal with more complex domains. The idea would be to construct an unstructured
coarse triangulation in such a way that the grid fits the irregular structure of the domain, and then to apply a
regular refinement to the input triangles in order to obtain a totally unstructured grid composed of structured
patches where the geometric multigrid method can be easily applied (see References 57-59).

4 NUMERICAL EXPERIMENTS

In this section, we consider two different numerical experiments to test the behavior of the proposed solution method.
First, we consider a problem with an analytical solution to test our solver, and later, a more realistic problem in order to
show its robustness and good behavior.

In the following, we will consider a stopping criterion for the linerization method with a tolerance of TOLLin = 10−9.
Within the multigrid iterative procedure, the stopping criterion will be to reduce the initial residual in a factor of TOLMG =
10-5. Moreover, the number of levels employed in the multigrid strategy is the highest possible. We consider standard
coarsening ratio, i.e. coarsening ratio equal 2, so the grids need to be created hierarchically as power of 2, in which the
coarsest mesh is composed of 2 × 2 volumes.

The proposed solver has been implemented in our in-house Matlab code, and the numerical computations have been
carried out on a computer with Intel Core i7 2.6 GHz processor, 8 GB RAM, running Windows 10, and using double
precision arithmetic.

4.1 Numerical test with analytical solution

First, we consider a test problem with analytical solution proposed by Kvashchuk in Reference 60. In that work,
Kvashchuk considered the averaged pressure formulation, with p – Sw being the primary variables, where p = pw+pn

2
. In

that case, they choose the right-hand side functions such that the following analytical solution is considered:

p(x, t) = xt(1 − x)y(1 − y),

Sw(x, t) =
1
2
+ xt(1 − x)y(1 − y),

in the spatial-temporal domain D = (0, 1) × (0, 1) × [0,T], with T = 1. Since we consider the modified Picard linearization
of the mixed formulation of the problem, the system to solve is given in terms of the two pressures pw–pn, and then we
have to make some adaptations to use pw and pn instead of p. For this, using the capillary pressure equation (pc = pn − pw)
and p, we obtain that

pw(x, t) = p −
pc(Sw)

2
(14)
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and

pn(x, t) = p +
pc(Sw)

2
, (15)

with initial and Dirichlet boundary conditions given by the analytical solutions (Equations 14 and 15).
As in Reference 60, we choose van Genuchten parametrization for the dependence of the relative permeabilities (16)

and the capillary pressure (17), that is,

kr,w(Sw) =
√

Sw
(
1 −

(
1 − S1∕m

w
)m)2

,

kr,n(Sw) =
√

1 − Sw
(
1 − S1∕m

w
)2m

, (16)

pc(Sw) = pe
(

S−1∕m
w − 1

)1∕n
, (17)

where m = 1 − 1∕n, n and pe are the van Genuchten parameters, which are chosen as n = 2 and pe = 2 MPa. The rest of
the values for the parameters are K = 1(m2), 𝜙 = 1 and 𝜇𝛼 = 1 (Pa s).

First, we compute the errors between the analytical and the numerical solution for different values of the discretization
steps in time (𝜏) and in space (h = hx = hy). In Table 1, we show the L2-norm errors for the saturation and both pressure
unknowns

(
Ei

Sw
, Ei

pw
and Ei

pn
, respectively

)
, together with the corresponding error reduction

(
Ei−1
𝛾 ∕Ei

𝛾 , being 𝛾 the cor-
responding variable

)
. It can be seen that second order of convergence is obtained in contrast to the expected theoretical

first order. Similar results were observed in Reference 60. This behavior can be due to the simple problem considered.
Regarding the convergence of the proposed solver, in Table 2 we show, for different values of the discretization param-

eters (h = 𝜏), the number of multigrid cycles in the last Picard iteration of the last time step (itMG), the arithmetic mean of
the number of multigrid cycles (itMG), the number of linearization iterations in the last time step (itLin) and the arithmetic
mean of the number of linearization iterations (itLin). We can observe that the number of modified Picard linearization
iterations that we need to perform is small in all the cases, with modified Picard being better, as it converges with less
linearizations, giving rise to a robust algorithm independently of the values of the discretization parameters. Moreover,
for sufficiently small values of h and 𝜏, the number of multigrid iterations is always a small number. Thus, we notice that
in all the cases, the proposed solver for this specific problem proves to be robust with respect to the discretization param-
eters. As mentioned in the introduction, the proposed linear solver can also be applied to other linearization techniques

T A B L E 1 L2-norm errors of pressures and saturation functions for different time steps and mesh sizes, T = 1.

i h = 𝝉 Ei
pw

Ei
pn

Ei
Sw

Ei−1
pw
∕Ei

pw
Ei−1

pn
∕Ei

pn
Ei−1

Sw
∕Ei

Sw

1 0.1 1.261e−03 2.755e−03 1.883e−04

2 0.05 3.276e−04 6.995e−04 4.726e−05 3.8483 3.9389 3.9847

3 2.5e−02 8.274e−05 1.756e−04 1.183e−05 3.9599 3.9843 3.9943

4 1.25e−02 2.073e−05 4.393e−05 2.960e−06 3.9903 3.9960 3.9980

5 6.25e−03 5.186e−06 1.099e−05 7.400e−07 3.9979 3.9990 3.9992

T A B L E 2 Number of iterations for multigrid and for the modified Picard and L-scheme linearization method for different values of
the discretization parameters.

Modified Picard–MG L-scheme–MG

h = 𝝉 itMG itMG itLin itLin itMG itMG itLin itLin

0.1 34 50.22 6 5.7 46 52.03 7 8.3

0.05 20 20.27 6 5.25 20 20.19 8 8.8

2.5e−02 8 9.63 5 4.78 10 9.58 8 8.8

1.25e−02 5 5.82 5 4.51 5 5.6 8 8.74

6.25e−03 4 4.00 5 4.03 4 4 8 8.54
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as the L-scheme. Thus, In Table 2, we also show similar results for the combination of the L-scheme with the proposed
cell-centered multigrid method. As it can be observed, the proposed solver is robust with respect to the discretization
parameters if sufficiently small values of h and 𝜏 are considered.

4.2 Immiscible two-phase flow in a heterogeneous media

We consider a problem without analytical solution in the spatial-temporal domain (0, 1) × (0, 8) × [0,T], where T = 1. The
source terms in Equation (3) are considered equal to zero, that is, Fw = Fn = 0. We assume the following initial conditions:
pw(x, 0) = −pc∕2, pn(x, 0) = pc∕2 and Sw(x, 0) = 0.5, and boundary conditions:

pn(x, t) = −pw(x, t) = −
pc

2
, for x = 0, x = 1, y = 0, (18)

𝜕pw(x, t)
𝜕x

= −1, for y = 8, (19)

𝜕pn(x, t)
𝜕x

= 0, for y = 8. (20)

We use again Van Genuchten parametrization for the dependence of the capillary pressure in Equation (17), with
parameters n = pe = 2. In this experiments, we want to test the robustness of the proposed solver in heterogeneous ran-
dom media. Thus, relative permeabilities are modeled as a random field.61 As an example, in Figure 1, we present a
possible sample of the permeability field krw. We consider permeabilities of the order of 10−5 to 10−8, which consist of
characteristic values for very fine sands, silts and clay-silt laminate (desiccated and fissured clays).62 The values for the
rest of the parameters are K = 10−4 for the absolute permeability, and for the porosity and viscosity 𝜙 = 𝜇𝛼 = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

1e-8

1e-7

1e-6

9e-5

F I G U R E 1 Permeability field krw, for Nx × Ny = 64 × 512.
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We solve this test problem by considering the proposed modified Picard linearization method combined with multi-
grid. In Table 3, we show, for different target grids, the number of multigrid cycles in the last linearization iteration of
the last time step (itMG), the arithmetic mean of multigrid cycles (itMG), the number of modified Picard linearization iter-
ations in the last time step (itLin) and the arithmetic mean of these latter (itLin). Also, in the last column of the table, we
display the arithmetic mean of the multigrid asymptotic convergence factor 𝜌M , computed as follows,63

𝜌M = 1
itLin

itLin∑

j=1
𝜌

j
m, where 𝜌j

m =
itMG

√
||RitMG ||∞
||R0||∞

. (21)

As we can observe, the proposed solver needs only a few linearization iterations to achieve the desired stopping criterion,
as well as a small number of multigrid iteration in each linearization step. Notice that the presented results are robust
with respect to the discretization parameters, too.

In order to demonstrate the robustness of the solver with respect to the discretization parameters, next, different
refinement strategies for 𝜏 and h are considered. In Tables 4 and 5 we present the corresponding results for a fixed value
of 𝜏 and different refinements of the spatial grid, that is for different values of h.

In Table 6, on the contrary, we fix the spatial grid such that h = 0.016 and different numbers of time steps are consid-
ered. In all the cases, we can observe that the iterations remain robust with respect to the mesh refinement and the time
step, showing the robustness of the iterative method with respect to the discretization parameters.

T A B L E 3 Number of iterations for multigrid and for the modified Picard linearization method, together with multigrid asymptotic
convergence factors, for different values of the discretization parameters.

Nx ×Ny Nt h = 𝝉 itMG itMG itLin itLin 𝝆M

4 × 32 4 0.25 4 3.25 4 4 0.0271

8 × 64 8 0.125 4 3 4 4 0.0155

16 × 128 16 0.063 4 3 4 4 0.0257

32 × 256 32 0.031 4 3 4 4 0.0224

64 × 512 64 0.016 4 3.25 4 4 0.0212

T A B L E 4 Number of iterations for multigrid and for the modified Picard linearization method, together with multigrid asymptotic
convergence factors, for 𝜏 = 0.016 and different values of the discretization parameters.

Nx ×Ny Nt h itMG itMG itLin itLin 𝝆M

4 × 32 64 0.25 4 3.25 4 4 0.0311

8 × 64 64 0.125 4 2.67 3 3 0.0157

16 × 128 64 0.063 4 3 4 4 0.0247

32 × 256 64 0.031 4 3 4 4 0.0206

64 × 512 64 0.016 4 3.25 4 4 0.0212

T A B L E 5 Number of iterations for multigrid and for the modified Picard linearization method, together with multigrid asymptotic
convergence factors, for 𝜏 = 0.125 and different values of the discretization parameters.

Nx ×Ny Nt h itMG itMG itLin itLin 𝝆M

4 × 32 8 0.25 4 3.25 4 4 0.0283

8 × 64 8 0.125 4 3 4 4 0.0155

16 × 128 8 0.063 4 3 4 4 0.0262

32 × 256 8 0.031 4 3.25 4 4 0.0173

64 × 512 8 0.016 4 3.50 4 4.13 0.0245
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T A B L E 6 Number of iterations for multigrid and for the modified Picard linearization method, together with multigrid asymptotic
convergence factors, for h = 0.016 and different values of the discretization parameters.

Nx ×Ny Nt 𝝉 itMG itMG itLin itLin 𝝆M

64 × 512 4 0.25 4 3.80 5 5 0.0308

64 × 512 8 0.125 4 3.50 4 4.13 0.0245

64 × 512 16 0.063 4 3.25 4 4 0.0220

64 × 512 32 0.031 4 3.25 4 4 0.0205

64 × 512 64 0.016 4 3.25 4 4 0.0212

F I G U R E 2 Relative cpu time in terms of the number of unknowns.

Finally, to show the optimality of the proposed linear solver, in Figure 2 we display the relative cpu time in terms of
the number of unknowns. We can see from the picture that the computational cost of the linear solver is close to (N),
being N the number of unknowns. All these results show the robustness and efficiency of the proposed solution method.

5 CONCLUSION

In this work, we have proposed a solution method for the mixed formulation of the two-phase flow model in rigid porous
media. The solver combines the modified Picard linearization method of this formulation with a simple cell-centered
multigrid algorithm for the resulting linear problem, which provides a good convergence even in the context of random
fields. The proposed linear solver can be also combined with other linearization methods as the L-scheme, providing an
efficient solver as well. Two numerical tests are presented showing the robustness and efficiency of the proposed solver
for problems even with heterogeneous random media. A small number of iterations of both the linearization and the
linear solution methods are enough to achieve convergence in all the cases. The proposed solver provides a robust solution
method with respect to both spatial and temporal discretization parameters, leading to a robust solver for two-phase
flow models. We can conclude that the combination of the modified Picard linearization method and the cell-centered
multigrid algorithm provides a robust and efficient method for this type of problems. Although the results provided in
this work are shown for relatively simple problems with the aim of carefully testing mainly the behavior of the linear
solver, the proposed techniques can be extended to more complex and challenging situations. In order to deal with more
complex configurations of the problem, the proposed multigrid approach can be extended to different types of grids,
as logically rectangular grids or even semi-structured triangular grids, so that the method can deal with more complex
domains. This extension is a topic for future research, as well as the extension of the method to deal with more realistic
numerical experiments, including degenerate cases, and multiphase flow in deformable porous media.
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