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ABSTRACT 
In this work, we propose a space-time multigrid method for solving a finite 
difference discretization of the linear Biot’s model in two space dimensions 
considering random hydraulic conductivity. This method is an extension of 
the one developed by Franco et al. [1] and which was applied to the heat 
equation. Particularly for the poroelasticity problem, we need to use the 
Tri-Diagonal Matrix Algorithm (TDMA) for systems of equations with mul-
tiple variables (block TDMA) solver on the planes xt and yt with zebra-type 
wise-manner (the domain is divided into planes and solve each odd plane 
first and then each even plane independently [2]). On the planes xy, the F- 
cycle multigrid with fixed-stress smoother is improved by red-black relax-
ation. A fixed-stress smoother is compound solver, where the mechanical 
and flow parts are addressed by two distinctive solvers and symmetric 
Gauss-Seidel iteration. This is the basis of the proposed method which 
does not converge only with the standard line-in-time red-black solver [1]. 
This combination allows the code parallelization. The use of standard 
coarsening associated with line or plane smoothers in the strong coupling 
direction allows an application in real world problems and, in particular, 
the random hydraulic conductivity case. This would not be possible using 
the standard space-time method with semicoarsening in the strong cou-
pling direction. The spatial and temporal approximations of the problem 
are performed, respectively, by using Central Difference Scheme (CDS) and 
implicit Euler methods. The robustness and excellent performance of the 
multigrid method, even with random hydraulic conductivity, are illustrated 
with numerical experiments through the average convergence factor.
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1. Introduction

The poroelasticity equations mathematically model the interaction between the deformation of a 
porous elastic material and the fluid flow within it [3]. Nowadays, the analysis and numerical 
simulation of the Biot consolidation model have become increasingly popular due to the wide 
range of applications of poroelasticity theory in different branches of research of Science and 
Engineering such as Medicine, Biomechanics, Petroleum Engineering, Food Processing, etc. 
Computational mathematics aspects of flow and mechanics of porous media can be seen in sev-
eral papers of the special issue of Vermolen et al. [4].

This problem can be formulated as a time-dependent coupled system of partial differential 
equations (PDEs) with the pressure of the fluid and displacements of the solid matrix as 
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unknowns. Solving such problems analytically is a complicated and sometimes impossible task. 
Therefore, its numerical solution is an option [5].

Other problems of great interest, such as problems involving wave propagation, thermo-poroe-
lasticity, viscoelastic representation, infinituple-porosity media, Navier-Stokes and bioheat equa-
tions, also share the same difficulty [6–11].

Among the various discretization methods, there is the Finite Difference Method (FDM) [5]. 
The FDM with staggered grids and the implicit Euler method to temporal variables was described 
by Gaspar et al. [12].

Multigrid methods are among the most efficient techniques for solving large systems of equa-
tions arising from the discretization of PDEs and can achieve convergence rates independent of 
the problem size [13, 14]. Its convergence strongly depends on the choice of the algorithm com-
ponents [13, 15]. In particular, it is crucial to find a good interplay between the smoothing 
method and the coarse-grid correction algorithm.

The multigrid method has been used for a long time to solve PDE systems, as described in [2, 
16, 17]. In Gaspar et al. [18] was presented a robust and efficient smoother for a transformed ver-
sion of the system of poroelasticity equations with an additional stabilization term that allows 
treating the system in an uncoupled way. In Gaspar and Rodrigo [19] was shown the fixed-stress 
split method to obtain an efficient solver for Biot’s problem that decouples the flow from the 
mechanical part in the smoothing algorithm and in Luo et al. [20] was used a monolithic multi-
grid method together with either a coupled Vanka smoother [21] or a decoupled Uzawa smoother 
[22] as an efficient numerical technique for the linear discrete system obtained by finite volumes 
on staggered grids.

There are other smoothers that can be associated with the multigrid method, such as the 
zebra-type method [1]. The zebra-type smoothers (or relaxation planes) consist of dividing the 
domain into planes and first solve each odd plane and then each even plane independently [2].

In search of more efficient methods and taking advantage of the new generation of supercom-
puters, then one must develop algorithms which are capable to efficiently use large number of 
cores. However, the classical approach (time-stepping) [19] does not allow the parallelization of 
the temporal variable. This led us to look for different multigrid approach on time-parallel and 
full space-time methods [1, 23–29].

In this work, we develop algorithms with zebra-type smoother, for multigrid method, capable 
of efficiently using large numbers of cores. The results obtained in this current study indicate 
that the proposed methodology is promising in the sense that we have presented an efficient, 
robust, and highly parallelizable multigrid method to obtain good convergence factors considering 
random hydraulic conductivity. For this, we use multigrid method based on a space-time 
approach with standard coarsening, the block TDMA method to directly solve each of the planes 
xt and yt and a block zebra-wise manner (also using multigrid) to approximate the solution of 
the spatial planes.

The remainder of this paper is organized as follows: in Sect. 2, we present the mathematical 
and numerical models; in Sect. 3, we explain the theoretical foundation necessary about coarsen-
ing and smoothing strategy for the comprehension of this paper; in Sect. 4, we show the results, 
and finally; in Sect. 5, we present the conclusions.

2. Mathematical and numerical models

2.1. Mathematical model

In this paper, we present the two-dimensional Biot’s model, on the spatial domain X ¼

0, 1ð Þ � 0, 1ð Þ, which can be formulated as a coupled system of PDEs for the unknowns displace-
ments of the solid matrix, u, and pore pressure of the fluid, p: Following this notation, the 
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governing equations read as follows [30],

r kþ lð Þr � uþr � lru − ar p ¼ f x, tð Þ, (1) 

1
b

@p
@t
þ a

@

@t
r � uð Þ −r � k xð Þr pð Þ ¼ g x, tð Þ, (2) 

where x ¼ x, yð Þ 2 X ¼ 0, 1ð Þ � 0, 1ð Þ, t 2 0, T� where T is the period or final time, k ¼

� E
1þ�ð Þ 1−2�ð Þ

and l ¼ E
2 1þ�ð Þ

are the Lam�e coefficients, given in terms of the Young’s modulus E 
and the Poisson ratio �: b is the Biot modulus, a is the Biot–Willis fluid/solid coupling coeffi-
cient, k x, yð Þ is the hydraulic conductivity, f is the density of applied body forces and g repre-
sents a forced fluid extraction or injection process.

To complete the formulation of a well-posed problem we must add appropriate boundary and 
initial conditions. Considering u ¼ u, vð Þ, f ¼ f1, f2ð Þ and assuming the rigid (zero dis-
placement) and permeable (free drainage) boundary, @X, such that one has, for simplicity, the 
boundary and the initial conditions satisfying null solution.

2.2. Numerical model

We consider the spatial domain as a porous medium with random hydraulic conductivity. For 
the discretization, we consider a uniform space-time grid on X� 0, T�, given by Gh, s ¼

Gh � Gs, where Gh and Gs represent the spacial and temporal discretizations, respectively, given 
by

Gh ¼ xi, j ¼ ih, jhð Þ j i ¼ 0, :::, nx, j ¼ 0, :::, ny
� �

(3) 

and

Gs ¼ tk ¼ kt j k ¼ 0, :::, ntf g, (4) 

being the discretization parameter h ¼ 1
nx
¼ 1

ny 
for both dimensions and Gs is defined as s ¼ T

nt
:

A standard collocated finite difference scheme on such a grid, together with a stabilization term 
to avoid unphysical oscillations, is considered. More concretely, the additional term looks like a 
temporal derivative of a Laplacian of the pressure @Dp

@t which is multiplied by the stabilization par-
ameter − h2

4 kþ2lð Þ
in Eq. (2) (see [18, 31]), i.e. the additional smoothing term is − h2

4 kþ2lð Þ

@D p
@t :

The numerical model uses the second order CDS for spatial variables, implicit Euler method 
for temporal approximation and the additional smoothing term on the left side of the pressure 
equation. In addition, the equations are discretized at the internal points, i ¼ 1, 3, :::, nx − 
1, j ¼ 1, 3, :::, ny − 1 where, umþ1

ij , vmþ1
ij and pmþ1

ij denotes the approximation of displacement 
u and v and pressure p in the spatial grid-point xi, yjð Þ at the temporal point tmþ1, where m þ

1 indicate the current time step.
By using CDS to spatial approximations and reorganizing the terms, the Eq. (1) is written to 

u ¼ ðu, vÞ as follows

2 kþ 3lð Þ

h2 umþ1
i, j ¼

kþ 2l

h2 umþ1
i−1, j þ umþ1

iþ1, j

� �
þ

l

h2 umþ1
i, j−1 þ umþ1

i, jþ1

� �
þ

kþ l

4h2

vmþ1
iþ1, jþ1 − vmþ1

iþ1, j−1 − vmþ1
i−1, jþ1 − vmþ1

i−1, j−1

� �
þ

1
2h

pmþ1
i−1, j − pmþ1

iþ1, j

� �
þ f mþ1

1, i, j

(5) 

and
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2 kþ 3lð Þ

h2 vmþ1
i, j ¼

kþ l

4h2 umþ1
iþ1, jþ1 − umþ1

iþ1, j−1 − umþ1
i−1, jþ1 þ umþ1

i−1, j−1

� �
þ

l

h2

vmþ1
i−1, j − vmþ1

iþ1, j

� �
þ

kþ 2l

h2 vmþ1
i, j−1 þ vmþ1

i, jþ1

� �
þ

1
2h

pmþ1
i, j−1 − pmþ1

i, jþ1

� �
þ f mþ1

2, i, j :

(6) 

According to [32], to discretization of Eq. (2) we use

−r � k xð Þr p xð Þð Þ ¼ ch
i, jpi, j þ wh

i, jpi−1, j þ eh
i, jpiþ1, j þ sh

i, jpi, j−1 þ nh
i, jpi, jþ1 , (7) 

where

wh
i, j ¼ −

2
h2

ki, jki−1, j

ki, j þ ki−1, j

 !

, 

eh
i, j ¼ −

2
h2

ki, jkiþ1, j

ki, j þ kiþ1, j

 !

, 

sh
i, j ¼ −

2
h2

ki, jki, j−1

ki, j þ ki, j−1

 !

, 

nh
i, j ¼ −

2
h2

ki, jki, jþ1

ki, j þ ki, jþ1

 !

, 

ch
i, j ¼ − wh

i, j þ eh
i, j þ nh

i, j þ sh
i, j

� �
, 

with ki, j ¼ k xi, jð Þ:

This way, using CDS and implicit Euler methods to, respectively, spatial and temporal approxi-
mations and assuming a ¼ 1 and b!1 [30], the Eq. (2) is written as

ch
i, j þ

1
kþ 2lð Þs

� �

pmþ1
i, j þ wh

i, j −
1

4 kþ 2lð Þs

� �

pmþ1
i−1, j þ eh

i, j −
1

4 kþ 2lð Þs

� �

pmþ1
iþ1, j þ sh

i, j −
1

4 kþ 2lð Þs

� �

pmþ1
i, j−1 þ nh

i, j −
1

4 kþ 2lð Þs

� �

pmþ1
i, jþ1 ¼

1
2hs

umþ1
i−1, j − umþ1

iþ1, j þ vmþ1
i, j−1 − vmþ1

i, jþ1 þ um
iþ1, j − um

i−1, j þ vm
i, jþ1 − vm

i, j−1

� �
þ

1
4 kþ 2lð Þs

4pm
i, j − pm

i−1, j − pm
iþ1, j − pm

i, j−1 − pm
i, jþ1

� �
þ gmþ1

i, j :

(8) 

The Equations (5), (6) and (8) corresponds to a large system of algebraic equations that needs 
to be solved efficiently.

3. Coarsening and smoothing strategy

The space-time multigrid method proposed here is an adaptation of that described in Franco 
et al. [1]. The space-time method with standard coarsening applied to the heat equation [1] does 
not converge if applied directly to the poroelasticity problem. Therefore, we describe here an 
adaptation to this method, where its components are based on an adaptive smoothing strategy 
that uses zebra-type relaxation on the planes xt, yt and standard coarsening using red-black 
fixed-stress smoother to multigrid method on the plane xy: That is, instead of using the red-black 
line-in-time relaxation, we should use space-time zebra on the planes xt and yt:
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3.1. Coarsening strategy

The new space-time multigrid method (adapted from Franco et al. [1]) chooses a standard coars-
ening strategy to construct the grid-hierarchy, that is, the coarse-grid size doubles the fine-grid 
size in each direction (both temporal and spatial directions). Moreover, appropriate prolongation 
and restriction operators are chosen. In particular, the prolongation operator Ih

2h

� �
is chosen so 

that it does not transfer information backwards in time, whereas, the restriction operator I2h
h

� �
is 

asymmetric and transferring no information forward in time. More concretely, these operators 
are given as follows

Ih
2h ¼

1
4

0 0 0
0 0 0
0 0 0

3

5

2

4

h

2h

1 2 1
2 4 2
1 2 1

3

5

2

4

h

2h

1 2 1
2 4 2
1 2 1

3

5

2

4

h

2h

2

6
4

3

7
5, (9) 

I2h
h ¼

1
32

1 2 1
2 4 2
1 2 1

3

5

2

4

2h

h

1 2 1
2 4 2
1 2 1

3

5

2

4

2h

h

0 0 0
0 0 0
0 0 0

3

5

2

4

2h

h

2

6
4

3

7
5: (10) 

Notice that the previous stencil notation corresponds to a sequence of stencils applied to suc-
cessive time-steps from the lowest (left stencil) to the highest (right stencil).

3.2. Smoothing strategy

An adaptive smoothing strategy is the key ingredient of the proposed space-time multigrid 
method with standard coarsening. Unlike Franco et al. [1] who combined different smoothers 
coupling with strong connections that depend on s

h2 for choosing the smoother used in the multi-
grid method, in this work we use zebra smoothers in all directions, that is, xy, xt and yt: With 
that, regardless of the direction of the coupling, we guarantee that the multigrid method remains 
effective [33].

� Scheme with zebra plane xt or zebra plane yt relaxation: all variables of the xt or yt space-time 
planes are updated simultaneously using the block TDMA solver [34] and are visited by fol-
lowing a zebra-wise manner. In these updates, variables related to displacement and pressure 
in the x−lines and in each time step are exactly solved. The same process is done for the lines 
in the y−direction and at each time step. With that, we have the exact solutions of the planes 
xt or yt in each iterate.

� Scheme with zebra plane-in-space relaxation: all unknowns located at the same time-level are 
simultaneously updated, and the resulting planes are visited by following a zebra-wise manner. 
Theoretically, this smoother seems to be expensive due to the necessity of exactly solving the 
2D problems arising from in plane relaxation. However, it is not necessary to solve them 
exactly, and it is sufficient to apply some multigrid cycles within each plane.

4. Results

In this section, we present some numerical experiments in order to demonstrate the robustness, 
efficiency and good performance of the space-time multigrid method proposed in previous sec-
tion. We present some numerical experiments corresponding to two-dimensional poroelastic 
problems using Fð1, 1Þ-cycle. Rewriting Eqs. (5), (6) and (8) in the form Aw ¼ b, where A is 
the coefficient matrix, w ¼ u, v, pð Þ and b ¼ f1, f2, gð Þ: This way, the residue is defined by r ¼
b − Aw [13]. The stopping criterion is given by resmc

res0 � 10−12, with
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resmc : ¼ jjrmc
u, hjj1 þ jjr

mc
v, hjj1 þ jjr

mc
p, hjj1, (11) 

where rmc
u, h, rmc

v, h and rmc
p, h indicate, respectively, the residues of u, v and p in h mesh after the mc- 

th multigrid cycle [35].
For scheme with zebra plane-in-space relaxation, we use Fð1, 1Þ–cycles for the plane relax-

ation until resmc

res0 � 10−2, since this multigrid cycle results in a very efficient space-time multigrid 
algorithm. In this Fð1, 1Þ–cycle in spatial plane, the red-black fixed-stress split solver was used 
with red-black Gauss-Seidel [1]. In each iteration we smoothed 1 time the pressure p and 2 times 
the displacements u and v (see [19]).

The material properties of the porous medium are given by Young’s modulus and Poisson’s 
ratio, respectively, E ¼ 104 and � ¼ 0:2 [18, 19]. The final time T ¼ 1:0 is considered in all 
simulations.

In order to illustrate a realistic kðx, yÞ for real world problems on a calculation domain com-
posed of materials that have random hydraulic conductivity, according to [32], we consider a ref-
erence parameters set, here called Mat�ern, U ¼ ð�c, kc, r2

c Þ that are related to Gaussian random 
fields. Where the parameter �c defines the field smoothness, r2

c represents its variance and kc is 
the correlation length of the covariance function. Moreover, parameters kc and r2

c prescribe the 
number of peaks and the amplitude of the random field, respectively.

Considering the spatial square domain X ¼ 0, 1ð Þ � 0, 1ð Þ and the highest order of complexity 
[33], �c ¼ 0:5, kc ¼ 0:1 and r2

c ¼ 3, i.e. U ¼ 0:5, 0:1, 3ð Þ, here called U4 ¼ 0:5, 0:1, 3ð Þ, the 
random hydraulic conductivity field generated with these Mat�ern parameters set, sampled on a 
uniform mesh, are presented in Figure 1. The respective minimum and maximum values of 
kðx, yÞ, k1 and k2, described in Figure 1, considering nx ¼ ny, are presented in Table 1, where 
they have already been multiplied, respectively by 10−8 and 10−4, to obtain realistic values. In 
order to obtain the value of kðx, yÞ on the coarse grids in the multigrid method, we use the full- 
weighting restriction process (see [13]).

In order to show the robustness of the method with respect to the physical and discretization 
parameters, we show in the Figure 2 the average convergence factor qmð Þ obtained after using 
Fð1, 1Þ-cycle until reaching the stop criterion. Note that, regardless of the mesh refinement, qm 
is roughly constant, thus indicating the robustness of the method. Furthermore, we obtain good 
qm for every cases, i.e. the qm are small.

Note in Figure 3 an excellent error decay in each Fð1, 1Þ multigrid cycle performed, consider-
ing nx ¼ ny ¼ nt ¼ 29:

Figure 1. Logarithm of the conductivity field, log k, generated using U4 ¼ 0:5, 0:1, 3ð Þ [32, p. A1400].
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Corroborating with the results described in the Figure 2 and Figure 3, the Table 2 shows the 
number of Fð1, 1Þ multigrid cycles ðnmcÞ necessary to reduce the maximum norm of the initial 
residual until the required tolerance (by a factor of 10−12) and the respective average convergence 
factor. The results are shown for values of random hydraulic conductivity kðx, yÞ multiplied by 

Table 1. Minimum ðk1Þ and maximum ðk2Þ of kðx, yÞ multiplied by 10−8 and 10−4 and 
using U4 ¼ ð0:5, 0:1, 3Þ:

nx ¼ ny

k x, yð Þ � 10−8 k x, yð Þ � 10−4

k1 k2 k1 k2

23 1.92E-10 1.20E-07 1.92E-06 1.20E-03
24 9.59E-11 5.13E-07 9.59E-07 5.13E-03
25 1.02E-10 6.58E-07 1.02E-06 6.58E-03
26 1.94E-11 1.58E-06 1.94E-07 1.58E-02
27 7.85E-12 6.92E-06 7.85E-08 6.92E-02
28 2.37E-11 1.08E-05 2.37E-07 1.08E-01
29 4.55E-11 1.11E-05 4.55E-07 1.11E-01

Figure 2. Average convergence factors qmð Þ in different grid-sizes to k x, yð Þ � 10−8 and k x, yð Þ � 10−4 using Fð1, 1Þ multigrid 
cycles and resmc

res0 � 10−12 as stopping criterion.

Figure 3. Numerical error to u, v and p in different Fð1, 1Þ multigrid cycles (mc) to k x, yð Þ � 10−8 and k x, yð Þ � 10−4 and 
resmc

res0 � 10−12 as stopping criterion.
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10−8 and 10−4, and for different grid-sizes. The number of spatial steps are fixed as nx ¼ ny ¼

27, whereas different numbers of time-steps are considered 27 � nt � 213: Even assuming random 
kðx, yÞ, we can observe the robustness of the proposed method, which provides very satisfactory 
values.

5. Conclusions

In this work, we proposed a robust space-time multigrid method combining standard coarsening 
with the selection of suitable solvers/smoothers for solving the poroelasticity equations with ran-
dom hydraulic conductivity. To achieve convergence, it was necessary to use zebra-type solvers, 
where for the temporal planes the TDMA block method was used, while in the spatial plane 
some F-cycles of the multigrid were used. Two-dimensional space for the spatial and temporal 
approximations of the problems was considered, using, respectively, central differences and impli-
cit Euler methods. The method demonstrated excellent convergence rates across a wide range of 
random hydraulic conductivity values, showcasing its robustness and efficiency. This shows that 
the space-time multigrid method proposed, besides being highly parallelizable, makes it a power-
ful tool for efficiently solving poroelasticity problems, including those with random hydraulic 
conductivity. Furthermore, this approach can be extended to semi-structured meshes, that is, glo-
bally unstructured, but locally structured meshes.
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