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Abstract
The study presented in this paper consists of a grouping ofmethods for determining numerical
solutions to the Poisson equation (heat diffusion) with high accuracy. We compare the results
obtained with classical second-order finite difference method (CDS-2) with fourth-order
compact (CCDS-4) and the exponential methods (EXP-4). We accelerate the convergence of
the numerical solutions using the geometric multigrid method and then apply the completed
Richardson extrapolation (CRE) across the full temperature field. This proposed clustering
determined solutionswith two orders of accuracy higher for all threemethods presented in the
study, in addition to recommending the EXP-4method togetherwith CRE for its accuracy and
low computational effort. The evidence for our results was established through qualitative
verification, through the assessment of orders of accuracy of the discretization error; and
quantitative verification, through the analysis of CPU time and complexity order of the
numerical solutions calculated. The numerical solutions of sixth-order of accuracy obtained
after proposed CRE methodology using the CCDS-4 and EXP-4 methods are recognized as
benchmark solutions for these two classes of methods.
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1 Introduction

One of the greatest challenges of Computational FluidDynamics (CFD) is to obtain improved
methods related to the good level of accuracy of the numerical solutions. In particular, one
of these challenges is characterized by the determination of the numerical solution of the
continuity equation, which can be represented by a Poisson equation under certain circum-
stances: steady-state, and velocities modeled by a potential equation, which requires a large
computational effort. The Poisson equation is given by

∂2Ψ

∂x2
+ ∂2Ψ

∂ y2
= − f (x, y) in Ω, (1)

with Dirichlet boundary conditions that agree with the analytical solution. In this equation,
Ψ ∈ C∞(Ω) is the diffusion property, in our case, the temperature; x and y are the coordinate
directions and f is the source term.

Poisson equation is also well known for modeling the actual physical phenomenon of
steady-state heat diffusion.

Among all sources of numerical error, the discretization error is usually the most signif-
icant one (Marchi and da Silva 2002). In general, the decrease in the discretization error is
associated with highly refined grids which require very high computational effort to achieve
a numerical solution. To determine such solutions with higher-order of accuracy, the post-
processingmethod known as Repeated Richardson Extrapolation (RRE) can be used (Marchi
et al. 2013a, b; Cheney and Kincaid 2012). In order to reduce the discretization error, estima-
tors were proposed in Marchi et al. (2013a), Marchi et al. (2016) that presented and tested a
numerical procedure using RRE applied to problems such as those described by Poisson 1D,
Laplace 2D, Burgers 2D, and incompressible Navier-Stokes 2D equations. Although all cited
works (Marchi et al. 2013a, b; Cheney and Kincaid 2012) obtained reduced discretization
errors, none of them neither used multigrid methods nor obtained more accurate results for
the full domain.

Some studies present higher-order methods for discretizing Eq. (1) based on Finite Differ-
enceMethod (FDM) (Burden et al. 2016). These methods are: the Compact Finite Difference
Scheme of fourth-order (CCDS-4) (Wang and Zhang 2009); and an unconventional compact
nine points, named as Exponential Finite Difference Scheme (EXP-4) (Pandey 2013; da Silva
et al. 2021). In addition, the higher-order methods in conjunction with the standard multigrid
Full Approximation Scheme (FAS) (Trottenberg et al. 2000) provide faster convergence to
the numerical solution.

In Wang and Zhang (2009), the authors designed a new sixth-order compact scheme
with a multigrid method (MG) and Richardson extrapolation (RE) to solve the 2D Poisson
equation. This method is based on designing a MG to compute the approximate solution
using the fourth-order compact scheme in both the fine and the coarse grids. Also, the authors
proposed with a new iterative interpolation scheme combined with the RE to achieve sixth-
order accuracy on the fine grid. The proposed scheme of Wang and Zhang (2009) modified
the MGmethod, changing the restriction and prolongation operators. The goal of the current
work, however, is proposing the use of RE as a post-processing methodology, not modifying
the MG method.

In Koroche and Chemeda (2021), a sixth-order compact FDM was presented to solve the
1D KdV-Burger equation. The authors concluded that the results obtained were more conve-
nient, reliable, and effective than some methods of the listed in the literature by decreasing
the value of h and Δt . Chemeda and Merga (2021) presented a fourth-order compact FDM
combinedwith RE for solving the 1D heat diffusion equation. Twomodel problemswere con-
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sidered and solved for different values of the spatial and temporal step lengths. The proposed
method is unconditionally stable, consistent and generates accurate numerical solutions. In
Chemeda et al. (2022), the authors presented a the fourth-order compact Crank-Nicolson
scheme combined with RE for solving the 1D Fisher’s equation. The space derivative was
discretized by the fourth-order compact FDM, the nonlinear term was linearized by the lag-
ging method, and the temporal derivative was discretized by the modified Crank-Nicolson
scheme. The authors concluded that the order of the method improved from fourth- to sixth-
order in the space direction. However, none of the cited works employed neither complete
Richardson extrapolation (CRE) nor multigrid to achieve their results.

In da Silva et al. (2021), the authors showed how to improve the order for accuracy of
the 2D Poisson equation by combining the RRE method with high-order schemes to find
solutions of sixth-, eighth-, and tenth-order of accuracy. The authors also compared compact
and exponential finite difference schemes of fourth-order. The contribution is also based on
a process that initializes with fourth-order solutions and the multigrid Full Approximation
Scheme (FAS) applied to accelerate the convergence on the fine grids.

Dai et al. (2017) presented a high-accuracy and efficient method for solving anisotropic
Poisson equations. The completed Richardson extrapolation (CRE) was applied to compute
sixth-order solutions through two fourth-order solutions fromdifferent scale grids. The partial
semi-coarseningMGwas employed to solve the resulting linear systems.MultiscaleMGwas
involved in accelerating the computation procedure. Different computational techniqueswere
discussed for 2D and 3D cases. Hu et al. (2022) presented an accelerated multiscale Newton-
multigrid method to solve a 2D Poisson equation with a nonlinear forcing term, based on
fourth-order compact difference schemes and extrapolation strategies. In that new approach,
the extrapolation effectively reduces the number of iterations and the total computational cost.
In addition, a CRE strategy is introduced to generate extrapolated solutions with higher-order
of accuracy than the method used to discretize the equation, and at low cost.

In da Silva et al. (2020), the authors presented a completed repeated Richardson extrap-
olation (CRRE) procedure for a more generic type of grid not necessarily with coincident
nodes, and tested it on compressible fluid flows. The procedure proposed can increase the
achieved accuracy and significantly decrease themagnitude of the spatial error in all problems
tested. It must be observed, however, that all studied equations represented one- or quasi-one
dimensional problems, subjected to discontinuities of variables of interest.

Summarizing, there are several authors who studied forth- or higher-order of accuracy to
solve with multigrid two-dimensional problems, such as Wang and Zhang (2009), Dai et al.
(2017), Hu et al. (2022), Gordin and Shadrin (2023), Hu et al. (2023). Although all of them
obtained high accurate numerical solutions for their problems, the focus of such works were
improving interpolation schemes used in discretization. Some of them used RE in order to
improve the solution accuracy. However, none of them employed CRE to achieve high order
of accuracy to the full domain.

The main goal of this work is to obtain sixth-order of accuracy solutions for Eq. (1) in
an efficient way without increasing the computational time compared to the classical fourth-
order methods studied here. For this, we start the procedure with fourth-order solutions given
by Exponential Finite Difference Scheme. Then, we achieve sixth-order of accuracy using
the CRE. For the calculations, we accelerate them with the MG on the fine grids and we use
quadruple precision (Real*16 or extended precision) with the FORTRAN language.

This work is divided as follows: in Sect. 2, we present the mathematical and numerical
models; in Sect. 3, the higher-order methods; in Sect. 4, the methodology used in our study;
in Sect. 5, the numerical results; and in Sect. 6, concluding remarks.
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2 Mathematical and numerical models

In this section we cover the mathematical and numerical models already shown in da Silva
et al. (2020). We have chosen to present these models to facilitate the development of the
study and allow its exploration. The details of such models are not exhaustive and allow a
better understanding of our proposal when applying the post-processing technique in this
study to increase the order of accuracy and, consequently, reduce the discretization error.

Remark 1 As the CRE is a post-processing (da Silva et al. 2020), this technique can be
generalized, as it uses assumptions that are easily fulfilled (monotonic convergence), and for
any type of grid (in unstructured grids we can use AMG). On the other hand, in cases where
there is no monotonicity, we can use interpolation and optimization techniques, such as those
used in Marchi et al. (2016).

Thus, as in da Silva et al. (2020), the computational domain remains the unit square
Ω = [0, 1] × [0, 1], with boundary conditions described by the analytical solution, and the
meshes used are uniform. The mesh elements h and k are described by h = 1/(Nx − 1)
and k = 1/(Ny − 1), where Nx = Ny = {9, 17, 33, . . . , 2049, 4097} are number points of
meshes in x− and y−direction, respectively.

Revisiting the called Central Difference Scheme of second-order (CDS-2), presented in
da Silva et al. (2020), we have

∂2Ψ

∂x2
|i, j = Ψ i−1, j − 2Ψ i, j + Ψ i+1, j

h2
− h2

12

∂4Ψ

∂x4
|i, j − h4

360

∂6Ψ

∂x6
|i, j + O(h6) (2)

to approximate the derivative in the x−direction and,

∂2Ψ

∂ y2
|i, j = Ψ i, j−1 − 2Ψ i, j + Ψ i, j+1

k2
− k2

12

∂4Ψ

∂ y4
|i, j − k4

360

∂6Ψ

∂ y6
|i, j + O(k6), (3)

for y−direction. Here, we use the spatial notation (i , j) to denote the center point of the
discretization; i−1, i+1 their spatial x−neighbors; and j−1, j+1 their spatial y−neighbors.

By substituting Eqs. (2) and (3) in Eq. (1) and after some mathematical manipulations,
we determine the CDS-2 approximation, as shown in

ψ i−1, j − 2ψ i, j + ψ i+1, j

h2
+ ψ i, j−1 − 2ψ i, j + ψ i, j+1

k2
= − fi, j . (4)

Notice that the analytical solution,Ψ , has been replaced by the numerical solution,ψ . This
was done because the analytical solution is unknown. The approximations of Eqs. (2) and (3)
generate the a priori asymptotic order p0 = 2 and true a priori orders of discretization error
pm = 2, 4, 6, . . . in Eq. (4) (Marchi and da Silva 2002). In the next section we describe how
to increase the order of this discretization method to two well-known higher-order methods.
Below we give the representation of the analytic expression of the local truncation error
considering k = h

ετ (Ψ ) = −h2

12

(
∂4Ψ

∂x4
+ ∂4Ψ

∂ y4

)
− h4

360

(
∂6Ψ

∂x6
+ ∂6Ψ

∂ y6

)
+ O(h6). (5)

3 Higher-order methods for the Poisson equation

In this section we present the compact and exponential finite difference schemes, which are
the higher-order methods used in this work.
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3.1 Compact finite difference scheme

Considering the problem given by Eq. (1) and its second-order numerical solution ψ given
by Eq. (4), we determine approximations for the fourth-order derivatives in order to obtain
the well-known Compact Finite Difference Scheme of fourth-order (CCDS-4). For this, we
expand the following terms:

∂4Ψ

∂x4
|i, j = −∂2 f

∂x2
|i, j − ∂4Ψ

∂x2∂ y2
|i, j (6)

to approximate the derivative in the x−direction and,

∂4Ψ

∂ y4
|i, j = −∂2 f

∂ y2
|i, j − ∂4Ψ

∂x2∂ y2
|i, j , (7)

to approximate the derivative in the y−direction.
Nowwe substitute the Eqs. (6) and (7) in Eqs. (2) and (3), respectively, and approximating

the partial second-order derivative using CDS-2, we determine

∂2Ψ

∂x2
|i, j = Ψ i−1, j − 2Ψ i, j + Ψ i+1, j

h2
+ 1

12
( fi−1, j − 2 fi, j + fi+1, j )

+ h2

12

∂4Ψ

∂x2∂ y2
|i, j − h4

144

∂4Ψ

∂x4
|i, j + O(h4) (8)

to approximate the derivative in the x-direction and,

∂2Ψ

∂ y2
|i, j = Ψ i, j−1 − 2Ψ i, j + Ψ i, j+1

k2
+ 1

12
( fi, j−1 − 2 fi, j + fi, j+1)

+ k2

12

∂4Ψ

∂x2∂ y2
|i, j − k4

144

∂4Ψ

∂ y4
|i, j + O(k4). (9)

to y−direction.
For the fourth-order derivative ∂4Ψ /(∂x2∂ y2)|i, j , we obtain the following approximations

∂4Ψ

∂x2∂ y2
|i, j = 4Ψ i, j

h2k2
− 2

(
Ψ i−1, j + Ψ i+1, j + Ψ i, j−1 + Ψ i, j−1

h2k2

)

+ Ψ i−1, j−1 + Ψ i−1, j+1 + Ψ i+1, j−1 + Ψ i+1, j+1

h2k2
+ O(h2, k2). (10)

Now, we substitute the approximations given in Eq. (10) into their respective derivatives
contained in Eqs. (8) and (9). After some mathematical manipulations, we determined the
following approximations
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ψ i−1, j − 2ψ i, j + ψ i+1, j

h2
+ ψ i, j−1 − 2ψ i, j + ψ i, j+1

k2

+
(
h2 + k2

12

) [
4ψ i, j

h2k2
− 2

(
ψ i−1, j + ψ i+1, j + ψ i, j−1 + ψ i, j+1

h2k2

)

+ ψ i−1, j−1 + ψ i−1, j+1 + ψ i+1, j−1 + ψ i+1, j+1

h2k2

]

= 1

12
( fi−1, j + fi+1, j − 8 fi, j + fi, j−1 + fi, j+1). (11)

As we are performing a uniform mesh discretization, then we can make the simplification
k = h and rewriting Eq. (11), we get

ψ i, j = 3

10

[
Fi, j + 2

3

(
ψ i+1, j + ψ i−1, j + ψ i, j−1 + ψ i, j+1

)

+ 1

6

(
ψ i+1, j+1 + ψ i−1, j+1 + ψ i+1, j−1 + ψ i−1, j−1

)]
h2, (12)

where F term is

Fi, j := 1

12
( fi−1, j + fi+1, j − 8 fi, j + fi, j−1 + fi, j+1). (13)

Again, we replace Ψ by ψ by the same exposed reason, the Eq. (14) does not change
because the local truncation error is described in terms of the analytical solution.

In this scheme, the local truncation error is given by Le Veque (2007), as follows

ετ (Ψ ) = − h4

360

(
∂6Ψ

∂x6
+ ∂6Ψ

∂ y6

)
+ O(h6). (14)

With this, the Eq. (14) show us the a priori asymptotic order is p0 = 4, and a priori true
orders, pm = 4, 6, 8, . . ., for CCDS-4.

By rearranging Eqs. (12) and (13), we can rewrite them to generate the CCDS-4 stencil,
which is given by da Silva et al. (2020)

10

3h2

⎡
⎣ 0 0 0
0 1 0
0 0 0

⎤
⎦
h

− 2

3h2

⎡
⎣ 0 1 0
1 0 1
0 1 0

⎤
⎦
h

− 1

6h2

⎡
⎣ 1 0 1
0 0 0
1 0 1

⎤
⎦
h

= 1

12

⎡
⎣ 0 1 0
1 −8 1
0 1 0

⎤
⎦
h

.

(15)
The stencil shown from Eq. (15) is based on the approximations of Wang and Zhang

(2009), Gupta et al. (1997), Li and Chen (2008) and considers a unit square domain and,
uniform grid elements.

3.2 Exponential finite difference scheme

The Exponential Finite Difference Scheme of fourth-order (EXP-4) shown in Pandey (2013),
da Silva et al. (2020), Pandey and Pandey (2016), Pandey (2016) is described in the following:

∂2Ψ

∂x2
+ ∂2Ψ

∂ y2
= f (x, y)eφ(h). (16)

As we are performing a uniform mesh discretization, then we can make the simplification
k = h, replacing the approximations from Eq. (11) on the left hand side of Eq. (16) and,
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rewriting it, we get

ao

(
ψ i−1, j + ψ i+1, j + ψ i, j−1 + ψ i, j+1

h2

)

+ a1

(
ψ i−1, j−1 + ψ i−1, j+1 + ψ i+1, j−1 + ψ i+1, j+1

h2

)
+ a2ψ i, j

= b0 fi, j e
φ(h), (17)

where the variable φ is described by

φ(h) = h2∇2 fi, j
12 fi, j

. (18)

Note that the laplacian of Eq. (18) has yet to be approximated. In this case, we use the
CDS-2, which results in

h2∇2 fi, j = fi−1, j + fi+1, j − 4 fi, j + fi, j−1 + fi, j+1, (19)

besides that,

φ(h) = fi−1, j + fi+1, j − 4 fi, j + fi, j−1 + fi, j+1

12 fi, j
. (20)

We use the constants a0 = 4, a1 = 1, a2 = −20 and, b0 = 6 given in Pandey (2013), da
Silva et al. (2020). In this way, we can rewrite Eq. (17) as

4

(
ψ i−1, j + ψ i+1, j − 4ψ i, j + ψ i, j−1 + ψ i, j+1

h2

)

+
(

ψ i−1, j−1 + ψ i−1, j+1 + ψ i+1, j−1 + ψ i+1, j+1

h2

)
− 20ψ i, j

= 6 fi, j e
φ(h), (21)

with local truncation error (Pandey 2013)

ετ (Ψ ) = h4

240

[
4

(
∂6Ψ

∂x6
+ 5

∂6Ψ

∂x4y2
+ 5

∂6Ψ

∂x2y4
+ ∂6Ψ

∂ y6

)

− 5

(
∂2Ψ

∂x2
+ ∂2Ψ

∂ y2

)−1 (
∂4Ψ

∂x4
+ 2

∂4Ψ

∂x2y2
+ ∂4Ψ

∂ y4

)2
]

+ O(h6). (22)

Equation (22) determines a priori asymptotic order, p0 = 4 and a priori true orders,
pm = 4, 6, 8, . . .. of Eq. (21).

By rearranging Eq. (21), we can rewrite them to generate the EXP-4 stencil, which is
given by da Silva et al. (2020)

20

h2

⎡
⎣ 0 0 0
0 1 0
0 0 0

⎤
⎦
h

− 4

h2

⎡
⎣ 0 1 0
1 0 1
0 1 0

⎤
⎦
h

− 1

h2

⎡
⎣ 1 0 1
0 0 0
1 0 1

⎤
⎦
h

= −6eφ(h)

⎡
⎣ 0 0 0
0 1 0
0 0 0

⎤
⎦
h

,

(23)
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where the exponential term is given by

eφ(h) = exp

⎛
⎝ 1

12

⎡
⎣ 0 1 0
1 −4 1
0 1 0

⎤
⎦
h

/

⎡
⎣ 0 0 0
0 1 0
0 0 0

⎤
⎦
h

⎞
⎠ . (24)

The stencils shown from Eqs. (23) and (24) are based on the approximations of Pandey
(2013) considering a unit square domain and uniform grid elements.

The stencils of both fourth-order accuracy methods produce sparse and large systems of
linear equations with nine diagonals. The solutions of these systems are determined using the
lexicographic Gauss-Seidel smoother (Burden et al. 2016) and have convergence acceleration
obtained with the geometric multigrid method.

4 Methodology

In this section we present the methodology used in our study. To do this, we will present the
basic concepts about the multigrid method, order of accuracy and complexity, in addition to
explaining an efficient way to use Richardson extrapolation.

4.1 Multigrid method

Weknow that themore the grid is refined, the smaller the discretization error. However, highly
refined grids result in large-scale systems of linear equations, thus requiring a large com-
putational effort to obtain their numerical solution. So, we will decrease the computational
time used with such highly refined grids by adopting the multigrid method (MG) (Trotten-
berg et al. 2000; Wesseling 2004; Oliveira et al. 2018), which is a method that accelerates
the convergence of standard methods using a hierarchy of grids. This method is a powerful
numerical tool to determine the solutions addressed in our study.

Classic iterative methods quickly reduce the oscillatory error modes of the finest grid
in the initial iterations, but leaving the smooth modes, which makes the method lose its
effectiveness (Trottenberg et al. 2000; Pinto et al. 2016; da Silva et al. 2021; Malacarne et al.
2022). With that, we transfer information (residue and/or solution) to the coarser grids (using
restriction operators), where the smooth modes become more oscillatory and the method is
known to be effective (Trottenberg et al. 2000; Wesseling 2004). When reaching the coarsest
possible or desired grid, information (correction) must be returned to the original finer grid of
the problem (using prolongation operators). This accelerates the convergence of the method
(Pinto et al. 2016; Trottenberg et al. 2000;Wesseling 2004; Oliveira et al. 2018; Santiago et al.
2023; da Silva et al. 2024) because it becomes efficient for all error components (oscillatory
and smooth).

The information transferred among grids hierarchy depends on the type of used scheme.
We can use, for example, Correction Scheme (CS), where only the residue is transferred; or
Full Approximation Scheme (FAS), where the residue and the solution are transferred. In
our study we chose FAS (Trottenberg et al. 2000; Wesseling 2004). There are different ways
in which different grids can gone through (here called cycles), among them, V-, W- and F-
cycle (Franco et al. 2018a, b). We use the V-cycle by its low computational cost (Trottenberg
et al. 2000; Wesseling 2004). We define the smoothing numbers in the restriction (ν1) and
prolongation (ν2) process, respectively to be the pre- and post-smoothing numbers of the
solver. In this paper we use the notation V (ν1, ν2). Furthermore, we use cr = 2 (standard
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Fig. 1 Representation of the
multigrid V-cycle

coarsening), i.e. the coarsening ratio with H = 2h (Trottenberg et al. 2000; Wesseling
2004), where h and H are the distances between the consecutive points of the fine and the
coarse grid, respectively.

Figure1 depicts a V-cycle for the case of l = 3 grid coarsening levels. Algorithm 1 is
based on the V-cycle for the FAS-scheme considering l > 1 grid levels, where I 2 hh and
I h2 h are, respectively, the restriction and prolongation operators. In this case, Lmax means
the maximum number of levels. In both Fig. 1 and Algorithm 1, the standard coarsening is
considered.

Algorithm 1: FAS-MG(l) Briggs et al. (2000); Zen et al. (2024).

Input: ψh
0 , Ah , f h

Output: ψh

1 while Stopping criterion is not reached do
2 if l = Lmax then

3 Solve the system Alψ
l = f l on the coarse grid Ω2l−1h ;

4 Compute the correction on the coarse grid ωl = ψ l − ψ̇
l
;

5 else

6 Smooth ν1 times Alψ
l = f l on the grid Ω2l−1h with initial guess ψ l

0 = 0;

7 Compute and restrict the defect ṙl+1 = I 2
l h

2l−1h
[ f l − Alψ

l ];
8 Restrict the solution ψ̇

l+1
= I 2

l h
2l−1h

ψ l ;

9 Compute the right-hand side f l+1 = ṙl+1 + Al+1ψ̇
l+1

;
10 Solve at the next level FAS-MG(l+1);

11 Interpolate the correction ωl = I 2
l−1h

2l h
ωl+1;

12 Correct the solution ψ l ← ψ l + ωl ;

13 Smooth ν2 times on Alψ
l = f l on the grid Ω2l−1h with initial guess ψ l (updated in line 12);

14 Compute the correction ωl = ψ l − ψ̇
l
;

15 end
16 end

Our study presents the standard geometric MG (Wesseling and Oosterlee 2001; Santiago
et al. 2015), which is generally advisable in cases where structured grids are used. However,
when unstructured grids are used, we can apply the algebraic MG (Marchi et al. 2013a;
Stüben 2001; Suero et al. 2012).
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In this work, the process of transferring information from the fine grid to the coarser grid
(restriction) will be done using the full-weighting operator, defined by Trottenberg et al.
(2000), Wesseling (2004)

I2hh vh(x, y) = 1

16

⎡
⎣ 1 2 1
2 4 2
1 2 1

⎤
⎦
2h

h

. (25)

The process of transferring information from the coarse grid to the finer grid (prolonga-
tion) will be done using bilinear interpolation operator, defined by Trottenberg et al. (2000),
Wesseling (2004)

Ih2hvh(x, y) = 1

2

⎤
⎦ 0 1 0
1 0 1
0 1 0

⎡
⎣
h

2h

. (26)

4.2 Effective order of accuracy

It is possible to approximate the asymptotic order of accuracy of each numerical method by
the effective and apparent orders (Marchi and da Silva 2002), respectively. The basis for the
approximation is the numerical error (difference between analytical and numerical solutions)
or by estimating the error of the numerical solution. The equivalent effective order (based on
the numerical error) is given by da Silva et al. (2022), Pereira da Silva et al. (2023).

pE =
log

( |E(ψ1(xs ))||E(ψ2(xs )|
)

log(q)
→ p0, if h → 0, (27)

where E(ψ i ) = Ψ i − ψ i is true numerical error, Ψ the analytical solution, and ψ1, ψ2
the numerical solutions of the variable of interest in coarse (Ωh1 ), and fine grid (Ωh2 ),
respectively. xs is the position vector that has coincident coordinates on all meshes chosen
to discretize the domain. The constant q = h1/h2 is the refinement ratio. In addition, h1 and
h2 represent the spacing of coarse and fine grids, respectively.

For caseswhere the analytical solution is unknown, it is possible to calculate the equivalent
apparent order of accuracy pU . In this study we will analyze only the effective order of
accuracy. See more details of pU in da Silva et al. (2022), Pereira da Silva et al. (2023).

4.3 Completed Richardson extrapolation

The most common approaches in numerical analysis to reduce the numerical error are grid
refinement and the use of higher-order numerical schemes, towhichRichardson extrapolation
(RE) is an alternative. RE is given by Dahlquist and Björck (2008):

ψ∞ = ψg+1 + ψg+1 − ψg

q p0 − 1
, (28)

where ψ∞ is the estimated analytical solution, ψg+1 and ψg are the numerical solutions
in the fine grids hg+1 and coarse grids hg , and q = hg/hg+1 is the refinement ratio. This
expression is going to be effective when ψg contains only discretization errors. There have
been recent modifications of RE to reduce numerical errors (da Silva et al. 2020). Roache
and Knupp (1993) devised a method based on Eq. (28) across the full temperature field called
CRE using a grid with coincident nodes.
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Since not all fine mesh points coincide with the coarse points, we need to use a strategy
for applying CRE. We could use a correction as in Roache and Knupp (1993). However, this
correction has been proved to limit the extrapolation order in da Silva et al. (2020). Therefore,
we use CRE (without repetition) proposed in da Silva et al. (2020). The authors suggest the
use of a Newton polynomial for obtaining the equivalent node in the coarse mesh. Another
strategy would be the use of a least squares polynomial, which is more generic. The use of
2D least squares polynomials with high order methods also provide good results (Borges
et al. 2021).

Since our solution is smooth, we compute CRE with (da Silva et al. 2020)

ψCRE
g,i = ψg,i + ψg,i − ψg−1,i

q p0 − 1
, (29)

where g is the grid level, and ψg−1,i is the coarse grid equivalent node obtained with the 2D
least squares polynomial.

For the 2D least squares, we find the nearest N 2
i points to ug−1,i and fit a fifth-degree

polynomial to obtain its value. As stated in da Silva et al. (2020), the polynomial degree
must be pm − 1, where m is the maximum completed Richardson extrapolation level. In our
case, m = 1 and p1 depends on each approximation scheme. For the CDS-2, CCDS-4, and
EXP-4, we have 4, 6, and 6, respectively. Therefore, a fifth-degree (sixth-order of accuracy)
polynomial works for all schemes. See more details in da Silva et al. (2020), da Silva (2022).

4.4 Iteration error and complexity order

In this study, we use the Euclidean norm vector L2 and the equivalent norms L1 and L∞
(Burden et al. 2016) to perform the iteration error analyses. To do this, we evaluate the generic
norm L over the difference between the numerical solution at iteration i t and i t − 1.

In all analyses, we evaluate the dimensionless iteration error (Pereira da Silva et al. 2023),
that is, Lit/L0, where L0 is the error at iteration i t = 0withψ(xi ) = 0.Note that L1/L0 ≈ 1.

Another issue of interest in the simulations of this study is the equation that measures
the complexity order over computational operations. The equation chosen to determine this
metric is given by Trottenberg et al. (2000); Wesseling (2004):

tcpu(Nt ) = c(Nt )
p, (30)

where tcpu(Nt ) is the CPU time for each discretization level, Nt = Nx Ny is the number of
variables, c a constant of proportionality and p the complexity order.

CPU time (tcpu), in this work, is concerned about the time intervals spent with the grids
generation (the basis and the auxiliary grids), the appliance of the initial guess, the coefficients
evaluation and the solution of the systemof linear equations represented byEqs. (15) and (23),
until the achievement of the admitted tolerance. In order to evaluate the tcpu , the subroutine
CPU_TIME is employed.

4.5 Grouping CRE with FAS-MG

The completed Richardson extrapolation (CRE) method, which is a post-processing, com-
bines numerical solutions on different grids determining higher orders of precision. To
minimize discretization errors, this process requires the use of highly refined meshes. As
this can generate a high computational cost, the FASMultigrid method (FAS-MG) is applied
to accelerate convergence and obtain numerical solutions in these meshes with an acceptable
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cost. Algorithm 2 details the use of CRE, considering g = 1, . . . ,G distinct meshes; together
with the FAS-MG, with a certain l > 1 grid coarsening levels for each those g meshes. This
Algorithm is used on the variable ψ . For example, we have G = 3 in the case of meshes N =
9× 9, 17× 17 and 33× 33. In the especific case of 33× 33 mesh with standard coarsening
ratio, we have following levels hierarchy: 33 × 33, 17 × 17, 9 × 9, 5 × 5 and 3 × 3, i.e.,
l = 5 grid coarsening levels used in FAS-MG. In this work, the number of levels adopted in
the multigrid method will always be the maximum number of levels (Lmax ). Note that Lmax

depends on g.

Algorithm 2: FAS-MG-CRE.

Input: G, ψh
0 , Ah , f h

Output: ψg,i
1 Step one: FAS-MG;
2 begin
3 For g = 1, . . . ,G;
4 Lmax = l(g);
5 l = 1;
6 Call FAS-MG(l) to calculate ψg ;
7 ψg,i ← ψg ;
8 g ← g + 1;

9 Step two: CRE;
10 begin
11 For g = 1, . . . ,G;

12 Calculate ψCRE
g,i = ψg,i + ψg,i−ψg−1,i

q p0−1

Remark 2 In the same way that Algorithm 2 was built with FAS-MG, it can also be used with
CS-MG.

5 Numerical results

To assure that the numerical solution admit only discretization errors, the absolute value of
Lit/L0 was calculated until it achieves its machine round-off error (Pereira da Silva et al.
2023), i.e., tol=1.0E-32, for the nodes Nx = Ny = 9, 17, 33, . . . , 2049, 4097 and grids
N = 9× 9, 17× 17, 33× 33, . . . , 2049× 2049, 4097× 4097. The variable of interest is the
temperature at center point xs(1/2, 1/2). The numerical solutions for problems are obtained
using computational programs written by the authors in Fortran 95 and using theMicrosoft�

Visual Studio� 2008 compiler v.9.0.21022.8 RTM with quadruple precision and are run on
a computer with a 3.40 GHz Intel� Core™i7-6700 processor with 16GB of RAM hosting
64-bit Windows� 10. In all three numerical methods used in this study (CDS-2, CCDS-4,
and EXP-4), we associated the same computational meshes. This means that we discretize
the domain using identical meshes ranging from 9 × 9 to 4097 × 4097 nodes, always with
constant refinement ratio q = 2, i.e., h2 = h1/2. As such, the mesh element h2 is associated
with the 17 × 17 discretization and h1 associated with the discretization with 9 × 9 nodes,
respectively.

We calculate the approximations for systems Aψ = f, where AN×N is the matrix of
coefficients, ψN×1 is the numerical solution vector that represents the temperature and
fN×1 = f (xi , y j ) = fi, j is the source term in lexicographic order.
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Fig. 2 Iteration error using Gauss-Seidel smoother in 4097 × 4097 grid for three methods

Verification of the numerical solutions is a methodology that allows you to evaluate the
coherence of the solutions determined (da Silva 2022; da Silva et al. 2022; Pereira da Silva
et al. 2023). This methodology is divided into two steps. The first one is called qualitative
verification of numerical solutions (Pereira da Silva et al. 2023). It consists in evaluating
numerical errors, orders of accuracy obtained a priori and a posteriori, as well as analyses
on the graphs of decreasing norm of the discretization error versus decreasing h. The second
one is the quantitative verification of numerical solutions (Pereira da Silva et al. 2023). In
this step, we have the opportunity to evaluate the established metrics to inform whether the
solutions converge within the expected time. In this work we will assume the following
analytical solution Ψ (x, y) = cos(x)cos(y) with f (x, y) = −cos(x + y) + cos(x − y).

5.1 Qualitative verification

Firstly, we analyze the reduction in the magnitude of the iteration error versus the number
of iterations for CDS-2 method. We set a large enough number of iterations to see the error
fluctuate on the order of magnitude of the round-off error by adopting the quadruple precision
of the Fortran language to perform the calculations. With this strategy, it can be stated that
the iteration error is negligible because its effects cannot contaminate the solutions. See these
details in Fig. 2. In our study, the iteration error is very important, because we need to make
sure that such an error is oscillating on the order of magnitude of the round-off error, or else
the completed Richardson extrapolation will not determine the results we want to obtain.

In Fig. 3 we show the decrease in the norm of the true error of the variable ψ(xs) versus
decreasing the mesh element size for all three cases. Note that reference curves are inserted
in this figure. We did this for L1, L2 and L∞, at them = 0 andm = 1 level. Them = 0 level
has no completed Richardson extrapolation, while at m = 1, the temperature field has been
completely extrapolated only once. Since the three norms are equivalent, exactly the results
that are shown in the figure are expected, i.e. the magnitude of the norms of the error are
approximately the same for bothm = 0 andm = 1. Moreover, for the most refined mesh, we
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Fig. 3 Norm of the discretization error versus h using CDS-2

were able to reduce more than six-orders of magnitude of these norms of the discretization
error. Notice that with each extrapolation, we lose the solution associated with the coarsest
mesh of this level. For example, in level m = 1, the solution associated with the mesh 9× 9
is lost. This is part of all types of extrapolation, whether nodal or complete.

The equivalent effective orders of accuracy shown in Fig. 4 are obtained a posteriori and
can only be calculated in cases where the analytical solution is known. In order not to make
the term exhaustive, we decided to call these orders just effective orders, and thereforewewill
use this term from here on. See more details in da Silva et al. (2021), Marchi (2001), da Silva
et al. (2022), da Silva (2022). The order of accuracy of the CDS-2 method is p0 = 2 as we
already know.We did the pE calculations using three norm rules to confirm the equivalence of
the rules in this case.When we applied the CREmethod, the order p∗

0 = 2 jumped to p∗
1 = 4,

as the truncation error terms that have odd powers cancel each other out, leaving only the even
powers that denote the set of a posteriori true orders p∗

m = {p∗
0, p

∗
1 , p

∗
2, . . .} = {2, 4, 6, . . .}

that can be deduced a priori. Thus, when performing the completedRichardson extrapolation,
we expect exactly this behavior, i.e., the increase of two orders of accuracy. The asymptotic
behavior of the fourth-order of accuracy curves is expected and does not represent numerical
error. This means that p1 (a priori) and p∗

1 (a posteriori) are equal in the limit, in other words,

lim
h→0

ετ (Ψ ) =
∞∑

m=0

lim
h→0

cm h pm = 0, (31)

where cm is an arbitrary constant that does not depend on h and pm is the a priori order of
accuracy of the method. In the case of infinitely many terms of the truncation error, we have
the following expression:

lim
h→0

ετ (Ψ ) = lim
h→0

(
c0 h

p0 + c1 h
p1 + c2 h

p2 + . . . + cm h pm
) = 0. (32)
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Fig. 4 Equivalent effective order of accuracy using CDS-2

For example, we will revisit Eq. (5) (which is a sum of errors of the Eqs. (2) and (3) for
h = k) that represents the truncation error and which rewritten as a function of Eq. (32),
results in

ετ (Ψ ) = − 1

12

(
∂4Ψ

∂x4
+ ∂4Ψ

∂ y4

)
h p0=2− 1

360

(
∂6Ψ

∂x6
+ ∂6Ψ

∂ y6

)
h p1=4+c2 h

p2=6+· · ·+cm h pm ,

(33)
with

lim
h→0

(
c0 h

p0 + c1 h
p1 + c2 h

p2 + · · · + cm−1 h
pm−1 + cm h pm

) = 0, (34)

where c0 = −1/12(∂4Ψ /∂x4 + ∂4Ψ /∂ y4), and c1 = −1/360(∂6Ψ /∂x6 + ∂6Ψ /∂ y6),
respectively.

Equation (33) shows what equivalent order of accuracy we should find when applying
CRE to get the solutions at the m = 1 level to CDS-2. This result is confirmed in Fig. 4.

Now we will reproduce the same analyses as for the CDS-2 method for CCDS-4. The
profile of results was consistent with that expected for the fourth-order of accuracy method,
see Fig. 5. Note that reference curves are inserted in this figure. That is, the straight lines
corresponding to the norms of the discretization error at m = 1 are steeper slope and the
difference of the orders of magnitude of these errors in the more refined meshes become
smaller. Using CDS-2 the difference was about 6 orders of magnitude, while for CCDS-4
around 2 orders. This occurs because the term c0 h p0=2 has more influence than c0 h p0=4.
This behavior is correct and expected.

If we were to rewrite the Eq. (33) for the CCDS-4 method, it would certainly not be
difficult to see that by applying CRE the order of accuracy would jump from p∗

0 = 4 to
p∗
1 = 6. These results are confirmed in Fig. 6 when we calculate the effective orders. Note

that for the most refined mesh at m = 1 the orders exhibit degeneration for some norms.
We call degeneration the mathematical phenomenon that makes an order present random
results due to the influence of round-off error that is contaminating the numerical operations
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Fig. 5 Norm of the discretization error versus h using CCDS-4

Fig. 6 Equivalent effective order of accuracy using CCDS-4

or solutions (da Silva et al. 2022). If we were using double precision, this degeneration would
have happened on coarser meshes.

To finalize the qualitative verification of the numerical solutions of our mathematical
model using the three numerical methods, we will see at the decrease in discretization error
versus decrease in h to EXP-4. See in Fig. 7 that the results are equivalent to those shown in
Fig. 5 (note that reference curves are inserted in this figure). This means that both methods
behave very similarly, with proven consistency and accuracy.
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Fig. 7 Norm of the discretization error versus h using EXP-4

Fig. 8 Equivalent effective order of accuracy using EXP-4

In Fig. 8, again we find a case of equivalence of results. Notice that the curves of the
effective orders pE have the same behavior as the ones shown in Fig. 6. Visually identical,
however, there is a small numerical difference that is imperceptible when comparing the two
figures.

To confirm the results presented in this study, Table 1 shows the reduction in error using,
for example, norm L2 with and without application of the CRE, thus corroborating the error
orders given by Figs. 4, 6, and 8.
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Table 1 Discretization error using ||E ||2 without (m = 0) and with CRE (m = 1)

h CDS-2 CCDS-4 EXP-4

m = 0 m = 1 m = 0 m = 1 m = 0 m = 1

1.25E-01 7.82E-05 – 4.11E-08 – 1.64E-07 –

6.25E-02 1.97E-05 4.03E-06 2.57E-09 8.47E-07 1.02E-08 8.47E-07

3.12E-02 4.94E-06 6.09E-08 1.60E-10 1.03E-08 6.43E-10 1.03E-08

1.56E-02 1.23E-06 1.53E-09 1.00E-11 1.54E-10 4.02E-11 1.54E-10

7.81E-03 3.08E-07 6.37E-11 6.28E-13 2.27E-12 2.51E-12 2.27E-12

3.90E-03 7.72E-08 3.50E-12 3.92E-14 3.40E-14 1.57E-13 3.40E-14

1.95E-03 1.93E-08 2.12E-13 2.45E-15 5.20E-16 9.82E-15 5.20E-16

Table 2 CPU time (s) to determine numerical solutions of of p∗
0-th order by MG and (p∗

0+1)-th order of
accuracy using CRE in the 4097 × 4097 mesh

Method Solution of p∗
0-th order by MG Solution of (p∗

0+1)-th order by CRE

CDS-2 3.13E + 03 2.63E + 03

CCDS-4 4.31E + 03 3.22E + 03

EXP-4 4.59E + 03 3.26E + 03

5.2 Quantitative verification

A first metric chosen to perform the quantitative verification of our numerical solutions is
the CPU time. In Table 2 we present the CPU time (in seconds) to obtain the numerical
solution in the 4097 × 4097 mesh using MG considering tol=1.0E-32 (round-off error) and
the post-processing CRE time using maximum number of meshes to extrapolations, i.e., 10
meshes. In this section we are only interested in the discretization error to be able to apply
the CRE, therefore, the other sources of numerical errors must be neglected. To do this, it
is indispensable to achieve round-off error. Therefore, specifically in this section, it does
not make sense to calculate CPU time, as it is not representative when such error level is
reached. We can see in Table 2 that the second and third columns have the same order of
magnitude taking into account that the numerical solutions (second column) were obtained
with geometric multigrid method. Otherwise, the CRE CPU time would be considerably
shorter.

The second metric chosen to perform the quantitative verification of our numerical solu-
tions is the so-called complexity order (Trottenberg et al. 2000; Wesseling 2004) when we
make use of the Eq. (30). This metric tells us that MG should be able to determine numerical
solutions and the value of p should be close to unity. Singlegrid methods (standard method
with only one grid) have quadratic complexity order. This verification is classic and ensures
that the MG is performing with proven efficiency its role as an accelerator of convergence of
numerical solutions.

For this we use V (2, 1), i.e., V-cycle with 2 and 1 pre- and post-smoothing, respectively.
And all simulations we set the maximum number of iterations equal to 50. This number was
chosen because it was large enough to the iteration error reaches the order of magnitude of
the round-off error (oscillation around 1.0E-32).
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Table 3 Complexity order for all
methods using tol=1.0E-32

Method c p

CDS-2 1.4730E − 04 1.0140

CCDS-4 1.8480E − 04 1.0240

EXP-4 2.3320E − 04 1.0060

Note that in Table 3 we show that the EXP-4 method determines complexity order closer
to unity than the CCDS-4 method. This result confirms the advantage of EXP-4, as already
stated in da Silva et al. (2021).

To finish our analyses, we leave the specific evidence of the verification of numerical
solutions. In the first part of the verification (qualitative verification) we confirm the orders
of accuracy obtained a posterioriwith those deduced a priori. In the second part (quantitative
verification), we confirm by quantitative verification, the efficiency of the geometric MG by
means of the metric complexity order. We are confident that such methodology ennobles the
results of numerical simulations that can be extended to any mathematical model. When the
analytical solution is unknown, simply replace the effective order (pE ) with the apparent
order (pU ). The pU should be able to reproduce the a priori deduced orders of accuracy, just
as the pE makes such a result possible.

We understand that the results we show in our study, determine benchmark solutions for
the high order of accuracy methods after applying completed Richardson extrapolation.

6 Conclusions

This study proposed a grouping ofmethods for determining numerical solutions to thePoisson
heat diffusion equation with high accuracy. We compared the results obtained with classical
second-order finite difference method (CDS-2) with fourth-order compact (CCDS-4) and the
exponential methods (EXP-4). We accelerated the convergence of the numerical solutions
usingmultigrid method. After ensuring that the verification of numerical solutions performed
its function with excellence, we applied the completed Richardson extrapolation (CRE)
across the full temperature field. In our study we confirmed the efficiency verification of the
numerical solution methodology by demonstrating the consistency of the numerical results
with the analytical ones. This proves that our proposedmethodology is robust enough to allow
all steps of the numerical simulation to be very well evaluated. We were able to confirm that
the EXP-4 method is more advantageous than CCDS-4. Moreover, we are dealing with a
method that is little known in the literature. With this, the numerical solutions for the Poisson
equation was obtained using a computational mesh with 16,785,409 nodes. Computational
effort was low and we jumped from fourth- to sixth-order of accuracy simply by employing
CRE as post-processing method. We believe that EXP-4, together with CRE, can motivate
new studies in the scientific community and thus present results for increasingly complex
mathematical models.
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