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ABSTRACT
This work proposes a multigrid Waveform Relaxation Method (WRMG) that
uses the finite difference method for the discretization to solve Pennes’
bioheat equation. There is no evidence in the literature of using the
WRMG to solve this equation. The proposed algorithm is based on the
red-black Gauss-Seidel smoother in space and the line Gauss-Seidel
smoother in time. Verification of code is presented. The performance ana-
lysis of the multigrid method confirms the convergence and efficiency of
the algorithm. The method, which favors parallel architecture, is tested in
two-dimensional numerical experiments on an academic problem and for
the thermal analysis of human skin.
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1. Introduction

Changes in skin temperature have been used to diagnose human anomalies since the dawn of civ-
ilization. The study of heat transfer in human tissues is becoming an increasingly helpful tool for
treatments and the diagnosis of cancers. According to Anbar [1], prehistoric healers have
observed that the affected skin region of an injury or wound shows an increase in temperature.
Over the past 50 years, significant progress has been made in noninvasive thermal diagnoses of
melanomas with the development of more accurate body thermal mapping devices, mathematical
models, and numerical techniques for solving partial differential equations and thus, thermal
image processing.

As stated in [2, 3], highly vascular cancerous lesions on the skin, such as melanomas, can
increase blood perfusion and the local rate of metabolic heat generation, which leads to a higher
temperature in that skin region than in the healthier surrounding areas. This difference in tem-
perature can assist in diagnosing melanomas and other skin lesions. However, according to [4–6],
the temperature increase due to melanoma is relatively small in steady-state cases, that is, cases
with a nondynamic heat transfer condition. Therefore, equipment with high thermal sensitivity is
required for more accurate measurement, especially for early detection and deeper lesions.

Alternatively, Dynamic Thermal Imaging (DTI) can be used to thermally map the skin region
in question, which consists in applying a thermal stimulus before generating the image to increase
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the temperature differences between the lesion area and the surrounding skin. Several researchers
have studied the application of dynamic infrared in skin neoplasms as a complementary tool to
increase the accuracy of the diagnostic, resulting in less stress and discomfort to the patient [7].

Herman [8] tested 37 patients with suspected skin cancer lesions using infrared dynamics and
dynamic image processing. Three of the 37 lesions were cancerous (determined by biopsy) and
were successfully detected using Quantification Analysis of Induced Thermography (QUAINT).
According to the author, the measurement and computational hardware and the computational
imaging and modeling tools have reached the maturity needed to enable accurate Quantitative
infrared imaging (QUIRI), which opens new avenues in medical diagnosis, monitoring, and care.

In Godoy et al. [9], the thermal recovery curves of the suspected lesions are utilized in the
context of the continuous-time detection theory to define an optimal statistical decision rule so
that the algorithm’s sensitivity is guaranteed to be at a maximum for every prescribed false-alarm
probability. The proposed methodology was tested in a pilot study with 140 human subjects dem-
onstrating more than 99% sensitivity for a prescribed specificity above 99% for skin cancer detec-
tion. The authors argue that a standardized analysis method for DTI has the potential to reduce
the number of biopsies performed on suspicious lesions significantly.

Moreover, many authors [7, 10] have studied using the abnormal temperature of the skin sur-
face to predict the location, size, and thermal parameters of the tumor or types of skin neoplasia.
In general, this approach considers two different inverse problems. The first problem is about the
location: depth, width, and size of the tumor, assuming all other parameters are known. The
second one discusses estimating the metabolic heat source intensity inside the tumor region once
the tumor’s radius and its center’s location are known [10, 11].

In both cases, given the temperature profiles obtained in the simulations, different methodolo-
gies can be used to analyze the clinical data. In addition, an optimization algorithm such as the
Genetic Algorithm [12], Ant Colony [13], BGOA [14], or Pattern Search method [15] can be
used to estimate the tumor’s parameters by minimizing a fitness function. The fitness function
correlates the given data to the temperature profile for a set of estimated parameters.

In recent years, deep learning models (DLM) have been used to estimate the thermophysical
properties of skin tumor, including tumor depth and size (length, width, and height), heat gener-
ation, thermal conductivity, and blood perfusion, using the temperature measured on the skin
surface. A critical step in this approach is to generate the model’s training samples. In many

Nomenclature

c specific heat at isobaric conditions
h distances between two consecutive points

in the grid
k thermal conductivity
L number of levels
N total number of spatial points in the grid

or time
q heat source
R residue in linear system
T tissue temperature
t time
X x direction
Y y direction

Greek symbols
‘ domain length
k degree of anisotropy

�1 inner interactions in restriction
�2 inner interactions in prolongation
qm average convergence factor
q density
x blood perfusion rate

Subscripts
a arterial blood
b blood
ext external heat source
met metabolic heat generation
t tissue

Superscript
0 initial estimate
it it-th iteration
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studies, the time-dependent skin surface temperature was achieved using numerical simulation.
[10] used 18,900 samples with different thermophysical properties to train the deep learning
model to estimate the thermophysical properties of skin tumors.

One of the disadvantages of these inverse problems is the computational processing time since
the optimization algorithms evaluate the fitness function hundreds or thousands of times, or
thousands of samples are necessary to train an Artificial Neural Network (ANN), which implies
the degree of grid refinement necessary for a fast numerical resolution of the bioheat problem. As
tumor regions can be relatively small and an early medical diagnostic by thermal imaging is
desired to be as accurate and fast as possible, a highly refined grid and a short computational
processing time are desired. Rossi et al. [16] state that the duration of the simulation is a critical
factor in making bioheat simulation tools clinically relevant, which motivates us to explore multi-
grid methods [17, 18] in biothermal systems.

Additionally, advancements made toward understanding bioheat transfer have benefited the
design and optimization of therapeutical procedures such as laser surgery, cryotherapy, magnetic
nanoparticle-based hyperthermia, and radiofrequency ablation [19]. However, none of these stud-
ies employ the multigrid method.

The use of the multigrid method for the Pennes model has become more prevalent in recent
years since it satisfies the requirement of a highly refined grid [5, 20–22].

Solving large linear systems resulting from discretization is the most time-consuming part of
real simulations [17], and this is especially true for the Pennes bioheat equation [5]. Hence, the
design of efficient solvers for this type of problem has raised much interest. Moreover, current
computer architectures allow better multiprocessing capabilities by having more cores and hard-
ware threads per chip. In order to exploit these characteristics, it is necessary to develop algo-
rithms capable of efficiently using a large number of cores, increasing the need for parallel
computing [23]. Typical solution algorithms for time-dependent problems are based on a time-
marching approach [5, 20–22], in which each time step is sequentially solved. However, these
traditional methods, known as Time-Stepping methods, do not allow the parallelization of the
temporal variable [23], which leads researchers to seek an increase in concurrency by using time-
parallel methods. From the current time parallel techniques [23], we considered a multigrid
Waveform Relaxation algorithm (WRMG) [24, 25] based on a red-black Gauss-Seidel smoother
in space and line Gauss-Seidel smoother in time [23]. The WRMG is being applied to solve heat
transfer problems in recent years [25–29].

In this study, we propose the use of the Waveform Relaxation, a parallelizable method [25],
associated with the geometric multigrid method for the 2-D Pennes’ bioheat transfer equation.
This article’s novelty is the use of this association for to get highly accurate solutions in the short-
est possible computational time.

As a result, this work may offer guidelines for medical procedures that use heat to treat and
detect tumors using the spatial distribution of temperature in the thermal analysis of human skin.
The high accuracy of the numerical solution of the skin temperature can also assist in verifying
the temperature increase in regions with small melanomas, allowing for early diagnoses.
Importantly, we would like to highlight that we have not found in literature studies on the
WRMG designed for the Pennes’ bioheat equation.

2. Mathematical and numerical models

2.1. Pennes bioheat equation

The first thermal mathematical model to describe heat transfer in human tissue, including the
effects of blood flow on tissue temperature, was proposed by Pennes [30] in 1948. This model is
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known as Bioheat Transfer Equation (BTE), Pennes Equation, or Parabolic Model. The latter is
because of the mathematical classification of the differential equation used in the model.

As mentioned in [31], the BTE model was initially developed to predict heat transfer in the
human forearm. Due to its simplicity, its use has extended to various biological studies. In
[31–33], numerical thermal simulations for the human head were investigated. Several authors
[34–38] have applied the BTE model to study and evaluate temperature changes in human breasts
due to the presence of tumors. Other researchers [6, 39–42] have also applied the BTE model to
study heat transfer in human skin. Numerous other works can be found in the literature to exem-
plify the applications of the BTE model.

The BTE model establishes the blood effect as an isotropic source or a heat sink proportional
to the blood flow rate and the difference between the body’s core temperature and the local tissue
temperature. In other words, the model describes the effects of metabolism and blood perfusion
on the tissue energy balance. These two effects were incorporated into the classic heat diffusion
equation, resulting in:

qtct
@T
@t

¼ r: krTð Þ þ xbqbcb Ta � Tð Þ þ qmet þ qext , (1)

where T is the tissue temperature; Ta, the arterial blood temperature; k, the thermal conductivity;
qmet , the metabolic heat generation; qext , the external heat source for spatial heating; qt , the tis-
sue density; ct, the tissue’s specific heat at isobaric conditions; xb, the blood perfusion rate; qb,
the blood density; and cb, the blood’s specific heat at isobaric conditions.

This mathematical model is given by a two-dimensional domain corresponding to the region
in which it is desired to simulate the temperature distribution in human skin, defined by

x, yð Þ 2 R2, 0 � x, y � ‘
n o

, as seen in Figure 1.

For the numerical verification step, we used the analytical solution given by Lin and Li [40],
which initial condition is T x, y, t ¼ 0ð Þ ¼ 37 oC, Dirichlet condition on the boundary C1,

T x, y ¼ 0, tð Þ ¼ 100 1� u t � 15ð Þ½ �, here u is the step function and, adiabatic thermal conditions,
@T=@n ¼ 0, on the boundaries C2,3,4. Whilst for the case study, we used adiabatic thermal condi-
tions on the boundaries C1,2,3,4.

Figure 1. Computational domain and boundaries condition.
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2.2. Discretization of the mathematical model

The mathematical model is discretized on the 2-D computational domain, shown in Figure 1.
This domain is partitioned into several nodes (or points), given by N ¼ NxNy, where N is the
total number of spatial points in the grid, Nx and Ny are the number of points in each spatial
direction, and ‘ is the domain length in both directions. A generic point P is located on the grid
as xi, yjð Þ ¼ i� 1ð Þhx, j� 1ð Þhy

� �
, in which hx ¼ ‘= Nx � 1ð Þ, hy ¼ ‘= Ny � 1ð Þ, i ¼ 1, � � � ,Nx, j ¼

1, � � � ,Ny, and hx and hy are the distances between two consecutive points in the grid in the x
and y directions, respectively. This work considers hx ¼ hy ¼ h, that is, an isotropic grid.

In order to obtain the linear system, the derivatives of Eq. (1) were approximated using the
Finite Difference Method (FDM) in a uniform grid, with a five-point second-order central differ-
ence scheme accurate in space and the implicit Crank-Nicolson scheme in the temporal deriva-
tive. After the numerical approximations, Eq. (1) can be written as

Tnþ1
P � Tn

P

Dt
¼ 1

2
g1
h2

Tnþ1
E þ g1

h2
Tnþ1
W þ g1

h2
Tnþ1
N þ g1

h2
Tnþ1
S � 4g1

h2
Tnþ1
P � g2T

nþ1
E

� �

þ 1
2

g1
h2

Tn
E þ

g1
h2

Tn
W þ g1

h2
Tn
N þ g1

h2
Tn
S �

4g1
h2

Tn
P � g2T

n
E

� �
þ g2Ta þ g3, (2)

where g1 ¼ k= qtctð Þ, g2 ¼ wbcbqb= qtctð Þ, and g3 ¼ qmet þ qextð Þ= qtctð Þ, Dt ¼ tf =ðNt � 1Þ repre-

sents the time step size, tf is the final time, and Nt is the number of steps in time. The indices
E ¼ iþ 1, jð Þ, W ¼ i� 1, jð Þ, N ¼ i, jþ 1ð Þ, and S ¼ i, j� 1ð Þ are the nearest neighbors to the
point P ¼ i, jð Þ in the directions x and y of the grid. With some more adjustments, Eq. (2)
becomes

1
Dt

þ 2g1
h2

þ g2
2

� �
Tnþ1
P ¼ g1

2h2
Tnþ1
E þ Tnþ1

W þ Tnþ1
N þ Tnþ1

S

� �þ g1
2h2

Tn
E þ Tn

W þ Tn
N þ Tn

S

� �

þ 1
Dt

� 2g1
h2

� g1
2

� �
Tn
P þ g2Ta þ g3: (3)

By rearranging the terms of Eq. (3) and writing it in the classical form of the discretized equa-
tion in terms of the matrix coefficients, we have

APT
nþ1
P ¼ AE Tnþ1

E þ Tn
EÞþAwðTnþ1

W þ Tn
W

� �þ AN Tnþ1
N þ Tn

NÞþASðTnþ1
S þ Tn

S

� �þ APaT
n
P þ g2Ta

þ g3
(4)

in which the coefficients are given by,

AE ¼ AW ¼ AN ¼ AS ¼ g1
2h2

, AP ¼ 1
Dt

þ g2
2
þ 2g1

h2
, (5)

APa ¼ 1
Dt

� g2
2
� 2g1

h2
and bP ¼ APaT

n
P þ g2Ta þ g3 : (6)

At the boundary points, the coefficients are given by aE ¼ aW ¼ aN ¼ aS ¼ 0, aP ¼ 1, and
bp ¼ TPC, where TPC is the value of T at each point of the contour (see Figure 1).

The coefficients given by Eqs. (5) and (6), with their corresponding coefficients in the contour,
form a system of linear equations of dimensions Nx and Ny of the form AT ¼ b with five diago-
nals, which is solved using the solver proposed in this work, described in the next section. The
skin temperature on the boundary is approximated using Neumann, as follows: TPC ¼ TE þ h q0

k ,
TPC ¼ TW , TPC ¼ TS, and TPC ¼ TN on the left, right, superior, and inferior boundaries,
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respectively. In this case, q0 is the heat flow applied to the skin. The index PC indicates the point
over the contour and E, W, S, and P indicate the surrounding points inside the domain.

2.3. WRMG solver

In this section, we describe a solver based on the so-called multigrid Waveform Relaxation
Method (WRMG), proposed to solve the linear systems AT ¼ b, given by Eqs. (4)–(6), generated
from the discretization of the Pennes’ bioheat equation.

For nonsteady state problems, the WR algorithms differ from standard time sweep methods
(Time-Stepping) because their iterates are functions in time [24, 25]. The Partial Differential
Equations (PDEs) are transformed into a large set of Ordinary Differential Equations (ODEs),
and an iterative algorithm can be used to solve this system, where at each of the spatial points an
ODE is solved at all time steps (see Figure 2).

The numerical solution has a high computational cost as it needs to solve systems of large
dimensions. Each temporal ODEs must be solved in all spatial nodes separately, where the update
of unknowns can be performed at the end of a WR cycle. Thus, we have an iterative method of
repeating the procedure until a stopping criterion is reached. We can obtain a fully parallelizable
method in space by using a colored ordering scheme [25, 43].

Based on Franco et al. [23], the proposed iterative algorithm considers a red-black Gauss-
Seidel smoother in space and a line Gauss-Seidel smoother in time to solve the mathematical
model described by Eq. (1) associated with the Crank-Nicolson methods.

Additionally, a coarse-grid correction procedure in the spatial dimension can accelerate the
convergence of the red-black Gauss-Seidel Waveform Relaxation. The procedure consists in
applying the standard multigrid algorithm [17, 18] to the system of ODEs obtained after the
semi-discretization of the PDE problem.

The proposed algorithm is based on a two-grid cycle, which performs the following steps:

� Apply �1 iterations of a classical iterative method, called smoother, on the target fine grid Xh

(pre-smoothing step).
� Compute the current fine grid approximation residual and restrict it to the coarse grid X2h by

using a restriction operator R2h
h :

� Solve the residual equation on the coarse grid.
� Interpolate the obtained correction to the fine grid h using a prolongation operator Ph

2h and
add the interpolated correction to the current fine grid approximation.

� Apply �2 iterations of a classical iterative method (post-smoothing step).

Figure 2. Waveform relaxation method scheme.
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The standard multigrid algorithm is obtained by recursively applying the same algorithm using
a hierarchy of coarser grids, given by 2Lþ1, where L is the space and time grid level, L¼ 1, 2, 3,
… . Note that for L¼ 10, we have 1,025 nodes in the grid. This choice is due to the coarsening
ratio of the multigrid method. An algorithm for WRMG is presented in [23].

This work considers standard full-weighting restriction and linear interpolation as the inter-
grid transfer operators [17]. There are different types of cycles based on how the grid is swept,
for instance, the V-, W-, or F-cycles. We use the V �1, �2ð Þ-cycle, where �1 and �2 are the num-
bers of pre- and post-smoothing, that is, the number of iterations in the restriction and prolonga-
tion process, respectively.

3. Results and discussion

3.1. Numerical code verification

Several studies on heat transfer perform a thermal analysis of human skin. However, as high-
lighted in [5], most use a one-dimensional approach. This work considers the same physical
parameters for skin tissue from the analytical solution given by Lin and Li [40] to verify the pro-
posed methodology for the numerical solution (Table 1). The authors developed a nonsteady
state, one-dimensional analytical solution of bioheat transfer in skin tissue with general boundary
conditions. The computational code was written in FORTRAN 95 with double-precision com-
piler, using the Intel FORTRAN Composer XE 2013. All calculations presented herein were per-
formed on a desktop computer equipped with an Intel Core i7-9700 CPU 3.00GHz processor,
Windows 10 Pro operating system, and 24-GB RAM 2.4-GHz DIMM.

Simulations were performed using a grid of N ¼ NxNy ¼ 513� 513 points in space, and Nt ¼
2, 048 time steps to verify the consistency of the multigrid method with the Waveform Relaxation
code. The initial skin temperature is assumed to be T x, 0ð Þ ¼ 37�C in a domain with ‘ ¼ 6 mm.
Figure 3a compares the temperature profile over time, considering a depth of 1mm of the skin
tissue surface. In this case, on the tissue’s surface (contour), we assume T ¼ 100�C when the

Table 1. Physical parameters of the skin for the verification code.

Properties of skin Parameters Value

Temperature of arterial blood (�C) Ta 37
Density of skin tissue (kg m�3) qt 1,190
Specific heat of blood (J kg�1K�1) cb 3,600
Blood perfusion rate (m3s�1m�3) xb 0.1
Specific heat of skin tissue (J kg�1K�1) ct 3,600
Density of blood (kg m�3) qb 1,060
Thermal conductivity of skin tissue (W m�1 K) j 0.235
Metabolic heat generation in the skin tissue (W m�3) qmet 368.1

Figure 3. Comparison of temperature profiles: (a) over time and considering depth of 0.001mm of skin; (b) along the y-axis con-
sidering final times of 5, 15 and 45 seconds.
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time is between 0 to 15 s and T ¼ 0�C when outside this range. Figure 3b shows the tempera-
ture profile along the y-axis for the total times of 5, 15, and 45 seconds.

The curves observed in Figure 3 demonstrate that our numerical method (multigrid with
Waveform Relaxation) provides solutions as efficient as those presented by the analytical solution
in Lin and Li [40]. Therefore, for the remainder of this work, we will focus on the performance
analysis of the multigrid method.

3.2. Multigrid performance in a case study

As previously mentioned, several works in the literature suggest that dynamic behavior favors a
more adequated detection of unhealthy skin regions than a steady state analysis. Ilja�z et al. [44]
showed that it is possible to obtain tumor parameters using exact static or dynamic measurement
data. However, a dynamic approach proved better for inaccurate temperature data than the
steady-state, which cannot capture minor temperature differences between healthy skin and the
tumor. In Gomboc et al. [45], an experimental setup for an active cooling device for dynamic
thermography is proposed to achieve a constant cooling temperature that induces deep cooling
penetration and, therefore, better thermal contrast. Magalhaes et al. [7] collected and analyzed
static and dynamic (cooling) thermal images of melanoma and melanocytic nevi lesions to
retrieve thermal parameters particular to these skin lesions. The steady-state and dynamic varia-
bles were tested separately using different machine learning classifiers to verify whether the dis-
tinction between melanoma and nevi lesions was achievable. The differentiation of both skin
tumors was doable, with an accuracy of 84.2% and a sensitivity of 91.3% after implementing a
learner based on support vector machines and an input vector composed of static variables.

In this context, we simulated a transient case study inspired by the work of Cheng and
Herman [46], in which the region of interest is cooled, generally up to 15 �C, and then the behav-
ior of the elevation in skin temperature is observed. In this dynamic process, the temperature dif-
ferences between healthy and unhealthy regions increases, facilitating the diagnosis. We used a
30mm-diameter melanoma for the simulations. Its physical properties are presented in Table 2,
and the other parameters are the same as in Table 1. Figure 4 shows the results of these simula-
tions in which are given the temperature distribution for the time instants of 30 s, 60 s, 120 s, and
in steady-state with a grid of N ¼ Nx Ny ¼ 1, 025� 1, 025 points in space and Nt ¼ 1, 024 time
steps is also displayed.

Hundreds of simulations for the dynamic case were done to evaluate the performance of the
multigrid method in the studied problem, Eq. (1). The influence on the CPU time was also meas-
ured for the number of inner iterations of the V �1, �2ð Þ-cycle.

Figure 5 shows the change in CPU time according to the number of inner iterations in the
restriction and prolongation, �1 and �2, for the red-black Gauss-Seidel smoother, using two grid
sizes, N ¼ 257� 257 and N ¼ 129� 129 points, with ten levels in the time direction of the
Waveform Relaxation Method. The tests were performed for three heating times in the melanoma
region, 5 s, 30 s, and 120 s. The results demonstrate excellent method stability from the point of
view of the number of inner iterations. For all simulations (Figures 5a–5f), both in the restriction
and prolongation, the optimal values of �1 and �2 were the same. This behavior was also

Table 2. Physical parameters of the skin for the case study.

Properties of skin Parameters Value

Density of skin tissue ðkg m�3Þ qt 1,050
Specific heat of blood ðJ kg�1K�1Þ cb 3,770
Blood perfusion rate ðm3s�1m�3Þ xb 0.01785
Metabolic heat generation in the melanoma ðW m�3Þ qext 36,810

NUMERICAL HEAT TRANSFER, PART A: APPLICATIONS 983



observed in other grids. Thus, we can infer that the heating time and grid size do not influence
the number of inner iterations.

Figure 6 illustrates the number of V-cycles as a function of the number of levels in time
required to reach convergence and the average convergence rate as a function of the number of
grid levels. Importantly, Nt ¼ 2L þ 1, where L is the number of levels in time, within the scope
of the multigrid method. Figure 6a shows the variable L ranging from 2 to the maximum value
possible in the computational memory limit. In this analysis, three fine spatial grids were used,
N ¼ 129� 129, N ¼ 257� 257, and N ¼ 513� 513: Note that the number of V-cycles increases
in the first few levels in time, but there is also a decrease to 8 cycles for the grid N ¼ 129� 129,
and 9 cycles for the grid N ¼ 257� 257: Figure 6b shows the grid levels from 2 to 10 and the
increase in V-cycles until stability, at 12. In this analysis, we set N ¼ NxNy, that is, N ¼
5� 5, :::, 1, 025� 1, 025 points, corresponding to 10 grid levels, and the number of levels in
time at 10, that is, Nt ¼ 1, 025 time step. Results confirm that the number of cycles grows with
the increase in grid size to up to a maximum of 12 cycles in the finest grid, where stability is
expected, which is a characteristic of the multigrid method for most problems, as shown in [17].

3.3. Average convergence factor—qm

The convergence factor is an indicator for most iterative methods. It can be used to indicate the
efficiency of an algorithm or to compare the computational performance of two or more meth-
ods. In the present work, the average convergence factor is given by qm ¼ it ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikRitk1=kR0k1

p
, where

Ritj jj j1 is the infinite norm of the residual in the it-th iteration, see [47]. Conversely, the param-
eter k ¼ Dt=Dx2 can be considered a measure of the degree of anisotropy and strongly influen-
ces the matrix coefficients, affecting the method’s performance. The qm parameter can be used to
find the k intervals in which multigrid and singlegrid methods are more efficient. This analysis is
done for different grids, as seen in Figure 7.

The simulations were carried out for spatial grids N ¼ 65� 65 and N ¼ 129� 129, with Nt

ranging from 17 to 8,193; and for N ¼ 257� 257, with Nt ranging from 17 to 2,049.
Figure 7a shows that the variable qm is a worse factor in the singlegrid than in the multigrid

in all the three grid sizes analyzed. In the multigrid method, qm presents small values for all

log2 kð Þ, obtaining better convergence factors. Note that for the grids used, the convergence

Figure 4. Thermal recovery for (a) 30 s, (b) 60 s, (c) 120 s, (d) steady state. Temperature given in degrees Celsius.
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factor of the multigrid method remains stable, indicating the grid independence of this method
combined with the Waveform Relaxation. Figure 7b demonstrates the increase in the average con-
vergence factor according to the grid size, showing possible stability close to 0.13.

Figure 5. CPU time vs. number of inner iterations of solver to different grids and heating times. The Figures (a)-(c) refer to
257� 257 grid and the Figures (d)–(f) refer to 129� 129 grid.

NUMERICAL HEAT TRANSFER, PART A: APPLICATIONS 985



When analyzing the influence of the size of the problem on the CPU time, the optimal num-
bers of inner iterations in the restriction and prolongation �1, �2ð Þ should be considered. In this
analysis, we assume grid sizes of N ¼ NxNy ¼ 3� 3 up to the highest grid size supported by
the computer’s physical memory used, N ¼ 1, 025� 1, 025, and Nt ¼ Nx for all grid levels.
Figure 8 shows the results obtained using the singlegrid method (SG) associated with the red-
black Gauss-Seidel smoother on a logarithmic scale. Coarser grids (N < 33�33 points) presented
CPU times close to zero for the multigrid and singlegrid methods. In this analysis, the efficiency
of the multigrid method is evident. Its advantage over the singlegrid method grows with the
increase in the number of points in the grid, as stated in other works using different mathemat-
ical models [48, 49]. One can also observe that at N ¼ 1, 025� 1, 025, the multigrid is approxi-
mately 30 times faster than the singlegrid method. The results are also better than those in [5], in

Figure 6. Number of V-cycles (a) as a function the number of levels in time for three grids, (b) as function of the number of lev-
els in space with the number of levels in the fixed time at most.

Figure 7. Average convergence factor qm vs.: (a) log2 kð Þ, (b) number of levels in time.

Figure 8. Multigrid and singlegrid performance with grids up to 1, 025� 1, 025 and Nt ¼ N:
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which the same problem was solved using the standard Time-Stepping methodology. Figure 8
shows that the solution method proposed using multigrid waveform can be an exciting alternative
for dynamics simulation in inverse problems and data generation for machine learning.

3.4. Computational effort

To determine the order of complexity of the solver and the behavior of the curve with the CPU
time, we use a geometric curve fit by the least square method given by

tCPU NTð Þ ¼ cNp
T (7)

where NT ¼ NNt is the total number of points, p represents the order of complexity of the solver
associated with the method employed (or the inclination of each curve in Figure 8), and c is a
coefficient that depends on the adopted method and solver. Theoretically, p values close to one
represent better performances of the employed algorithm [17]. Ideally, the value of p for the mul-
tigrid method is p ¼ 1; which means the CPU time increases linearly with the size of the grid.

Table 3 presents the coefficients c and exponents p for Eq. (7) obtained for Pennes’ equation
(discretized with N ¼ NxNy ¼ 1, 025� 1, 025 and several Nt) and red-black Gauss-Seidel
smoother. The results confirm that the CPU time of the multigrid method with the red-black
Gauss-Seidel smoother grows almost linearly with the increasing NT : Values of p 	 1 for multi-
grid and p 	 2 for singlegrid method agree with the theoretical values [17].

In addition to comparing the MGWR with the conventional singlegrid method (Figure 8 and
Table 3), the multigrid method is a tool to solve large linear systems generated from any numer-
ical solutions such as Finite Element, Finite Volume, and others numerical methods [17].

MGWR is robust as it uses the standard coarsening in the space and the line-in-time solver
[50]. It is also efficient because it has good convergence factors and is parallelizable.

4. Conclusions

An efficient multigrid Waveform Relaxation Method based on a red-black Gauss-Seidel smoother in
space and line Gauss-Seidel smoother in time was proposed to solve the Pennes’ bioheat equation.
The derivatives were approximated using the Finite Difference Method in a uniform grid, with a
five-point second-order central difference scheme accurate in space and the Crank-Nicolson scheme
in the temporal derivative. Two-dimensional numerical experiments are presented, showing the
satisfactory performance of the proposed algorithm for the well-known thermal analysis of human
skin. The analysis of the multigrid method was carried out with different space and time grid sizes.
Considering the average convergence factor and computational cost, the multigrid Waveform
Relaxation Method shows optimal efficiency in addition to the great advantage of a parallel comput-
ing approach, proposed in this work.

Table 3. Coefficient c and expoent p for Eq. (7), with N ¼ 1, 025 � 1, 025, several Nt and Pennes Equation with red-black
Gauss-Seidel solver.

Nt

Multigrid Singlegrid

c p c p

129 4.86E� 07 1.0019 2.38E� 06 1.73461
257 2.38E� 06 0.95594 1.88E� 11 1.78303
513 1.46E� 06 1.05651 8.26E� 12 1.91402
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