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incompressible Navier–Stokes equations
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aGraduate Program in Numerical Methods in Engineering, Federal University of Parana, Curitiba, Brazil;
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ABSTRACT
An alternative approach to solve the steady-state incompressible Navier–
Stokes equations using the multigrid (MG) method is presented. The mathem-
atical model is discretized using the finite volume method with second-order
approximation schemes in a uniform collocated (nonstaggered) grid. MG is
employed through a full approximation scheme-full MG algorithm based on
V-cycles. Pressure-velocity coupling is ensured by means of a developed
modified SIMPLEC algorithm which uses independent V-cycles for relaxing
the pressure-correction and momentum equations. The coarser grids are used
only internally in these cycles. All other original SIMPLEC steps can be per-
formed only on the finest grid of the current full MG level. The model problem
of the lid-driven flow in the unitary square cavity is used for the tests of the
numerical model. Computational performance is measured through error and
residual decays and execution times. Good performances were obtained for a
wide range of Reynolds numbers, with speedups of orders as high as Oð103Þ:
Linear relationships between execution times and grid sizes were observed
for low and high Re values (Re ¼ 0:1, 1, 10, 2, 500, 3, 200, 5, 000, and 7,500).
For intermediate Re values (Re ¼ 100, 400, and 1,000), the linear trend was
observed from more refined grids (5122 onwards).
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1. Introduction

In the last decades, obtaining accurate numerical solutions of the Navier–Stokes equations for dif-
ferent flow problems has been the main objective of several works in the computational fluid
dynamics (CFD) area [1–4]. However, the use of conventional (or standard) iterative methods for
solving these and other partial differential equations (PDEs) problems may result in slow conver-
gence rates and high computational costs when solutions on high-resolution meshes are required
and/or the complexity of the numerical models increases [2,5]. In this sense, multigrid (MG)
methods have been widely used to accelerate the converge of traditional iterative solvers used for
the large algebraic systems associated with these kind of problems.

In the case of the incompressible Navier–Stokes equations, there is no explicit equation for the
pressure as the mass conservation is expressed in terms of the velocity divergent-free relation.
Therefore, the problem of decoupling between velocities and pressure arises and, to overcome it,
some method responsible for ensuring the pressure-velocity coupling is required. The so-called
pressure-correction methods are widely used for this purpose. Among these methods, the
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SIMPLE family [6] certainly stands out, although other types of pressure-correction methods are
also commonly used, as the one employed in Anunciaç~ao et al. [7].

In the last decades, several researchers have studied different ways of implementing MG meth-
ods together with SIMPLE-like methods to solve the incompressible Navier–Stokes equations. In
the following paragraphs, some of these works are briefly reviewed.

After the initial works of Fedorenko [8] and Bakhvalov [9], which debuted the MG methods,
and the work of Brandt [10], which set their theoretical background, one of the first studies to
use MG to solve the Navier–Stokes equations was the one from Ghia et al. [1]. However, no cou-
pling method was employed as the vorticity-stream function formulation of the equations was
used. This early work presented impressive results in implementing the full approximation
scheme-full multigrid (FAS-FMG) algorithm [11] for simulations involving the classical square
lid-driven cavity problem for Reynolds number as high as 10,000 and fine grids up to 256� 256
volumes. For Re ¼ 1, 000 in a 129� 129 grid, for example, the processing times required for the
solutions to converge were reduced by an hour or more in previous works to 1.5min.

To this day, the work of Ferziger et al. [12] stands out as one of the pioneers in the use of
MG in conjunction with the SIMPLE method for the pressure-velocity coupling of the incom-
pressible Navier–Stokes equations. In this study, the finite volume method (FVM) was used for
the discretization of the equations and, with respect to the MG method, the FAS algorithm was
employed in conjunction with V-cycles and nested iteration. Good results were observed for the
problem of the flow over the backward facing step, with the computational times increasing
almost linearly in relation to the number of variables.

Other studies that employ the MG-SIMPLE-like formulations are the ones by Kumar et al. [13]
and Roy et al. [14]. The two papers present detailed derivations of the numerical models and algo-
rithms. Both use the FVM to discretize de equations with the collocated arrangement of the varia-
bles, but different schemes of pressure-velocity coupling are employed in each one. The lid-driven
flow in the square cavity model problem is also used for the simulation tests in the two studies. In
Kumar et al. [13], the numerical model is based on the MG-SIMPLEC formulation, in which the MG
was employed in terms of the FAS scheme and V-cycles. However, instead of measuring the compu-
tational performance of the method, the main objective of that paper was to generate accurate solu-
tions of the cavity problem for some Reynolds numbers within the range of 1,000–10,000.

The numerical model of Roy et al. [14] is built based on ideas that are similar to those found
in Lien and Leschziner [5], with the difference that in the earlier work a nonorthogonal scheme
is used for the discretization of the equations. In Roy et al. [14], a parallel MG-SIMPLE solver is
presented, although the full development of the serial numerical model is first presented in detail.
MG is implemented in terms of the FAS-FMG algorithm and V-cycles. The parallel model
achieves optimal MG efficiency, with the computing time increasing linearly with the number of
variables. Almost linear scalability (or speedup) of the parallel version in relation to the serial one
(in a 512� 512 grid) is also achieved. In addition, benchmark solutions of the cavity problem for
Reynolds numbers over a range from 400 to 7,500 are presented.

In all these works, the SIMPLE-like schemes executed on the coarse grids of the MG are based
on modified versions of the fine grid conservation equations, also called “coarse grid correction
equations” [14]. The modified coarse grid momentum equations are driven by the finer grid
residuals, which originated from nonconverged solutions. These solutions together with the
respective residuals are restricted from the finer grid in a FAS fashion. As the corrections for the
pressure are linear, no pressure is restricted from the finer grid and the coarse grid momentum
equations are based on pressure-correction gradients instead of simple pressure ones. After solv-
ing the coarse grid momentum equations, the intermediate velocity and pressure-correction fields
must be corrected. For this purpose, the continuity equation is transformed into a modified equa-
tion of “corrections for pressure-corrections” which, after being calculated, are used to correct the
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pressure-correction and velocity fields. Throughout this article, this approach will be referred to
as the standard approach for MG-SIMPLE-like schemes.

During the assembly of the momentum equations, the values of the velocities on the faces of
the volumes are necessary. As in the collocated arrangement the variables are originally calculated
on volumes centroids, the momentum interpolation method (MIM) of Rhie and Chow [15] is
generally used to approximate the velocities on the faces. In the standard MG-SIMPLE-like
approach, this method also must be modified on coarse grids to take into account the additional
terms restricted from the finer grid. The calculation of face velocities plays an important role in
SIMPLE-like pressure-correction methods and the incorrect application of MIM (or its variants)
can lead to slow convergence of the iteration scheme, or even divergence [16]. Another issue
worth commenting is the setting of boundary conditions for the equation that corresponds to the
continuity equation in coarse grids. Since this equation is an equation of “corrections for pres-
sure-corrections” it can be tricky to assign physical meaning to the independent variables when
defining these conditions.

Another important work that uses the MG-SIMPLE formulation scheme is the one by Yan et al.
[17]. In this study, the authors also point out some undesirable features of the standard approach. It
is stated that the initially restricted mass fluxes through the faces of the coarse grid volumes may not
match the restricted velocities balances in the corresponding centroids. According to the authors,
these mismatches can lead to instability and decreased acceleration efficiency or even divergence. In
that work, it is proposed an alternative modified MG-SIMPLE algorithm in which the residuals are
the only information restricted to coarser grids. All other initial quantities on coarse grids are taken
from the previous cycle. The new algorithm achieved notable performance when compared to previ-
ous works, presenting speedups with two orders of magnitude and a linear increase in execution
time in relation to the number of variables; that is, optimal MG efficiency.

Considering all these issues regarding the standard approach, the main objective of this article
is to propose an alternative and simpler approach for the construction of numerical models based
on the MG-SIMPLEC formulation to solve the incompressible steady-state Navier–Stokes equa-
tions on collocated grids. In this approach, the MG is employed by means of an FMG algorithm
and the original SIMPLEC algorithm is executed practically without modifications and only on
the finest grid of each FMG level. The only differences are that, in the steps corresponding to the
resolution of their associated linear systems, the momentum equations and the pressure-correc-
tion equation are solved by means of independent V-cycles.

The problem of the lid-driven flow in the unitary square cavity [1,18] is used for the verifica-
tion tests of the numerical model built from the proposed approach. This problem has great
importance in CFD and has been used by many researchers for testings and verifications of their
new methods and techniques due to its simplicity and richness of fluid flows phenomena it con-
tains [19].

As a secondary objective, it is also intended that the numerical model achieves the expected
MG efficiency rule [10,14]: the computational effort, in terms of CPU times, must increase fol-
lowing an O(N) trend, where N is the number of grid volumes. In most works in the literature,
the range of Reynolds numbers (Re) employed in MG performance tests for the square lid-driven
cavity problem is limited. Higher values (Re � 1, 000) are rarely found in such tests, generally the
most common tested values are 100, 400, and 1,000. Therefore, it is desired that, in this work,
the efficiency rule is reached for a varied range of Re, but mainly for higher values.

This article is divided as follows: in Section 2, the discretization of the governing equations
alone is presented; in Section 3, the proposed MG-SIMPLEC approach is presented and employed
to construct a representative numerical model; Section 4 presents and discusses the results
obtained from the application of the developed model for simulations involving the square lid-
driven cavity problem; the conclusions of the present work are discussed in Section 5.
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2. Mathematical and numerical models

2.1. Mathematical model

Considering the two-dimensional laminar steady-state flow of an incompressible Newtonian fluid,
without heat transfers, the conservations of momentum and mass, representing the Navier–Stokes
equations, can be written as follows [18]:

@

@x
ðu2Þ þ @

@y
ðuvÞ ¼ � 1

q
@p
@x
þ �

@2u
@x2
þ @2u

@y2

 !
, (1)

@

@y
ðv2Þ þ @

@x
ðvuÞ ¼ � 1

q
@p
@y
þ �

@2v
@x2
þ @2v
@y2

 !
þ S, (2)

@u
@x
þ @v
@y
¼ 0, (3)

where u and v are the velocity vector components (m=s) in x and y directions, p (Pa) is the pres-
sure, q (kg=m3) and � (m2=s) are the density and kinematic viscosity of the fluid, respectively. It
is assumed that q and � have constant values in space and time in all simulations. Furthermore,
the density is taken as unitary, q ¼ 1 kg=m3, and the viscosity is set to calculate the desired
input Reynolds number, as in Marchi et al. [18].

The source term S of the momentum conservation in the y direction, Eq. (2), is related to the
model problems used for the numerical tests. Two variants of the flow problem in the square cav-
ity are used: the classical problem [18,20], for which there is no analytical solution, and the prob-
lem with a manufactured analytical solution by Shih et al. [21].

A depiction of the unitary square cavity is given in Figure 1. For both model problems, the
velocities u and v are defined as zero on the side and bottom walls, as well as v on the top lid. In
the classical problem, the top lid horizontal velocity, u, is unitary, that is: uðx, 1Þ ¼ uTðxÞ ¼ 1;
and in the problem of Shih et al. [21] it is given by:

uðx, 1Þ ¼ uTðxÞ ¼ 16 x4 � 2x3 þ x2ð Þ: (4)

The manufactured analytical solutions of u and v are given by:

uðx, yÞ ¼ 8 x4 � 2x3 þ x2ð Þ 4y3 � 2y
� �

, (5)

vðx, yÞ ¼ �8 4x3 � 6x2 þ 2xð Þ y3 � 2y
� �

: (6)

Figure 1. Boundary conditions in the square cavity for the two considered model problems.
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The expressions for the pressure analytical solution, p(x, y), and for the source term S are quite
long and, therefore, may be checked directly in the article. In the classical problem, the source
term is null.

2.2. Discretization

The mathematical model is discretized using the FVM [22]. In this method, the discrete version
of the initial continuous domain is divided into control volumes, which compose a grid so that
each point on the grid is surrounded by only one volume and there is no overlapping between
volumes. A typical central volume, whose central point is P, and the adjacent volumes are
depicted in Figure 2. The central points of the surrounding volumes are indicated by W, E, S,
and N, representing neighboring volumes west, east, south, and north, respectively. The intersect-
ing faces between these volumes and the central volume P are indicated by the corresponding
lowercase letters. The grid adopted here has the same characteristics as the one shown in the fig-
ure; that is, a uniform orthogonal grid with a collocated (nonstaggered) arrangement is used and
the nodal points are located in the centroid of each volume.

After the discretization of the domain, the governing equations are integrated over each con-
trol volume. The integrals of the space derivatives are evaluated through the corresponding fluxes
across the volumes’ faces. These fluxes are approximated by discrete differences involving neigh-
boring points. In this work, the diffusive fluxes are approximated by central difference schemes
(CDS), with second-order accuracy, and the convective fluxes are approximated by upwind differ-
ence schemes (UDS) with deferred correction [23] to also obtain second-order approximations.
The pressure gradients, evaluated in the volumes centroids, are also approximated by CDS expres-
sions. In the case of the problem with the manufactured solution, the integral of the source term,
S(x, y), over the control volume is approximated with the midpoint rule [24]. For more informa-
tion on these approximation schemes and techniques, the books by Maliska [22] and Ferziger
and Peri�c [25] can be consulted.

A pseudo-time-marching scheme is also used to improve the convergence of the numerical mod-
els. In this scheme, time is used as a relaxation parameter that helps solutions to reach the steady-
state from a pseudo-transient state in an iterative process. Therefore, in the discretization process,
the time derivatives @u=@t and @v=@t are included on the left side of the Eqs. (1) and (2),

Figure 2. Typical control volumes surrounding the grid points.
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respectively. These derivatives are approximated with an implicit Euler method. This technique is
equivalent to the use of under-relaxation in the resulting algebraic equations and, therefore,
increases the diagonal dominance of the associated coefficient matrices. Furthermore, as the govern-
ing equations are nonlinear, the iterative pseudo-time-marching scheme is also a way to deal with
the nonlinearities [22], as it uses successive linearization of the equations to generate linear sys-
tems [25].

The discretized approximated momentum equations can be written as:

AV
P uP ¼

X
nb

AV
nbunb �

pE � pW
2

Dyþ �SuP, (7)

AV
P vP ¼

X
nb

AV
nbvnb �

pN � pS
2

Dxþ �SvP, (8)

where the index nb runs over the neighboring points W, S, E, and N. The coefficients AV are the
same for both velocity components u and v and also can be checked in Maliska [22] and Ferziger
and Peri�c [25]. The pressure differences in Eqs. (7) and (8) result from the pressure gradients
approximations on the central point P using central schemes (cf. Figure 2). The source terms �Su

and �Sv contain the terms related to the deferred corretion and to the pseudo-time-marching
scheme. Additionally, the case of the problem with manufactured solution, �Sv also contains the
source term S (Eq. (2)).

The last two terms of Eqs. (7) and (8) are actually added together and incorporated into the
respective independent terms of the equations, which are then given by:

SuP ¼ �
pE � pW

2
Dyþ �SuP, (9)

SvP ¼ �
pN � pS

2
Dxþ �SvP: (10)

After the integration of Eq. (3), mass conservation is described in terms of mass flux balances
through control volumes faces, according to:

_Me � _Mw þ _Mn � _Ms ¼ 0, (11)

where the mass fluxes Mf, f ¼ s,w, e, n, are calculated using relations similar to the following:

_Me ¼ queDy, (12)

_Mn ¼ qvnDx: (13)

These fluxes are used as linearizations of the nonlinear convective terms in Eqs. (1) and (2).
As will be shown, they are always calculated using the velocity field from the previous (external)
iteration and are then used in the calculation of the new velocity field of the current iteration. In
Eqs. (7) and (8), they are used to compose the coefficients AV

P and AV
nb:

2.3. Standard SIMPLEC method

To transform Eq. (11) in an equation for pressure, the SIMPLEC-like methods assume that the solu-
tions of the momentum equations produce an intermediate velocity field, indicated by u� and v�,
that does not satisfy the continuity equation; the corresponding intermediate pressure field is indi-
cated by p�: To obtain divergent-free velocity and pressure fields, corrections u0, v0, and p0 for the
intermediate fields are introduced so that the corrected quantities /s ¼ /�s þ /0s, for / ¼ u, v, p, sat-
isfy both the continuity and momentum equations. The index s indicates the grid location of the
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variables and may assume node values, s ¼ P, W, E, S, N, or face values, s ¼ w, e, s, n: In the
SIMPLEC method, the relationships between velocities and pressure-corrections take the following
forms:

uP ¼ u�P � duP p0e � p0w
� �

, (14)

ue ¼ u�e � due p0E � p0P
� �

, (15)

where the SIMPLEC coefficients, duP and due , are given by:

duP ¼
Dy

AV
P �

P
nb A

V
nb

 !
P

, (16)

due ¼
Dy

AV
P �

P
nb A

V
nb

 !
e

: (17)

The right side of the Eq. (17) may be obtained by a linear interpolation of the terms inside the
parentheses involving the nodes adjacent to the e face, that is, nodes P and E.

According to the discretization techniques and approximations adopted in this work, these
relations lead to the following fixed expressions for the SIMPLEC coefficients:

duP ¼
Dt
qDx

, (18)

due ¼
duPð ÞP þ duPð ÞE

2
, (19)

where Dt is the time step for the pseudo-time-marching continuation. Relation of Eq. (19) is rec-
ommended by Maliska [22]. The values of the parameters Dx, Dy, and Dt are predefined by the
discretization of the initial problem. Thus, the SIMPLEC coefficients may be calculated only once
and stored during the execution of the method. Relations analogous to those of Eqs. (14)–(19)
are used for the other nodes and faces.

The substitution of the correction expressions, similar to Eq. (15), in Eq. (11) generates the
discretized pressure-correction equation, which can be written as:

Ap
Pp
0
P ¼

X
nb

Ap
nb p0nb þ SpP: (20)

The coefficients Ap depend only on the SIMPLEC coefficients (their values can be found in
Maliska [22] and Ferziger and Peri�c [25]), and thus, can also be calculated only once and stored.
The independent term Sp contains the mass imbalance of the intermediate velocity components,
which is given by:

SpP ¼ _m ¼ � qu�eDy� qu�wDyþ qv�nDx� qv�sDxð Þ
¼ � _M

�
e � _M

�
w þ _M

�
n � _M

�
s

� �
:

(21)

Thus, one way to ensure that the velocity field is divergent-free is to monitor Sp: This term is
expected to tend to zero as the iterations progress.

The face velocities needed in Eq. (21) must be calculated using the intermediate velocity field
obtained from the momentum equations. The method MIM of Rhie and Chow [15] is used here
for this purpose. Instead of just linearly interpolating the face velocities, this method uses the
momentum equations, Eqs. (7) and (8), evaluated on the nodes adjacent a certain face to compose
the corresponding face velocity. The face velocity on the east interface, for example, is obtained by
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interpolating Eq. (7) on nodes P and E, with the exception of pressure terms, giving [15,22]:

ue ¼
P

AV
nbu
�
nb

� �
P þ

P
AV
nbu
�
nb

� �
E þ MPþME

Dt u0e � 2 p�E � p�Pð Þ
AV
P

� �
P þ AV

P

� �
E

: (22)

The other face velocities are obtained by similar relations. The iterative steps of the SIMPLEC
method are represented in Algorithm 1.

Algorithm 1: SIMPLEC algorithm for Navier–Stokes equations.

1 Initialize the variables u, v, p, and p0;
2 Calculate mass fluxes, Eqs. (12) and (13);
3 Calculate SIMPLEC coefficients (relations similar to Eqs. (16) and (17));
4 Calculate pressure coefficients Ap;

while Stopping criterion is not satisfied do
5 Calculate velocity coefficients AV and independent terms Su and Sv;
6 Solve the momentum equations, Eqs. (7) and (8), and obtain u� and v�;
7 Calculate face velocities u�e and v�n (relations similar to Eq. (22));
8 Calculate pressure-correction independent term Sp, Eq. (21);
9 Solve the pressure-correction equation, Eq. (20), and obtain p0;
10 Correct the pressure field using the relation p ¼ p� þ p0;
11 Correct nodal and face velocities with relations similar to Eqs. (14) and (15);
12 Correct mass fluxes applying velocity corrections on Eqs. (12) and (13);
13 Set p� ¼ p;
14 Return u, v, p.

3. Multigrid

Traditional iterative methods for solving linear systems of equations, like Gauss–Seidel and Jacobi
methods, are efficient in eliminating only the oscillatory (or high frequency) components of the
errors associated with the dependent variables. In general, they are not able to efficiently elimin-
ate the smooth (or low frequency) error components. For this reason, these methods are often
called smoothers, because they tend to smooth out the errors [26]. Thus, at the beginning of the
iterative process a high convergence rate is observed and is associated with the rapid elimination
of the oscillatory components. After some few iterations, there is a significant decrease in this
rate, which is due to the slow elimination of low frequency components.

The error components that are seen as smooth on a fine grid become more oscillatory when rep-
resented on a coarser grid, that is, when the error is transferred to a coarser grid. Thus, it can be said
that common iterative methods efficiently remove only the error components whose wavelengths
are approximately comparable to the current grid spacing [2]. Therefore, to eliminate most of the
frequencies of the error components, the main idea behind the MG methods is to use a set of coarser
grids to smooth the corresponding oscillatory components of each one. The main features of the MG
methods are briefly presented in the sequence. For a detailed description of these and all other stand-
ard MG topics covered in this section, the book by Trottenberg et al. [26] can be consulted.

3.1. Standard MG

The main ideas of the MG method are better described by a two grid system, consisting of a ini-
tial fine grid and a coarser one, indicated by Xh and X2h, respectively. The superscript h is a rep-
resentative measure of the of volumes lengths in the two coordinate directions, h ¼ maxðDx,DyÞ:
So, the coarsening ratio q¼ 2 is the standard value and the grid X2h has twice the volumes in
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each coordinate direction in relation to the fine grid. In this work, the grid is uniform [25] and
composed of square volumes (Dx ¼ Dy).

For nonlinear problems, the full approximation scheme (FAS) is more suitable; for the case of
linear problems, the correction scheme (CS) is more appropriate. As the problem addressed in
this work is fundamentally nonlinear, only the two-grid FAS scheme is (briefly) reviewed in
Algorithm 2. The generic dependent variable / can assume the values of u, v or p and the sur-
rounding parentheses are a notation to indicate that the systems are nonlinear. The operator A2h,
in step (4), is obtained by rediscretization of the original problem [26]. The right-hand side of
the equation in step (4) is computed once and kept fixed during the iterations in X2h:

Algorithm 2: Two-grid full approximation scheme (FAS).

1 Relax �/1 times Ahð/hÞ ¼ f h inXh with initial estimate /h
0 and obtain an intermediary solution /h�;

2 Compute the residual rh ¼ f h � Ahð/h�Þ and restrict it to X2h, r2h  I2hh rh;
3 Restrict the intermediary solution /h� and define it as the initial estimate in X2h, /2h

0  I2hh /h�;
4 Solve A2hð/2hÞ ¼ A2hð/2h

0 Þ þ r2h in X2h with initial estimate /2h
0 and obtain the solution /2h;

5 Compute the error in X2h, e2h ¼ /2h � /2h
0 ;

6 Prolong the error from X2h and correct the intermediary solution in Xh, /h  /h� þ Ih2he
2h;

7 Relax �/2 times Ahð/hÞ ¼ f h in Xh with initial estimate /h:

Instead of using just two grids, the FAS scheme is generally employed to a successive set of
increasingly coarser grids, which are successively indicated by Xh,X2h,X4h, :::,XLh, where XLh indi-
cates the coarsest possible grid. In this work, the dimension of XLh is 22 (2� 2). The superscript L
is a even integer given by L ¼ 2Lmax , where Lmax is the maximum number of possible coarser grids
obtained from a certain initial fine grid, Xh, when coarsening ratio q¼ 2 is employed.

The error being calculated in an intermediate grid Xð2kÞh (k integer and k � 1) is related with
the residual equation solution from the previous finer grid Xkh, that is already an equation for an
error. The way grids with different spacing’s are traversed defines a MG cycle and each grid in
the cycle is also referred to as a level. Amongst the several types of existing cycles, the V-cycle
[26] is perhaps the most simple and straightforward on the representation of the MG ideas.

For the V-cycle to be efficient, it is necessary that the information is transferred correctly from
one grid to another. A restriction operator that is often used in conjunction with second-order
finite volume models considers that properties in a coarse grid volume are obtained from summa-
tion expressions involving their values in the corresponding four finer grid volumes: variables
and residuals are, respectively, calculated using the arithmetic mean and the direct sum of their
values in the four finer grid volumes [25]. Mass fluxes are also restricted based on this idea, con-
sidering that a certain face of a coarse grid volume corresponds to two faces in the finer grid [2].
The bilinear interpolation operator [26] is used here for the prolongation of all coarse grid infor-
mation. As the bilinear operator has order 2, the orders of the two transfer operators used are
adequate in relation to the orders of the derivatives of the governing equations [27].

The most efficient form of the MG method is when nested V-cycles with different number of
grid levels are used. The solution process starts solving the system in an initial coarse grid (which
can be predefined or be the coarsest possible grid, XLh), the obtained solution is then prolonged
as an initial estimative to the next finer grid and a V-cycle is executed there. After the execution,
its solution (which can be intermediate or converged) is prolonged to the next finer grid as an
initial estimative for a V-cycle that contains one level more than the previous one. This process is
repeated until the initial finest grid is reached and from there, V-cycles involving Lmax levels are
executed until convergence of the original problem. This algorithm is called full multigrid (FMG).
A representation of a FMG algorithm, with 4 grid levels, is shown in Figure 3. The dots between
cycles indicate that multiple V-cycles can be executed before prolonging the solutions to the next
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FMG level. A more detailed study on the number of V-cycles to be performed at each FMG level
can be found at Thekale et al. [28]. The FMG algorithm is used in this work and all the V-cycles
of all its levels go to the coarsest possible grid XLh:

3.2. Alternative FMG-SIMPLEC approach

As aforementioned, the MG approaches used in conjunction with SIMPLE-like methods are gener-
ally based on so-called coarse grid correction equations, which are modified versions of the momen-
tum and continuity equations. On coarse grids, the momentum equations are based on pressure-
correction gradients, instead of just pressure ones, and the continuity relation is transformed in an
equation of corrections for pressure-corrections. Moreover, when calculating the face velocities, the
MIM [15], or its variants, must be modified to also take into account the additional FAS restricted
terms when interpolating Eq. (7) or Eq. (8) on the nodes adjacents to a specific volume face. The
development of these approaches is not presented here, but can be seen in detail in Roy et al. [14].

Before presenting the scheme developed in this work, there are some points worth mentioning. In the
discretized momentum equations on the fine grid, the pressure contribution is stored in the independent
terms, Eqs. (9) and (10), together with the deferred correction terms and the pseudo-time-marching
scheme terms. However, if a MG method is being used, the independent terms in intermediate coarse
grids are used exclusively to store the FAS related terms; thus, they do not store pressure terms. So, if a
system consisting only of the two momentum conservation equations is to be solved by a MG method,
as in the case of Burgers equations [29], the only influence of pressure on the coarse grid equations are
those that come implicitly in the restricted quantities (velocities, mass fluxes, and residuals).

Observing that, in the case of the Navier–Stokes equations, the most current pressure field can
be kept fixed during the execution of a specific V-cycle to solve the momentum conservation
equations. In this work, this cycle is called (u, v)-cycle and it is used in replacement of the single
grid (SG) relaxations of the u and v systems in step (4) of Algorithm 1. To compute the nonlin-
ear part of the coarse grid matrix coefficients, AV

F (F ¼ S,W, P,E,N), the most updated mass
fluxes can also be kept fixed and restricted during the execution of the (u, v)-cycle, since they are
corrected only through pressure-corrections.

In the case of the pressure-correction equation, it was already mentioned that the coefficients Ap, in Eq.
(20), depend only on the SIMPLEC coefficients, which are fixed according to the discretization procedure
employed here (Eqs. (18) and (19)). Therefore, these coefficients may be calculated only once and stored
on each grid. The only term in Eq. (20) that depends directly on the velocities is the independent term, Eq.
(21), which on coarse grids is also used exclusively to store the restricted terms from FAS. Therefore,
instead of performing the singlegrid relaxation of the p0 system in step (8) of Algorithm 1, a specific and
independent pressure-correction V-cycle can also be used. This cycle will be called p-cycle here.

Similarly to what happens in the (u, v)-cycle, the last, and most updated, velocity field is also
kept fixed during the executions of the p-cycle. If other discretization techniques and approxima-
tions are used for the governing equations and the SIMPLEC coefficients are not given by fixed
expressions, like Eqs. (18) and (19). In that case, the fine grid fixed velocity field must also be
restricted to calculate the SIMPLEC coefficients and, consequently, the pressure-correction coef-
fients Ap in the coarse grids of the p-cycle.

Figure 3. Representation of the FMG algorithm using V-cycles.
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It is defined here that both (u, v)-cycle and p-cycle use the maximum number of grid levels
from a given initial fine grid, that is, both have Lmax coarser grids. However, the value of this par-
ameter was chosen for convenience and not through a dedicated study to determine the optimal
number of levels that should be used in each cycle. If a FMG algorithm is being used, this initial
fine grid will be the finest grid of the current FMG level, which is indicated here by XH to differ-
entiate it from the initial finest grid of the problem, Xh: In this work, an alternative full-multigrid
SIMPLEC (FMG-SIMPLEC) approach is proposed to solve the numerical problem on the finest
grid, Xh: This approach is described in the following paragraphs.

On the local finest grid of each FMG level, XH , the problem is solved by means of a modified
SIMPLEC algorithm, which is called “Mod-SIMPLEC” in this work. In this algorithm, the momentum
and pressure-correction systems, steps (4) and (8) of Algorithm 1, are solved using the (u, v)-cycle and
the p-cycle, respectively. The numbers of times each of these cycles is executed, in steps (4) and (8), are
indicated by c1 and c2, respectively. With the exception of these two steps, all other steps of the original
SIMPLEC algorithm, such as calculating face velocities (by means of the MIM) or correcting velocity
and pressure fields, are executed without modification in Mod-SIMPLEC and only on XH :

Mod-SIMPLEC is always executed up to convergence on each FMG level and the obtained con-
verged solutions are transferred as initial estimative to the next level by means of the FMG pro-
longation. This process is repeated until the last FMG level, whose finest grid is the initial grid Xh,
is reached. Mod-SIMPLEC is also executed there until convergence of the initial problem systems.

The steps that correspond to the proposed approach are presented in Algorithm 3. As can be
noted from steps (5) and (6), the coefficients of SIMPLEC and also of the pressure-correction
equation are calculated only once and stored in each grid level. Mod-SIMPLEC comprises steps
(7) to (15) within the innermost loop. In addition, only steps (8) and (11) involve different grid
levels, all other steps are performed only on XH : In step (8), the mass fluxes from XH should also
be restricted in the (u, v)-cycle, to assemble the coefficients AV on coarse grids.

Algorithm 3: FMG based on a modified SIMPLEC algorithm

1 Execute Algorithm 1 on an initial coarse grid Xð2lÞh up to convergence;
2 Prolong solutions u, v, and p to the next finer grid Xlh;
3 H  lh;

while H � h do
4 Calculate mass fluxes, Eqs. (12) and (13), on XH;
5 Calculate SIMPLEC coefficients (relations similar to Eqs. (16) and (17)) on XH;
6 Calculate pressure coefficients Ap on XH;

while Convergence criterion on XH is not satisfied do
7 Calculate velocity coefficients AV and independent terms Su and SV ;
8 Execute c1 (u, v)-cycles to solve Eqs. (7) and (8) and obtain u� and v�;
9 Calculate face velocities u�e and v�n on XH (relations similar to Eq. (22));
10 Calculate pressure-correction independent term Sp, Eq. (21), on XH;
11 Execute c2 p-cycles to solve Eq. (20) and obtain p0;
12 Correct the pressure field on XH using the relation p ¼ p� þ p0;
13 Correct nodal and face velocity components onXH (relations similar to Eqs. (14) and (15));
14 Correct mass fluxes on XH applying velocity corrections on Eqs. (12) and (13);
15 Set p� ¼ p;

if H¼ h then
16 Return solutions u, v and p and exit program;

else
17 Prolong u, v and p to the next fine grid XH=2;
18 H  H=2;
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In this work, before starting the execution of Algorithm 3, the velocity and pressure fields, as
well as their respective corrections, are initialized as being null.

3.3. MG components and parameters

The general philosophy behind this work is to provide a model that is built on simple techniques
and methods and yet still offers performances comparable to those in the literature. This way, as the
next paragraphs show, all the methods and techniques employed in the construction of the numer-
ical model are very common and many of them can be considered standard in the literature.

Regarding the MG method, the following parameters and components are used: the restriction
operators used for the variables and residuals are the mean and the sum of correspondent fine vol-
umes, respectively; for the mass fluxes, the restriction operator calculates the mass flux through a
given coarse grid face as the sum of the fluxes through the two fine grid faces that correspond to it
[2]; the bilinear operator is used for the prolongation of all variables and quantities, including the
FMG prolongation of the converged solutions; standard coarsening ratio q¼ 2 is adopted; the max-
imum number of grid levels, Lmax, is used in both (u, v)-cycle and p-cycle; both (u, v)-cycle and p-
cycle are executed only once in each Mod-SIMPLEC iteration, that is, c1 ¼ c2 ¼ 1; the number of
relaxations (or inner iterations) performed in both pre- and post-smoothing phases is �1 ¼ �2 ¼ 1;
the Gauss–Seidel solver with red-black ordering [26] is used for all systems of equations and in both
cycles.

The stopping criteria used here to define the convergence of Mod-SIMPLEC, on each FMG
level, are based on residuals and velocity errors. Following the recommendation of Kim et al.
[30], the relative forms of the global residuals are used. The relative global residuals of the veloc-
ities are given by:

�R/ ¼
P

P AV
P/P �

P
nb A

V
nb/nb � S/P

��� ���P
P AV

P/Pj j , (23)

where / ¼ u, v: The relative global pressure-correction residuals are calculated as:

�Rp ¼
P

P uw � ueð ÞDyþ vs � vnð ÞDx
�� ��

qurefLref
, (24)

where uref is a reference value of the u velocity and Lref is a representative length of the cavity.
For the classical problem [1], uref ¼ 1 is adopted, that is, the prescribed top lid horizontal vel-
ocity. For the problem with manufactured solution [21], uref is taken as the average of the pre-
scribed velocity distribution on the top lid, Eq. (4). As the cavity is square and unitary, the
representative length is taken as Lref ¼ 1 for both problems.

The global errors of the velocities, indicated by eu and eV , are calculated in relation to the
exact solutions of the problems. Exact solutions are considered to be those without iteration
errors, that is, those obtained when external iterations (Mod-SIMPLEC iterations) are performed
until the round-off error is reached. These solutions are indicated by /1 and the related global
errors are computed as:

e/ ¼
P

P /P � /1P
�� ��
NV

, (25)

for / ¼ u, v: Here, NV means the number of volumes. The error associated with the pressure
field is not used in this case, since, as the motion equations are driven by pressure gradients,
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different converged pressure fields can lead to the same velocity field. As can be noted from Eqs.
(23)–(25), the residuals and errors are all represented by their respective relative l1-norms.

Mod-SIMPLEC convergence, on each FMG level, is measured by the total global residual, RT ,
and by the total global error, e, which are computed as:

RT ¼
�Ru þ �Rv þ �Rp

3
, e ¼ eu þ ev

2
: (26)

The tolerances for these quantities are indicated by �R and �e, respectively. For the classical
problem, their values are taken to be �R ¼ 5� 10�6 and �e ¼ 10�6, and for the problem with
analytical solutions, they are taken as �R ¼ 10�7 and �e ¼ 10�6:

The parameters and components adopted here are by no means fixed to the numerical model.
The researchers who intend to employ this approach to the FMG-SIMPLEC algorithm are free to
substitute these components with most advanced and efficient ones and/or with the ones they are
experienced with.

4. Results

The results obtained with the numerical model developed from the proposed FMG-SIMPLEC
approach are discussed in this section. The quality of the solutions, the associated errors and the
MG performance are presented and analyzed. All the results associated with the developed model
are indicated by the label “Mod-SIMPLEC.” To minimize space in figures and tables, from this
point onwards, the abbreviated forms “SG” and “MG” are used to refer to the terms “single grid”
and “MG”, respectively.

4.1. Code verification

4.1.1. Error analysis
The numerical error (E) associated with a certain variable is given by the difference between its
exact analytical solution (�/) and its approximate numerical value (/), i.e.,

Eð/Þ ¼ �/ � /: (27)

In absence of errors caused by truncation, iteration and round-off, the numerical error is
called a discretization error [31]. In Marchi et al. [32], there is a study that seeks to reduce the
discretization errors arising from various types of CFD problems through the use of polynomial
interpolation followed by repeated Richardson extrapolation.

Considering the discretization methods and approximations used in this work (CDS and
UDS with deferred correction in space), the predicted asymptotic order (pL) of the discret-
ization error must be equal to 2, that is, the numerical model as whole must achieve second-
order accuracy [25]. The effective (pE) and the apparent orders (pU) are estimates to the asymp-
totic order and are calculated based on the numerical solutions. If h is the representative length
of the grid, h ¼ maxðDx,DyÞ, then, pE ! pL and pU ! pL when h! 0: According to Marchi
et al. [18], the effective and the apparent orders can be obtained, respectively, through the fol-
lowing relations:

pE ¼
log E /2ð Þ

E /1ð Þ
h i
log q

, (28)
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pU ¼
/2�/3
/1�/2

� �
log q

, (29)

where /1, /2, and /3 are the numerical solutions obtained on three grids coarsened in sequence
with standard coarsening ratio q¼ 2, that is, with representative lengths h, 2h, and 4h, respect-
ively. To use Eq. (28), the discretization error E, Eq. (27), must be known and, hence, the analyt-
ical solution is also necessary. Thus, for a problem without available analytical solution the
effective order cannot be obtained and the asymptotic order must be estimated through the
apparent order, Eq. (29).

The effective and the apparent orders of the discretization errors are analyzed for the following
variables (/) of interest: minimum value of u velocity along the vertical line x¼ 1/2 (umin); min-
imum and maximum values of v along the horizontal line y¼ 1/2 (vmin and vmax, respectively);
values of u and v at the center of the cavity (ucenter and vcenter); mass flow rate through the hori-
zontal line y¼ 1/2 between points x¼ 0 and x¼ 1/2 (Mf ); viscous drag force exerted by the fluid
on the base of the cavity (Fs).

The values of ucenter and vcenter are calculated using the average mean of nodes adjacent to the cavity
center. The analytical formulas of Mf and Fs and their corresponding numerical approximations can
be checked in Marchi et al. [18]. In addition to these variables, the global discretization errors are also
analyzed for the problem with analytical solution [21]. Using the l1-norm, they are computed as:

E/ ¼
P

P /P � �/P

�� ��
NV

, (30)

for / ¼ u, v, p:
The behavior of the effective orders of the discretization error with grid refinement can be

observed in Figure 4. As the analytical solution is required for the calculation of these orders (Eq.
(28)), the problem of Shih et al. [21] is used in this case. It is noted that both the orders of the global
discretization errors of u, v and p (Figure 4a), and of the other variables of interest (Figure 4b), tend
to the expected value 2 with grid refinement. As stated in the reference, Re ¼ 1 for this problem.

In the case of apparent order (pU), the values of the variables of interest for some values of Re
in the classical problem are listed Table 1. The orders shown in this table are calculated in a
1,0242 grid, so the grids for /1, /2, and /3, in Eq. (29), have dimensions 1,0242, 5122, and
2562, respectively. Analyzing the values from table, it can be affirmed that most of the values are
close to the expected value 2. The values of the apparent orders are quite sensitive to the methods
used in the calculation of the involved variables, especially those obtained from formulas based
on averages or numerical integration. This way, perhaps the apparent orders of vmin and vcenter,

Figure 4. Behavior of effective orders (pE) with grid refining (h! 0) for the problem of Shih et al. [21].
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for Re ¼ 100, could reach more adequate values if these variables were calculated using alterna-
tive forms. Similar results can be found in Marchi et al. [18].

4.1.2. Numerical solutions
The accuracy of the solutions can be assessed qualitatively in Figures 5 and 6. In Figure 5, com-
parisons of velocities and pressure profiles with their correspondent analytical solutions along the
cavity center lines can be observed. As can be inferred, in all cases, there is good correspondence
between the generated solutions and their analytical counterparts. In Figure 6, the center profiles
of the velocities, obtained from the classical problem, are presented for some Reynolds number
values. These profiles are compared with results from Roy et al. [14], Erturk [19], and Marchi
et al. [18]. Again, it can be noted that all the produced profiles are in well agreement with their

Table 1. Apparent orders (pU) of variables of interest in the classical problem.

Re ¼ 100 Re ¼ 400 Re ¼ 1, 000

umin 2.07441 2.03095 1.99649
vmin 1.11741 2.14317 2.12429
vmax 1.86029 2.01725 1.97254
ucenter 1.99748 2.01548 2.08039
vcenter 1.37616 2.01469 2.38602
Mf 2.00122 2.00748 2.00144
Fs 2.00352 1.65285 1.92807

Figure 5. Velocities and pressure profiles along the center lines of the cavity for the problem of Shih et al. [21].

424 J. M. B. D. OLIVEIRA ET AL.



correspondents from the references. These works also compare their results with those from Ghia
et al. [1], Bruneau and Saad [33], and Botella and Peyret [34]. This way, the present results are
also in well agreement with those.

The streamlines of the classical problem for higher values of Re (with the exception of
Re ¼ 400) are presented in Figure 7. Qualitatively, it can be stated that the patterns of streamlines
and central vortices (primary) and cavity corners (secondary, tertiary, etc.) are consistent with the
literature [13,19].

In Table 2, the values of the same variables of interest of Table 1 can be compared with the
ones from Marchi et al. [18]. As can be seen, the values are in good agreement. All these profiles
and results were generated in a grid with dimension 1,0242:

4.2. Performance of the alternative FMG-SIMPLEC approach

As mentioned in Subsection 4.1.1, the discretization error can only be calculated when the analyt-
ical solution is available, as is the case with the problem of Shih et al. [21]. Figure 8 shows the
decay of total global residuals and errors with the number of iterations (it) for this problem.

The first point to be noted is that the adopted stopping criteria and associated tolerances are
adequate, since, in both SG and MG methods, the tolerances �R ¼ 10�7 and �e ¼ 10�6 guarantee
the convergence of the true discretization errors, E/ (/ ¼ u, v, p). It is also observed that approxi-
mately 104 iterations are required for the (total global) error convergence in the SG method. In
the case of the MG method, a much smaller number, approximately 130 iterations, is required

Figure 6. Velocities profiles along the center lines of the cavity for some Reynolds values in the classical problem.
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Figure 7. Streamlines of the classical problem.
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Table 2. Variables of interest in the classical problem.

Re ¼ 100 Re ¼ 400 Re ¼ 1, 000

Variable Mod-SIMPLEC [18] Mod-SIMPLEC [18] Mod-SIMPLEC [18]

umin –0.214042 –0.214036 –0.328730 –0.328695 –0.388572 –0.388470
vmin –0.253804 –0.253799 –0.454058 –0.454021 –0.527056 –0.526940
vmax 0.179573 0.179569 0.303832 0.303800 0.376947 0.376850
ucenter –0.209149 –0.209143 –0.115054 –0.115052 –0.0620561 –0.0620503
vcenter 0.0575366 0.0575367 0.0520581 0.0520631 0.0257995 0.0258001
Mf 0.0665473 0.0665461 0.106628 0.106620 0.116514 0.116490
Fs 0.00326793 0.00326798 0.00119435 0.00119434 0.000798040 0.000797840

Figure 8. Decay of residuals and discretization errors in the Navier–Stokes equations (problem of Shih).

Figure 9. Decay of residuals and discretization errors in the Navier–Stokes equations (classical problem).
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for the convergence of the error. The initial fine grid had dimension 2562 in these cases. Finer
grids would imply very high numbers of iterations for the SG method, making performance ana-
lysis difficult.

Total global residuals and errors decays for the classical problem are shown in Figure 9. In all
cases, the error and residual decay rates of the MG are much higher when compared to those of
the SG. For Re ¼ 1, 000, for example, the number of iterations (it) necessary for RT and e to fall
bellow their given tolerances is Oð102Þ for the MG method. For the SG method, as the graphical
trend indicates, this number is (at least) Oð104Þ:

The apparent high number of iterations required for the MG residuals and errors to fall below
their tolerances is due to the pseudo-time-marching formulation, which must converge from an
initial (pseudotransient) state to a steady-state solution in each case. A similar behavior can be
observed in Chen et al. [35], where this under-relaxation technique is also used in conjunction
with the MG. Another issue that contributes to this behavior is the fact that the number of inner
iterations (relaxations) performed in each solver is equal to unity in all cases; thus, more external
(Mod-SIMPLEC) iterations are necessary. It can be concluded, therefore, that alternative ways of
evaluating the MG performance, which are not based only on the number of external iterations,
should be used for the numerical model presented in this work.

In Trottenberg et al. [26], it is affirmed that time is a good parameter to measure the performance
of MG numerical models. According to Brandt [10], apud Roy et al. [14], the “golden rule” of MG
methods, translated in terms of computational time, states that the time should increase linearly
with the number of grid nodes (N), that is, it should exhibit an O(N) increase. This way, the next
results use time as the main parameter to compare the performances of the SG and MG methods.

In Table 3, SG and MG execution times from Mod-SIMPLEC are presented, together with the
respective speedups (S), for some Reynolds values in the classical problem and also for Re ¼ 1 in
the problem of with analytical solution (the notation “�” is used in this case). Results in this for-
mat are generally found in literature only for a limited range of Re values. A good performance is
observed for �Re ¼ 1 and also for Re ¼ 10 in the classical problem (mainly in the 5122 grid). The
speedups are less expressive for Re ¼ 400 and seem to improve again for Re ¼ 1, 000: For higher
Re values, 2,500 and 3,200, the speedups follow the orders of magnitude, of the other Re values,
up to the 5122 grid. In the 1,0242 grid, however, a drop in performance can be observed. In Roy
et al. [14], it is stated that the large convection effects, related to higher Re numbers, can com-
promise the accuracy of the prolongation of converged coarse grid solutions to the next finer
grids. Thus, according to the authors, a good initial estimate for the next finer (FMG) level may
not be possible to achieve in these flow regimes.

Mod-SIMPLEC execution times from Tab. 3, and also for other Re values, are plotted versus
NV in Figure 10. The light gray lines, indicated by the legend “linear,” represent the linear

Table 3. CPU times (s) from Mod-SIMPLEC and related speedups (S).

�̂Re ¼ 1 Re ¼ 10 Re ¼ 400

Grid SG MG S SG MG S SG MG S

642 1.086 0.049 22.16 1.066 0.042 25.38 0.925 0.062 14.92
1282 12.355 0.239 51.69 6.963 0.236 29.50 8.467 0.343 24.68
2562 193.677 1.341 144.43 108.643 1.502 72.33 99.285 2.306 43.05
5122 3,010.880 7.646 393.78 1,757.160 9.403 186.87 1,756.730 16.559 106.09
1,0242 46,809.100 29.805 1,570.51 28,410.000 29.142 974.88 30,981.200 54.141 572.23

Re ¼ 1, 000 Re ¼ 2, 500 Re ¼ 3, 200

Grid SG MG S SG MG S SG MG S

642 2.153 0.146 14.75 4.895 0.532 9.20 5.839 0.868 6.73
1282 18.537 0.587 31.58 49.604 2.061 24.07 77.511 3.253 23.83
2562 185.392 2.844 66.19 675.662 8.356 80.86 1,207.060 12.450 96.95
5122 2,975.053 15.493 192.03 6,140.354 37.234 164.91 9,696.710 53.629 180.79
1,0242 47,515.800 68.749 691.15 56,246.400 146.916 382.85 79,034.900 208.267 379.49
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relationship between the execution times and NV, that is, they represent the MG expected behavior
according to Brandt [10] apud Roy et al. [14].

In most curves, there is a slope decrease from grid 5122, and from that point on the curves
indicate the presence of an approximately linear, or even sublinear, time growth pattern. These
changes in the slopes are more evident for Re � 1000; for higher values, they are more subtle and
the curves appear to be subject to more constant slopes. Moreover, this sublinear time growth
regime, assumed by most curves, indicates that the Mod-SIMPLEC performance tends to improve
with the use of increasingly refined grids.

Finally, the slopes (p) of the straight lines that best fit the curves in Figure 10 are listed in Table 4.
They represent the order (or complexity order) of the solver and are a measure of the computational
effort of the method. The ideal MG behavior requires that p be unitary, indicating that time increases
linearly with the number os volumes (light gray lines in Figure 10). Unfortunately, for Re ¼ 100 and
Re ¼ 400, where much of the data for benchmarking if found in literature, the method presents the
weakest performances. This is in accordance with the low speedups performances for Re ¼ 400 in
Table 3. Still, p values are not far from unity in these cases and as, aforementioned, according to

Figure 10. Mod-SIMPLEC performance: execution times versus the number of grid volumes (NV).

Table 4. Mod-SIMPLEC complexity orders (p) for the Navier–Stokes under some Re values.

�̂Re ¼ 1 Re ¼ 0:1 Re ¼ 1 Re ¼ 10 Re ¼ 100 Re ¼ 400

p 1.07 1.00 1.01 1.02 1.11 1.13

Re ¼ 1, 000 Re ¼ 2, 500 Re ¼ 3, 200 Re ¼ 5, 000 Re ¼ 7, 500

p 1.09 0.99 0.96 0.90 0.90
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Figure 10, the curves indicate that the ideal behavior could be reached if more refined grids were
used.

In general, it is noted that the value of p is close to unity in all cases. Therefore, it can be con-
cluded that Archi Brandt’s “golden rule,” as pointed out by Roy et al. [14], is practically satisfied
for most of the simulated regimes. Furthermore, the developed model effectively achieves the
desired performance rule precisely where the literature lacks data, i.e. for higher Reynolds number
values.

5. Conclusions

In this work, an alternative approach was presented to employ the FMG-SIMPLEC (full MG
SIMPLEC) algorithm to solve the steady-state incompressible Navier–Stokes equations. The FMG
algorithm is based on a modified SIMPLEC algorithm (Mod-SIMPLEC) that preserves all original
SIMPLEC steps, with the exception of the steps associated with the resolution of the linear sys-
tems. In Mod-SIMPLEC, these steps use independent V-cycles to solve the systems. The discret-
ization methods and approximations techniques used for the original mathematical model allow
the generated numerical scheme to use two independent V-cycles on each FMG level: one to
solve the momentum equations, called (u, v)-cycle, and another to solve the pressure-correction
equation, called p-cycle. Thus, in Mod-SIMPLEC, all the other original SIMPLEC steps may be
executed only on the finest grid of each FMG level. The other intermediate coarse grids are used
only internally in these V-cycles to smooth the errors of the corresponding systems.

The lid-driven flow in the unitary square cavity was used as the model problem in two var-
iants: the classical cavity problem, with uniform unitary horizontal velocity on the top lid [1];
and the problem with a manufactured analytical solution from Shih et al. [21]. In terms of the
quality of the solutions, the developed numerical model produced velocity fields very close to
those of the literature for the classical problem, even for high values of Re, and also results that
agreed very well with their analytical counterparts, with the associated errors satisfying the
expected behavior of error analysis theory.

Despite the simplicity of the proposed approach, several tests have shown that its performance
is comparable to the standard MG-SIMPLE-like approaches found in literature, with speedups
orders of magnitude as high as Oð103Þ being obtained. But, above all, the tests also showed that
Brandt’s MG performance criterion, in terms of execution times, was generally met for all values
of Re used in the simulations, but mainly, and effectively, for high values of Re. For intermediate
values, the results showed that the linear (or sublinear) trend was observed for more refined grids
(from 5122 grids). As stated at the beginning of the text, the objective here was to offer an alter-
native approach that allows the construction of numerical models with a simple and easy to
implement structure and still benefits from the performance gains associated with MG methods.
Thus, it can be said that this goal has been successfully achieved for a wide range of Re numbers.

Finally, an important feature of the presented approach concerns the fact that it is not fixed
and, thereby, can be constructed with different schemes and techniques, such as discretization
schemes of higher order, schemes other than MIM to interpolate face velocities, different transfer
operators and solvers, and so on. Thus, researchers can compose their Mod-FMG models accord-
ing to their preferences, whether focusing on performance, accuracy, or other desired features.
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