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Performance of the multigrid method with time-stepping to solve 1D
and 2D wave equations
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aGraduate Program on Numerical Methods in Engineering – PPGMNE, Federal University of Parana – UFPR, Curitiba, PR, Brazil;
bDepartment of Mechanical Engineering, Federal University of Parana – UFPR, Curitiba, PR, Brazil; cDepartment of Mathematics, State
University of Centro-Oeste – UNICENTRO, Irati, PR, Brazil

ABSTRACT
This work aims to discuss a proposed solution for wave equations that utilize discretization
by means of the finite difference method, weighted by a parameter g, with sweeping done
according to the time-stepping method. The multigrid method is employed to speed up the
convergence in obtaining the solution of the system of equations resulting from the discret-
ization. To validate the proposed model, the discretization errors, effective and apparent
orders, convergence factor, orders of complexity, and the computational time were assessed.
A comparison between the singlegrid and multigrid methods was carried out in order to
determine the most advantageous one.
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1. Introduction

Partial differential equations (PDEs) are used to model
several engineering problems. These equations must
to respect certain boundary and initial (in the transi-
ent case) conditions, in which the obtention of an
analytical solution is an arduous and not always pos-
sible task. In this context, approximate methods
emerge, offering the conditions of representing con-
tinuous domains as discrete domains. Led by compu-
tational advancement and the development of new
technologies, the possibility of solving more realistic
problems becomes more feasible.

In this work, we present a model to solve the wave
equation, which is a hyperbolic PDE. This class of
problem is a trendy research topic and has several
applications. Some applications include structural
acoustics in Avalos and Lasiecka [1], propagation of
electrical charges in Metaxas and Meredith [2] and
sound waves in Bailly and Juve [3], wave equation in
polar coordinates in Gopal et al. [4], stationary wave
equations in Brandt and Livishits [5], telegraph equa-
tion in Devi et al. [6], linear cases in Dehgham and
Mohebbi [7], nonlinear cases in Rincon and Quintino
[8] and Baskonus et al. [9], systems of advection equa-
tions in De Sterck et al. [10] and parallelization
schemes in Gander et al. [11] and [12].

The transient wave equation is discretized by the
finite difference method [13] and generates a linear
system that can be solved by a solver, such as
Gauss–Seidel method. One way to speed up the pro-
cess of obtaining the solution of this system is to
apply the multigrid method, widely recommended in
the literature, as it significantly improves the conver-
gence factor [14–16]. The anisotropy related to the
physical and numerical factors of this type of problem
is also evaluated. Is a challenge to solve wave equa-
tions with a high value of a, where alpha is associated
with the wave propagation speed, see Umenati
et al. [17].

When solving physical problems modeled by PDEs
that are dependent on time, the time-stepping tech-
nique can be used, in which, at each new time step,
the solution of the previous time step is utilized as an
initial estimate, thus solving a transient problem with
a system of stationary wave equations [18–21]. Time-
stepping is usually proposed to solve elliptical and
parabolic problems [22], but it can also be employed
in the wave equation [7]. To calculate the approximate
solution at the current time step in the wave equation,
we use the solutions of the two previous time steps.

This work is organized as follows. In Section 2, we
present the mathematical models adopted for the
wave equation and discretization for the 1D and 2D
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cases. In Section 3, we show details of the implemen-
tation of the multigrid method in the wave equation.
In Section 4, we expose the code verification methods
and the results of the simulations. Finally, in Section
5, we present the conclusions.

2. Mathematical and numerical models

2.1. One-dimensional wave equation

The 1D wave equation can be utilized to model, for
instance, the problem of a vibrating string fixed at both
ends, in which the goal is to find the displacement u(x, t)
with the independent variables x and t, which represent,
respectively, the position and time. Let a1 be a scalar
which is a positive real number defined as a21 ¼ 1

V2
1
,

where V1 is related to the linear density and the tension
of the string (wave propagation speed). Let us consider
the one-dimensional wave equation [23] as

@2u
@t2

¼ a21
@2u
@x2

, (1)

uðx, 0Þ ¼ f1ðxÞ, 0 � x � l, (2)

utðx, 0Þ ¼ g1ðxÞ, 0 � x � l, (3)

uð0, tÞ ¼ uðl, tÞ ¼ 0, t > 0, (4)

where f1ðxÞ represents the initial setup, g1ðxÞ is the
initial speed, and u(0, t) and u(l, t) are the boundary
conditions. The general solution is built with the fun-
damental vibrational frequencies given by varying n ¼
1, 2, 3, :::, such as

uðx, tÞ ¼
X1
n¼1

ðcnw0
nðx, tÞ þ dnz

0
nðx, tÞÞ (5)

where

w0
nðx, tÞ ¼ cos

npa1t
l

� �
sin

npx
l

� �
, (6)

z0nðx, tÞ ¼ sin
npa1t

l

� �
sin

npx
l

� �
, (7)

cn ¼ 2
l

ðl
0
f1ðxÞ sin npx

l

� �
dx, (8)

dn ¼ 2
npa1

ðl
0
g1ðxÞ sin npx

l

� �
dx, (9)

2.2. Discretization wave 1D

Considering the problem defined in Eqs. (1)–(4), we
define the size of each spatial element h1 ¼ l

Nx
, and a

time increment s1 ¼ tf
Nt
, where Nx > 0 and Nt > 0 are

the numbers of spatial and temporal intervals,

respectively, with time tf > 0 and string length l. By
admitting an approximation vki for the solution u, at a
point of coordinate xi, with time k, and using central
difference, the discretized problem is given by

vk�1
i � 2vki þ vkþ1

i

s21
� s21
12

@4vi
@t4

� s41
360

@6vi
@t6

� s61
20160

@8vi
@t8

� � � � ¼

a21g1
vkþ1
i�1 � 2vkþ1

i þ vkþ1
iþ1

h21
� h21
12

@4vkþ1
i

@x4
� h41
360

@6vkþ1
i

@x6
� h61
20160

@8vkþ1
i

@x8
� � � �

 !

þa21ð1� 2g1Þ
vki�1 � 2vki þ vkiþ1

h21
� h21
12

@4vki
@x4

� h41
360

@6vki
@x6

� h61
20160

@8vki
@x8

� � � �
 !

þa21g1
vk�1
i�1 � 2vk�1

i þ vk�1
iþ1

h21
� h21
12

@4vk�1
i

@x4
� h41
360

@6vk�1
i

@x6
� h61
20160

@8vk�1
i

@x8
� � � �

 !
,

(10)

where g1 is the weighting parameter. By adopting g1 >
0:25, we have an unconditionally stable approach [13].
By rearranging the terms of Eq. (10), we have

vk�1
i � 2vki þ vkþ1

i ¼ a21s
2
1

h21
½g1ðvkþ1

i�1 � 2vkþ1
i þ vkþ1

iþ1 Þ

þ ð1� 2g1Þðvki�1 � 2vki þ vkiþ1Þ
þ g1ðvk�1

i�1 � 2vk�1
i þ vk�1

iþ1 Þ�
(11)

with truncation error order Oðh21s21, s41Þ, given by

e1D ¼ þ s41
12

@4vi
@t4

þ � � � � a21s
2
1h

2
1g1

12
@4vkþ1

i

@x4
� � � �

� a21s
2
1h

2
1

12
ð1� 2g1Þ

@4vki
@x4

�

� � � � a21s
2
1h

2
1g1

12
@4vk�1

i

@x4
� � � �

(12)

Assuming that,

k1 ¼ a21s
2
1

h21
, (13)

we have

ð1þ 2g1k1Þvkþ1
i ¼ g1k1ðvkþ1

i�1 þ vkþ1
iþ1 Þ þ ð�1� 2g1k1Þvk�1

i

þ ð2þ ð�2þ 4g1Þk1Þvki
þ ð1� 2g1Þk1ðvki�1 þ vkiþ1Þ
þ g1k1ðvk�1

i�1 þ vk�1
iþ1 Þ:

(14)

Therefore, we have the coefficients and source term
given by

ap1 ¼ 1þ 2g1k1, (15)

aw1 ¼ ae1 ¼ g1k1, (16)

bp1 ¼ ð�1� 2g1k1Þvk�1
i þ ð2þ ð�2þ 4g1Þk1Þvki

þ ð1� 2g1Þk1ðvki�1 þ vkiþ1Þ þ g1k1ðvk�1
i�1 þ vk�1

iþ1 Þ:
(17)
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In order to perform the iteration is necessary to
know the solution at two time-steps before, vki and
vk�1
i : To start the process, vk�1

i is given by the initial
setup and vki is given, as in Burden and Faires [24], by

vki ¼ ð1� k1Þf1ðxiÞ þ k1
2
f1ðxiþ1Þ þ k1

2
f1ðxi�1Þ þ s1g1ðxiÞ

þ Oðh21s21Þ:
(18)

2.3. Two-dimensional wave equation

The two-dimensional wave equation can be utilized to
model, for example, the problem of a vibrating rect-
angular membrane with fixed edges, in which the
intention is to find the displacement uðx, y, tÞ, with
independent variables 0 < x < lx and 0 < y < ly,
which represent the plane’s spatial coordinates, for the
time t> 0. Assume that a22 is a positive real number
a22 ¼ 1

V2
2
, where V2 is related to the superficial density

and local tension, we define the two-dimensional
wave equation [23] as

@2u
@t2

¼ a22
@2u
@x2

þ @2u
@y2

 !
, (19)

uðx, y, 0Þ ¼ f2ðx, yÞ, (20)

utðx, y, 0Þ ¼ g2ðx, yÞ, (21)

uðx, 0, tÞ ¼ uðx, ly, tÞ ¼ uð0, y, tÞ ¼ uðlx, y, tÞ ¼ 0,

t > 0

(22)

where f2ðx, yÞ is the initial setup, g2ðx, yÞ is the initial
speed, uðx, 0, tÞ, uðx, ly, tÞ, uð0, y, tÞ, and uðlx, y, tÞ rep-
resent the boundary conditions. In this case, the gen-
eral solution is built with the fundamental vibrational
frequencies that are given by varying m ¼
1, 2, 3, :::, n ¼ 1, 2, 3, :::, and it is given by

uðx, y, tÞ ¼
X1
m¼1

X1
n¼1

ðam, nw
1
m, nðx, y, tÞ þ bm, nz

1
m, nðx, y, tÞÞ,

(23)

where

w1
m, nðx, y, tÞ ¼ cos pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l2x
þ n2

l2y

s
t

0
@

1
A sin

mpx
lx

� �

sin
npy
ly

� �
,

(24)

z1m, nðx, y, tÞ ¼ sin pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l2x
þ n2

l2y

s
t

0
@

1
A sin

mpx
lx

� �

sin
npy
ly

� �
,

(25)

am, n ¼ 4
lxly

ð ly
0

ðlx
0
f2ðx, yÞ sin mpx

lx

� �
sin

npy
ly

� �
dxdy,

(26)

bm, n ¼ 4

pa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2y þ n2l2x

q ðly
0

ðlx
0
g2ðx, yÞ sin mpx

lx

� �

sin
npy
ly

� �
dxdy:

(27)

2.4. Discretization wave 2D

Considering the problem defined in Eqs. (19)–(22),
and a rectangular membrane of side L, that is, lx ¼
ly ¼ L, we define the size of each spatial element by
hx ¼ L

Nx
and hy ¼ L

Ny
, and a time increment by s2 ¼

tf
Nt
, where Nx, Ny, and Nt are the numbers of the spa-

tial and temporal intervals, respectively, with a time
tf > 0: By admitting an approximation vki, j for the
solution u, at a point of coordinates (xi, yj), with time
k, and utilizing central difference scheme, the two-
dimensional problem can be discretized with finite
difference methods, expanding the methodology
employed for the one-dimensional case. Thus, we
have

vk�1
i, j � 2vki, j þ vkþ1

i, j

s22
� s22
12

@4vi, j
@t4

� s42
360

@6vi, j
@t6

� s62
20160

@8vi, j
@t8

� � � � ¼

a22g2
ðvkþ1

i�1, j � 2vkþ1
i, j þ vkþ1

iþ1, jÞ
h2x

� h2x
12

@4vkþ1
i, j

@x4
� h4x
360

@6vkþ1
i, j

@x6
� h6x
20160

@8vkþ1
i, j

@x8
� � � �

 !

þa22ð1� 2g2Þ
ðvki�1, j � 2vki, j þ vkiþ1, jÞ

h2x
� h2x
12

@4vki, j
@x4

� h4x
360

@6vki, j
@x6

� h6x
20160

@8vki, j
@x8

� � � �
 !

þa22g2
ðvk�1

i�1, j � 2vk�1
i, j þ vk�1

iþ1, jÞ
h2x

� h2x
12

@4vk�1
i, j

@x4
� h4x
360

@6vk�1
i, j

@x6
� h6x
20160

@8vk�1
i, j

@x8
� � � �

 !

þa22g2
ðvkþ1

i, j�1 � 2vkþ1
i, j þ vkþ1

i, jþ1Þ
h2y

� h2y
12

@4vkþ1
i, j

@y4
� h4y
360

@6vkþ1
i, j

@y6
� h6y
20160

@8vkþ1
i, j

@y8
� � � �

 !

þa22ð1� 2g2Þ
ðvki, j�1 � 2vki, j þ vki, jþ1Þ

h2y
� h2y
12

@4vki, j
@y4

� h4y
360

@6vki, j
@y6

� h6y
20160

@8vki, j
@y8

� � � �
 !

þa22g2
ðvk�1

i:j�1 � 2vk�1
i, j þ vk�1

i, jþ1Þ
h2y

� h2y
12

@4vk�1
i, j

@y4
� h4y
360

@6vk�1
i, j

@y6
� h6y
20160

@8vk�1
i, j

@y8
� � � �

 !

(28)

Assuming h2 ¼ hx ¼ hy and rearranging the terms of
the previous equation, we obtain
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vk�1
i, j � 2vki, j þ vkþ1

i, j ¼ a22s
2
2

h22

h
ðvkþ1

i�1, j þ vkþ1
i, j�1

� 4vkþ1
i, j þ vkþ1

iþ1, j þ vkþ1
i, jþ1Þ

þ ð1� 2g2Þðvki�1, j þ vki, j�1 � 4vki, j þ vkiþ1, j þ vki, jþ1Þ
þ g2ðvk�1

i�1, j þ vk�1
i, j�1 � 4vk�1

i, j þ vk�1
iþ1, j þ vk�1

i, jþ1Þ
i
:

(29)

with truncation error order Oðh2xs22, h2ys22, s42Þ, given by

e2D ¼ þ s42
12

@4vi, j
@t4

þ � � � � a22s
2
2h

2
xg2

12

@4vkþ1
i, j

@x4
� � � �

� a22s
2
2h

2
x

12
ð1� 2g2Þ

@4vki, j
@x4

� � � �

� a22s
2
2h

2
xg2

12

@4vk�1
i, j

@x4
� � � � � a22s

2
2h

2
yg2

12

@4vkþ1
i, j

@y4

� � � � � a22s
2
2h

2
y

12
ð1� 2g2Þ

@4vki, j
@y4

� � � �

� a22s
2
2h

2
yg2

12

@4vk�1
i, j

@y4
� � � �

(30)

Assuming that,

k2 ¼ a22s
2
2

h22
, (31)

we have

ð1þ 4g2k2Þvkþ1
i, j ¼ g2k2ðvkþ1

i�1, j þ vkþ1
iþ1, j þ vkþ1

i, j�1 þ vkþ1
i, jþ1Þ

þ k2
h
ð1� 2g2Þðvki�1, j þ vkiþ1, j þ vki, j�1

þ vki, jþ1Þ þ g2ðvk�1
i�1, j þ vk�1

iþ1, j þ vk�1
i, j�1 þ vk�1

i, jþ1Þ
i

þ 2� 4k2 þ 8g2k2½ �vki, j þ �1� 4g2k2½ �vk�1
i, j ,

(32)

Therefore, we obtain the coefficients and the source
term given by

ap2 ¼ 1þ 4g2k2, (33)

aw2 ¼ ae2 ¼ as2 ¼ an2 ¼ g2k2, (34)

bp2 ¼ k2
h
ð1� 2g2Þðvki�1, j þ vkiþ1, j þ vki, j�1 þ vki, jþ1Þ

þ g2ðvk�1
i�1, j þ vk�1

iþ1, j þ vk�1
i, j�1 þ vk�1

i, jþ1Þ�þ
ð2� 4k2 þ 8g2k2Þvki, j þ ð�1� 4g2k2Þvk�1

i, j :

(35)

In order to compute vkþ1
i, j , it is necessary to know the

solutions of the two previous time steps, vki, j and vk�1
i, j :

To initiate the process, vk�1
i, j is given by the initial

setup and vki, j is calculated with central differencing
scheme by Eq. (36)

vki, j ¼ ð1� k2Þf2ðxi, yjÞ

þ k2
2
½f2ðxi, yjþ1Þ þ f2ðxi, yj�1Þ þ f2ðxi�1, yjÞ

þ f2ðxiþ1, yjÞ� þ s2g2ðxi, yjÞ þ Oðh22Þ: (36)

3. Multigrid method

The multigrid method is employed to accelerate the
convergence when obtaining the solution of the result-
ing system of equations since it is possible to smooth
oscillatory components at each grid when using a set
of grids [14] and [25]. This technique is commonly
used by researchers when solving a system of equa-
tions of the type Au ¼ f, which usually demands a
high computational cost [26–29]. In this case, we
define rit ¼ f � Avit , as being the residual generated
by v in the iteration it, where v is an approximation.

The multigrid deals with a basic iterative method,
called smoother, to smooth high and low-frequency
errors. This is possible due to the use of several grids,
since components that are smooth at finer grids
become more oscillatory at coarser grids [14]
and [30].

The order in which the different grids are visited is
called the multigrid cycle. In this work, we use the
V-cycle, shown in more detail in the sequence, and
proposed in the works of Briggs et al. [16] and
Trottenberg et al. [14]. In the V-cycle, the equation is
smoothed �1 times (pre-smoothing) at the finer grid;
hence, the residual is transferred to the very next
coarser grid by means of restriction operators I2hh ,
with full-weighting for the 1D problem and half-
weighting for the 2D problem, represented respect-
ively in Eqs. (37) and (38):

r2hðxiÞ ¼ I2hh rhðxiÞ ¼ 1
4
2rhðxiÞ þ rhðxiþ1Þ þ rhðxi�1Þ½ �,

(37)

Figure 1. Coarsening ratio.

48 M. F. MALACARNE ET AL.



r2hðxi, yjÞ ¼ I2hh rhðxi, yjÞ ¼ 1
8
½4rhðxi, yjÞ

þ rhðxiþ1, yjÞ þ rhðxi�1, yjÞ þ rhðxi, yjþ1Þ
þ rhðxi, yj�1Þ�,

(38)

where rh and r2h are, respectively, the residuals of the
fine and coarse grids. In this work, we use the stand-
ard coarsening ratio, q¼ 2 [14], given by q ¼ H=h,
where h and H represent the size of the fine grid and
its immediately coarser grid, respectively. This type of
coarsening is depicted in Figure 1, for the two-dimen-
sional problem. This process is repeated until the
coarsest grid is reached, and thus the problem
is solved.

Then, the prolongation of the corrections is per-
formed, using linear interpolation operators Ih2h in the
1D problem and bilinear interpolation operations in
the 2D problem, given respectively by Eqs. (39) and
(40):

vhðxiÞ ¼ Ih2hvhðxiÞ ¼
1
2
v2hðxi�1Þ þ v2hðxiþ1Þ½ �, for � ,

v2hðxiÞ, for . ,

8<
:

(39)

vhðxi, yjÞ ¼ Ih2hvhðxi, yjÞ

¼

1
2

v2hðxi�1, yjÞ þ v2hðxiþ1, yjÞ
� �

, for �,

1
2

v2hðxi, yj�1Þ þ v2hðxi, yjþ1Þ
� �

, for / ,

1
4
½v2hðxi�1, yjÞ þ v2hðxiþ1, yjÞþ

v2hðxi, yj�1Þ þ v2hðxi, yjþ1Þ�, for � ,
v2hðxi, yjÞ, for � ,

8>>>>>>>>>>><
>>>>>>>>>>>:

(40)

Figure 2 shows images of the interpolators of Eqs.
(39) and (40) [14], where the points . and � are seen
on fine Xh and coarse X2h grids, whereas the points
�,�, / , and � are seen only on the fine grid Xh:

The solution is then corrected and smoothed �2
times (post-smoothing), and the process is repeated
until the finest grid Xh is reached, where the solution
is smoothed one more time [16] and [31]. This pro-
cess is depicted in Figure 3.

The V-cycle is repeated until the stop criterion is
met. This approach allows the iterative process of the
multigrid method to always smooth oscillatory com-
ponents [32]. We adopt �1 ¼ �2 ¼ 2 in this work, as
according to Dehgan and Mohebbi [7], this choice
yields positive results for the wave equation.

4. Results

In this section, we discuss the code verification techniques
based on the numerical simulations and also on a posteri-
ori analysis of the results found with the multigrid and
singlegrid formulations, using Gauss–Seidel as smoother
and lexicographical order [33]. Tests were performed in
an Intel Core i3 1.5GHz computer, 4GB Ram, 64-bits,
Windows 10 operating system, and double precision.

The 1D problem, modeled by Eqs. (1)–(4), is solved
by admitting a1 ¼ 2, initial setup f1ðxÞ ¼ sin ðpxÞ and
initial speed g1ðxÞ ¼ 0: We adopt the same number of
points in both spatial and temporal discretization Nx

¼ Nt, with s1 ¼ h1, parameter g ¼ 0:5, and final time
of tf ¼ 1:0s: The one-dimensional problem of a
vibrating string with fixed ends is depicted in Figure 4
for a few values of t.

The 2D problem, modeled by Eqs. (19)–(22), is
solved by admitting a2 ¼ 2, initial setup f2ðx, yÞ ¼
sin ðpxÞ sin ðpyÞ and initial speed g2ðx, yÞ ¼ 0: We
adopt the same number of points in both spatial and
temporal discretization Nx ¼ Ny ¼ Nt , with s2 ¼ hx ¼
hy, parameter g ¼ 0:5, and final time tf ¼ 1:0s: The
behavior of a rectangular membrane with fixed edges
is depicted in Figure 5 for a few values of t.

4.1. Discretization error

The discretization error is associated with the size of
the components from the grid which is utilized. For

Figure 2. Linear and bilinear interpolation.

Figure 3. Multigrid V-cycle.
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Figure 4. Vibrating string with fixed ends.

Figure 5. Behavior of a membrane with fixed edges versus time.
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the purpose of verifying the behavior of this type of
error, truncation, iterative, and roundoff errors are
considered inherent. Table 1 presents the infinity
norm of the numerical errors. From now on, the
notation used will be: N is the number of points on
the directions x, y, and t; E is the truncation error; SG
and MG represent the singlegrid and multigrid meth-
ods, respectively; and 1D and 2D are the dimensions
of the problem. In the first column, the number of
spatial points for the 1D problem is N, and for the 2D
case is N2.

We verified a desired characteristic in both 1D and
2D approximations, the discretization error decreases
as the grid is refined. Taking into account that by
adopting a certain value of N, regardless of the
method used, singlegrid or multigrid, the discret-
ization error is virtually the same, given that the prob-
lem was solved up to the rounding error.

4.2. Effective and apparent orders

The order of approximation can be verified by utiliz-
ing the effective order PE and apparent order PU [7]
and [34]. We apply the Richardson estimator based
on the apparent order of the numerical error, given
by

PU ¼
log /2�/3

/1�/2

� �
log ðqÞ , (41)

in which /1,/2, and /3 indicate, respectively, solu-
tions on the fine, coarse, and super coarse grids. Once
the analytical solution is found, the PE is computed by

PE ¼
log Eð/2Þ

Eð/1Þ
� �

log ðqÞ , (42)

in which Eð/2Þ and Eð/1Þ represent the errors on the
coarse and fine grids, respectively. Figure 6 shows the
values of the apparent and effective orders for differ-
ent grids for the 1D and 2D wave equations, with
s1 ¼ h1 and s2 ¼ hx ¼ hy:

Figure 6 shows that PU and PE tend to 4.0, such as
presented in Cuminato and Meneguette [13]. Thus,
the model presented in Eqs. (10) and (18), both

fourth-order, produce a fourth-order method for the
1D case, a desired characteristic in approximation
methods. For the 2D case, in Figure 7, PU and PE
tend to 2.0, in other words, although Eq. (28) has
fourth order, Eq. (28) has second order. This combin-
ation produces a second-order method. These results
are corroborated with data from Table 1.

For example, in case 1D, for N ¼ 27 þ 1 points, the
error is 3:4245672E� 04 and by decreasing the size of
h1 in a half, that is, N ¼ 28 þ 1 points, the new error
is 2:1705113E� 05, reducing about 16 times. But for
2D cases, by decreasing the elements size in a half,
the new error reducing about 4 times.

4.3. Orders of complexity

According to Burden and Faires [24], and with the
results of the computational time tcpu, we can make a
geometrical (or nonlinear) fit in order to assess the
complexity of the algorithm utilized, where

Table 1. Discretization error for different grids.
N jjESG�1Djj1 jjEMG�1Djj1 jjESG�2Djj1 jjEMG�2Djj1
23 þ 12.2247690Eþ 002.2247690Eþ 001.23215155Eþ 001.23215155Eþ 00
24 þ 17.3045048E� 017.3045048E� 013.42788395E� 013.42788395E� 01
25 þ 17.4352845E� 027.4352845E� 027.83783302E� 027.83783302E� 02
26 þ 15.2713778E� 035.2713778E� 031.88555766E� 021.88555766E� 02
27 þ 13.4245672E� 043.4245672E� 044.67832780E� 034.67832780E� 03
28 þ 12.1705113E� 052.1705113E� 051.16979496E� 031.16979494E� 03
29 þ 11.3643499E� 061.3643496E� 062.92791365E� 042.92791376E� 04

Figure 6. Apparent and effective orders for the 1D problem.

Figure 7. Apparent and effective orders for the 2D problem.
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tcpu ¼ c:Mp, (43)

in which c is the coefficient of the method, p is the
order of complexity of the solver related to the inclin-
ation of the correction curve and M is the number of
variables of the problem. Theoretically, Trottenberg
et al. [14], p must be close to 1 for the multigrid case,
showing its linear behavior. In Tables 2 and 3, we pre-
sent the results of these parameters for the multigrid
and singlegrid methods, for different values of k,
given by Eqs. (13) and (31), which contain informa-
tion on physical aspects as a, and on numerical
aspects as h and s. From here on we will use
jjritjj1=jjr0jj1 � 10�9 as a stopping criterion, where
r0 is residual in initial estimate.

We found a similarity between the orders of com-
plexity of the 1D and 2D cases, as in both cases, as k

increases, pMG shows values close to 1, and pSG
increases and tends to 2, which proves that the com-
plexity of the multigrid method presented is linear.

4.4. Convergence factor

In order to define which interval and variable values to
use in the computations, we considered the parameter k
and the convergence factor q, where q ¼
jjritjj1=jjrit�1jj1: According to Horton and Vandewalle
[35] and Thole and Trottenberg [36], k can be consid-
ered as a measure of the anisotropy degree at the dis-
cretized operator in a given grid, and such anisotropy
can affect the performance of the solver. Since k
depends on the increase in time and space adopted in
the discretization, and also on the wave propagation
speed, we have a measure of physical and numerical
anisotropy for the wave equation. This approach can
also be used to find intervals of k, for which multigrid
and singlegrid are more efficient. This indicator is cal-
culated for different grids, for the 1D and 2D problems,
and it is shown in Figures 8 and 9, respectively.

In both cases, 1D and 2D, and for both methods,
SG and MG, for values of log ðkÞ < 0, we have q 	 0,
which implies a high efficiency of both methods. As
log ðkÞ increases, the SG shows values of q 	 1 for
both the 1D and 2D cases, that is, SG is inefficient at
this interval [32]. At this same interval, that is,
log ðkÞ > 0, the convergence factor of the MG method
for the 1D problem shows a value of q 	 0:45: For
the 2D problem, the convergence factor of the MG
method remains small, q 	 0:1: Therefore, the multi-
grid method proposed for the wave equation is much

Table 2. Parameters of the geometrical fit for the 1D
wave equation.
k cMG pMG cSG pSG
100 1.00E� 05 0.8941 1.00E� 05 0.9723
10 1 7.00E� 06 0.9559 2.00E� 05 1.0364
10 2 2.00E� 05 0.9249 4.00E� 05 1.1175
103 3.00E� 05 0.9161 5.00E� 05 1.2558
104 4.00E� 05 0.9012 7.00E� 06 1.5312
105 5.00E� 05 0.9421 3.00E� 06 1.7894

Table 3. Parameters of the geometrical fit for the 2D
wave equation.
k cMG pMG cSG pSG
100 7.00E� 06 0.9518 1.00E� 05 0.9615
10 1 1.00E� 05 0.9438 5.00E� 05 0.9922
10 2 2.00E� 05 0.9221 1.00E� 05 1.2251
103 2.00E� 05 0.9341 7.00E� 07 1.5693
104 2.00E� 05 0.9478 2.00E� 06 1.6028
105 2.00E� 05 1.0071 4.00E� 07 1.7752

Figure 8. Convergence factor for different grids and values of k for 1D problem.
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more efficient for such values of k. Furthermore, the
values of q not depend on the value of k in finer
grids, showing the robustness of the method.

4.5. Speed-up

In this subsection, we found the relationship between
the computational time of the singlegrid (tcpuSG) and
multigrid (tcpuMG) and the increase in the number of
points, where the speed-up ¼ tcpuSG=tcpuMG: See

Figures 10 and 11, for the 1D and 2D problems,
respectively, for different values of k.

We noticed that for both cases, 1D and 2D, the
speed-up increases for higher values of N, which is
desirable, and significantly increases for higher values
of k. In the 2D case, for example, for k ¼ 103 with
N¼ 129, that is, with 2,048,383 unknowns, the MG
method has a tcpuMG ¼ 16:4s and SG tcpuMG ¼ 5291:8s:
The multigrid method solves the problem approxi-
mately 322 times faster.

Figure 9. Convergence factor for different grids and values of k for 2D problem.

Figure 10. Speed-up for 1D problem.
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4.6. Comments

The methodology presented here consists of using the
time-stepping with multigrid method to solve the wave
equation discretized by finite difference method. Similar
results with the same efficiency can be obtained when
considering external forces that operate on the problem,
for example for the 1D case, just insert the term F(x, t)
on the right side of Eq. (1), because this causes changes
only in the source term of the system of equations gen-
erated and according to Trottenberg et al. [14] it does
not change the performance of the method.

There exist several works available in the literature
showing the efficiency of the utilization of the time-step-
ping method combined with multigrid to solve EDPs,
for example, in solving the Pennes bioheat equation in
Stroher and Santiago [37], used to diagnose tumors non-
invasively. The heat equation is also solved by combining
the time-stepping method with multigrid in Lent [18].
In the work by Kumar et al. [38], a method to approxi-
mate the spread of uncertainties for the Richards equa-
tion is presented. It is also possible to verify the efficiency
when using the time-stepping method with multigrid in
the works of Gaspar et al. [39] and Luo et al. [40], where
poroelasticity problems are solved numerically.

5. Final remarks

We have presented a scheme for solving one- and
two-dimensional wave propagation problems, with
discretization by the finite difference method,
weighted by a parameter g at different time stages.

We have obtained an implicit method of fourth-order
for the one-dimensional problem and of second-order
for the two-dimensional case, whenever s1 ¼ h1 and
s2 ¼ hx ¼ hy: By utilizing the multigrid method with
the lexicographical Gauss–Seidel solver in order to
solve the resulting system of equations, we found dis-
cretization errors close to what we expected, at a
lower computational time and linear complexity. The
singlegrid method shows values of q very close to 1
when the value of k is high, which implies a slow and
less efficient process for this problem. On the other
hand, the multigrid method proved to be very advan-
tageous for this type of problem, because it has pre-
sented good convergence factors and showed
robustness for the values of k analyzed.
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