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ABSTRACT 

Several Engineering problems are modeled computationally, these simulations involve 

large systems, which are commonly difficult to solve. This paper deals with the 

simulation of one-dimensional waves, where the system resulting from the discretization 

by the Finite Difference Method is solved using the Multigrid Method with the 

conventional Gauss-Seidel solver, in order to decrease the computational time. 

Temporal discretization using the Time-Stepping method, where the system of 

equations is solved at each time step sequentially.  

 

Key-words: Hyperbolic equations, Multigrid, computational simulations and Time-

Stepping.  

 

RESUMO 

Vários problemas de Engenharia são modelados computacionalmente, estas simulações 

envolvem grandes sistemas, que são normalmente difíceis de resolver. Este artigo trata 

da simulação de ondas unidimensionais, onde o sistema resultante da discretização pelo 

Método da Diferença Finita é resolvido usando o Método Multigrid com o solucionador 

convencional Gauss-Seidel, a fim de diminuir o tempo computacional. Discretização 
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temporal usando o método TimeStepping, onde o sistema de equações é resolvido em 

cada passo sequencialmente.  

 

Palavras-chave: Equações hiperbólicas, Multigrid, simulações computacionais e Time-

Stepping.  

 

 

1 INTRODUCTION  

There are several Engineering problems modeled by differential equations, 

which can be classified as elliptical, parabolic or hyperboilic, in which it is generally 

not possible to obtain an analytical solution. Therefore, approximate methods are the 

main strategy Kohut et al. [29]. According to Dehghan and Dehghan and Mohebbi [1], 

hyperbolic partial differential equations (PDE) model several physical phenomena, from 

macrocosmic models, such as the vibration of structures, to microscopic models, which 

are used in atomic physics. Thus, Engineering problems involving this type of equation 

are recurrent in the literature. Some of these applications are found in Devi et al. [2] in 

the telegraphic equation De Sterck et al. [3] in systems of equations for advection and 

linear elasticity, Dehghan and Mohebbi [1] in wave propagation in the linear case, 

Rincon and Quintino [4] in the non-linear case, Avalos and Lasiecka [5] in applications 

in structural acoustics, Metaxas and Meredith [6] in the propagation of electric charges, 

and also in Bailly and Juve [7] in sound waves. 

In this context, an approximate solution for the wave equation is presented, 

which consists of a hyperbolic PDE, with several applications that are linked to the 

propagation of different types of mechanical and electromagnetic waves, such as sound 

waves, vibration of membranes, strings, sea waves, geological prospecting, x-rays, 

radar, microwaves, among others. According to Cuminato and Meneguette [8], 

hyperbolic equations differ from parabolic and elliptical equations, since their solution 

is often less smooth than the problem data, so the 

discontinuities are carried without smoothing, which may cause the formation of 

singularities, even with wellbehaved 

initial data.  

This work presents computational simulations of the one-dimensional wave 

equation (1D). The domain discretization is performed using the Finite Difference 

Method (FDM), presented by Cuminato and Meneguette [8], which results in a system 

of implicit equations, which when solved produces a fourth order method. Some of the 

variations in the approach to the wave equation are found in the works of Gopal et al. 
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[9] on polar coordinates, Melo [10] on elastic waves, and Brandt and Livishits [11] on 

stationary form. 

The approximate solution to the wave equation is obtained by sweeping time 

with the Time-Stepping Method (TS). In this method, the discretized system in the 

spatial direction is solved in each time step until reaching a stopping criterion. The 

process is repeated until the final time step, using the solution in the previous time step 

as an initial estimate, Burden and Faires [12], Lent [13]. The Multigrid Method (MG) is 

used to accelerate the convergence of the system of equations in each time step, since it 

allows the smoothing of the oscillatory modes when using a set of meshes, Trottenberg 

et al. [14], Brandt and Livne [15]. 

 

2 Mathematical and Numerical Model 

The 1D vibration problem of a string fixed at its ends is summarized in finding 

the displacement u(x;  t) with the independent variables x and t respectively 

representing position and time. Assuming a positive scalar  α2 = 1/V², such that, where 

V is related to the linear density and tension in the string, we define the wave equation, 

Olver [16], as 

 

 

 

where f(x) is the initial string configuration, g(x) is the initial velocity, u(0;  t) and 

u(1;  t) are dirichlet boundary conditions. Given the above, the analytical solution of the 

problem is given by 
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2.1 DISCRETIZATION 1D 

Consider the problem defined by the eqs. (1) to (4). The size of each spatial 

element is defined by h = L/Nx  and an increase in time τ = tf/Nt, where Nx  >  0 and 

Nt  >  0, respectively, the number of spatial and temporal intervals, with final time tf  > 

0 and string length L. Admitting an approximation v for the solution u, with xi  =  i. h 

and tk = k. τ, for the node i and the time k. Then the problem can be discretized by 

using the FDM. 

 

 

 

where η is a parameter of the method. By adopting  η > 0,25 > we have an 

unconditionally stable approach, Cuminato and Meneguette [8]. In this work, η = 0,5  

was adopted, as it was empirically verified that this choice reduces discretization error 

and computational time. By reordering the terms of eq. (6), we have 

 

 

 

or still, assuming that λ =  ατ/h, we obtain 

 

 

 

thus, the system of linear equations generated has its coefficients and source term given 

by 
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In order to calculate vi
k+1 it is necessary to know the solution in two previous time steps 

vi
kand vi

k−1. To start the process, vi
k−1 i is given by the initial configuration and vi

k is 

given in Burden and Faires [12] by 

 

 

 

3 Multigrid Method 

The Multigrid method is a technique commonly adopted by a number of 

researchers when solving Au =  f equation systems, which regularly require high 

computational cost, Fedorenko [17] [18], Franco et al. [19], Wesseling [20], Pinto et al. 

[21], Malacarne et al. [30]. The Multigrid uses a basic iterative method named solver to 

smooth high and low frequency errors. This is possible due to the use of several meshes, 

as some of the modes that are smooth in fine meshes become oscillatory in coarse 

meshes,Trottenberg et al. [14]. 

In this work, the V-cycle is used to go through the grids, Briggs et al. [22]. An 

equation is smoothed v1 times (pre-smoothing) in the fine grid. Then, its residue is 

restricted to the coarse grid with the restriction operator by full weighting, in which the 

residual equation is smoothed. The process is repeated until reaching the coarsest grid, 

where the problem is solved. In this case, a standard coarsening ratio is used, that is, 

q =  2. After that, the ascent process begins and the residual equation solution is 

prolonged by using a linear interpolation operator. The solution is then corrected and 

smoothed v2 times (post-smoothing), and the process is repeated until reaching the finest 

grid h, Briggs et al [22], Oliveira et al. [23]. This process is illustrated by Fig. 1. 

 
Figure 1. Multigrid V-cycle 
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This approach allows the iterative process of the Multigrid method to always act 

on the oscillating componentes of the errors, Franco et al. [24]. In this work v1 = v2 =

2 was adopted, as according to Dehghan and Mohebbi [1] this is a choice that produces 

satisfactory results to the wave equation. 

 

4 RESULTS 

This section presents code verification techniques based on numerical 

simulations and a posteriori analysis of the results obtained by using the Multigrid and 

Singlegrid (SG), with the Gauss-Seidel solver in lexicographical ordering, Adms et al. 

[25]. The problem of wave propagation on a string, modeled by the eqs. (1) to (4) is 

solved by admitting α = 2, with the initial configuration f(x)  =  sin(πx) and initial 

speed g(x)  =  0. The tests were performed on a computer with an Intel Core i3 1:5 GHz 

processor, 4 GB of RAM, and 64  bit Windows 10 

operating system. 

 

4.1 DISCRETIZATION ERROR 

The same number of points is adopted in the spatial and temporal discretization 

N =  Nx  =  Nt, parameter η = 0,5, time tf  =  1,0 s, with double precision and the stop 

criterion based on rounding error in order to minimize iteration error. In order to verify 

the behavior of discretization errors, the infinity norms of the errors, see Burden and 

Faires [12], with Error = |u − v| are presented in Fig. 2. 

 
Figure 2. Discretization error for Singlegrid and Multigrid methods versus N. 
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4.2 EFFECTIVE AND APPARENT ORDERS 

Numerical solutions can be verified using the effective order PE and the apparent 

order PU, Dehghan and Mohebbi [1], Anunciacão et al. [26]. Richardson’s estimator is 

also used based on the apparent order of the numerical error, given by. 

 

 

 

where ϕ1, ϕ2 and ϕ3 respectively indicate the solutions in the fine, coarse and extra 

coarse grids, for point x = 0:5. When the analytical solution is known, PE is calculated 

by 

 

 

 

where Error(ϕ2) and Error(ϕ1) respectively represent the errors in the coarse and fine 

grids in the x =  0.5. In Fig.3 depicts the values of the effective and apparent orders for 

different grids. 

 

Figure 3. Effective and apparent orders. 
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The Fig. 3 shows that PU and PE tend to 4,0. Therefore, the model presented in 

eqs. (6) to (11) generates a high order method, which is a desired characteristic in 

approximate methods. By refining the mesh at a q =  2 coarsening rate the 

discretization error is reduced 16 times. 

 

4.3 COMPLEXITY ORDER 

According to Burden and Faires [12], by taking into account the results of the 

computational tcpu it is possible to perform a geometric (or non-linear) fit in order to 

verify the complexity of the algorithm used, where 

 

 

 

and c is the coefficient related to the method, p represents the order of complexity of the 

solver associated with the slope of the fit curve, and N is the dimension of the problem. 

Theoretically, according to Trottenberg et al. [14], p must be close to the unit when 

employing the Multigrid method, indicating its linear behavior. Table 1 shows the 

results of these parameters for different values of λ in Singlegrid and Multigrid. 

 
Table 1. Parameters of the geometric fit 

 
 

It can be seen that as λ increases, p of Singlegrid presents values close to 2 and p of 

Multigrid tends to 1. 
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4.4 CONVERGENCE FATOR 

In order to verify which intervals and values of the variables were used in the 

calculations, the parameter λ and the convergence factor ρ were considered, with  ρ =

||res(it)||/||res(it − 1)|| , with = ||res(it)|| the infinity norm of residue in iteration it, 

see Briggs et al. [22]. According to Horton and Vandewalle [27], Thole 

and Trottenberg [28], λ can be considered as a measure of the degree of anisotropy in 

the operator discretized in a given mesh. Such anisotropy can affect the performance of 

solvers. This approach can also be used to find the intervals of λ, where Multigrid and 

Singlegrid are most efficient. This indicator is calculated for different meshes, 

as shown in Fig 4. 

 
Figure 4. Convergence fator. 

 
 

It can be verified that for log(λ) values inferior to 0, both Multigrid and 

Singlegrid present small values of ρ, which implies a high convergence. As log(λ) 

becomes greater than 0, Singlegrid presents ρ values close to 1, that is, it is inefficient 

in this interval, Franco et al. [24]. However, the convergence factor of the Multigrid 

presents ρ values close to 0.45, making it more efficient. 

It is also observed that for all the parameters that compose α, the Multigrid 

method presents values of the convergence factor ρ inferior to 0.5. Therefore, this 

method can be considered robust for the solution of the wave equation. 
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4.5 SPEED-UP 

The ratio between the computational time of the Singlegrid (tcpuSG) and that of 

the Multigrid (tcpuMG) is given by Speed − up =  tcpuSG/tcpuMG, see in Fig. 5. 

 
Figure 5. Ratio between the tcpu of the Multigrid and Singlegrid methods 

 
 

It is noted that tcpuMG is lower than tcpuSG and that the Speed-up increases considerably 

for large values of λ. For instance, for λ = 104 in a mesh with N =  2049, there is a 

tcpuMG  =  30.1 s and tcpuSG  =  65977.3 s, that is, Speed − up =  2191.9. 

 

5 CONCLUSIONS 

When solving the 1D problem of wave propagation on a string, with 

discretization given by the eqs. (9) to (11), there is a fourth order scheme confirmed by 

the orders PU and PE. When solving the resulting equation system with the Singlegrid 

and Multigrid methods with the lexicographic Gauss-Seidel solver, discretization 

errors close to the analytical solution may be found. By analyzing the complexity, 

convergence factors and the computational time of the Multigrid and Singlegrid 

methods, it can be said that the use of the Multigrid is more appropriate in cases where 

the problem has log(λ)  >  0, whereas the Singlegrid is recommended for cases in which 

log(λ)  <  0. Thus, a robust algorithm is generated for the solution of the wave equation, 

regardless of the parameters adopted. It is suggested that further studies extend the 

approach proposed in this work to other 

hyperbolic problems. 
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