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Abstract: This paper seeks to develop an efficient multigrid algorithm for
solving the Burgers problem with the use of non-orthogonal structured curvi-
linear grids in L-shaped geometry. For this, the differential equations were
discretized by Finite Volume Method (FVM) with second-order approxima-
tion scheme and deferred correction. Moreover, the algebraic method and
the differential method were used to generate the non-orthogonal structured
curvilinear grids. Furthermore, the influence of someparameters of geometric
multigrid method, as well as lexicographical Gauss–Seidel (Lex-GS), η-line
Gauss–Seidel (η-line-GS), Modified Strongly Implicit (MSI) and modified
incomplete LU decomposition (MILU) solvers on the Central Processing
Unit (CPU) time was investigated. Therefore, several parameters of multi-
grid method and solvers were tested for the problem, with the use of non-
orthogonal structured curvilinear grids and multigrid method, resulting in an
algorithm with the combination that achieved the best results and CPU time.
The geometric multigrid method with Full Approximation Scheme (FAS),
V-cycle and standard coarsening ratio for this problem were utilized. This
article shows how to calculate the coordinates transformation metrics in the
coarser grids. Results show that the MSI and MILU solvers are the most
efficient. Moreover, the MSI solver is faster than MILU for both grids gener-
ators; and the solutions are more accurate for the Burgers problem with grids
generated using elliptic equations.

Keywords: Computational fluid dynamics; finite volume method; Burgers’
equation; geometric multigrid; non-orthogonal curvilinear grids

1 Introduction

Many Engineering problems concern complex geometries, in which the use of Cartesian,
cylindrical or spherical coordinate systems is not practical or appropriate, and discretization on
structured curvilinear or unstructured grids is preferred.
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Structured curvilinear grids are based on the mapping of the physical domain over a simple
shape computational domain, for instance, a rectangle [1]. The use of such grids simplifies
the application of boundary conditions, since the conditions existing on the boundaries of the
physical plane are transferred exactly to the boundaries of the modified plane, and thus do not
need approximation. With this option, a system of global equations is achieved and it is possible
to write and discretize differential equations in this new system.

The discretization of mathematical models by the Finite Volume Method (FVM) [2] approx-
imates a system of differential equations through a system of algebraic equations of the form

Aφ= b, (1)

where A represents the matrix of coefficients, φ is the vector of unknowns and b is the vector of
independent terms. The FVM can be applied to any type of grid, in complex geometries and in
different coordinate systems [3]. The attractive feature of this method is that the method satisfies
the integral conservation of the quantities, such as mass, amount of linear movement and energy
for any group of control volumes and, consequently, for the entire calculation domain [2].

The numerical solution methods of the system of algebraic equations given by Eq. (1) can
be classified as direct or iterative [4]. Since the generated system of algebraic equation is sparse
and large-scale, direct methods are not suitable due to their high computational cost. For this
reason, we chose to work with iterative methods (solvers). Solvers are efficient in relaxing high-
frequency (oscillatory) components during the first few iterations in refined grids. However, after
some iterations, the process becomes slow, what means there is a predominance of low-frequency
(smooth) modes [5,6].

Multigrid is an efficient method to accelerate solvers’ convergence rate [5–7]. This method
sweeps, during the iterative process, several grids of different refinement levels. According to
Trottenberg et al. [6], smooth modes of the error become more oscillatory in coarser grids.
Because of this, the different components of the error are efficiently smoothed, what accelerates
the convergence of the iterative process used to solve the system given by Eq. (1).

Several studies concern the use of the multigrid method (MG) in problems involving a system
of curvilinear coordinates. Smith et al. [8] presented a MG algorithm in order to accelerate a
three-dimensional Navier–Stokes equations on general curvilinear grids. The authors calculated
the metrics of the coarser grid while restricting the metrics of the adjacent finer grid. Moreover,
they presented the convergence rate, computational times and performance indexes of the MG
for several Reynolds numbers in highly curved ducts, with Full Approximation Scheme (FAS)
combined with Full Multigrid (FMG).

Oosterlee et al. [9] found benchmark solutions for Navier–Stokes equations for incompressible
flows, in steady state, in L-shaped domain, with systems of general curvilinear coordinates. The
discretized system was solved using the MG with FAS, F-cycle, number of relaxations performed
at the restriction and prolongation step (pre- and post-smoothing) equals to 1 and maximum
number of levels.

Trottenberg et al. [6] stated that the choice of the components of the MG, such as solver,
number of relaxations and type of cycle as well as restriction and prolongation operators, can
strongly influence the convergence rate of the algorithm. According to Ferziger et al. [3], in the
general context of the MG, many parameters can be chosen more or less arbitrarily, and the
convergence rate and CPU time depend on these choices.



CMES, 2020, vol.125, no.3 1063

Li et al. [10] studied Navier–Stokes equations for two-dimensional flow of incompressible fluid
as well as heat transfer in parallelogrammic, trapezoidal and sine-shaped cavities. The authors
used FVM to discretize equations with collocated grid arrangement of the variables to solve
physical problems in grids with 1024 × 1024 volumes. The system of algebraic equations was
solved using the MG with FAS, V-cycle, and Strongly Implicit Procedure (SIP) solver as well as
the SIMPLE method to calculate the pressure-velocity coupling. They presented numerical results
for the problem of lid-driven cavity in parallelogrammic cavity and Reynolds numbers of 100 and
5000, more accurate than the solutions presented by [11]. Moreover, they presented benchmark
solutions for natural and mixed-convection problems.

Two-dimensional Burgers’ equations are regarded as one of the important models in the
study of fluid flows. These equations have many applications, which go from cosmology to traffic
modeling [12]. Ferm et al. [13], Zhang et al. [14], Neveu et al. [15] and Santiago et al. [16] studied
the problem of Burgers’ equations with the aim of improving the convergence of the MG. All
of the authors used orthogonal structured grids. Among the studies found on MG applied to
Burgers’ equations, only a few aim at improving the convergence of the method by means of
reducing the CPU time, and even less are systematic studies of the parameters of the MG.

In this paper, our goal is to systematically analyze some parameters of the geometric
MG aimed at developing an efficient code for the problem of two-dimensional Burgers’ equa-
tions, using systems of general curvilinear coordinates. In order to generate the non-orthogonal
structured curvilinear grids, algebraic and differential methods were used [17]. Equations were dis-
cretized by FVM with Central Difference Scheme (CDS). The system of algebraic equations was
solved with the solvers Lex-GS, η-line-GS, MILU and MSI. The metrics of the transformation
and of the residual were restricted in order to solve the equations with curvilinear grids [8].

This paper is organized as follow: Section 2 presents the mathematical model in Cartesian and
curvilinear coordinates; the generation of the coordinate system is shown in Section 3; Section
4 details the numerical model; Section 5 depicts the resolution methods for the system of linear
equations; the MG is presented in Section 6; Section 7 presents the calculation of transformation
metrics; Section 8 shows the results and discussion; and, finally, the conclusion is presented
in Section 9.

2 Mathematical Model

Considering constant properties, steady state and Cartesian coordinates, the two-dimensional
Burgers’ equations are written dimensionless as

∂u2

∂x
+ ∂uv
∂y
=−∂p

∂x
+ 1

Re

(
∂2u
∂x2
+ ∂

2u
∂y2

)
(2)

and

∂uv
∂x
+ ∂v

2

∂y
=−∂p

∂y
+ 1

Re

(
∂2v
∂x2
+ ∂

2v
∂y2

)
−S (x,y,Re) , (3)

where p stands as the static pressure, u and v are the velocity components on the coordinate
directions x and y, respectively; and Re is the Reynolds number.
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The source term S(x, y, Re) and the field pressure p are, respectively,

S (x,y,Re= 1)= 1
2
f 2 (x)

[
g (y)g′′′ (y)− g′ (y)g′′ (y)]+ [f ′ (x)]2 g (y)g′ (y)− f ′′ (x) f (x)g (y)g′ (y)

+ 2f ′ (x)g′′ (y)+ giv (y)F (x)+ f ′′′ (x)g (y) ,
and

p (x,y,Re= 1)=−1
2
f 2 (x)

[
g′ (y)

]2+ 1
2
f 2 (x)g (y)g′′ (y)+ f ′ (x)g′ (y)+F (x)g′′′ (y) ,

where f (x)= x5− 5
2x

4+ 35
16x

3− 25
32x

2+ 3
32x, g (y)= y5− 5

2y
4+ 35

16y
3− 25

32y
2+ 3

32y and F(x)= ∫ f (x)dx.
In this study, we consider Re = 1. The analytical solutions, obtained by manufactured

solution [18], are given by the expressions u(x,y)= f (x) g′(y) and v(x,y)=−f ′(x)g(y). Thus

u (x,y)=
(
x5− 5

2
x4+ 35

16
x3− 25

32
x2+ 3

32
x
)(

5y4− 10y3+ 105
16

y2− 25
16
y+ 3

32

)
(4)

and

v (x,y)=
(
−5x4+ 10x3− 105

16
x2+ 25

16
x− 3

32

)(
y5− 5

2
y4+ 35

16
y3− 25

32
y2+ 3

32
y
)
. (5)

The computational domain of this problem, depicted in Fig. 1, is defined by{
0≤ x≤ 1, if 0≤ y≤ 0.5

0≤ x≤ 0.5, if 0.5< y≤ 1
and

{
0≤ y≤ 1, if 0≤ x≤ 0.5

0≤ y≤ 0.5, if 0.5< x≤ 1.

Figure 1: Computational domain
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Dirichlet boundary conditions are obtained by replacing the boundary locations in the
expressions given by Eqs. (4) and (5).

In general, Eqs. (2) and (3) can be written as

∂

∂x
(uφ)+ ∂

∂y
(vφ)= pφ + ∂

2φ

∂x2
+ ∂

2φ

∂y2
−Sφ , (6)

where φ (being u or v), pu=− ∂p
∂x and pv =− ∂p

∂y .

In order to transform Eq. (6), written on the physical domain (x,y), to the computational
domain (ξ ,η), the transformation of coordinates that is needed for two-dimensional problems is
given by{
ξ = ξ (x,y)
η= η (x,y) .

The metrics of the transformation are given by

ξx = yηJ, ηx =−yξJ, ξy=−xηJ, ηy = xξJ
and the jacobian is given by

J = (xξyη− yξxη)−1 .
Following the chain rule, the derivatives of the advective and diffusive flow of the generic

variable ϕ and the terms of pressure, which appear in Eq. (6), result in

∂

∂x
(uφ)+ ∂

∂y
(vφ)= J [(uφ)ξ yη− (uφ)η yξ − (vφ)ξ xη+ (vφ)η xξ ] ,

∂2φ

∂x2
+ ∂

2φ

∂y2
= J {J [αφξ −βφη]}ξ + J {J [γ φη−βφξ ]}η ,

− ∂p
∂x = J

[
− ∂
∂ξ

(
pyη

)+ ∂
∂η

(
pyξ

)]
and − ∂p

∂y = J
[
∂
∂ξ

(
pxη

)− ∂
∂η

(
pxξ

)]
, where α= x2η+ y2η, β = xξxη+

yξyη and γ = x2ξ + y2ξ are the components of the metric tensor in two dimensions.

After defining the following variables U = uyη − vxη and V = vxξ − uyξ , the advective flow
can be rewritten as

∂

∂x
(uφ)+ ∂

∂y
(vφ)= (Uφ)ξ + (Vφ)η ,

where U and V are the contravariant components of the velocity vector.

By grouping the transformed terms, we obtain

∂

∂ξ
(Uφ)+ ∂

∂η
(Vφ)= pφ

J
+ ∂

∂ξ

[
J
(
α
∂φ

∂ξ
−β ∂φ

∂η

)]
+ ∂

∂η

[
J
(
γ
∂φ

∂η
−β ∂φ

∂ξ

)]
− Sφ

J
. (7)

Eq. (7) is the general equation transformed for a scalar φ.
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3 Generation of the Coordinate System

The methods for grid generation are basically divided into algebraic and differential meth-
ods [17,19]. In this paper, we used an algebraic method that utilizes Lagrange interpolation and
a differential method that uses the solution of elliptic equations for grid generation.

Fig. 2 presents a grid generated by means of Lagrange interpolation and another grid
obtained by solving the system of elliptic differential equations.

(a) (b)

Figure 2: Grids generated by means of Lagrange interpolation and elliptic equations with 8
volumes in the directions ξ and η. (a) Lagrange interpolation. (b) Elliptic equations

4 Numerical Model

By integrating Eq. (7) over the control volume P in the transformed plane, as seen in Fig. 3a,
results in

UeφeΔη−UwφwΔη+VnφnΔξ −VsφsΔξ = Je
{
αe

[
∂φ

∂ξ

]
e
−βe

[
∂φ

∂η

]
e

}
Δη

− Jw
{
αw

[
∂φ

∂ξ

]
w
−βw

[
∂φ

∂η

]
w

}
Δη+ Jn

{
γn

[
∂φ

∂η

]
n
−βn

[
∂φ

∂ξ

]
n

}
Δξ

− Js
{
γs

[
∂φ

∂η

]
s
−βn

[
∂φ

∂ξ

]
s

}
Δξ −L

[
pφ

J

]
P
− Sφ

J
ΔξΔη, (8)

where L
[
pφ

J

]
P
is the approximation of the integral in ξ and η of pϕ in the volume P, and w, e,

s and n are the west, east, south and north faces of the volume P, respectively.
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(a) (b)

Figure 3: Control volume and neighbors. (a) In the transformed plane. (b) In the physical domain

By approximating the derivatives of the right side of Eq. (8) by CDS and the advective terms
(left side of Eq. (8)) by Upstream Difference Scheme (UDS), we have

Ue

[(
1
2
+λe

)
φP+

(
1
2
−λe

)
φE

]
Δη−Uw

[(
1
2
+λw

)
φW +

(
1
2
−λw

)
φP

]
Δη

+Vn
[(

1
2
+λn

)
φP+

(
1
2
−λn

)
φN

]
Δξ −Vs

[(
1
2
+λs

)
φS+

(
1
2
−λs

)
φP

]
Δξ

= Je
[
αe
φE −φP

Δξ
−βeφN +φNE −φS−φSE4Δη

]
Δη− Jw

[
αw
φP−φW

Δξ
−βwφN +φNW −φS−φSW4Δη

]
Δη

+ Jn
[
γn
φN −φP

Δη
−βnφE +φNE −φW −φNW4Δξ

]
Δξ − Js

[
γs
φP−φS

Δη
−βnφE +φNE −φW −φNW4Δξ

]
Δξ

+L
[
pφ

J

]
P
− SP

J
ΔξΔη,

where λe = 1
2sign (Ue), λw = 1

2sign (Uw), λn = 1
2sign (Vn) and λs = 1

2sign (Vs), where sign stand as
the sign function. This expression can be rewritten as

apφp = awφW+aeφE+asφS+anφN+aswφSW+aseφSE+anwφNW+aneφNE+bp=
∑
nb

anbφNB+bP, (9)

where NB stands as the 8 neighboring volumes of P.

In order to transform the conservation equations to the domain (ξ , η), it is necessary to
know the transformation metrics, that is, the variables

(
xη
)e
P,
(
yη
)e
P,
(
xξ
)n
P and

(
yξ
)n
P, for the

two-dimensional case. To make the notation easier, the face is used as superscript and the ref-
erence point as subscript. Fig. 3b shows a basic volume P, with points A, B, C and D in the
respective vertex.
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With these variables, it is possible to calculate the jacobian of the transformation. The metrics
are numerically calculated by

(
xη
)e
P =

xA−xB
Δη

,
(
yη
)e
P =

yA− yB
Δη

,
(
xξ
)n
P =

xA−xD
Δξ

and
(
yξ
)n
P =

yA− yD
Δξ

.

Thus, αeP =
[(
xη
)e
P

]2 + [(yη)eP]2, γ nP = [(xξ )nP]2 + [(yξ )nP]2 and βeP =
(
xξ
)e
P

(
xη
)e
P +

(
yξ
)e
P

(
yη
)e
P,

with
(
ψξ
)e
P = 1

4

[(
ψξ
)n
P+

(
ψξ
)n
E +

(
ψξ
)n
S +

(
ψξ
)n
SE

]
, where ψ = x or y, and βnP =

(
xξ
)n
P

(
xη
)n
P +(

yξ
)n
P

(
yη
)n
P, with

(
ψη
)n
P = 1

4

[(
ψη
)e
P+

(
ψη
)e
N +

(
ψη
)e
W +

(
ψη
)e
NW

]
.

Therefore, the jacobian is calculated as JcP =
[(
xξ
)c
P

(
yη
)c
P−

(
xη
)c
P+

(
yξ
)c
P

]−1
, where c is the

center of the control volume and
(
ψξ
)c
P = 1

2

[(
ψξ
)n
P+

(
ψξ
)n
S

]
and

(
ψη
)c
P = 1

2

[(
ψη
)e
P+

(
ψη
)e
W

]
.

Moreover, we obtain (J)eP = 1
2

[
(J)cP+ (J)cE

]
and (J)nP = 1

2

[
(J)cP+ (J)cN

]
.

5 Iterative Methods and Multigrid Details

A solution for Eq. (9) can be obtained by iterative method. In this section we will briefly
describe those used in this article.

5.1 Gauss–Seidel Method and Its Variations
If the diagonal entries of A are non-zeros, the unknown corresponding value can be iso-

lated in each equation, resulting in the lexicographic Gauss–Seidel method (Lex-GS) [4,20] and
its variations.

It can be classified as a point-wise or block solver. In point-wise methods, each variable is
updated individually. Fig. 4a depicts the lexicographic order, which was used in this study. By
combining the Gauss–Seidel method with this order, we have the Lex-GS.

Figure 4: Lexicographic ordering and η-line ordering in a two-dimensional grid. (a) Lexicographic
order. (b) Line order in the direction η
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For Eq. (9), Lex-GS has the form of

φ
(m+1)
P =

⎛
⎝∑

i

aiφ
(m+1)
i +

∑
j

ajφ
(m)
j + bp

⎞
⎠/aP,

where the superscript m represents the mth iteration, the subscript the position on the grid, i =
W ,S, SW, SE and j = E,N, NW, NE. Notice that the nine closest neighbors were required in
order to approximate ϕp.

On block methods (columns or lines, for instance), each block is updated at once. Fig. 4b
shows grid points ordered in lines in the direction η. By using the Gauss–Seidel method with this
order, we have the η-line Gauss–Seidel (η-line-GS), which was used in this study.

5.2 Modified Incomplete LU Decomposition
Incomplete LU decomposition (ILU) of the A [20,21] consists in decomposing a matrix

A in an incomplete manner. Such decomposition is of the A = LU − R form, where, in this
subsection, L and U represent lower and upper triangular matrices and R represents the residue
or decomposition error.

By doing the nine-point ILU decomposition of the coefficient matrix given by Eq. (9), we
obtain L and U matrices with the same sparsity of A [20]. This case is called ILU(0). Fig. 5
presents the scheme A = LU − R for ILU(0). Matrix R contains the four additional non-null
diagonals (continuous lines), in which the hatched lines show the original position of the non-null
diagonals of A.

Figure 5: ILU(0) factorization for a 9-diagonal matrix

The main diagonal of R and the elements ukk of the matrix U can be modified in such a
way that

rkk← σ
∑
j �=k
|rkj| and ukk← ukk+ rkk.

This method is named Modified ILU decomposition (MILU) [6,20,22].

Given the MILU decomposition, the system given by Eq. (9) is solved by the
iterative process

(1) Solve Ly(m)= r(m) to obtain y(m), where r(m) is the residual vector;
(2) Solve Ue(m) = y(m) to obtain e(m).

Thus, the solution in the iteration m+ 1 is given by φ(m+1)= φ(m)+ e(m).
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5.3 Modified Strongly Implicit
In the MSI method [16,23], a LU decomposition is proposed, such that, M =LU, where the

matrices L and U are lower and upper triangular, respectively, and the main diagonal of U is
unitary. By performing the LU decomposition, in M four diagonals are filled. These non-null
additional diagonals, are denoted by φ1i,j, φ

2
i,j, φ

3
i,j and φ

4
i,j. Therefore, the matrix M can be written

as M =A+N, where A is the coefficient matrix of the equation system given by Eq. (9) and N
consists only of diagonals φ1i,j, φ

2
i,j, φ

3
i,j and φ

4
i,j.

A parameter σ was employed to partly cancel the influence of the additional terms that
appear in M. By decomposing matrix A, the system is solved using the same iterative process
shown in the Subsection 5.2.

6 Multigrid Details

Basic iterative methods are efficient in relaxing high-frequency components in refined grids
during the first few iterations. However, after some iterations, the process becomes slow, what
signals the predominance of low-frequency modes [5]. At this moment, it is recommended to
transfer the information to the immediately coarser grid, where smooth error modes become more
oscillatory and relaxation will be more efficient [6,22]. This happens because when the multigrid
method (MG) is associated with an iterative method, it relaxes the error and corrects the solution
in different grid sizes.

The MG sweeps a group of grids with different spacings. By means of a solver, iterations
are performed at each level of the grid until the specified convergence criterion is reached for
the system of equations of the finest grid. The sequence through which the grids are swept is
denominated cycle. The coarsening ratio (r) of the grids is defined as r=H/h, where h is the size
of the volumes of the finer grid and H represents the size of the volumes of the immediately
coarser grid. The number of grids employed is called the number of levels (L). In case the highest
possible number of grid levels is used, it will be denoted as Lmax.

The multigrid method can be implemented with Correction Scheme (CS), more suitable
for linear problems, or Full Approximation Scheme (FAS), more indicated for non-linear prob-
lems [5]. In the FAS, the residual and the approximation of the solution are transferred to the
coarser grids [6].

Operators that transfer information from a fine grid, h, to an immediately coarser grid,
2h, are called restriction operators (I2hh ), the reverse are called prolongation operators (Ih2h).
The number of iteration used in the restriction and prolongation steps are called pre- and
post-smoothing (ν1 and ν2, respectively).

7 Calculation of Coordinates Transformation Metrics in Coarser Grids

It is also necessary to restrict the transformation metrics for the solution of the equations
in curvilinear grids. In this paper, the convergence of the MG was achieved by calculating the
coordinate transformation metrics as

(
ψη
)e
F =

(
ψη
)e
16 and

(
ψξ
)n
F =

(
ψξ
)n
21, where ψ = x or y, F is

a coarse grid point and 16 and 21 are fine grid points, as seen in Fig. 6.
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Figure 6: Grids scheme in the computational domain to restrict the coordinates transformation
metrics of fine grid (points 1, 2, 3, . . . , 36) to the immediately coarser grid (points A, B, C, D, F,
G, H, I and O)

The metric tensor components in the coarse grid are calculated using the following

expressions αeF =
[(
xη
)e
F

]2 + [(
yη
)e
F

]2
, γ nF =

[(
xξ
)n
F

]2 + [(
yξ
)n
F

]2
and βeF =

(
xξ
)e
F

(
xη
)e
F +(

yξ
)e
F

(
yη
)e
F with

(
ψξ
)e
F =

1
4

[(
ψξ
)n
F +

(
ψξ
)n
G +

(
ψξ
)n
B+

(
ψξ
)n
C

]
and

(
ψη
)n
F =

1
4

[(
ψη
)e
F +

(
ψη
)e
I +

(
ψη
)e
D+

(
ψη
)e
H

]
,

where G, B, C, I , D and H coarse grid points.

The jacobian of the transformation on the coarse grid is calculated as

JcF =
[(
xξ
)c
F

(
yη
)c
F −

(
xη
)c
F +

(
yξ
)c
F

]−1
,

where c is the center of the control volume,
(
ψξ
)c
F = 1

2

[(
ψξ
)n
F +

(
ψξ
)n
B

]
and

(
ψη
)c
F =

1
2

[(
ψη
)e
F +

(
ψη
)e
D

]
. Moreover, (J)eF = 1

2

[
(J)cF + (J)cG

]
and (J)nF = 1

2

[
(J)cF + (J)cI

]
.

8 Results and Discussion

8.1 Implementation Data
The algorithm was implemented in double precision FORTRAN 95 Intel 11.1 compiler.

Simulations were performed in a 3.4 GHz Intel(R) Core(TM) i7-3770 microcomputer, 16 GB
RAM, 64-bits Windows XP.

Geometric MG with FAS and V-cycle was used to solve the system of algebraic equations
represented by Eq. (9) for the domain depicted in Fig. 1. The restriction operator of the approx-
imations of the solution was obtained by arithmetic mean of the property values of the four
volumes of the fine grid [6]. The restriction of the residual was done by adding the relative



1072 CMES, 2020, vol.125, no.3

residuals of the control volumes of the fine grid that correspond to those of the coarser grid [24].
The correction prolongation was done by bilinear interpolation [5,6]. In this study, standard grid
coarsening ratio was used (r= 2). Lex-GS, η-line-GS, MSI and MILU were used as solvers. The
number of iterations in the pre- and post smoothing is the same, that is, ν = ν1 = ν2 . The number
of unknowns is given by N = NξNη, where Nξ and Nη stand for the number of volumes in
the directions ξ and η, respectively. The stop criterion used is the l1 norm of the residual in
the current iteration r(m), non-dimensionalized by the residual in the initial estimate, r(0), that is
||r(m)||1/||r(0)||1 ≤ tol , where tol= 10−11 is adopted.

8.2 Average Convergence Factor
The empirical average convergence factor, which approximates the asymptotic convergence

factor, is computed based on the residual. Such factor, as described in Trottenberg et al. [6], is
given by

ρm = m

√
||r(m)||
||r(0)|| , (10)

where m represents the number of iterates or multigrid cycles performed.

In order to reduce the effect caused by the discard of elements during the ILU decompo-
sition, a study of ρm for different values of σ , with 0 ≤ σ ≤ 0.95 and −0.25 ≤ σ ≤ 1, for the
MSI and MILU solvers, respectively, was carried out. For this, we considered L= Lmax and the
number of inner iterations ν1 = ν2 = 3, for both solvers.

Figs. 7a and 7b depict the MSI method for the results of ρm vs. σ for the variables u and
v and grids generated by Lagrange interpolation and elliptic equations. Figs. 7c and 7d depict
the same to MILU. Notice that the smallest values of ρm, regardless of the size of the problem,
happen when σ ≈ 0.9 and σ ≈−0.2 for MSI and MILU solvers, respectively. Therefore, from now
on, these values will be employed for σ in the formulations of MSI and MILU.

Fig. 8 shows the empirical average convergence factor for all solvers assessed. The presented
results are for different grid sizes generated by Lagrange interpolation and elliptic equations. As
shown in Fig. 8, the η-line-GS method present the better empirical average convergence factor
when compared with the Lex-GS method. This happened as the equations involve a strong
coupling of the unknowns in the direction η.

As Trottenberg et al. [6] stated, stretched volumes in the physical domain cause anisotropy
in the equations. In anisotropic problems, the convergence of basic methods, such as point-
wise solvers, decreases [9,25,26]. The MILU and MSI solvers present the best empirical average
convergence factors, that is, present ρm∼0 and ρm	 1, which is a desirable property. For instance,
in the N = 4096× 4096 grid, ρm ≈ 0.03. Based on these results and aimed to develop an efficient
algorithm to solve the problem in question, we will use the MILU and MSI solvers in our
algorithm hereinafter as they have the best average convergence factors.

8.2.1 Inner Iterations
The effect of the number of inner iterations, denoted by ν = ν1 = ν2, was assessed for grids

sizes N = 512× 512, 1024× 1024, 2048× 2048 and 4096× 4096, using the maximum number of
levels (L = Lmax) in every case. Fig. 9 illustrate the influence of the number of inner iterations
in the sum of the CPU times (tCPU ) in determining the velocities u and v, using the MSI and
MILU solvers.
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Figure 7: ρm vs. σ for the MSI and MILU solvers. (a) MSI, Lagrange interpolation. (b) MSI,
Elliptic equation. (c) MILU, Lagrange interpolation. (d) MILU, Elliptic equation

In each curve, the value of ν that results in the lowest CPU time is indicated by the sym-
bol �. Noticeably, the lowest CPU time, for the algorithm built with the MSI solver, was obtained
with four iterations, except in the grid N = 4096×4096, generated by Lagrange interpolation, and
grid N = 2048× 2048, generated by elliptic equations. Calculating the weighted average in CPU
time gains for ν = 2 and ν = 4, the number of inner iterations of the solver that obtained the
best average performance was ν = 4, for both grids generators. Thus, hereinafter, for the algorithm
built with the MSI solver, the ν value adopted will be ν = 4.

For the algorithm built using MILU as solver, the lowest CPU time was obtained with
three iterations for any of the values of N used, for grids generated by means of Lagrange
interpolation. For grids generated by means of elliptic equations, the lowest CPU time was
obtained with two iterations, except for the finest grid. Evaluating the weighted average in the
CPU time gains for ν = 2 and 3, the number of inner iterations of the solver that obtained
the best average performance was ν = 3, is approximately 1% lower. For this reason, the value
adopted in the following studie is ν = 3, for the algorithm built using MILU as solver for both
grids generators.
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Figure 8: ρm vs. N. (a) Lagrange interpolation. (b) Elliptic equations

One must notice that when the value of ν increases or decreases in relation to the ν adopted,
the CPU time increases. Depending on the value of ν, this increase can be significant. The
analysis also showed that the increase in CPU time is the same, or very close, for both grid
generators, as shown in Fig. 9. Santiago et al. [16] solved two-dimensional Burgers’ equations
by means of the finite difference method in Cartesian coordinates, on orthogonal grids, for the
square cavity problem, and tested MSI as solver, which was also used in this work. The authors
found νoptimum= 5 using the MG with FAS (the authors did not mention the value of σ used).

8.2.2 Number of Grid Levels
Another important parameter of MG is the number of grid levels. For instance, considering

a problem with r= 2, the coarsening ratio used in this study, and N = 128× 128 unknowns, the
highest possible number of grid levels is Lmax = 7 grids, which are 2× 2, 4× 4, 8× 8, 16× 16,
32× 32, 64× 64 and 128× 128.

For the study of influence of the number of grid levels of MG over CPU time, we consider
the number of inner iterations suggested in the previous section. Fig. 10 depict the effect of the
number of grid levels in the sum of the CPU time in order to determine the velocities u and v,
with MSI and MILU as solvers. The symbol � indicates the L that resulted on the lowest CPU
time (Loptimum) in each curve.

Notice in Fig. 10a (Lagrange interpolation) that the number of grid levels in which the
lowest CPU time was obtained is Loptimum = Lmax− (1, 2 or 3). For grids generated by employing
elliptic equations (Fig. 10b), Loptimum = Lmax − (1, 3 or 4). In Fig. 10c (Lagrange interpolation),
it is possible to observe that the number of grid levels in which the lowest CPU time was obtained
is Loptimum = Lmax − (1, 2 or 3). For grids generated by employing elliptic equations, Fig. 10d,
is Loptimum = Lmax − (0 or 1). Moreover, Fig. 10 show that for both grid generators, the CPU
time can significantly increase according to the number of levels used. This is the case for small
number of grid levels, that is, number of grid levels close to L = 1, which is the case of the
singlegrid method. However, for L≡Lmax, with MSI or MILU as solvers, the CPU time does not
change significantly.
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(a) (b)

(c) (d)

Figure 9: Effect of ν over CPU time using the MSI and MILU solvers. (a) MSI, Lagrange
interpolation. (b) MSI, Elliptic equation. (c) MILU, Lagrange interpolation. (d) MILU,
Elliptic equation

It was found that the number of grid levels what present the best average performance
(weighted average of the percentages in gains in CPU time) was L = Lmax − 1 for algorithms
built using MSI as solver, for the four biggest grid sizes and for both grid generators used. For
MILU solver, the best average performance was obtained for L = Lmax − 3 for grids generated
using Lagrange interpolation and L = Lmax for grids generated by employing elliptic equations,
considering the four biggest grid sizes.

By means of the FVM, Rabi et al. [27] solved the conductive-convective problem with the
multigrid method by employing orthogonal, structured grids for a problem with N = 64 × 64
volumes and recommend using at least L= 4 for good error relaxation. Kumar et al. [24] state
that there is no gain with L higher than 4 for the lid-driven cavity problem using orthogonal
structured grids, FVM and N = 513 × 513 volumes. For Burgers’ equations using orthogonal
structured grids and MG with FAS, Santiago et al. [16] reached Loptimum = Lmax − (0 to 3) by
employing FDM. The authors considered Loptimum=Lmax, since for Loptimum<L≤Lmax the CPU
time was virtually the same.
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Figure 10: Effect of the number of grid levels over CPU time using the MSI and MILU solvers.
(a) MSI, Lagrange interpolation. (b) MSI, Elliptic equation. (c) MILU, Lagrange interpolation.
(d) MILU, Elliptic equation

8.2.3 Computational Effort
On the analysis of influence of the number of unknowns of the system of equations over

CPU time, the number of inner iterations and the number of grid levels are considered. Both
numbers were recommended on the previous subsections. Problems of size N = 16× 16 up to the
highest size of problem supported by the random access memory (RAM) of the machine used
for simulations, N = 4096× 4096, were considered in the analysis for the MG with FAS. For the
sake of comparison, results obtained with the singlegrid method (SG) for problems of size N =
16× 16 up to N = 2048× 2048 are also shown. Results are presented in Fig. 11 for the MSI and
MILU solvers.

As shown in Fig. 11, the MG was extremely efficient. According to Ferziger et al. [3], the
higher the number of unknowns N, the higher the advantage of MG over SG.
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Figure 11: Effect of the number of unknowns over CPU time using MSI and MILU solvers.
(a) MSI, Lagrange interpolation. (b) MSI, Elliptic equation. (c) MILU, Lagrange interpolation.
(d) MILU, Elliptic equation

In order to determine the complexity (computational cost) of the solvers associated to the
method, a geometrical adjustment of the type tCPU (N) = cNp was made, where c stands as a
relative constant of the method, p represents the algorithm’s order or curve inclination, and N,
the number of variables of the problem. Ideally, MG presents p = 1, what indicates that the
CPU time increases proportionally to the number of unknowns (N) [6,22,28]. To calculate these
coefficients, grids N = 64× 64 up to N = 4096× 4096 are considered for the multigrid method
(MG), while grids N = 64× 64 up to N = 2048× 2048 are considered for the SG. Results of the
geometrical adjustment are depicted in Tab. 1, as well as the values of c and p.

Notice that the theoretical performance of the MG for Burgers’ equations using the general
curvilinear coordinates system was confirmed, p ≈ 1. Besides, p ≈ 2 for the SG, what was also
expected [4]. Furthermore, the CPU time and p values were very close for both methods, with a
slight advantage of the MSI.

Tab. 2 shows execution time, in seconds, of the SG and MG with MSI and MILU as solvers
as well as the grid generators using Lagrange interpolation and elliptic equations.
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Table 1: Coefficient c and exponent p for the singlegrid and multigrid methods

Burgers equations MG SG

c p c p

Lagrange interpolation—MSI 3.341E-06 1.072 7.709E-10 2.038
Elliptic equations—MSI 3.155E-06 1.078 8.328E-10 2.033
Lagrange interpolation—MILU 2.625E-06 1.106 2.605E-09 2.026
Elliptic equations—MILU 2.050E-06 1.125 4.259E-09 2.011

Based on the data presented in Tab. 2, considering MG with FAS, the CPU times for the
problem with the MSI solver and grids generated using Lagrange interpolation, are smaller than
those obtained with MILU, being approximately 19% faster in the most refined grid. For the
problem with the MSI solver and grids generated using elliptic equations are also smaller than
those obtained with MILU, being approximately 16% faster in the most refined grid. Comparing
SG CPU times, in Tab. 2, MSI was also faster in all grids.

Table 2: Execution time in seconds

Grid Generator Solver SG MG

256× 256 Lagrange interpolation MSI 4.806 0.539

MILU 13.278 0.651

Elliptic equations MSI 4.744 0.533

MILU 13.059 0.645
512× 512 Lagrange interpolation MSI 91.447 2.535

MILU 268.773 3.171

Elliptic equations MSI 91.026 2.527

MILU 272.577 3.843
1024× 1024 Lagrange interpolation MSI 1500.109 10.404

MILU 4370.962 14.325

Elliptic equations MSI 1491.337 11.154

MILU 4378.430 15.731
2048× 2048 Lagrange interpolation MSI 24010.317 41.006

MILU 70533.482 51.175

Elliptic equations MSI 24484.499 42.661

MILU 69576.038 55.018
4096× 4096 Lagrange interpolation MSI – 158.838

MILU – 189.018

Elliptic equations MSI – 158.729

MILU – 184.816
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Tab. 3 shows the discretization error in infinity norm of the SG and MG with MSI as solver
as well as the grid generators using Lagrange interpolation and elliptic equations.

Considering the results of the Tab. 3, the solutions obtained for the problem with grids gen-
erated using elliptic equations are slightly more accurate than those using Lagrange interpolation.

Table 3: Infinity norm of error for the problem solved with the MSI solver and both
grid generators

Grid MSI

Lagrange interpolation Elliptic equations

256× 256 5.4838644067E-06 3.1500430985E-06
512× 512 2.8784941319E-06 1.6042873321E-06
1024× 1024 1.4741079725E-06 8.0633172263E-07
2048× 2048 7.4539890321E-07 4.0348652942E-07
4096× 4096 3.7419632012E-07 2.0167536730E-07

In this sense, the MG with MSI as solver and grids generated by employing Lagrange
interpolation stood out as the best combination (lowest CPU time and discretization error) when
compared to the other possible combinations studied.

9 Conclusions

In this paper, two-dimensional Burgers’ equations in steady state with constant properties,
using a system of curvilinear coordinates in an L-shaped domain was solved. The influence of
some parameters of the geometric multigrid method as well as some solvers to solve this problem
were assessed. In order to generate grids, Lagrange interpolation and systems of elliptic equations
were used. Equations were discretized by FVM, generating systems of linear equations, which
were solved by applying the Geometric Multigrid method and the GS-Lex, η-line-GS, MSI and
MILU solvers. Convergence of the multigrid method was achieved by calculating the coordinate
transformation metrics as presented in this paper. Based on the obtained results, it was mainly
found that from the solvers employed, MSI and MILU are the most efficient for the problem
assessed, with empirical average convergence factor close to 0.03; results show that the MSI
solver, with ν = 4 and L = Lmax − 1, is faster than MILU for both grid generators, since it
has the best complexity factors values. In the grid N = 4096× 4096, the multigrid method with
MSI as solver is approximately 19% e 16% faster than the MILU solver, for grids generated by
Lagrange interpolation and elliptic equations, respectively. The algorithm built using the MG with
MSI as solver and grids generated by employing Lagrange interpolation stood out as the best
combination (lowest CPU time and discretization error) when compared to the other possible
combinations studied.

It is also necessary to restrict the coordinates transformation metrics to solve this problem in
curvilinear grids. Therefore, it shows how to calculate the coordinates transformation metrics in
the coarser grids.
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