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Abstract
This paper proposes an efficient and robust algorithm for solving a physical orthotropy 
problem. The algorithm is based on choosing the most efficient restriction operator and on 
an incomplete LU decomposition suited for each orthotropy direction. Local Fourier Analysis 
(LFA) is carried out in order to increase the efficiency of the multigrid method. Pure diffusion 
with orthotropy aligned to the coordinate axis x is the model considered. Equations are 
discretized by Finite Difference Method with uniform grid and second-order numerical 
scheme. Problems are solved with geometric multigrid method, correction scheme, V-cycle 
and standard coarsening ratio. The asymptotic convergence factor is calculated for different 
multigrid components, such as restriction operators, prolongation operators and solvers. 
Based on the optimum components obtained by LFA, we carried out experiments to analyze 
the complexity and computational cost of the algorithm proposed. The main conclusion is 
that the methodology proposed is efficient for the resolution of problems with strong 
orthotropy.
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1. Introduction
Computational Fluid Dynamics (CFD) is a branch of Computational Science that studies numerical methods used for 
simulating fluid flow problems. It is known that these methods usually have a high computational cost. In general, this 
happens as the problems that have to be solved require the resolution of algebraic equation systems whose coefficient 
matrices are large and sparse [1].

Linear systems are obtained by discretizing the mathematical model, which consists in approximating, through 
algebraic equations, each term of the mathematical model for each grid node or point. This process leads to an 
algebraic equation system of the form

AT = b , (1)

where A ∈ RNxN  is the coefficient matrix, T ∈ RN  is the variable of interest and b ∈ RN  is the independent vector.

In CFD, the methods that are traditionally employed in this process are: Finite Difference Method (FDM) [2], Finite 
Volume Method (FVM) [3] and Finite Element Method (FEM) [4].

The algebraic equation system given by Eq. (1) can be solved using direct or iterative methods. In this work, iterative 
methods were employed due to the aforementioned characteristics of linear systems in CFD (sparse and large 
coefficients matrices), for which iterative methods are recommended. The multigrid method is one of the most 
effective methods to accelerate the convergence of iterative methods when solving linear or nonlinear systems, 
isotropic or anisotropic problems, among others [5-7].

Anisotropic problems are fairly common in Engineering and appear in many phenomena, such as when a material has 
different heat conduction behaviors in different directions. In this case, the coefficients of the differential equations 
are distinct among themselves and generate what is called physical anisotropy. Anisotropies can also appear from 
discretization of grids with different spacing in each direction, for instance, boundary layer problems. This is called 
geometric anisotropy [5,6]. The efficiency of the multigrid method has not yet been fully achieved for problems with 
strong anisotropy, either physical or geometric [8].
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Physical anisotropic convection problems have been investigated by Rabi and de Lemos [9], who discretized two-
dimensional pure diffusion, pure advection and advection-diffusion equations by applying the finite volume method. 
The multigrid method was employed using correction scheme and V- and W-cycles. The authors presented a study on 
the different speed ranges, number of grids, number of smoothing steps at each grid level and different solvers. They 
concluded that there was a significant reduction in the computational effort required for increasing the values of the 
components of the advection velocity.

Wienands and Joppich [10] presented an in-depth study on the Local Fourier Analysis (LFA) and its application on 
several problems, including anisotropic problems. The authors calculated the convergence factor of the multigrid 
method for an anisotropic diffusion equation with different solvers and restriction and prolongation operators.

Johannsen [11] solved an anisotropic diffusion problem using finite volume method for discretizing the equations and 
9-point incomplete LU (ILU) decomposition for solving the systems of linear equations. The author employed LFA to 
demonstrate the superior smoothing properties of ILU.

Oliveira et al. [8] evaluated geometric anisotropy for different grids and aspect ratios. They also assessed some 
components of the multigrid method, such as: solvers, type of restriction, number of levels and number of inner 
iterations, among several coarsening algorithms. They concluded that Partial Weighting (PW) had a good 
performance.

Vinogradova and Krukier [12] solved a three-dimensional advection-diffusion problem with intermediate anisotropy 
using FDM for discretizing equations and ILU for the resolution of the linear systems. They concluded that the 
proposed methodology is efficient, however, the coefficients of the mixed derivatives present limitations, which is a 
disadvantage and has no physical significance.

Vassoler-Rutz et al. [13] analyzed the effect of physical anisotropy on the multigrid method for two anisotropic 
diffusion problems. They used FAS scheme, V-cycle as well as Modified Strongly Implicit (MSI) and Gauss-Seidel (GS) 
solvers. They concluded that, for strong anisotropies, the complexity order of the multigrid method is not suitable. 

Several works on the implementation of the multigrid method found in the literature demonstrate that the choice of 
the multigrid components is crucial for the convergence or not of the method. Trottenberg et al. [6] state that this 
choice is difficult and thus small changes can considerably improve convergence. In this sense, LFA can help this 
choice as it allows to predict the performance of the multigrid method, since it provides estimates of the convergence 
rates based on the variation of the multigrid method components.

Pinto et. al. [14] solved an anisotropic diffusion problem using ILU in triangular grids. They used LFA to highlight the 
good smoothing properties of the solver and the asymptotic convergence of the multigrid.

Franco et. al. [15] performed LFA in transient problems and obtained the critical value of the parameter that 
represents the level of space-time anisotropy for 1D and 2D Fourier equations.

Oliveria et. al. [16] solved an 2D anisotropic diffusion equation. The equation was discretized by the Finite Difference 
Method (FDM) and Central Differencing Scheme (CDS). Correction Scheme (CS). An xy-zebra-GS smoother was 
proposed, which proved to be efficient and robust for the different anisotropy coefficients. They concluded that, the 
convergence factors calculated empirically and by LFA are in agreement.

A particular case of anisotropy is denominated orthotropy, which happens when the anisotropy occurs in orthogonal 
directions. In this work, an efficient and robust method for solving physical orthotropy problems using LFA is 
proposed. A two-dimensional diffusion mathematical model is considered, in which physical orthotropy appears in the 
coefficients and it will be denominated diffusion orthotropy. Equations were discretized using FDM with second-order 
central difference scheme.

The asymptotic convergence factor (ρloc ) of the multigrid method was calculated by assessing the ILU solver in 
different directions [7] as well as several restriction and prolongation operators. The results obtained via LFA were 
used to assess the influence of the diffusion orthotropy on the computational cost and took into account the CPU time 
and number of operations in each V-cycle and at the restriction step.

The remainder of this work is organized as follows: section 2 presents the mathematical and numerical models; 
section 3 discusses considerations regarding the LFA used; section 4 presents the results of the convergence analysis 
and complexity analysis; and section 5 presents the conclusion.

2. Mathematical and Numerical Models
For the problem presented below, the calculus domain used is given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and the discretization of the 
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equations is done using a uniform grid with a number of points given by N = Nx . Ny  , where Nx  and Ny  are the number 
of points in the directions x  and y , respectively, including the boundaries.

2.1. Mathematical Model and Discretization
A model that exemplifies physical and geometric anisotropy for a two-dimensional diffusion equation is given by 
Trottenberg et al. (2001) as shown below,

− |g2 + ε w2| uxx + 2(1 − ε )g w uxy − |w2 + ε g2| uyy = S (2)

where g = cos(α ), w = sen (α ), 0 ≤ α ≤ π
2  and 0 < ε << 1 or ε >> 1.

For α = π
2 , it is considered that the expression given by Eq. (2) is aligned with the axis of the coordinate y, so it 

becomes

− ε uxx − uyy = S . (3)

From here, the diffusion orthotropic problem will be assessed by means of the two-dimensional diffusion equation 
given by Eq. (4) [5,6]

{ − εTxx − Tyy = S
T (0, y ) = T (x , 0) = T (x , 1) = T (1, y ) = 0

(4)

where T is the temperature, Txx  is the second derivative of T as a function of x , Tyy  is the second derivative as a 
function of y  and ε > 0.

The source term S and the analytical solution T are given by

S = 2[ε (1 − 6x2 )y2 (1 − y2 ) + (1 − 6y2 )x2 (1 − x2 ) ]  and T (x , y ) = (x2 − x4)(y4 − y2). (5)

Eq. (4) was discretized using FDM with CDS, resulting in

aP TP + aW TW + aN TN + aE TE + aS TS = bP , (6)

 where T  is the unknown of the system.

Figure 1(b) depicts the notation of the grid points in Figure 1(a). The points P (central), W (west), E (east), N (north) and 
S (south) in Figure 1(b) correspond to the points (i , j ), (i − 1, j ), (i + 1, j ), (i , j + 1), (i , j − 1) in Figure 1(a), respectively.

Figure 1. Points of a uniform two-dimensional grid.
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The classic 5-point finite difference is not convergent for cases of general anisotropy, such as the example given by the 
full tensor

(k11 k12

k21 k22) .

Therefore, this methodology cannot be generalized to any type of anisotropic problem. In this paper, we analyze a 
specific case of anisotropy given by the tensor

(ε 0
0 1) ,

which represents a case of orthotropy.

 The discretization of Eq. (4) results in Eq. (6), and for the inner points, considering hx = 1
Nx − 1  and hy = 1

Ny − 1

aP = ( 2ε
hx

2 + 2
hy

2 ) , aW = aE = − ε
hx

2 , aN = aS = − 1
hy

2 , bP = SP .
(7)

For the boundaries north, south, east and west,aP = 1, aW = aE = aN = aS = 0.

2.2. Multigrid Method and Computational Details

The multigrid method accelerates the convergence rate of iterative methods. It consists in employing a group of grids 
with different refinement levels. At each refinement level of the grid, the more oscillatory errors are smoothed, and 
only low frequency errors remain. After passing to another grid, the remaining low frequency errors become more 
oscillatory. The efficiency of this process, called smoothing, depends on the choice of a suitable solver.

For employing multigrid, besides a solver with good smoothing properties, grid transfer operators are required 
(restriction and prolongation).

In [8] and [17], restriction through partial weighting in the directions x and y, henceforth denoted by PWx and PWy, 
respectively, applied in problems involving geometric anisotropy was proposed. These operators are given in stencil 
notation as

PWx : Ih
2h = 1

4 [0 0 0
1 2 1
0 0 0]

h

, PWy : Ih
2h = 1

4 [0 1 0
0 2 0
0 1 0]

h

.
(8)

In this work, such restriction was combined with 7-point incomplete LU decomposition (henceforth denoted by ILU). 
According to [18], this decomposition has a better convergence factor than 5-point incomplete LU decomposition for 
orthotropic problems.

In Eq. (4), discretized using FDM, the stencil for the 5-point Laplacian operator is given by

Lh = [ 0 − 1 0
− ε 2 + 2ε − ε
0 − 1 0 ]

h

.
(9)

The ILU decomposition of the same operator will be given by

Lh = [ f g 0
c d q
0 a b ]

h

,
(10)

 note that in this case, b = f = 0.

Thus, the ILU decomposition is represented by:



https://www.scipedia.com/public/Vassoler_Rutz_et_al_2018a
5

G. Vassoler Rutz, M. Augusto Villela Pinto and S. de Fátima Tomazzoni Gonçalves, On the robustness of the multigrid 
method combining ILU and Partial Weight applied in an orthotropic diffusion problem, Rev. int. métodos numér. 
cálc. diseño ing. (2019). Vol. 35, 1, 23

L h = Lh Uh − Rh , (11)

where Lh  is the stencil of a lower triangular matrix, Uh  is the stencil of an upper triangular matrix and Rh  is the residual 
matrix.

The iterative process for solving Eq. (4) can be:

rm = b − ATm , 

Lh ym = rm ,

Uh σm = ym ,

Tm +1 = Tm + σm .

(12)

Depending on the ordination of the grid points, different directions can be obtained for the ILU decomposition. In 
lexicographical order, ILUEN [18], is given by

Lh = [ 0 0 0
γ δ 0
0 α β ]

h

, Uh = [ζ η 0
0 δ μ
0 0 0 ]

h

, Rh = [p2 0 0 0
0 p3 0
0 0 0 p1

]
h

.

(13)

Another example of ordination for ILU, ILUNE [18], is given by

. 

Lh = [ ζ 0 0
γ δ 0
0 α 0]

h

, Uh = [0 η 0
0 δ μ
0 0 β ]

h

, Rh = [
p1
0 0 0
0 p3 0
0 0 0

p2
]

h

.

(14)

The linear system given by Eq. (1) was solved using geometric multigrid method [5,6] with correction scheme (CS), V-
cycle and zero initial guess.

The coarsening ratio is given by r = 2 (standard coarsening) [18]. The grid transfer operators employed were: Injection 
Restriction (INJ), Half Weighting (HW), Full Weighting (FW) (see [6]), Partial Weighting in x  (PWx ), Partial Weighting in y  
(PWy) as well as prolongation by bilinear interpolation and 7-point interpolation. The systems of equations obtained by 
means of discretization were resolved using 7-point ILU solvers in different directions (ILUEN, ILUNE, among others).

The stop criterion used to interrupt the iterative process is based on the nondimensionlized residual norm. The 
residual of the system of algebraic equation is defined by

rm = b − ATm , (15)

where Tm  is the solution of the unknown in the iteration m .

Considering Lm = ∥ rm ∥1 and L0 = ∥ R0 ∥1, if Lm

L0 ≤ tol  the iterative process is interrupted if tol = 10−10 .

Double precision arithmetic was used for the simulations. The numerical codes were implemented in the Fortran 2003 
language, using the Intel 9.1 Visual Fortran application. All numerical results were obtained in a computer with Intel 
Core i7 2.66 GHz processor, 16 GB RAM and Windows 8 operating system, 64-bit version.

3. Local Fourier Analysis

LFA allows to predict the performance of the multigrid method as it supplies estimates of the convergence rate of its 
components. Therefore, LFA becomes a powerful tool in quantitative analysis and in the research of efficient multigrid 
methods.

In order to perform the LFA, general discrete linear operators with constant coefficients are considered, which are 
defined in an infinite grid Gh  , where the influence of the boundaries can be dismissed [6].
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Consider the grid functions of the form of

ϕh (θ , x ) = eiθx /h  , with θ = (θ1, θ2) ∈ R2 , (16)

where x  varies in the infinite grid Gh  and θ  is a parameter that characterize the frequency of the function concerning 
to grid Gh  .

For − π ≤ θ < π  , every function of the grid ϕh (θ , x )  are eigenfunctions of a discrete operator that can be written as a 
stencil.

Thus,

Lh ϕh (θ , x ) = L~ h (θ )ϕh (θ , x ) , (17)

where

Lh (θ ) = [sk ]h , L~ h (θ ) = ∑
k

sk ei θ k
(18)

and sk  is the stencil notation of the operator, were k ∈ {( − 1, − 1), ( − 1, 0), ( − 1, 1), . . . , (1, − 1), (1, 0), (1, 1)} for the 5-
point stencil.

In order to smooth as well as to analyze the two grids, it is necessary to distinguish between components of low and 
high frequency of Gh  and G2h  .

It is known that [6] only

ϕh (θ , x )  with − π
2 ≤ θ < π

2 , (19)

 are visible in Gh  .

For each θ̄ ∈ [ − π
2 , π

2 ) × [ − π
2 , π

2 ) , three other frequency components ϕh (θ , x )  with θ ∈ [ − π , π ) × [ − π , π ) coincide 
in G2h  with ϕh ( θ̄ , x )  and are not visible in G2h  . Therefore, the low- and high-frequency components are defined as 
follows:

ϕ  is a low-frequency component ⇔ θ ∈ Tlow = [ − π
2 , π

2 ) × [ − π
2 , π

2 )
ϕ  is a high-frequency component ⇔ θ ∈ Thigh = [ − π , π ) × [ − π , π )∖[ − π

2 , π
2 ) × [ − π

2 , π
2 )  (see Figure 2).
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Figure 2. Low- (inner white area) and high-frequency (hatched area) areas.

 Considering the frequencies

θ̄ i := { θi + π , if θi < 0
θi − π , if θi ≥ 0

,
(20)

the correction operator of the coarse grid is given by Kh
2h  ans is represented by a 4x4 matrix K̂ h

2h
 , as follows

K̂ h
2h

(θ ) = Î h − ( Î 2h
h

(θ ) ) ( L̂ 2h (2θ ) )−1 ( Î h
2h

(θ ) )y L̂ h (θ )  with θ ∈ Tlow , (21)

where Î h  is represented by a 4x4 identity matrix.

L̂ h (θ ) is the 4x4 matrix:

L̂ h = (L~ h (θ(0,0))

L~ h (θ(1,1))

L~ h (θ(1,0))

L~ h (θ(0,1))
)  ,

(22)

where L~ h  are eigenvalues, evaluated by L~ h (θ ) = ∑
κ

sκ ei θα κ , and sκ ∈ R  are stencil coefficients. (see [7])

The discrete Laplace operator given by Eq. (9) is represented by:

L̂ h = (L~ 1

L~ 2

L~ 3

L~ 4
) ,

(23)

where L~ 1 = (2 + 2ε ) − 2(εcos(θ1) + cos(θ2)), L~ 2 = (2 + 2ε ) − 2(εcos(θ̄ 1) + cos(θ̄ 2)), L~ 3 = (2 + 2ε ) − 2(εcos(θ̄ 1) + cos(θ2)) and 
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L~ 4 = (2 + 2ε ) − 2(εcos(θ1) + cos(θ̄ 2)).

The restriction operator Î h
2h

(θ ) is a 1x4 matrix, and is given by:

Î h
2h

= ( I~h
2h (θ(0,0) ) I~h

2h (θ(1,1) ) I~h
2h (θ(1,0) ) I~h

2h (θ(0,1) ) ) , (24)

For the INJ restricion operator, I~h
2h (θα ) = 1, for the HW restriction operator, I~h

2h (θα ) = 1
4 (2 + cosθ̄ 1 + cosθ̄ 2), for the 

FW restriction operator, I~h
2h (θα ) = 1

4 (1 + cosθ̄ 1)(1 + cosθ̄ 2), for the PWx (see Eq.(8)), I~h
2h (θα ) = 1

2 (1 + cosθ̄ 1) and for the 

PWy (see Eq.(8)), I~h
2h (θα ) = 1

2 (1 + cosθ̄ 2).

The prolongation operator Î 2h
h

(θ ) is a 4x1 matrix, and is given by:

Î 2h
h

(θ ) = ( I~2h
h (θ(0,0) )

I~2h
h (θ(1,1) )

I~2h
h (θ(1,0) )

I~2h
h (θ(0,1) ) ) ,

(25)

For the bilinear prolongation operator, I~2h
h (θα ) = (1 + cosθ̄ 1)(1 + cosθ̄ 2) and for the 7-point prolongation operator, 

I~2h
h (θα ) = (1 + cosθ̄ 1 + cosθ̄ 2 + cos(θ̄ 1 − θ̄ 2) )  [10].

The operator of the grid coarse ( L̂ 2h (2θ ) )−1
 is a 1x1 matrix, and for the discrete Laplace operators, L~ 2h  is represented 

by L~ 2h (2θ ) = ∑
k

sk ,2h ei 2 θ k or L~ 2h =
(2 + 2ε ) − 2(εcos(2θ1) + cos(2θ2))

2h2 .

A representation for the operator of two grids Mh
2h  can be obtained by a matrix M̂ h

2h
(θ ) of the form

M̂ h
2h

:= ( Ŝ h (θ ))
v2

K̂ h
2h

(θ ) ( Ŝ h (θ ))
v1

, (26)

where K̂ h
2h

(θ ) is given by Eq. (21) and Ŝ h (θ ) is a 4x4 matrix and represents the smoothing operator Sh (θ ) given by:

Ŝ h = ( S~ h (θ(0,0))

S~ h (θ(1,1))

S~ h (θ(1,0))

S~ h (θ(0,1))
) .

(27)

 In order to perform the LFA using the ILU solver, the smoothing operator Sh , according to [6], is given by

Sh ϕ (θ , x ) = S~ h ϕ (θ , x ), − π ≤ θ < π , (28)

with

S~ h (θ ) :=
λh

R (θ )
λh (θ ) + λh

R (θ )
.

(29)

where λh (θ ) = 1, for ILUEN, λh
R (θ ) = p1e

i (2θ1−θ2)
+ p3 + p2e

i (−2θ1+θ2)
 and for ILUNE, λh

R (θ ) = p1e
i (−θ1+2θ2)

+ p3 + p2e
i (θ1−2θ2)

. .

The asymptotic convergence factor ρ (Mh
2h )  can be calculated by
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ρ (Mh
2h ) = sup {ρ (M̂ h

2h
(θ ) ) : θ ∈ Tlow , θ ∉ Λ} , (30)

where Λ = {θ ∈ Tlow : L~ h (θ ) = 0 or L~ 2h (θ ) = 0}  and ρ (M̂ h
2h

(θ ) )  is the spectral radius of the 4x4 matrix M̂ h
2h

(θ ).

 In this work, LFA was used to determine the asymptotic convergence factor of the multigrid method (ρ (Mh
2h ) = ρloc )  

combining ILU solvers in several directions (such as ILUEN and ILUNE), FW, HW, INJ, PWx and PWy restriction operators 
and bilinear and 7-point prolongation operators.

4. Numerical Results
An orthotropic diffusion equation was solved using 7-point ILU solver in different directions. Several restriction 
operators and two prolongation operators were employed. We proposed an algorithm that presents the lowest 
asymptotic convergence factor values and the lowest computational cost for the multigrid method.

Equation (4) was assessed for ε = 10κ  and ε = 10−κ , with κ ∈ K = {0, 1, 2, 3, 4, 5, 6, 7}. When ε = 10κ  or ε = 10−κ  in 
this work, there is symmetric orthotropy. For instance, ε = 102 is an orthotropy symmetric to ε = 10−2.

Section 4.1 presents the convergence analysis by means of LFA. Only the optimum components obtained via LFA will 
be used in the complexity analysis in section 4.2.

4.1. Convergence Analysis

Figure 3 depicts ρloc , given by Eq. (30), with ILU in the EN, NE, ES, SE directions, FW restriction, bilinear prolongation, 
number of inner iterations v = 2, ε = 10κ  and ε = 10−κ , with κ ∈ K .

Figure 3. ρloc  versus orthotropy coefficients (ε ) with ILU in different directions.

 It is noticed that for 0 < ε << 1, ILUEN has a good performance. For ε >> 1, ILUNE also has a good performance, that is, 
ρloc << 1. By using ILU solvers in the ES and SE directions, the multigrid method did not present a good performance 
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for any of the orthotropy coefficients studied.

For the analyses presented below, tests were carried out using only the solvers that had the best performances in 
previous analysis.

Figure 4 presents ρloc  using as solvers, ILUEN for 0 < ε << 1 and ILUNE for ε >> 1; ν = 2; FW restriction; 7-point and 
bilinear prolongation; ε = 10κ  and ε = 10−κ , with κ ∈ K .

Figure 4. ρloc  versus orthotropy coefficients (ε ) with different interpolation operators.

 It can be observed that the restriction|prolongation combinations FW|bilinear and FW|7-points had a good 
performance (ρloc << 1)  and presented very similar convergence factors.

Bilinear prolongation operator was used in the following analysis as it is easy to program and demands fewer memory 
resources. The asymptotic convergence factors were compared with different restriction operators.

Figure 5 presents ρloc  using as solvers, ILUEN for 0 < ε << 1 and ILUNE for ε >> 1; ν = 2; FW, HW, INJ, PWx and PWy 
restriction; bilinear prolongation; ε = 10κ  and ε = 10−κ , with κ ∈ K .
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Figure 5. ρloc  versus orthotropy coefficients (ε ) with different restriction operators.

 Figure 5 demonstrates that for ε = 10κ  and ε = 10−κ , with κ ∈ K  (symmetric orthotropies), ρloc  presents very similar 
values. It is noted that for orthotropic problems (κ ≠ 0) , the lowest values for ρloc  are achieved with FW and PWx 
restriction, which show very similar values.

Based on the results presented, we propose Algorithm 1, which combines ILU solver in different directions, with FW 
and PWx restrictions. The algorithm is presented below. The abbreviation REST, used in the algorithm represents any 
of the restrictions (FW or PWx) previously defined.

Algorithm 1.
 _______________________________________________________

if ε >1 then

Apply ILUNE smoothing with REST restriction

else if ε =1 then

Apply ILUNE smoothing with FW restriction

else

Apply ILUEN REST restriction

end if
 _______________________________________________________

Remark 1: Pinto et. al. [14] solved an anisotropic diffusion problem using ILU in triangular grids and several 
anisotropies not aligned with x or y. The authors noted that ILUNE and ILUEN were efficient for some of the 
anisotropies, making it is possible to adapt this algorithm to an alternating form so it will work well for any anisotropy.

Remark 2: One of the biggest problems in the literature is the numerical resolution of the Navier-Stokes equation. 
Depending on its numerical formulation (simplec, projections [19]), a great computational effort is required at the 
numerical solution of the continuity equation, which can be represented by Poisson’s equation. Moreover, the 
algorithm depends on the mesh sweep and is independent of the complexity of the proposed problem equation. 
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Therefore, this algorithm can be adapted to certain orthotropic problems with a certain degree of complexity.

Next, the asymptotic convergence factor ρloc , calculated by LFA, and the empiric asymptotic convergence factor ρh , for 
different orthotropy coefficients, are presented.

Figure 6 shows Algorithm 1 with REST = PWx , ν = 2 and bilinear prolongation.

Figure 6. ρloc  and ρh  versus orthotropy coefficients (ε ).

 It is observed that ρloc ≈ ρh << 1 for every orthotropy coefficients assessed. Furthermore, ρloc  calculated by LFA is in 
accordance with ρh  calculated experimentally.

Figure 7 depicts the numerical asymptotic convergence factor ρloc  calculated by LFA and the experimental asymptotic 
convergence factor ρh , for different orthotropy coefficients for different grids. Algorithm 1 with REST = PWx, ν = 2 and 
bilinear prolongation was used. As the grid becomes more refined, ρh → ρloc  for every orthotropy coefficient analyzed, 
what demonstrates the robustness of the methodology assessed.
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Figure 7. ρloc  and ρh  versus orthotropy coefficients (ε ) for different number of grid points.

 Some of the data presented in Figure 7 can be better visualized in Table 1.

Table 1. ρloc  and ρh  for some orthotropy coefficients (ε ) and different number of grid points.

ε ρh  (N =513×513) ρh  (N =1025×1025) ρh  (N =2049×2049) ρl oc

10−5 4.181939×10−4 0.006544947 0.01993340 0.02943536

10−4 0.01569827 0.025212810 0.02806990 0.02943000

10−3 0.02748596 0.028578500 0.02884448 0.022941390

10−2 0.02858316 0.028703710 0.02874592 0.02921000

10−1 0.02683346 0.026852440 0.02685995 0.02725823

 Next section presents the complexity analysis of multigrid. For the analysis, multigrid was built with the components 
that had the best convergence factors according to LFA. In addition, a comparison between partial weighting and full 
weighting will be presented.

4.2. Complexity Analysis

In order to assess the effect of the number of unknowns on CPU time, optimum components obtained via LFA were 
used. Figures 8 (a) and 8 (b) show, for FW and PWx restrictions, respectively, that for the isotropic problem (ε = 1) , the 
tCPU  is not lower. As the problem becomes more orthotropic (0 < ε << 1 or ε >> 1) , the tCPU  decreases for every N 
value assessed. For every orthotropy coefficient assessed, the tCPU  with FW restriction is very similar to the tCPU  with 
PWx restriction, that is, tCPU (FW ) ≈ tCPU (PWx )  .

It is also observed for symmetric orthotropies (ε = 10−κ and ε = 10κ )  with κ ∈ {1, 2, 3, 4}, that the values of tCPU  
obtained are extremely similar.
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Figure 8. CPU time versus number of nodes (N).

 In order to assess the performance of the multigrid method with different anisotropy coefficients, a curve adjustment 
of the form tCPU = cNp  [20] was made, where p  represents the complexity order of the solver, N is the number of grid 
points andN  c  is a constant that depends on the method. The closer the value of p  is to one, the better the 
performance of the method used. Ideally, multigrid presents p = 1, what means that the CPU time grows linearly with 
the increase of N. Results are shown in Table 2 for both restrictions assessedN  (FW and PWx).

One can observe in Table 2 that, for every orthotropy employed, the multigrid method has a good performance, since 
p ≈ 1 in every case. These results prove the efficiency and robustness of Algorithm 1, proposed in this work.

Table 2. Complexity order (p ) for different orthotropy coefficients (ε ).

ε p (PWx) p (FW)

10−4 1.07747 1.07733

10−2 1.05023 1.05894

1 1.05940 1.04380

102 1.07255 1.06199

104 1.07627 1.07775

 The values obtained for the convergence factor, presented in section 4.1, and for the complexity order concerning to 
the PWx  and FW restriction operators (Table 2) are quite similar and thus insufficient to decide which one results in a 
more efficient algorithm.

To complement the analysis, the number of arithmetical operations performed in each V-cycle and at the restriction 
step for each one of the operators was assessed.

These arithmetical operations concern to floating-point operations (flops) performed during the iterative process and 
are not affect by the hardware used. Each addition, multiplication and division operation correspond to 1 flop.

Tests were carried out for N10 = 10 (N10 is the number of points of the finest grid, considering a problem whose 
maximum number of levels is Lmax = 10) and for some values of ε . Table 3 presents the ratio between number of flops 
of a V-cycle and number of points of the finest grid N10. Table 4 shows the ratio between number of flops performed in 
each restriction and the number of points of the finest grid N10.

Table 3. Ratio between number of flops of a V-cycle and the number of points of the finest grid.

ε flops(V-cycle|PWx)/N10 flops(V-cycle|FW)/N10

10−2 1510.221554 1543.296057

10−1 1798.299366 1837.988770

1 2368.277388 2126.896785

101 1860.997604 1900.687008
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102 1564.958717 1598.033220

Table 4. Ratio between number of flops of the restriction and number of points of the finest grid.

ε flops(PWx)/N10 flops(FW)/N10

10−2 11.57607615 44.65057942

10−1 13.89129130 53.58069530

1 18.37833483 62.02688007

101 13.89129137 53.58069530

102 11.57607615 44.65057942

 According to Table 3, the multigrid cycle that requires the lowest number of flops is the cone with PWx operator, 
except for the isotropic case (ε = 1) . Considering only the restriction step, results presented in Table 4 show a great 
advantage of the PWx operator over the FW operator regarding the number of flops performed. For every case, the 
number of flops for PWx is roughly 75% lower than the number of flops for FW.

Remark 3: 75% of the reduction in the number of operations in the restriction was expected. However, this has little 
impact on the total cost of the cycle, which shows the great concentration of operations in the execution of the solver.

The remaining orthotropy coefficients assessed showed similar performances to those presented in Figure 5 and 
Tables 3 and 4, what confirms the efficiency and robustness of the algorithm proposed, in addition to the low 
computational cost with the use of the PWx operator.

5. Conclusions
- For the ILU directions assessed (EN, NE, ES, SE) for standard multigrid method (FW restriction operator and bilinear 
prolongation), it is concluded that ρloc ≈ 0.02 when using ILUEN for 0 < ε << 1 and ILUNE for ε >> 1.

- With FW restriction, ILUEN for 0 < ε << 1 and ILUNE for ε >> 1, results showed that the 7-point and bilinear 
prolongation operators presented a similar performance, and for every value of ε  assessed, ρloc << 1 was obtained.

- With bilinear interpolation, ILUEN for 0 < ε << 1 and ILUNE for ε >> 1, the lowest values of ρloc  are obtained with FW 
and PWx restriction operators, and the values of ρloc  with these operators are very similar.

- Using Algorithm 1, ρloc ≈ ρh << 1 for every orthotropy coefficient assessed and ρh → ρloc  as the grid becomes more 
refined.

- The tCPU (FW) ≈ tCPU (PWx )  for every value of ε  assessed.

- The complexity order p  of the multigrid method with Algorithm 1 is close to one for every orthotropy assessed. For 
ε = 10−4, for example, p = 1.07747 with this algorithm.

- The computational cost of multigrid depends on the number of flops of the restriction in a V-cycle. Using Algorithm 1 
with PWx restriction, the computational cost is 75% lower than with FW restriction.

- The Algorithm 1 with PWx restriction proposed in this work is efficient, robust and has low computational cost.
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