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Abstract In this work, a multigrid waveform relaxation method is proposed for solving a
collocated finite difference discretization of the linear Biot’s model. This gives rise to the
first space–time multigrid solver for poroelasticity equations in the literature. The waveform
relaxation iteration is based on a point-wiseVanka smoother that couples the pressure variable
at a grid-point with the displacements around it. A semi-algebraic mode analysis is proposed
to theoretically analyze the convergence of the multigrid waveform relaxation algorithm.
This analysis is novel since it combines the semi-algebraic analysis, suitable for parabolic
problems, with the non-standard analysis for overlapping smoothers. The practical utility of
the method is illustrated through several numerical experiments in one and two dimensions.
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1 Introduction

A porous medium is assumed to be composed of a solid matrix containing a pore network.
The presence of a moving fluid in such a network can affect the mechanical response of the
solid skeleton, and at the same time, the mechanical changes influence the behavior of the
fluid inside the pores. Thus, poroelasticity equations mathematically model the interaction
between the deformation of an elastic porous material and the fluid flow inside of it. The first
onewho accounted for the influence of the pore fluid on the deformation of soils was Terzaghi
in Terzaghi (1943). His studies, however, were based on one-dimensional experiments. The
general three dimensional theory of poroelasticity was formulated by Biot in several pioneer-
ing works, (see Biot 1941, 1955). Nowadays, the analysis and numerical simulation of Biot’s
model has become increasingly popular due to the wide range of applications in different
disciplines such as medicine, biomechanics, petroleum engineering, food processing, and
other fields of science and engineering.
The poroelasticity problem can be formulated as a time-dependent coupled system of partial
differential equations. Depending on which are the quantities of our interest, there exist two-,
three- or four-field formulations of the Biot’s problem. Here, we will consider the two-field
formulation which includes the pressure of the fluid and the displacements of the solid matrix
as unknowns.

It is well known that the solution of the large linear systems arising from the discretization
of the Biot’s model is the most consuming part in real simulations. Hence, the design of
efficient solvers for this type of problems has attracted a lot of attention. Moreover, current
computer architectures tend to increase themultiprocessing capabilities by havingmore cores
and hardware threads per chip. To exploit these characteristics, one must develop algorithms
which are capable to efficiently use large number of cores, appearing the need for greater
parallelism. Typical solution algorithms for time-dependent problems are based on a time-
marching approach, in which each time step is solved after the other in a sequential manner.
These traditional methods, however, do not allow the parallelization of the temporal variable.
This leads us to look for the increase of the concurrency by using time-parallel and full space–
timemethods. Time parallel existing techniques can be classified into four groups (seeGander
2015): methods based onmultiple shooting, domain decomposition and waveform relaxation
methods, space–timemultigrid techniques and direct time parallel methods. Among all these,
herewe consider amultigridwaveform relaxation algorithm (WRMG)Lubich andOstermann
(1987), Vandewalle (1993), in which the novelty is the waveform relaxation method based
on a point-wise Vanka smoother (see Vanka 1986; Molenaar 1991). This Vanka smoother
has been successfully applied for the solution of the poroelasticity system when using a
time-stepping approach based on the application of multigrid methods on each time-step,
(for example see Gaspar et al. 2008). We want to notice that, up to our knowledge, it is the
first time that a space–time solver is designed for the Biot’s model.
Moreover, we apply a semi-algebraic mode analysis (SAMA) to theoretically support the
convergence rates provided by the multigrid waveform relaxation method. This analysis is
essentially a generalization of the classical local mode analysis or local Fourier analysis
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(LFA) (Brandt 1977, 1994; Wienands and Joppich 2005) that combines standard LFA with
algebraic computations. Local Fourier analysis is a commonly used approach, based on the
Fourier transform theory, for analyzing the convergence properties of geometric multigrid
methods. However, the failure of this analysis for the prediction of the multigrid convergence
for convection-dominated or parabolic problems has been observed by different authors as
Brandt 1981; Friedhoff and MacLachlan 2015; Oosterlee et al. 1998. To overcome this diffi-
culty, the SAMAwas proposed in Friedhoff and MacLachlan (2015). The analysis presented
in this work is novel in the sense that combines the semi-algebraic mode analysis with the
nonstandard local Fourier analysis of Vanka smoothers (MacLachlan and Oosterlee 2011;
Rodrigo et al. 2016b).

The rest of the work is organized as follows: In Sect. 2, the one-dimensional poroelasticity
equations are introduced together with their discretization by finite differences. Next, Sect.
3 is devoted to presenting the multigrid waveform relaxation method, which is proposed
to efficiently solve the poroelasticity problem. In Sect. 4, a semi-algebraic mode analysis
suitable to study space–time multigrid algorithms is introduced and the details to perform
this analysis for the multigrid waveform relaxation method based on the Vanka smoother are
explained. Section 5 presents two numerical experiments; one of them showing the exten-
sion of the proposed strategy to the case of two spatial dimensions. Finally, in Sect. 6 some
conclusions are drawn.

2 Poroelasticity equations and their discretization

First we consider the one-dimensional poroelasticity equations on the spatial domain Ω =
(0, 1), given as follows,

− ∂

∂x

(
E

∂u

∂x

)
+ α

∂p

∂x
= f (x, t), inΩ, (1)

1

β

∂p

∂t
+ α

∂

∂t

(
∂u

∂x

)
− ∂

∂x

(
K

∂p

∂x

)
= g(x, t), inΩ, (2)

where the physical parameters E and K denote the Young modulus and the hydraulic con-
ductivity, respectively, α is the Biot–Willis constant, β is the Biot modulus, f is the density
of applied body forces, and g represents a forced fluid extraction or injection process. The
boundary conditions and the initial condition are given by

E
∂u

∂x
(0, t) = σ0, p(0, t) = 0, (3)

u(1, t) = 0, K
∂p

∂x
(1, t) = 0, (4)

1

β
p(x, 0) + ∂u

∂x
(x, 0) = 0. (5)

This problem is commonly approximated by using finite element methods, see Lewis
and Schrefler 1998. However, discretizations by finite differences and finite volumes have
also been successfully applied (see Gaspar et al. 2003 and Nordbotten 2016, respectively,
for example). Here, we consider a standard collocated finite difference scheme, which has
to be stabilized in order to remove the non-physical oscillations that may appear in the
approximation of the pressure field (see Gaspar et al. 2003; Ferronato et al. 2010; Haga
et al. 2012; Favino et al. 2013; Phillips and Wheeler 2009). A perturbation term is added to
the flow equation, which consists of the temporal derivative of a diffusion term in pressure

123



S.R. Franco et al.

multiplied by a parameter that only depends on the physics of the problem and on the spatial

discretization parameter. In particular, such stabilization parameter is given by
h2

4E
(see

Gaspar et al. 2008). A similar stabilization for linear finite element methods was proposed
in Aguilar et al. (2008) and theoretically studied in Rodrigo et al. (2016a).

We consider a uniform space–time grid on Ω × (0, T ] given by Gh,τ = Gh ×Gτ , where

Gh = {xi = ih | i = 0, . . . , N + 1}, (6)

Gτ = {t j = jτ | j = 0, . . . , M}, (7)

being the discretization parameters h = 1/(N+1) and τ = T/M . The fully discrete problem
is obtained by applying the stabilized collocated finite difference scheme, together for exam-
ple with an implicit Euler scheme. For interior points, and assuming constant coefficients,
the equations of the system read,

−E
u j
i−1 − 2u j

i + u j
i+1

h2
+ α

p j
i+1 − p j

i−1

2h
= f j

i , (8)

1

β

p j
i − p j−1

i

τ
+ α

u j
i+1 − u j

i−1

2hτ
−

(
K + h2

4Eτ

)
p j
i−1 − 2p j

i + p j
i+1

h2

−α
u j−1
i+1 − u j−1

i−1

2hτ
+ h2

4Eτ

p j−1
i−1 − 2p j−1

i + p j−1
i+1

h2
= g j

i , (9)

for i = 1, . . . , N , j = 1, . . . , M , and where, for example, u j
i denotes the approximation of

u in the spatial grid-point xi and the temporal point t j .
This corresponds to a large system of algebraic equations that needs to be solved efficiently.

3 Multigrid waveform relaxation method

In this section, we describe the solver based on the so-called multigrid waveform relaxation
method proposed for the numerical simulation of the poroelasticity equations. We start by
introducing thewaveform relaxation algorithms, also called dynamic iterationmethods. They
differ from the standard iterative methods, also referred to as static iterations, in the fact that
their iterates are functions in time instead of scalar values. For more details, see Vande-
walle 1993 and Gander 2015. These continuous-in-time iterative algorithms were created for
numerically solving large systems of ordinary differential equations (ODEs), but they, how-
ever, can also be applied for solving time-dependent partial differential equations (PDEs).
This can be done by using the numerical method of lines to replace the spatial derivatives
by discrete formulas in the discrete spatial domain, obtaining a semi-discretization of the
problem. Thus, the PDE is transformed into a large set of ordinary differential equations, and
an iterative algorithm can be used to solve this system. In this work, due to the saddle point
character of the poroelasticity problem, we consider a Vanka type iteration (see Vanka 1986).
In particular, we use a three-point Vanka scheme, consisting of an overlapping block Gauss–
Seidel smoother in which three primary unknowns are updated simultaneously. In particular,
all displacement unknowns appearing in the divergence operator in the flow equation are
relaxed together centred around a pressure point, that is, unknowns ui−1(t), ui+1(t) and pi (t).
In a space–time grid, this iteration is equivalent to a line smoother in which three lines (two
corresponding to displacement unknowns and one to pressure unknowns) are simultaneously
updated.Wewill call this procedure as the three-pointVankawaveform relaxation (see Fig. 1).
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Fig. 1 Unknowns updated
together for each grid-point
within the three-point Vanka
waveform relaxation

Furthermore, a coarse-grid correction procedure in the spatial dimension can be used to
accelerate the convergence of the three-point Vanka waveform relaxation, giving rise to the
so-called linear multigrid waveform relaxation algorithm. Essentially, this method is based
in the application of the standard multigrid algorithm to the system of ODEs obtained after
semi-discretization of the PDE problem. The smoother in such a multigrid procedure is the
three-point Vanka waveform relaxation, and for the inter-grid transfer operators we consider
a standard full-weighting restriction and the linear interpolation. In Algorithm 1, the structure
of the WRMG is presented for the solution of system Ah(t)uh(t) = fh(t).

Algorithm 1 : Multigrid waveform relaxation (WRMG): uk
h(t) → uk+1

h (t)

if we are on the coarsest grid-level (with spatial grid-size given by h0) then

Ah0 (t)u
k+1
h0

(t) = fh0 (t) Solve with a direct or fast solver.

else

uk
h(t) = Sn1

h
(uk

h(t)) (Pre-smoothing)
n1 steps of the three-point Vanka waveform relaxation.

rkh(t) = fh(t) − Ah(t)uk
h(t) Compute the defect.

rk2h(t) = I2hh rkh(t) Restrict the defect.

A2h(t)̂ek2h(t) = r̄k2h(t), êk2h(0) = 0 Solve the defect equation

on G2h by performing γ ≥ 1 cycles of WRMG.

êkh(t) = Ih2h êk2h(t) Interpolate the correction.

uk+1
h

(t) = uk
h(t) + êkh(t) Compute a new approximation.

uk+1
h

(t) = Sn2
h

(uk+1
h

(t)) (Post-smoothing)
n2 steps of the three-point Vanka waveform relaxation.

end if
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4 Semi-algebraic mode analysis for the multigrid waveform relaxation
based on the Vanka smoother

In this section, practical convergence rate estimates of the multigrid waveform relaxation
method are obtained by using a semi-algebraic mode analysis (SAMA). This type of analysis
was firstly proposed in Friedhoff andMacLachlan (2015), where the convergence ofmultigrid
methods on space–time grids for parabolic problems was studied. Also in that paper, SAMA
was applied to study non-parabolic problems like elliptic diffusion in layered media and
convection diffusion problems, and recently, in Gaspar and Rodrigo (2017) and Hu et al.
(2017) such analysis has been used to analyze the convergence of the WRMG algorithm
for the time-fractional heat equation when uniform or non-uniform temporal meshes are
considered, respectively. This analysis can be seen as a generalization of the classical local
Fourier analysis (LFA) or local mode analysis (Brandt 1977, 1994; Trottenberg et al. 2001;
Wesseling 1992; Wienands and Joppich 2005), which combines the standard exponential
LFA only in space with an exact analytical approach in time.

LFA is based on a Fourier decomposition of the error function in terms of the so-called
Fourier modes. After that, it analyzes the behavior of each operator involved in the multigrid
method on these components, assuming that the involved operations are local processes. By
neglecting the effects of the boundary conditions and assuming that the discrete operator has
constant coefficients, a basis of complex exponential eigenfunctions of the operator, called
Fourier components, can be obtained.
To perform the LFA, a regular infinite grid has to be assumed. In our case, since this analysis
is applied only in space, we consider the infinite extension of the spatial grid Gh given in (6),
that we denote as Gh . On such a grid, we can define the Fourier modes as ϕh(θ, x): = eıθx

with θ ∈ (−π/h, π/h] and x ∈ Gh , which yield the so-called Fourier space

F(Gh) := span{ϕh(θ, x) | θ ∈ (−π/h, π/h]}.
Under the assumptions of the LFA, the Fourier modes are formal eigenfunctions of the

discrete version of the differential operator Ah .More precisely, Ahϕh(θ, x) = Ãh(θ)ϕh(θ, x)
where Ãh(θ) is the representation of the discrete operator on the Fourier space, also called
symbol of operator Ah . Most classical iterative methods, used as smoothers in the multigrid
iteration, satisfy also such invariance property, see Trottenberg et al. 2001; Wesseling 1992;
Wienands and Joppich 2005. This is the case of the overlapping block smoothers considered
here (MacLachlan and Oosterlee 2011; Rodrigo et al. 2016b). The distinction with respect
to other smoothers, however, is that they update some variables more than once because of
the overlapping of the local subdomains which are simultaneously solved. This implies that,
in addition to the initial and final errors, some intermediate errors appear, which have to be
taken into account in the analysis. Thus, a special strategy is required to carry out the local
Fourier analysis for overlapping block smoothers.
In particular, the three-point Vanka smoother simultaneously solves the equations corre-
sponding to unknowns pi (t), ui−1(t) and ui+1(t), which means that pressure unknowns are
updated once whereas displacement variables are relaxed twice per relaxation step. More
concretely, before solving the local system at grid-point xi , unknown ui−1(t) has already
been updated once, whereas ui+1(t) and pi (t) have not been relaxed yet. The system to
solve on each grid-point xi can be written in terms of corrections and residuals as fol-
lows,
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2E

h2
δui−1(t) + 1

2h
δpi (t) = rui−1(t), (10)

2E

h2
δui+1(t) − 1

2h
δpi (t) = rui+1(t), (11)

∂

∂t
(δui+1(t) − δui−1(t)) /2h + 2K

h2
δpi (t) + ∂

∂t

(
δpi (t)

2E

)
= r pi (t), (12)

where

δui−1(t) = eu,k+1
h (xi−1, t) − eu,k+1/2

h (xi−1, t),

δui+1(t) = eu,k+1/2
h (xi+1, t) − eu,k

h (xi+1, t),

δpi (t) = ep,k+1
h (xi , t) − ep,kh (xi , t),

being eu,k
h , ep,kh the initial errors at k-iteration for displacement and pressure, respectively,

eu,k+1
h , ep,k+1

h the final errors and eu,k+1/2
h the intermediate error that appears after u is

updated once.
Following the LFA assumptions, we can write such initial, intermediate and final errors as a
single Fourier modemultiplied by a coefficient α(m)

u,θ (t) or α(m)
p,θ (t), denoting bym the number

of times that the unknown has been updated in the current iteration (m = 0, 1, 2). Notice that
the Fourier coefficients depend on t , opposite to the classical analysis. Then, the corrections
and the residuals appearing in system (10–12) can be written in terms of these coefficients,
and we can rewrite the local system in the following way,

2E

h2

(
α

(2)
u,θ (t) − α

(1)
u,θ (t)

)
e−ıθ + 1

2h

(
α

(1)
p,θ (t) − α

(0)
p,θ (t)

)
= rui−1(t), (13)

2E

h2

(
α

(1)
u,θ (t) − α

(0)
u,θ (t)

)
eıθ − 1

2h

(
α

(1)
p,θ (t) − α

(0)
p,θ (t)

)
= rui+1(t), (14)

∂

∂t

((
α

(1)
u,θ (t) − α

(0)
u,θ (t)

)
eıθ −

(
α

(2)
u,θ (t) − α

(1)
u,θ (t)

)
e−ıθ

)
/2h

+2K

h2

(
α

(1)
p,θ (t) − α

(0)
p,θ (t)

)
+ ∂

∂t

⎛
⎝

(
α

(1)
p,θ (t) − α

(0)
p,θ (t)

)
2E

⎞
⎠ = r pi (t), (15)

where

rui−1(t) = E

h2

(
α

(2)
u,θ (t)e

−ı2θ + α
(1)
u,θ (t) − 2α(1)

u,θ (t)e
−ıθ

)
− 1

2h

(
α

(0)
p,θ (t) − α

(1)
p,θ (t)e

−ı2θ
)

,

rui+1(t) = E

h2

(
α

(1)
u,θ (t) + α

(0)
u,θ (t)e

ı2θ − 2α(0)
u,θ (t)e

ıθ
)

− 1

2h

(
α

(0)
p,θ (t)e

ı2θ − α
(0)
p,θ (t)

)
,

r pi (t) = − ∂

∂t

(
α

(0)
u,θ (t)e

ıθ − α
(1)
u,θ (t)e

−ıθ

2h

)
+ K

h2

(
α

(1)
p,θ (t)e

−ıθ + α
(0)
p,θ (t)e

ıθ − 2α(0)
p,θ (t)

)

+ ∂

∂t

(
α

(1)
p,θ (t)e

−ıθ + α
(0)
p,θ (t)e

ıθ − 2α(0)
p,θ (t)

4E

)
.

Our aim is to apply SAMA for the analysis of the multigrid waveform relaxation
method based on the three-point Vanka smoother and therefore, the next step is to dis-

cretize in time and to build the system resulting from (13–15) after substituting
∂

∂t
α

(m)
u,θ (t)
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by

(
α

(m)
u,θ ( j) − α

(m)
u,θ ( j − 1)

τ

)
where j and j − 1 denote two consecutive time levels. The

obtained system is written in the way that the Fourier coefficients already updated are given
in terms of those which have not been updated yet. This yields a system of the form

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

α
(1)
u,θ ( j − 1)

α
(2)
u,θ ( j − 1)

α
(1)
p,θ ( j − 1)

α
(1)
u,θ ( j)

α
(2)
u,θ ( j)

α
(1)
p,θ ( j)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

α
(0)
u,θ ( j − 1)

α
(0)
p,θ ( j − 1)

α
(0)
u,θ ( j)

α
(0)
p,θ ( j)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where P and Q are block bi-diagonal matrices with sizes (3M × 3M) and (3M × 2M),
respectively. Matrix P has the following diagonal blocks⎛

⎜⎝
− E

h2
2E
h2
e−ıθ − E

h2
e−ı2θ 1

2h − e−ı2θ

2h
2E
h2
eıθ − E

h2
0 − 1

2h
1

2hτ
eıθ − 1

2hτ
e−ıθ 2K

h2
− K

h2
e−ıθ + 1

2Eτ
− 1

4Eτ
e−ıθ

⎞
⎟⎠ ,

and the blocks below the diagonal read as⎛
⎝ 0 0 0

0 0 0
− 1

2hτ
eıθ 1

2hτ
e−ıθ 1

4Eτ
e−ıθ − 1

2Eτ

⎞
⎠ .

The diagonal blocks of matrix Q are given by⎛
⎝ 0 0

E
h2
eı2θ − 1

2h e
ı2θ

0 K
h2
eıθ + 1

4Eτ
eıθ

⎞
⎠ ,

whereas the blocks below the diagonal are⎛
⎝ 0 0
0 0
0 − 1

4Eτ
eıθ

⎞
⎠ .

From system (16), we can write,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

α
(1)
u,θ ( j − 1)

α
(2)
u,θ ( j − 1)

α
(1)
p,θ ( j − 1)

α
(1)
u,θ ( j)

α
(2)
u,θ ( j)

α
(1)
p,θ ( j)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P−1Q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

α
(0)
u,θ ( j − 1)

α
(0)
p,θ ( j − 1)

α
(0)
u,θ ( j)

α
(0)
p,θ ( j)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)
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and by choosing the rows corresponding to the fully updated Fourier coefficients, we obtain
the relation between the initial and the fully corrected errors, that is,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

α
(2)
u,θ ( j − 1)

α
(1)
p,θ ( j − 1)

α
(2)
u,θ ( j)

α
(1)
p,θ ( j)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S̃h,τ (θ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

α
(0)
u,θ ( j − 1)

α
(0)
p,θ ( j − 1)

α
(0)
u,θ ( j)

α
(0)
p,θ ( j)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

which gives us the matrix representation of the smoothing operator Sh,τ , denoted by S̃h,τ (θ),
necessary to perform theSAMA.Byusing this representation,we can carry out a smoothing or
two-grid analysis in order to predict the smoothing factor of the three-point Vanka waveform
relaxation or the two-grid convergence factor of the multigrid waveform relaxation method
proposed. The smoothing factor gives information about how well the smoother removes the
oscillatory modes of the error. However, if we want to know about the interplay between
the smoothing and the coarse-grid correction, and consequently about the behavior of the
whole multigrid algorithm, a two-grid analysis is needed. Thus, the two-grid convergence
factor, usually denoted as ρ, predicts the asymptotic convergence factor of the W-cycle
multigrid algorithm, ρh . For the details of such an analysis we refer the reader to Friedhoff
and MacLachlan 2015; Gaspar and Rodrigo 2017.

Remark 1 The semi-algebraic analysis presented for the one-dimensional case can also be
extended to the two-dimensional case. In the one-dimensional case, the computational com-
plexity of this analysis corresponds to the number of operations required to solve, for each
frequency, a block bi-diagonal system, with blocks of size 3 × 3. In the two-dimensional
case, the systems to solve are also block bi-diagonal but with blocks of size 5 × 5. In both
cases, these systems can be efficiently solved by performing a forward substitution method.
Moreover, the diagonal blocks are the same for all time steps and therefore they need to be
inverted only once.

5 Numerical results

In this section, we want to illustrate the efficiency of the proposed multigrid waveform relax-
ation method for solving the poroelasticity equations. We present two numerical experiments
corresponding to the one- and two-dimensional poroelastic problems.

5.1 One-dimensional numerical experiment

In this first numerical experiment, we solve problem (1–5) by using the multigrid waveform
relaxation method proposed in Sect. 3. We analyze the convergence properties of such an
algorithm by using the semi-algebraic mode analysis described in Sect. 4. In order to study
the robustness of the method with respect to the involved parameters, we define parameter
Λ = K τ

h2
.

In Fig. 2 we display the two-grid convergence factors obtained by the semi-algebraic
mode analysis for a wide range of values of the logarithm of parameter Λ, by using only
one smoothing step. These results are compared with the asymptotic convergence factors
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Fig. 2 Comparison between the
two-grid convergence factors
provided by the SAMA analysis,
ρ, and the asymptotic
convergence factors
computationally obtained by
using a W -cycle, ρh , for a wide
range of values of log2(Λ) and
using only one smoothing step

Fig. 3 Two-grid convergence
factors provided by the SAMA
analysis by using different
numbers of smoothing steps n,
for a wide range of values of
log2(Λ)

experimentally computed by using a W -cycle in the real code. The experimentally obtained
results show that the semi-algebraic mode analysis yields very accurate performance pre-
dictions. Thus, this analysis becomes an efficient tool for the study of the behavior of the
proposed algorithm. We can analyze then the convergence of the proposed multigrid method
by using different numbers of smoothing steps, n. In Fig. 3, the two-grid convergence factors
predicted by the SAMA for n = 1, 2, 3 are shown. We observe that the more smoothing
steps, the better the convergence rate becomes. However, it is necessary to take into account
the whole efficiency of the multigrid cycle in order to find the most efficient choice.

For this purpose, we compare the CPU times for different numbers of smoothing steps
and various values of the hydraulic conductivity. In Fig. 4, we display the CPU times needed
to reach the stopping criterion, that is, to reduce the initial residual in a factor of 10−10, by
using N = 2048, M = 1024 and T = 1. As can be observed, the performance of W−cycle
with one or two smoothing steps is very similar, improving that of W (1, 1)−cycle when the
hydraulic conductivity tends to be small. Since this latter is the most realistic case, we choose
a W (1, 1)−cycle for the next experiments.

It is well-known that multigrid V−cycles are often preferred toW−cycles because of their
lower computational cost. However, for our problem, we have seen that the use of V−cycles
does not provide a method robust with respect to the considered parameters. In fact, even
for the one-dimensional problem, the V−cycle leads to divergence in some cases. This is
not surprising, since for strongly coupled systems of PDEs, as the poroelasticity problem is,
often W−cycles are needed to obtain a robust solver, (see for example Gaspar et al. 2008).
For this reason, we will use W−cycles in the following tests.

In Table 1, we show the robustness of the method with respect to the physical and dis-
cretization parameters. For E = 104, we display the number of multigrid iterations which
are necessary to reduce the maximum initial residual in a factor of 10−10. These results are
displayed for different values of the hydraulic conductivity K and for different spatial grids
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Fig. 4 CPU times (in seconds) necessary to reach the stopping criterion by using W−cycle with different
smoothing steps, for several values of the hydraulic conductivity

Table 1 Numbers of iterations
necessary to reduce the
maximum initial residual in a
factor of 10−10, for different
values of K and different spatial
grids characterized by h = 1/N

K\N 128 256 512 1024 2048 4096 8192

1 8 8 8 7 7 7 7

10−2 8 8 7 7 7 7 7

10−4 10 9 8 8 7 7 7

10−6 14 12 11 10 9 9 8

10−8 18 19 19 16 12 11 10

10−10 15 15 16 18 19 19 17

10−12 15 15 15 15 15 15 17

10−14 15 15 15 15 15 15 15

10−16 15 15 15 15 15 15 15

Table 2 Numbers of iterations
necessary to reduce the
maximum initial residual in a
factor of 10−10 for different
values of the discretization
parameters h = 1/N and τ = T

M

M\N 512 1024 2048 4096 8192

512 7 7 8 8 8

1024 7 7 7 8 8

2048 7 7 7 7 8

4096 7 7 7 7 7

8192 7 7 7 7 7The physical parameters are fixed
as K = 10−3 and E = 104

characterized by h = 1/N , with N = 2k, k = 7, . . . , 13. We can observe that when K
becomes smaller, the number of iterations grows, since parameter Λ is small and then the
convergence rates are a bit worse as previously shown in Fig. 3. However, we can see that
at some point the number of iterations remains constant for any discretization parameter h,
showing the robustness of the proposed multigrid waveform relaxation algorithm.

Finally, to show that the good results obtained are also independent on the temporal
resolution of the problem, in Table 2 we display the numbers of iterations necessary to reach
the stopping criterium for different values of N and M defining the spatial and temporal
discretization parameters h and τ , respectively.
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Table 3 Numbers of iterations
necessary to reduce the maximum
initial residual in a factor of
10−10, for different values of K
and different spatial grids
characterized by h = 1/N , by
using a Crank–Nicolson scheme

K\N 128 256 512 1024 2018 4096 8192

1 8 8 8 7 7 7 7

10−2 9 9 8 7 7 7 7

10−4 19 15 11 10 9 8 8

10−6 22 21 21 20 17 12 10

10−8 18 20 21 22 22 21 20

10−10 15 15 16 18 19 21 21

10−12 15 15 15 15 15 15 17

10−14 15 15 15 15 15 15 15

10−16 15 15 15 15 15 15 15

We can observe that the proposed space–time method is robust with respect to both spatial
and temporal resolutions of the problem. Almost identical results are obtained if the second-
order accurate Crank–Nicolson scheme is used for the time discretization instead of the
first-order backward Euler. This can be seen in Table 3, in which we show the number
of multigrid iterations necessary to fulfil the stopping criterion when Crank–Nicolson is
considered. These results are obtained by using the same conditions as in Table 1 for the
Euler scheme.

Remark 2 We can conclude that the convergence obtained by using the proposed multigrid
waveform relaxation method is similar to that provided by other multigrid methods in the
literature for the poroelasticity equations, (see Gaspar et al. 2008 for example). Its advantage,
however, is that the space–time solver is parallel-in-time, taking advantage of the use of
massively parallel systems with thousands of cores, which permits to reduce drastically the
computing time in the numerical simulations.

5.2 Two-dimensional numerical experiment

In this second numerical experiment, we present the extension of the proposed strategy to
solve the two-dimensional Biot’s model, which can be formulated as a coupled system of
PDEs for the unknowns displacements of the solid matrix, u, and pore pressure of the fluid,
p. Following this notation, the governing equations read as follows,

∇(λ + μ)∇ · u + ∇ · μ∇u − α∇ p = f(x, t), (19)
1

β

∂p

∂t
+ α

∂

∂t
(∇ · u) − ∇ · (K∇ p) = g(x, t), (20)

where λ and μ are the Lamé coefficients, given in terms of the Young’s modulus E and the
Poisson ration ν as follows,

λ = νE

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
, (21)

β is the Biot modulus, α is the Biot–Willis fluid/solid coupling coefficient, and K is the
hydraulic conductivity. Let Ω = (0, 1)2 be the domain of our test-problem, and for simplic-
ity we impose Dirichlet boundary conditions for all variables. For the discretization of the
problem, we consider a uniform space–time grid on Ω × (0, T ] given by Gh,τ = Gh × Gτ ,
where

Gh = {xi, j = (ih, jh) | i, j = 0, . . . , N + 1}, (22)

123



A multigrid waveform relaxation method...

Fig. 5 Five unknowns involved in the point-wise Vanka smoother for 2D and the corresponding unknowns
simultaneously updated in the point-wise Vanka waveform relaxation

being the discretization parameter h = 1/(N + 1) for both dimensions; and Gτ is defined as
in the previous sections with τ = T/M . A standard collocated finite difference scheme on
such a grid, together with a stabilization term to avoid unphysical oscillations, is considered.
More concretely, the additional term looks like a temporal derivative of a Laplacian of the

pressure which is multiplied by the stabilization parameter
h2

4(λ + 2μ)
, (see Gaspar et al.

2008; Oosterlee and Gaspar 2008).
The extension of the multigrid waveform relaxation to 2D is straightforward (see Vande-

walle 1993). In this case, the method combines a two-dimensional coarsening strategy in the
space variables and a line-in-time block smoother which in this case is based on a point-wise
Vanka relaxation appropriate to the two-dimensional poroelasticity problem. In particular,
a five-point Vanka smoother, which simultaneously updates all unknowns appearing in the
discrete divergence operator in the pressure equation, is considered. This approach implies
that four unknowns corresponding to displacements and one pressure unknown are relaxed
simultaneously (see left picture in Fig. 5). This smoother was successfully applied for the
multigrid solution of the poroelasticity problem in a time-stepping approach, (see for exam-
ple Gaspar et al. 2008; Oosterlee and Gaspar 2008). Here, the waveform relaxation based
on this point-wise Vanka smoother solves together those five unknowns for all time steps
(see right picture in Fig. 5). Notice that, since an Euler method is considered for the time
discretization, this can be easily done by solving consecutively the (5× 5)-systems for each
time level.

For the two dimensional problem, a multigrid W (0, 1)−cycle is used in order to make
less costly the algorithm. In fact, by comparing the complexity of the multigrid W−cycle
for different numbers of smoothing steps, it results to be the most efficient choice. This can
be seen in Fig. 6, where the CPU times necessary to reach the stopping criterion by using
W (0, 1), W (1, 1) and W (1, 2) are shown for different values of the hydraulic conductivity.
For this reason, in the rest of the section a W (0, 1)−cycle is considered to perform the
numerical experiments for the two-dimensional example.
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Fig. 6 CPU times (in seconds) necessary to reach the stopping criterion by using W-cycle with different
smoothing steps, for several values of the hydraulic conductivity, in the two-dimensional problem. For these
results, N = 256, M = 512 and T = 1

Table 4 Numbers of iterations
necessary to reduce the maximum
initial residual in a factor of
10−10 for different values of the
discretization parameters

M\N 128 256 512

128 17 17 17

256 17 17 17

512 17 17 18

1024 17 17 18

In order to show the robustness of the proposed solver in 2D, in Table 4 we display
the numbers of iterations which are necessary to reduce the maximum initial residual in a
factor of 10−10 for different values of M and N . The physical parameters are chosen as
E = 104, ν = 0.2, and the hydraulic conductivity is fixed to K = 10−3. We can observe that
the number of iterations remain constant for the different choices of the space–time grids,
so that the proposed multigrid waveform relaxation method is robust independently of the
discretization parameters.

Remark 3 As in the one-dimensional experiment, a Crank–Nicolson scheme has been imple-
mented for the timediscretization. The obtained results, however, are similar to those provided
by using the Euler scheme.

Finally, we want to investigate if the behavior of the method is independent on the perme-
ability. The number of iterations necessary to fulfil the stopping criterion is depicted in Fig.
7 for different values of parameter K . We can observe that when the permeability is small
the number of iterations increases. This number, however, stays robust as the permeability
becomes smaller and smaller. Therefore, the proposed solution method is robust with respect
to K when it is small.
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Fig. 7 Number of iterations
necessary to reduce the maximum
initial residual in a factor of
10−10 for different values of the
hydraulic conductivity K

6 Conclusion

An efficient multigrid method on space–time grids has been proposed for solving the collo-
cated finite difference discretization of the linear Biot’s consolidation model. This multigrid
solver is built on a waveform relaxation iteration based on a Vanka smoother, which is
the key for the good performance of the method. The good convergence rates obtained are
confirmed by performing a semi-algebraic mode analysis. This analysis is special since it
combines the SAMA with the non-standard treatment of the Vanka smoother. Both one- and
two-dimensional numerical experiments are presented, showing the good performance of the
multigrid waveform relaxation algorithm for the poroelasticity problem.
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