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a b s t r a c t 

The goal of the present study is to present and test a novel numerical procedure for re- 

ducing the discretization error associated with several types of variables of interest in ba- 

sic Computational Fluid Dynamics (CFD) problems. Variables of interest are classified into 

five types according to their locations on various grids. According to the current literature, 

Repeated Richardson Extrapolation (RRE) performs well for only one of the five types of 

variable, i.e., for global variables or those that otherwise have fixed nodal positions on dif- 

ferent grids. RRE does not perform well for the remaining four variable types. Because of 

this limitation, in this work, polynomial interpolation is applied to various numerical so- 

lutions obtained on different grids, followed by RRE. Four problems are used to test the 

proposed procedure, one linear and three non-linear based on the following equations: 1D 

Poisson, 2D Burgers and 2D Navier–Stokes. These equations are discretized using the Finite 

Difference method with approximations of second- and fourth-order accuracy and the Fi- 

nite Volume method with approximations of first- and second-order accuracy. Polynomial 

interpolation functions for one- and two-dimensional domains are adopted, and optimiza- 

tion techniques are also adopted in some cases. The discretization error is significantly re- 

duced, and the order of accuracy is also increased: for example, based on a second-order 

scheme with an error of 1.4 ×10 −6 , we obtain 2.1 ×10 −27 using six extrapolations on a grid 

with 1460 elements and an order of accuracy of 14.5. The computational effort (CPU time 

and memory usage) needed to obtain the solution at a given level of numerical error or 

using a specific grid is also significantly reduced. 
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1. Introduction 

One of the greatest challenges of Computational Fluid Dynamics (CFD) is related to the level of accuracy of the numerical

solutions. Although numerical error can never be entirely eliminated, it must be reduced as much as possible. Among all

sources of numerical error, the discretization error ( Eh ) is usually the most significant one [1] . In the current literature,

Richardson Extrapolation (RE) is often used to reduce Eh and increase the numerical solution’s order of accuracy . As examples,

the following authors applied RE and obtained sixth-order accuracy using a fourth-order scheme: Wang and Zhang [2] did

so for the 2D Poisson equation, and Ma and Ge [3] and Wang and Zhang [4] did so for the 3D advection–diffusion equation.

The effect of applying RE can be made more powerful if it is applied recursively, such that each application represents

another level of extrapolation. This procedure is known as Repeated Richardson Extrapolation (RRE) [5] . Erturk et al. [6] used

RRE with two levels of extrapolation in the numerical solution of a classical CFD problem, namely, the two-dimensional

steady incompressible lid-driven cavity flow, obtaining sixth-order accuracy based on a second-order approach. For the same

problem, Marchi et al. [7] applied RRE with up to nine levels of extrapolation to several types of variables of interest. They

ascertained that RRE performs well for some types of variables, performs modestly in the case of variables that involve

extreme values (maxima and minima) and is ineffective at finding the coordinate positions of extrema. Burg and Erwin

[8] reported similar difficulties in using RRE that are inherent to the process of grid refinement, i.e., in variables whose

location depends on the grid that is adopted. In this case, the coordinate values of the variable of interest change for each

grid. 

RRE’s poor performance for variables with coordinates that change with the grid has also been observed by Nicolas et

al. [9] in a thermoconvective-flow problem due to the occurrence of a local extreme value for the functional that describes

the temperature gradient, where the location of the extremum changes when the grid does. Fig. 1 illustrates this situation

for the 1D heat-conduction problem with unit domain ( Ω ), for which the Finite Difference method (FDM) was employed to

solve the Poisson equation, as detailed by Martins [10] , in which three variables of interest are considered: (i) T (1/2), which

represents the temperature at the specific nodal point that corresponds to coordinate X = 1/2, (ii) Tmax , which indicates the

maximum temperature obtained in Ω , and (iii) the location of this maximum temperature ( Xmax ). ‘ Eh, T max’, ‘ Eh, X max’

and ‘ Eh, T (1/2)’ denote, respectively, the error on the solution for Tmax, X max’ and T (1/2) obtained without using RRE. ‘ Em,

T (1/2)’ denotes the error on the solution obtained using RRE. ‘ Em, Tmax ’ is the numerical error associated with the result

obtained using RRE for the computation of Tmax , and ‘ Em, Xmax ’ is the error associated with the result obtained using RRE

to identify the coordinate position of the maximum temperature. 

It can be observed in Fig. 1 that the use of RRE significantly reduces the magnitude of Eh for T (1/2), i.e., ‘ Eh, T (1/2)’ is

much larger than ‘ Em, T (1/2)’. However, with regard to the computation of Tmax , it is evident that the effectiveness of RRE is

severely hindered, i.e., the resulting magnitude of ‘ Em, Tmax ’ is equivalent to that of ‘ Eh, T (1/2)’ and the result for ‘ Em, Xmax ’

is even worse. Furthermore, ‘ Epm, Tmax ’ and ‘ Epm, Xmax ’ represent the errors on the solution for Tmax and its location after

the application of the procedure proposed in this work. It is clear that the results thus obtained are qualitatively equivalent

to those obtained for the variable T (1/2) using RRE, i.e., ‘ Em, T (1/2)’. 

The goal of the present work is to present and test a novel numerical procedure for reducing the discretization er-

ror of variables for which RRE performs poorly, as has been described in the literature. Four problems are used to test

this proposed procedure, one linear and three non-linear. The chosen mathematical models are a 1D Poisson equation, a

set of two 2D Burgers equations (modified with a specified source term), 2D Navier–Stokes equations (modified with a

specified source term) and 2D Navier–Stokes equations for the classical CFD problem, namely, the two-dimensional steady
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Fig. 1. RRE performance for three variables, 1D Poisson. 
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Fig. 2. Types of variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

incompressible lid-driven cavity flow. The numerical solutions are obtained with the Finite Difference and Finite Volume

methods (FDM and FVM) using numerical approximations of first-, second- and fourth-order accuracy. Although the so-

lutions of cited problems are well known in the literature, these problems were chosen because they represent common

problems in CFD, i.e., they involve pure diffusion, advection-diffusion and laminar flow. Moreover, in the first problem, the

one-dimensional approach is justified by the possibility of using grids with millions of nodes, which permits the detailed

analysis of the behavior of the asymptotic error. 

This work is organized as follows: in Section 2 , the theoretical foundations, the proposed procedure and the definition

of the four problems are exposed; in Section 3 , the results are presented; and the conclusion is exposed in Section 4 . 

2. Methodology 

2.1. Types of variables 

The use of RRE requires obtaining numerical solutions for each variable of interest on a set of distinct grids. However, as

illustrated in Fig. 1 , the performance of RRE is hindered in the case of variables whose coordinate values change when their

solution is computed on different grids. Therefore, to cover the various cases that arise in the application of RRE, the present

work proposes the classification of variables into five types, taking the process of grid refinement into account. These types

are differentiated by the variable’s locations, as described next and as shown in Fig. 2 , when three levels of grid refinement

are considered: g 1 (supercoarse), g 2 (coarse) and g 3 (fine); the symbols on the horizontal axis represent the nodal points,

and the dotted lines (curves) are their respective numerical solutions ( λh ). 

• Type I : a global variable, or a local variable whose coordinate ( c ) is known and coincides with a nodal point ( Fig. 2 I) in

all grids ( g ) under consideration. 
• Type II : a local variable for which c is known and is located at the midpoint of two nodes of g , i.e., the coordinate

coincides with the arithmetic mean of the nodal coordinates ( Fig. 2 II). 
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• Type III : a local variable for which c is known and coincides neither with a nodal point of g nor with the midpoint of

two such nodes; however, it does have a fixed position ( Fig. 2 III). 
• Type IV : a local variable whose value ( �) is known a priori . For this type of variable, the goal is to determine c ( Fig. 2 IV),

which will have a different value for each grid ( c 1 � = c 2 � = c 3 ) and does not necessarily coincide with any node. 
• Type V : a variable for which c is unknown, i.e., a variable whose coordinate value changes across different grids ( Fig. 2 V).

Maxima and minima are examples of this type of variable. 

Although the representation adopted in Fig. 2 is presented on a one-dimensional domain, this classification (types I

through V) is general and is also valid for multidimensional domains. For example, the coordinates of the non-nodal vari-

ables of type II are obtained by averaging the coordinates of four or eight nodal points in the two- and three-dimensional

cases, respectively. The coordinates of variables of types III through V can be obtained via 1D, 2D or 3D polynomial interpo-

lation of the nodal data. 

In this work in particular, we consider one- and two-dimensional domains; the results for these types of variables are

given in Section 3 . The goal is to reduce Eh ; in this sense, the performance of RRE for variables of type I has already

been demonstrated in the literature in analyses of problems for which the performance is improved using RRE, and these

analyses serve as references for the other variable types. Thus, in this study, the behavior for variables of types II, III and IV

is analyzed both with RRE alone and with polynomial interpolation followed by RRE. Finally, for type V variables, additional

optimization methods are used to obtain maximum and minimum values. 

2.2. Numerical solution λh : obtained without interpolation or extrapolation, with error Eh 

2.2.1. Numerical error 

The numerical error E ( λh ) on a given variable of interest is defined as the difference between the analytical solution ( �)

and the numerical solution ( λh ), i.e., 

E(λh ) = � − λh, (1)

where E ( λh ) can arise from four sources [11] : truncation, iteration, round-off and programming. When the other sources

are nonexistent or small in comparison with the truncation error, the discretization error ( Eh ) can be computed using

Eq. (1) . In fact, the absolute value of E ( λh ) is the value that is plotted in all figures presented in this manuscript. 

Similar to the general equation for the truncation error, Eh is given by Roache [12] : 

Eh = C 0 h 

p 0 + C 1 h 

p 1 + C 2 h 

p 2 + C 3 h 

p 3 + · · · , (2)

where the coefficients C j , j = 0 , 1 , 2 , 3 , . . . are real-valued functions of the dependent variable and its derivatives but are

independent of the grid spacing h , namely, the space between the nodes in the grid used in the discretization process. In

the present work, we use uniform grids over a unit domain Ω , such that h = 1 / (N − 1) (FDM) for N nodal points in 1D and

h = 1 /N (FVM) for N nodal points in each coordinate axis of the N × N 2D grid. 

By definition, the true order of accuracy corresponds to the exponents of h in Eq. (2) , the set of which is denoted by

p T . These exponents are typically integer numbers such that p 0 < p 1 < p 2 < p 3 < ���. The smallest exponent p 0 is called

the asymptotic order or order of accuracy of Eh . When h → 0, the first term C 0 h 
p 

0 of the right-hand side of Eq. (2) is the

primary component of Eh [11] . 

2.2.2. Problem 1: 1D Poisson equation 

The first problem represents one-dimensional heat diffusion with a source, i.e., the classic Poisson equation, which is a

linear differential equation. The mathematical model that represents Problem 1 is obtained from the energy-conservation

equation by considering a continuous medium, the absence of flow, one-dimensional heat conduction, a steady state and

constant properties, yielding: 

d 2 T 

d x 2 
= S, (3)

where T is the temperature, x is the space coordinate, x ∈ � = [0 , 1] and S is the source term. To analyze the behavior of Eh ,

we use S = S(x ) = −9 e 3 x / 5 , resulting in: 

T (x ) = −1 

5 

e 3 x + 3 x + 2 . (4)

The boundary conditions for Eq. (3) are given by T (0) = 9 / 5 and T (1) = −e 3 / 5 + 5 . 

The numerical model used herein is obtained using the FDM [13] , and two cases are formulated and solved: second-order

numerical approximations using a central difference scheme (CDS-2, p 0 = 2 ) and a fourth-order compact scheme (CDS-

4, p 0 = 4 ) [14] . The linear system obtained from the discretization process is solved using the TDMA ( Tridiagonal Matrix

Algorithm ) [13] direct method, so there is no iteration error. 
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2.2.3. Problem 2: 2D Burgers equations 

This problem represents the laminar flow of an incompressible fluid with constant properties in a lid-driven square cavity

[15] . The mathematical model corresponds to the equations for the linear momentum in the x and y directions, given by: 

∂ u 

2 

∂x 
+ 

∂(u v ) 
∂y 

= −∂P 

∂x 
+ 

1 

Re 

(
∂ 2 u 

∂ x 2 
+ 

∂ 2 u 

∂ y 2 

)
, (5) 

∂(u v ) 
∂x 

+ 

∂ v 2 

∂y 
= −∂P 

∂y 
+ 

1 

Re 

(
∂ 2 v 
∂ x 2 

+ 

∂ 2 v 
∂ y 2 

)
− S(x, y, Re ) , (6) 

where u and v are the components of the velocity vector in the x and y directions, respectively; Re is the Reynolds number

( Re = u ∞ 

lρ/μ), where u ∞ 

and l are the reference velocity and the length scale, respectively, ρ is the density and μ is the

dynamic viscosity; Re = 1; and the source term ( S ) and the static pressure ( P ) are given by 

S(x, y, Re ) = − 8 

Re 

[
24 F + 2 f ′ g ′′ + f ′′′ g 

]
− 64 

[
F 2 G 1 − g g ′ F 1 

]
, (7) 

P (x, y, Re ) = 

8 

Re 

[
F g ′′′ + f ′ g ′ 

]
+ 64 F 2 

[ 
g g ′′ −

(
g ′ 
)2 

] 
, (8) 

where, 

f = f (x ) = x 4 − 2 x 3 + x 2 ⇒ f ′ = 4 x 3 − 6 x 2 + 2 x ⇒ f ′′ = 12 x 2 − 12 x + 2 ⇒ f ′′′ = 24 x − 12 , 

F = 

∫ 
f (x ) dx = 0 . 2 x 5 − 0 . 5 x 4 + x 3 / 3 , 

F 1 = f (x ) f ′′ (x ) −
[

f ′ (x ) 
]2 = −4 x 6 + 12 x 5 − 14 x 4 + 8 x 3 − 2 x 2 , 

F 2 = 

∫ 
f (x ) f ′ (x ) dx = 0 . 5 ( x 4 − 2 x 3 + x 2 ) 

2 
, 

g = g(y ) = y 4 − y 2 ⇒ g ′ = 4 y 3 − 2 y ⇒ g ′′ = 12 y 2 − 2 ⇒ g ′′′ = 24 y, 

G 1 = g(y ) g ′′′ (y ) − g ′ (y ) g ′′ (y ) = −24 y 5 + 8 y 3 − 4 y. 

The domain is � = { (x, y ) ∈ 	 

2 : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 } . The boundary conditions adopted for u and v are 

u (x, 0) = u (0 , y ) = u (1 , y ) = v (x, 0) = v (0 , y ) = v (1 , y ) = v (x, 1) = 0 ; u (x, 1) = 16 ( x 4 − 2 x 3 + x 2 ) . (9)

The analytical solutions for the two unknowns of this problem, u and v , are: 

u (x, y ) = 8 ( x 4 − 2 x 3 + x 2 ) (4 y 3 − 2 y ) , (10)

v (x, y ) = −8 (4 x 3 − 6 x 2 + 2 x ) ( y 4 − y 2 ) . (11)

The numerical solution of this problem is obtained using the FVM [16] . The diffusion terms of Eqs. (5) and ( 6 ) are ap-

proximated using CDS-2, and the advection terms are approximated using two methods: (i) the UDS-1 ( Upwind Differencing

Scheme ), which results in a first-order scheme ( p 0 = 1 ), and (ii) the central difference through the deferred correction of the

UDS-1, which results in a second-order scheme (CDS-2, p 0 = 2 ). The boundary conditions are applied using ghost cells. Both

systems of equations, for u and v , are solved in a sequential procedure, but coupled by an iterative cycle. Each one of the

systems of equations is solved using the lexicographic Gauss-Seidel method, by the use of geometric multigrid with a full

approximation scheme (FAS), the full-weighting restriction, bilinear interpolation, the V-cycle algorithm and a full multigrid

[17] . The process iterates twice as many times as necessary for the dimensionless residual of the set of algebraic equations,

normalized to the initial estimate, to reach the machine-precision level; this guarantees that the iteration error is controlled

and minimized. 

2.2.4. Problem 3: 2D Navier–Stokes equations with known analytical solution 

The adopted mathematical model involves the mass and momentum conservation laws (Navier–Stokes equations) in the

context of the classical two-dimensional steady incompressible lid-driven cavity flow. The adopted assumptions also include:

2D laminar flow in x- and y- directions; constant μ (viscosity); and the neglect of other effects. In this case, 

∂u 

∂x 
+ 

∂v 
∂y 

= 0 , (12) 

ρ
∂( u 

2 ) 

∂x 
+ ρ

∂(u v ) 
∂y 

= μ

(
∂ 2 u 

∂ x 2 
+ 

∂ 2 u 

∂ y 2 

)
− ∂ p 

∂x 
, (13) 

ρ
∂(u v ) 
∂x 

+ ρ
∂ (v ) 2 

∂y 
= μ

(
∂ 2 v 
∂ x 2 

+ 

∂ 2 v 
∂ y 2 

)
− ∂ p 

∂y 
+ S(x, y, Re ) , (14) 

where p represents the pressure and S is the source term presented in Eq. (7) for the analytical solution obtained by the

method of manufactured solutions, with Dirichlet boundary conditions given by Eq. (9) . The domain is � = { (x, y ) ∈ 	 

2 :
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0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 } . In order to solve this problem, we used u ∞ 

= 1 m / s and l = 1 m as the reference velocity and the

length scale, respectively, ρ = 1 kg / m 

3 is the density and μ = 1 Pa . s is the dynamic viscosity. Re is the Reynolds number

( Re = u ∞ 

lρ/μ), so Re = 1. The analytical solution for the three unknowns of this problem, p, u and v , are given by Eqs. (8) ,

( 10 ) and ( 11 ). 

The variables of interest for this problem involve the primitive variables u and v , as well as integral forms of these

two. More specifically, one considers: uc = u (1 / 2 , 1 / 2) ; ψmin = the minimum value of the streamline function for ( x, y ) ∈
[0, 1] and their x- and y- coordinates; u min = the minimum value of the u- profile at x = 1 / 2 and its respective y -coordinate;

v max = the maximum value of the v -profile at y = 1 / 2 and its respective x -coordinate. 

The numerical solution of the mathematical model described by Eqs. (12) –( 14 ) was obtained by using [7,13,16] : ( 1 ) the

FVM; ( 2 ) Central Differencing Scheme (CDS) [13] for approximations of diffusive and pressure terms; ( 3 ) CDS with deferred

correction for approximations of advective terms; ( 4 ) Pressure–velocity coupling by the Semi Implicit Linked Equations Con-

sistent Method (SIMPLEC); ( 5 ) co-located uniform grids; ( 6 ) boundary conditions applied by using ghost cells; ( 7 ) the Mod-

ified Strongly Implicit (MSI) method to solve the system of linear equations at each iteration; and ( 8 ) time-dependent (fully

implicit scheme) formulation, in order to use time as a relaxation parameter for a better convergence rate of the discretized

mathematical model. The obtained numerical model does not require the use of pressure boundary conditions [7] and the

expressions obtained for internal nodal points are applied to the boundaries. For each grid, the analytical solution was em-

ployed as initial guess. The process iterates twice as many times as necessary for the dimensionless residual of the set of

algebraic equations, normalized to the initial estimate, to reach the machine-precision level; this guarantees that the itera-

tion error is controlled and minimized. 

2.2.5. Problem 4: 2D Navier–Stokes equations with unknown analytical solution 

The governing equations of Problem 4 are identical to the ones of Problem 3, Eqs. (12) –( 14 ), excepted by the fact that

S = 0 and the boundary conditions are given by: 

u (x, 0) = u (0 , y ) = u (1 , y ) = v (x, 0) = v (0 , y ) = v (1 , y ) = v (x, 1) = 0 ; u (x, 1) = 1 . (15)

The analytical solution for this problem is unknown. However, it is widely used in literature [7] for comparisons of

schemes and algorithms. 

The same algorithm, numerical model and other data described in Section 2.2.4 are applied to Problem 4, excepted by

the fact that the used initial guess was u = v = 0 and Re = 10 0 0. 

The variables of interest for this problem involve the primitive variables u and v , as well as integral forms of these two.

More specifically, one considers: uc = u (1 / 2 , 1 / 2) ; ψmin = the minimum value of the streamline function for ( x, y ) ∈ [0, 1]

and their x- and y- coordinates; and v min = the minimum value of the v -profile at y = 1 / 2 and its respective x -coordinate. 

2.3. Numerical solution λp : obtained using polynomial interpolation, with error Ep 

When a problem is solved using numerical methods, the solution is obtained on nodal points determined by the adopted

grid. However, in some cases, it may be necessary to obtain solutions at specific locations of the domain Ω that do not

coincide with such points. In such an event, polynomial interpolation is a tool that can successfully be applied. 

As will be shown in the result Section 3 , polynomial interpolation of the results obtained at nodal points is used to re-

duce the Eh of variables of types II through V using RRE. Therefore, λp denotes a numerical solution obtained using polynomial

interpolation of degree p of the nodal solutions λh , and Ep denotes the error associated with λp . 

In general, with the knowledge of only a few points for which the value of a function f is known, it is possible to

find a polynomial ξ that approximates the function inside some given domain. Among the many techniques for polynomial

interpolation, the Newton method [18] is often used in practice. 

2.3.1. Polynomial interpolation in 1D 

In the one-dimensional case, Newton method is widely applied because it consists of an easy-to-implement recursive

process [18] , Newton’s divided differences (NDD); it is used to determine a polynomial interpolation function ξ p . An extreme

point of ξ p can be identified by considering the solution of the algebraic equation d ξp / dx = 0 (the derivative of ξ p is equal

to zero), for which the analytical solution is trivial when p ≤ 2. For p ≥ 3, Newton’s iterative method can be applied for the

solution of non-linear algebraic equations [18] . 

When interpolating a function f ( x ) by ξ p in [ x 0 , x p ], there is an associated error of e (x ) = f (x ) − ξp (x ) , ∀ x ∈ [ x 0 , x p ] . For

evenly spaced x 0 < x 1 < x 2 < ��� < x p (with spacing h ), the magnitude of e ( x ) has an upper bound of [18] : 

| e (x ) | ≤ M p+1 

4(p + 1) 
h 

p+1 = O ( h 

p+1 ) , (16)

where M p+1 = max | f p (p+1) (x ) | , the maximum value of the p + 1th order derivative of ξ p , with x ∈ [ x 0 , x p ]; i.e., when f ( x ) is

interpolated by ξ p in [ x 0 , x p ], the associated error is of at least p + 1th order. 
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2.3.2. Polynomial interpolation in 2D 

In the case of a two-dimensional domain, it is possible to obtain the NDD in 2D [19] relative to x and y . An extreme

point of ξ p (2D) can be identified within its domain. In this case, the optimization problem [20] can generally be posed

as follows: given ξ p : �⊂	 

2 → 	 , we seek either the maximum value of ξ p ( x , y ) (max ξ p ( x, y )) or the minimum value of

ξ p ( x , y ) (min ξ p ( x , y )). We consider the class of objective functions that are non-linear and differentiable, such that gradient-

type methods can successfully be applied, especially polynomial functions for which the analytical expression of the gradient

can easily be derived [20] . The Armijo line search [20] is often used for this purpose because of its efficiency and ease of

implementation. 

2.4. Numerical solution λm : obtained via repeated Richardson extrapolation, with error Em 

Richardson Extrapolation (RE) can be used whenever an approximation technique having a predictable error term that can

be written as a function of h is known [5] . For each value of h � = 0, an expression for λh is obtained such that � can be

approximated by: 

� − λh = k 0 h 

p 0 + k 1 h 

p 1 + k 2 h 

p 2 + k 3 h 

p 3 + · · · , (17) 

for a set of unknown constants k 0 , k 1 , k 2 , k 3 , . . . . Using RE, approximations can be combined to increase the resulting order

of accuracy. Therefore, formulas can be combined for λh by varying h , i.e., {
λh = � − ( k 0 h 

p 0 + k 1 h 

p 1 + k 2 h 

p 2 + k 3 h 

p 3 + · · · ) 
λ(rh ) = � − [ k 0 (rh ) 

p 0 + k 1 (rh ) 
p 1 + k 2 (rh ) 

p 2 + k 3 (rh ) 
p 3 + · · · ] 

⇒ 

{
λh = � − k 0 h 

p 0 + O ( h 

p 1 ) 

λ(rh ) = � − k 0 (rh ) 
p 0 + O ( h 

p 1 ) 

⇒ � = 

[
λh + 

λh −λ(rh ) 
r p 0 −1 

]
+ O ( h 

p 1 ) = λ(h, rh ) + O ( h 

p 1 ) , 

(18) 

where the refinement ratio r is > 1, λh is the numerical solution obtained over a grid with spacing h between neighbor-

ing nodes, λ( rh ) is the numerical solution obtained over a grid with spacing rh between neighboring nodes, λ( h, rh ) is a

combination of λh and λ( rh ) and O ( h p 1 ) indicates an error of the order p 1 . 

The process known as Repeated Richardson Extrapolation (RRE) consists of the repeated application of Eq. (18) . However,

p 0 is considered only when RRE is first applied, i.e., at the first extrapolation level. At further levels, the subsequent values

of p T are considered ( p 1 , p 2 , p 3 , . . . ) . RRE becomes particularly simple when geometrically similar grids g, g -1 and g -2 are

used [5] , i.e., when G distinct grids are generated using a constant refinement ratio ( h g = h, h g−1 = rh, h g−2 = r 2 h, . . . ). In

this case, the numerical solution obtained using RRE on a grid g , where g indicates the level of the grid, with m applications

of RE is given by Marchi et al. [21] : 

λg,m 

= λg,m −1 + 

λg,m −1 − λg−1 ,m −1 

r p m −1 − 1 

, (19) 

where r = h g -1 / h g. Eq. (19) holds for g = 2 , . . . , G and m = 1 , . . . , g − 1 . On any grid g, m = 0 corresponds to the numerical

solution obtained without using RRE, λh or λp . For m = 1 , this equation yields the first level of extrapolation with p m −1 =
p 0 . For subsequent levels of larger m , p m −1 corresponds to the subsequent values of p T . These values can be determined

a priori and confirmed through the concept of the effective order of accuracy ( p E ) of the numerical error [21] using, for

constant m , 

( p E ) g,m 

= 

log 

[ 
�−λg−1 , m 

�−λg, m 

] 
log (r) 

, (20) 

and, for variable m , 

( p E ) g,m 

= 

log 

[ 
�−λg−1 , m −1 

�−λg, m 

] 
log (r) 

, (21) 

where g = 2,…, G and m = g − 1 . 

2.4.1. Computation of λm 

Inspection of Eq. (19) reveals that the solution obtained using RRE is in respect to λg, m 

, with several different levels of

grid g and extrapolation m . However, the highest level of accuracy is obtained when the largest possible value of m is used

in each grid, i.e., m = g − 1 . Thus, for g = 2 , . . . , G , we consider λm = { λ2 , 1 , λ3 , 2 , . . . , λg,g−1 , . . . , λG,G −1 } ; then, Em denotes

the discretization error of λm , computed as the difference between � and λm . 

Still, in principle, it is valid to use Eq. (19) directly to obtain λm only for type I variables (see Fig. 2 I). For the remaining

types, II through V (see Fig. 2 II through V), λp and λpm must be computed. 
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Fig. 3. Effect of the order of the numerical scheme on RRE, T (1/2) and Tmax , 1D Poisson. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.2. Computation of λp and λpm 

This work primarily analyzes the use of RRE on numerical solutions λp obtained via polynomial interpolation over the

nodal points. From λp , its numerical error Ep can then be computed in a manner analogous to Eq. (1) , i.e., through the

difference between � and λp . 

When λp is available on G distinct grids, RRE can be applied via Eq. (19) to obtain λpm in a manner analogous to

λm . Therefore, to determine λpm , 1D or 2D polynomial interpolation must first be applied followed by RRE over λp . The

numerical error of λpm is thus denoted by Epm and is computed as the difference between � and λpm . The effective order

of the error of λp and λpm can be computed using Eqs. (20) and ( 21 ). 

3. Results 

3.1. Results for Problem 1: 1D Poisson equation 

The numerical solutions for Problem 1 are obtained using computational programs written by the authors in Fortran 90

and using the Intel Fortran compiler v. 11.1 with quadruple precision and are run on a computer with a 2.20 GHz dual-core

AMD Athlon processor with 2GB of RAM hosting 64-bit Windows XP. Computations are performed on grids with refinement

ratios of r = 2 and 3. For r = 2, N = 5 nodal points are used for the coarsest grid and N = 16,777,217 nodes for the finest, with a

total of 22 grids; the plots presented here, however, go only as far as the grid with 8193 nodes, after which round-off errors

become predominant. For r = 3, N = 3 nodal points are used for the coarsest grid and N = 9,565,937 nodes for the finest, with

a total of 15 grids. Analytical solutions for the variables of interest are obtained using Maple 10.0 with 32 decimal places of

precision. 

In Section 1 , results for three variables of interest T(1/2), Tmax and Xmax obtained for the 1D Poisson equation were pre-

sented. Numerical studies included two manufactured solutions (an exponential and a sinusoidal ones), the use of FDM and

second-order (CDS-2) and fourth-order (CDS-4) approximation schemes, as earlier studied by Marchi and Germer [22] . For

both approximation schemes, the effect of applying RRE to the results obtained via cubic and quadratic spline interpolation,

which were approximations obtained using the Fast Fourier Transform and Least Squares methods, was further examined.

However, the best results were obtained using polynomial interpolation followed by RRE. 

The order of the numerical scheme also affects the results obtained for λm and λpm . In Fig. 3 , it can be seen that for the

type I variable T (1/2) (see Fig. 2 I), the magnitude of Em is smaller for CDS-4 than for CDS-2. For the type V variable Tmax

(see Fig. 2 V), it is immediately apparent that the order of Eh for CDS-4 is degenerated; however, for polynomial interpolation

of degree p = 10, Epm exhibits better results for CDS-4 than for CDS-2. We believe that the degenerated behavior of p E for

the Eh of Tmax in the case of CDS-4 is related to the change in the coordinate position of the variable of interest, which

constitutes another source of error that compromises the order of the adopted numerical scheme. In the case of the type V

variable considered here, the error incurred in the computation of its coordinate value Xmax presents an analogous behavior.

The results obtained for p E are shown in Table 1 , where it can be observed that the largest orders correspond to | Epm,

p = 10|; for Tmax and Xmax , these largest orders are ≈ 15 and ≈ 13, respectively. 

3.2. Results for Problem 2: 2D Burgers equations 

The numerical solutions for Problem 2 are obtained using computational programs written by the authors in Fortran 90

and using the Intel Fortran compiler v. 11.1 with quadruple precision and are run on a computer with two 3.47 GHz hexa-

core Intel Xeon X5690 processors with 192GB of RAM hosting 64-bit Windows 7. Computations are performed on 13 grids

with a refinement ratio of r = 2. N × N = 4 × 4 nodes are used in the coarsest grid and N × N = 16 , 384 × 16 , 384 nodes in
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Table 1 

Order of the numerical error for type V variables, Tmax and Xmax , CDS-2, 1D Poisson. 

Variable Grid N = 33 N = 129 N = 1025 

h 3.13E −02 7.81E −03 9.77E −04 

Tmax p E for | Em | 0 .87 2 .45 0 .90 

p E for | Epm, p = 2| 2 .26 2 .78 3 .00 

p E for | Epm, p = 10| 11 .10 15 .40 12 .40 

Xmax p E for | Em | 0 .57 1 .34 0 .39 

p E for | Epm, p = 2| 1 .01 4 .21 2 .02 

p E for | Epm, p = 10| 11 .30 13 .41 8 .94 
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Fig. 4. Type V-2D variable, ψmin , with 2D interpolation, 2D Burgers. 

Table 2 

Order of the numerical error for type V-2D variables, with 2D polynomial interpolation, 

p = 6, 2D Burgers. 

Variable Scheme Grid 32 ×32 256 ×256 8192 ×8192 

h 3.13E −02 3.91E −03 1.22E −04 

ψmin CDS-2 p E for Eh 1 .77 1 .99 1 .90 

p E for Epm 4 .64 8 .70 8 .17 

UDS-1 p E for Eh 1 .53 1 .13 1 .01 

p E for Epm 3 .78 6 .10 6 .00 

x ( ψmin ) CDS-2 p E for Epm 4 .97 5 .81 9 .62 

UDS-1 p E for Epm 4 .28 4 .73 5 .48 

y ( ψmin ) CDS-2 p E for Epm 2 .69 6 .50 8 .09 

UDS-1 p E for Epm 2 .67 5 .72 6 .11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the finest one. The analytical solutions for the variables of interest are obtained using Maple 10.0 with 32 decimal places of

precision. 

Further analyses of type V variables are also presented, now taking a two-dimensional approach, i.e., both coordinate

values in 2D �, x and y , are allowed to change as the grid is refined. The results obtained for ψmin (minimum value of

stream function) of 2D Burgers equations are given in Fig. 4 ; the analytical solution of ψmin is −1/8. Similar behavior is

observed in the Epm associated with the remaining variables of interest. The largest values of p E for Epm are obtained using

the higher-order numerical scheme and 2D polynomial interpolation of degree p = 6, which is the highest degree considered

in this work. For ψmin , the value of order p E associated with Epm increases up to 6.1 and 8.7 respectively for UDS-1 and

CDS-2 (see Table 2 ). 

The procedure for obtaining λpm proposed in this work requires very little computational effort, as discussed below, in

comparison with computing λh at the same level of numerical error. Another aspect that should be considered is that the

process of grid refinement is a common practice in the analysis of the convergence of solutions in numerical verification

procedures. Based on the typical resource requirements of this common task, to obtain λpm , (i) λp must be obtained through

polynomial interpolation, which implies post-processing that, in the most effort-consuming cases of p = 10 (1D) and p = 6

(2D), requires approximately 10 −4 s and 2.8 kB of RAM memory independent of the grid being used, and (ii) λpm must be

obtained by applying RRE using Eq. (19) , which requires approximately 10 −5 s and 7.1kB of RAM memory for all numerical

solutions across 22 distinct grids; for a smaller number of grids, the cost is accordingly smaller. 
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Fig. 5 shows the magnitude of the numerical error associated with the type V variable ψmin of 2D Burgers equations

plotted against the CPU time (in seconds) required for the calculation with ( Epm ) and without ( Eh ) the procedure proposed

in this work, using both UDS-1 and CDS-2. Epm represents the numerical error resulting from RRE associated with the

method of 2D polynomial interpolation and optimization. This approach is representative of the costliest case, i.e., the case

that incurs the highest computational effort among all cases analyzed herein. The CPU time required to obtain Epm on a

given grid is the sum of the CPU times over all coarser grids because they are necessary for the computation using Eq. (19) .

For example, the CPU time required to obtain Epm on the 128 ×128 grid also includes the CPU time required for the 64 ×64,

32 ×32, 16 ×16 and 8 ×8 grids, i.e., the CPU time required for computations on 5 grids. 

According to Fig. 5 , Eh (the error of the solutions obtained without RRE) decreases linearly (constant slope) as the CPU

time increases, whereas the reduction in Epm is much more rapid, with a slope that increases with increasing CPU time.

The level of reduction in the magnitude of the numerical error obtained for Epm ( < 10 −17 , see Fig. 4 ) cannot be obtained for

Eh because of the limitations of the computer used in this study. Moreover, for a given numerical-error magnitude, the CPU

time required for the Epm calculation is much smaller than that for Eh (see Fig. 5 ). For example, an error magnitude of 10 −6

can be obtained for Eh using CDS-2, and this requires ≈3.5 ×10 3 s; for the same level of error, Epm requires only ≈15 s, i.e.,

1/233 of the time. Moreover, in terms of CPU time, the relative efficiency of the proposed procedure is increased when a

requirement for a higher level of accuracy, i.e., a smaller numerical-error magnitude, is imposed. 

3.3. Results for Problem 3: 2D Navier–Stokes equations with known analytical solution 

The numerical solutions were obtained using computational codes written by the authors in Fortran 90 and using the

Intel Fortran compiler v. 11.1 with double precision and were run on a computer with two 3.47 GHz hexa-core Intel Xeon

X5690 processors with 192GB of RAM hosting 64-bit Windows 7. Computations were performed on 10 grids with a refine-

ment ratio of r = 2. N × N = 4 × 4 nodes were used in the coarsest grid and N × N = 2048 × 2048 nodes in the finest one.

The analytical solutions for the variables of interest were obtained using Maple 10.0 with 32 decimal places of precision. 

The result presented in Fig. 6 refers to the variable uc , i.e., to the local value obtained for u from Eqs. (12) –( 14 ) at point

(0.5; 0.5). Its analytical solution −1/4 is obtained from Eq. (10) . This result for a type II variable serves as a reference for

the remaining types of variables in the problem at hand, i.e., 2D laminar flow. The location of this variable is at the exact

midpoint of four central nodal points in all considered grids. In this case, the use of 2D polynomial interpolation of degree

p = 1 (bilinear interpolation) might be considered. In this manner, λp is obtained in each grid and RRE is then applied as

in Eq. (19) to obtain λpm . The results for Ep and Epm associated with uc are shown in Fig. 6 . With regard to the values

attained by p E , Ep has a value that is equivalent to the order of accuracy ( 2 ) of the adopted numerical scheme (CDS-2), and

the value of order p E associated with Epm increases up to 7.2. 

With regard to type V variables (see Fig. 2 V), a one-dimensional analysis is first conducted, i.e., when computing λh

on distinct grids of 2D �, only one of the two coordinate ( x or y ) values changes, while the other remains fixed. For this

approach, the variable of interest is selected: u min1D – minimum value of the velocity profile u on the line x = 1/2 (fixed

x ). Its analytical solution u min 1 D = −√ 

6 / 9 is obtained from Eq. (10) . This variable is intentionally located at points with

irrational coordinate values. Therefore, they cannot correspond to any nodal point, and an approximate numerical solution

must be obtained. To this end, λp is computed via polynomial interpolation. Figs. 7 and 8 show the results obtained for

u min 1 D and its y ( u min 1 D ) coordinate, respectively; the analytical solution of y ( u min 1 D ) is 
√ 

6 / 6 . Analogous results are

obtained for all other variables. The best results for Epm are obtained for CDS-2 and polynomial interpolation of degree

p = 10, which is the highest degree used in the 1D approach. With regard to the values attained by p , Ep has a value that is
E 



8882 C.H. Marchi et al. / Applied Mathematical Modelling 40 (2016) 8872–8885 

10
-3

10
-2

10
-1

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

N
um

er
ic

al
E

rr
or

h

Ep
Epm

Fig. 6. Type II variable, uc , with 2D interpolation of p = 1, 2D Navier–Stokes (Problem 3). 
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equivalent to the order of accuracy ( 2 ) of the adopted numerical scheme (CDS-2), and the value of order p E associated with

Epm increases up to 8.3 and 8.4, respectively. 

This kind of analysis, with similar results, was conducted for other variables of interest, from Eqs. (12) –( 14 ), namely:

v max 1 D , maximum value of the velocity profile v on the line y = 1/2, whose analytical solution is v max 1 D = 

√ 

3 / 6 ; the

x coordinate value of v max 1 D , whose analytical solution is x (v max 1 D ) = (3 − √ 

3 ) / 6 ; ψmin , minimum value of stream

function, and its y coordinate. 

When considering a 2D �, variables λh whose locations change with resolution across different grids can fall into one of

two categories: (i) the values of both the x and y coordinates may change, as in Fig. 4 , or (ii) the value of only one, either

the x or y coordinate, may change, as in Fig. 7 . In the latter case, a simplified approach may be taken in the search for

the location of the variable through grid refinement, namely, a one-dimensional approach, because one of the two coordi-

nates remains fixed across all grids under consideration. The results obtained using this approach are comparable to those

obtained in Fig. 4 , which uses a fully two-dimensional approach. 

Marchi et al. [7] observed RRE to be ineffective in reducing Eh for variables that involve extreme values (maxima and

minima). The variables analyzed in their study coincide with those described in the present work. Based on the presented

results, it can be seen that a significant improvement in the performance of RRE can be achieved by applying the procedure

proposed herein. 

3.4. Results for Problem 4: 2D Navier–Stokes equations with unknown analytical solution 

The numerical solutions were obtained using computational codes written by the authors in Fortran 90 and using the

Intel Fortran compiler v. 11.1 with double precision and were run on a computer with two 3.47 GHz hexa-core Intel Xeon

X5690 processors with 192GB of RAM hosting 64-bit Windows 7. Computations were performed on 10 grids with a refine-

ment ratio of r = 2. N × N = 4 × 4 nodes were used in the coarsest grid and N × N = 2048 × 2048 nodes in the finest one. 



C.H. Marchi et al. / Applied Mathematical Modelling 40 (2016) 8872–8885 8883 

10
-3

10
-2

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

N
um

er
ic

al
E

rr
or

h

Ep
Epm

Fig. 8. Type V-1D variable, y ( u min 1D), with 1D interpolation of p = 10, 2D Navier–Stokes (Problem 3). 

Table 3 

Comparisons of uc with other authors for the Problem 4. Type II-2D 

variable, with 2D polynomial interpolation, p = 1. 

Reference uc U p U 

[25] -0.06080 
[23] -0.0620561 
[6] -0.0620 
[26] -0.06205 
[7] -0.0620561 ±6E-07 2.07 
Present -0.06205613519461 -3E-14 9.41 

Table 4 

Comparisons of v min and its respective x -coordinate 

with other authors for the Problem 4. Type V-1D vari- 

able, with 1D polynomial interpolation, p = 10. 

Reference v min U p U 

[25] -0.51550 
[23] -0.5270771 
[7] -0.52706 ±6E-05 2.13 
Present -0.52707730 -4E-08 2.60 

Reference x ( v min) U p U 

[25] 0.9063 
[23] 0.9092 
[7] 0.9097 ±5E-04 1 
Present 0.909246996 -4E-09 3.65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results of the variable uc are presented in Table 3 , including data of the current work and other ones available in lit-

erature. This is the same type of variable found in Problem 3. Moreover, the discretization error estimations ( U ), according

to each author, are also presented; in the current work, U was evaluated by the use of the estimator developed by Martins

[10] for numerical solutions obtained with RRE. Table 3 also includes the apparent order ( p U ) according to each author;

in the current work, it was evaluated analogously to Eqs. (20) and ( 21 ), as described in [21] . It can be observed the fact

that the solution of uc in the current work agrees to two previous works [7,23] (both with higher precision) in all their six

significant digits; however, the current work increases their precision adding seven more significant digits, and noticeably

reducing U and increasing p U . 

Results of the current work for the variable v min and its respective x -coordinate are presented in Table 4 , which also

includes results from other works available in literature. Related to v min, it can be noticed that the solution of the current

work exactly agrees to one of the previous works [23] , which presents higher precision, in its six first significant digits,

disagreeing in the last digit, and agrees to the results of Marchi et al. [7] within the U interval; however, the current work

increases the precision of previous works by adding one more significant digit, and strongly reducing U . Besides, it can be

noted that for x ( v min), the results of the current work exactly agree to one of the previous works [23] , which presents

higher precision, in its four significant digits, and agree to results of Marchi et al. [7] within the U interval; however, the
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Table 5 

Comparisons of ψ min and their x - and y -coordinates 

with other authors for the Problem 4. Type V-2D vari- 

able, with 2D polynomial interpolation, p = 6. 

Reference - ψ min U p U 

[25] 0.117929 
[24] 0.118821 
[23] 0.1189366 
[6] 0.118942 
[26] 0.11892 
[7] 0.11893671 ±3E-08 2.00 
Present 0.1189366104 5E-10 3.57 

Reference x ( ψ min) U p U 

[25] 0.5313 
[24] 0.5308 
[23] 0.5308 
[6] 0.5300 
[26] 0.53125 
[7] 0.5312 ±5E-04 
Present 0.5307901165 2E-10 4.96 

Reference y ( ψ min) U p U 

[25] 0.5625 
[24] 0.5659 
[23] 0.5652 
[6] 0.5650 
[26] 0.56543 
[7] 0.565 ±1E-03 
Present 0.56524055 2E-08 3.04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

current work strongly increases the precision of previous works by adding five more significant digits, and considerably

reducing U . 

Results of the variable ψ min and their x - and y -coordinates are presented in Table 5 , which includes data from the

current work and the ones from other works available in literature. Related to ψ min, it can be observed that the solution

of the current work exactly agrees to the one of the previous works [23] , which presents higher precision, in its seven

significant digits, and agrees to the results of Marchi et al. [7] in its six first significant digits; however, the current work

increases the precision of previous works by adding three more significant digits over [23] , and considerably reducing U .

Besides, it can be seen that for x ( ψ min) the solution of the current work exactly agrees to two previous works [23,24] in

all their four significant digits, and agrees to the results of Marchi et al. [7] within the U interval; however, the current work

strongly increases the precision of previous works by adding six more significant digits and noticeably reducing U . Finally,

related to y ( ψ min) it can be noticed that the solution of the current work exactly agrees to one of the previous works

[23] , which presents higher precision, in its four significant digits, and agrees to the results of Marchi et al. [7] within the

U interval; however, the current work strongly increases the precision of previous works by adding four more significant

digits, and considerably reducing U . 

4. Conclusion 

Based on previously published reports of the poor performance of RRE in reducing Eh for some types of variables of

interest, five types of variables were defined in this work according to their locations on different grids. The performance of

RRE when applied to these variables was then analyzed using four test problems (1D Poisson equation, 2D Burgers equations

and the 2D Navier–Stokes equations), discretized using Finite Difference and Finite Volume Methods, including numerical

schemes of various orders of accuracy. Grids with as many as millions of nodes, several levels of extrapolation, multigrid

methods and quadruple and double precision were used. 

Based on the obtained results, it was concluded that to employ RRE, the variable of interest must firstly be characterized

as one of the five established types. The subsequent procedure for the reduction of Eh using RRE is as follows: 

(1) For a global or local variable with a fixed location that coincides with a nodal point on every considered grid, RRE

can be directly applied. RRE is best suited to this type of variable. 

(2) For a variable located at the midpoint of a set of nodal coordinates, linear (or bilinear/trilinear) interpolation should

be applied prior to RRE. 
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(3) For a variable that has a fixed location that is neither a nodal point nor a midpoint thereof, polynomial interpolation

of the highest possible degree appropriate to the number of dimensions of the problem under study must be applied

prior to RRE. 

(4) For a variable whose value is predetermined and whose position is unknown, polynomial interpolation of the highest

possible degree should be applied before finding the solution of the associated polynomial equation; only then RRE

can be applied. 

(5) In the case of a variable that involves finding an extremum, in which the coordinate values may change as the grid

is refined, polynomial interpolation of the highest possible degree appropriate to the number of dimensions of the

problem under study should be applied, followed by an optimization technique before applying RRE. 

The procedure proposed in the present article permits the reduction of the numerical error of RRE in those cases in

which RRE is considered to be ineffective according to the current literature. This procedure, which is characterized as a

post-processing procedure, entails extremely low computational cost. Given a desired value for the numerical error, the CPU

time and RAM memory required to achieve it are much lower when this procedure is used than when it is not. Moreover,

it is, in principle, valid for schemes of any order of accuracy that use either Finite Difference or Finite Volume methods and

for any equation and number of dimensions, and it permits considerable reduction in the numerical error. 
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