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The focus of this work is to verify the efficiency of the Repeated Richardson Extrapolation
(RRE) to reduce the discretization error in a triangular grid and to compare the result to the
one obtained for a square grid for the two-dimensional Laplace equation. Two different
geometries were employed: the first one, a unitary square domain, was discretized into
a square or triangular grid; and the second, a half square triangle, was discretized into a
triangular grid. The methodology employed used the following conditions: the finite vol-
ume method, uniform grids, second-order accurate approximations, several variables of
interest, Dirichlet boundary conditions, grids with up to 16,777,216 nodes for the square
domain and up to 2097,152 nodes for the half square triangle domain, multigrid method,
double precision, up to eleven Richardson extrapolations for the first domain and up to ten
Richardson extrapolations for the second domain. It was verified that (1) RRE is efficient in
reducing the discretization error in a triangular grid, achieving an effective order of approx-
imately 11 for all the variables of interest for the first geometry; (2) for the same number of
nodes and with or without RRE, the discretization error is smaller in a square grid than in a
triangular grid; and (3) the magnitude of the numerical error reduction depends on, among
other factors, the variable of interest and the domain geometry.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The continuous improvement of computer resources had led to the ability to describe natural phenomena at previously
unimaginable scales and this ability has been a focus of research for the computational sciences and engineering, especially
in the last 20 years [1]. To achieve accurate results, however, some verification procedures are required. Most of these pro-
cedures are based on Richardson extrapolation [2,3]. One in particular, called Repeated Richardson Extrapolation (RRE),
Recursive Richardson Extrapolation (RRE) or Multiple Richardson Extrapolation (MRE) is used in the current work on two
grid types: triangular and square control volumes.

The numerical error Eð/Þ related to the numerical solution / can be evaluated by the following expression:

Eð/Þ ¼ U� /; ð1Þ
where U is the exact analytical solution. There are four sources of numerical error: truncation, iteration, round-off and
programing errors [4]. When the numerical error is solely due to truncation, it is called discretization error [5].
. All rights reserved.
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Procedures for estimating discretization error were first proposed by Richardson at the beginning of the 20th century
[2,3]. In addition to the common use of Richardson extrapolation as an error estimator, the technique can also be used to
reduce discretization error, such as that associated with the two-dimensional heat diffusion problem – an application to
which Richardson himself investigated [3]. In this case, Richardson extrapolations were employed recursively for two grid
levels, providing more-accurate results. Other authors [6–8] also employed Richardson extrapolations recursively for a high-
er number of grid levels (with a maximum of four), intending to reduce the discretization errors in CFD (Computational Fluid
Dynamics) problems. More commom is the use of only one Richardson extrapolation for the reduction of discretization error,
as demonstrated by Wang and Zhang [9,10] and Ma and Ge [11].

Marchi et al. [12] and Marchi and Germer [13], however, employed Richardson extrapolations recursively for several grid
levels through a process called RRE for a two-dimensional Laplace equation and one-dimensional advection-diffusion equa-
tion, respectively, using structured grids. In both cases, discretization errors were substantially reduced. According to these
works, RRE should be used in the following ways: (1) for a given discretization error magnitude, it can reduce the compu-
tational requirements by employing coarser grids; or (2) for a given grid, it can considerably reduce the magnitude of the
discretization errors to obtain benchmark results.

Richardson extrapolations have also been applied to adaptive grids. Ouellet and Bui [14] employed Richardson extrapo-
lation to increase the accuracy and refine a grid automatically, if necessary, for the discretization of industrial thermal prob-
lems based on an Euler central differentiation scheme using backward differentiation. Biswas et al. [15] controlled the grid
motion and refinement using local indicators, which were estimates of the local discretization error. A posteriori estimates of
the local discretization error obtained by Richardson extrapolation were used as refinement indicators as well as motion
indicators. Singularity problems were studied by Koestler and Ruede [16] in which only minor modifications to both the dis-
cretization and solver were necessary to obtain the same asymptotic accuracy and efficiency as those for regular solutions.
The authors showed that it is possible to integrate these techniques into a multigrid solver with additional techniques to
improve accuracy, as observed with the use of Richardson extrapolations. Kamkar et al. [17] described a Cartesian-based
adaptive mesh refinement approach applied to vortex-dominated flows. Richardson extrapolation was proposed to assess
the local error and terminate the mesh refinement once an adequate error reduction was achieved. Based on these cited
studies, it is expected that the extension of RRE to adaptive grids is immediate.

The aim of this work is to investigate the use of RRE to reduce the discretization errors of the two-dimensional Laplace
equation. Two different geometries are employed: the first one, a unitary square domain, is discretized into an isosceles
right-triangular grid, for which the results are compared to those obtained on square volume grids; and the second one, a
half square triangle, is only discretized into an isosceles right-triangular grid. Triangular volumes are usually related to
unstructured grids, which constitute the most general grid arrangement for more complex geometries [18]. Nevertheless,
Juretić and Gosman [19] analyzed, both theoretically and numerically, triangular, square and hexagonal grids, observing that
triangular grids presented the worst performance, taking into account the discretization errors. This motivates the study of
whether RRE can be employed on triangular grids for the reduction of the associated discretization error and, in the affirma-
tive case, how effective this methodology is. The Laplace equation was chosen in the current work due to its simplicity and
because, for the studied problem, it presents an analytical solution that allows for the evaluation of the true numerical errors
for all the variables of interest. The study of RRE to reduce the discretization errors on triangular grids is also motivated by
the absence of studies involving triangular grids and Richardson extrapolations: works such as Jyotsna and Vanka [20], in
which Richardson extrapolations were employed to obtain more-accurate results for the velocity pattern using triangular
grids are still exceptions.
2. Mathematical model

Given that the objective of this study is to show how RRE could reduce the discretization error in both grid types (struc-
tured and unstructured ones), it seems reasonable to choose a simple problem, with a simple geometry to analyze specifi-
cally the effects of the RRE methodology. More complex problems imply the presence of more complex terms (derivatives,
products of variables, nonlinearities), whose numerical approximations could mask the effects of RRE by, for example, the
degeneration of the orders of the discretization error. For these reasons, a unitary square domain is employed to provide
numerical results for both structured and unstructured discretization methodologies. In Section 4.5, however, a second do-
main geometry is employed: a half square triangle, which is discretized into only a triangular grid. This second geometry is
used to verify whether the numerical results obtained for the first geometry can be applied to others.

The mathematical model for the first domain geometry is related to the two-dimensional Laplace equation with Dirichlet
boundary conditions:
@2T
@x2 þ

@2T
@y2 ¼ 0; 0 < x; y < 1;

Tðx;1Þ ¼ sinðpxÞ; Tð0; yÞ ¼ Tð1; yÞ ¼ Tðx;0Þ ¼ 0;

8><
>: ð2Þ
where x and y are the spatial coordinates and T is the temperature. This equation can be physically related to the heat dif-
fusion problem on a two-dimensional plate in the steady state with constant thermal properties and the absence of heat gen-
eration [21], whose analytical solution is given by Tðx; yÞ ¼ sinðpxÞ sinhðpyÞ= sinhðpÞ.
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The variables of interest include the following: (1) the temperature at the domain center (Tc), in other words, the tem-
perature at position x = 1/2 and y = 1/2; (2) the average temperature (Tm) of the whole domain; and the heat transfer rates
at the four boundaries, namely (3) y = 1 (Qn), (4) y = 0 (Qs), (5) x = 1 (Qe) and (6) x = 0 (Qw). The variables Tm, Qs and Qe are
defined by the following expressions:
Tm ¼ 1
LxLy

Z Ly

0

Z Lx

0
Tðx; yÞdxdy; Qs ¼ �kz

Z Lx

0

@T
@y

� �
y¼0

dx; Qe ¼ �kz
Z Ly

0

@T
@x

� �
x¼1

dy; ð3Þ
where Lx = Ly = 1 are the lengths of the domain in the x and y directions, respectively; z = 1 is the depth of the domain in the z
direction; and k is the thermal conductivity, which is assumed to have unitary value. Qn and Qw are defined analogously to
Qe and Qs. The justification for the choice of these variables is presented in the next section.

3. Numerical model

3.1. Numerical solutions without RRE

The unitary side square domain is discretized using the finite volume method [5,18] into both triangular and square grids
(Fig. 1). While the methodology applied to square grids is that related to structured grids, on triangular grids the method-
ology is the same as that employed on unstructured ones. There are two ways of defining control volumes on unstructured
grids: (i) as cell-centered control volumes and (ii) as vertex-centered control volumes. Both are used in practice [18]. The
choice to use the cell-centered method, however, is made for the following reasons: (i) all volumes in this method present
the same shape and size; and (ii) on square grids, using the cell-centered method is common practice. Based on these two
reasons, the cell-centered method allows for a better comparison between triangular and square grids. Numerical approx-
imations on both grid types are performed by using the Central Differencing Scheme (CDS).

For the unstructured grid methodology (triangular grids), integration is performed over a given control volume:
Z
CV
r � ðrTÞdV ¼ 0: ð4Þ
Once the control volume surface is divided into line segments, and recalling the Gauss’s Divergence Theorem, the following
expression is derived:
X
all i surfaces

ni
!� ðrTÞDAi

h i
¼ 0; ð5Þ
where n!i ¼ ðDy=DAi Þ̂i� ðDx=DAi Þ̂j is the vector normal to the i surface, whose area is given by DAi, which is numerically eval-

uated by DAi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2

q
, where Dx ¼ xb � xa and Dy ¼ yb � ya (see Fig. 2, considering the ab face).

According to Eq. (5), it is essential to evaluate the inner product between each polygon surface normal vector and the
temperature gradient along this surface. To evaluate the summand of Eq. (5), the temperature gradient should be approxi-
mated by CDS along the line that connects two neighboring centroids – line PA in Fig. 2. However, if, as is typically the case,
the normal vector and the temperature gradient are not parallel, the discretization of Eq. (5) is performed by introducing a
term known as cross-diffusion, which is evaluated according to the expression developed by Mathur and Murthy [22] and
results in the following:
Fig. 1. (a) Square and (b) isosceles right-triangular grids with 16 control volumes. Unitary square domain.



Fig. 2. Definition of the unit vectors for the discretization process. On this grid, there is a misalignment between the midpoint of the triangle face ab and the
line PA that connects the two centroids.
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n!i � ðrTÞDAi ¼
n!i � n!i

n!i � en
!

TA � TP

Dn
DAi �

en
!� eg
!

n!i � en
!

Tb � Ta

Dg
DAi; ð6Þ
where en
! is the unit vector along the line that connects the centroids P and A;Dn is the distance between two neighboring

centroids P and A; eg
! is the unit vector along the line ab (Fig. 2), which is the common triangle side; Dg is the distance be-

tween the vertices a and b (and is numerically equal to DAi); and Ta and Tb are the values of the temperature evaluated at the
a and b vertices, respectively. The first term on the right side of Eq. (6) is known as the direct gradient term, and the second
term is the cross-diffusion term.

In the current work, the previous procedure, however, is facilitated by two facts related to the grids’ construction: (1) both
the normal and the temperature gradient vectors are always parallel; and (2) the intersection point of the line that connects
two neighboring centroids and the triangle face splits this line exactly into two equal parts. Based on these facts, (1) the
cross-diffusion term of Eq. (6) is null if the unit vectors en

! and eg
! are perpendicular; and (2) CDS, which is applied to the

evaluation of the derivatives of the direct gradient term, is expected to present a second order of accuracy when applied ex-
actly at the midpoint of line that connects the centroids. Substituting Eq. (6) into Eq. (5) and recalling the foregoing remarks,
the following expression is obtained for an inner control volume:
X
all i surfaces

TA � TP

DnA
DAi

� �
¼ 0; ð7Þ
where P represents the control volume in which the integration process takes place; A represents each neighboring
centroid, whose i face is the common face with P; DAi is the area of the common i face; and DnA is the distance between
centroids P and A.

Boundary conditions are applied using the ghost-cells technique. According to this technique, ghost-cells are placed out of
the real domain and each cell is a mirrored image of an inner control volume placed at the domain boundary. It is important
to note that for the chosen triangular grids, the line that connects the centroid of the real volume to the centroid of the ghost-
cell intersects the triangle face exactly at its midpoint. This fact avoids undesired discretization errors from arising for the
boundary conditions with respect to the grid skewness [18,19], which consists in the misalignment between the midpoint
of the triangle face and the line that connects the centroids. According to the ghost-cell technique, if the boundary conditions
are of the Dirichlet type, the value of the boundary condition is evaluated at the face midpoint and is equal to the average of
the values attributed to the real and the ghost-cell centroids.

On square grids, the methodology employed is that related to structured grids [18]. For each coordinate direction, CDS is
used to evaluate the derivatives on the control volume faces. Boundary conditions are also applied by using the ghost-cells
technique.

The use of the CDS for the discretization of a mathematical model is based on the results previously reported by Marchi
and Germer [13]. They studied the one-dimensional advection-diffusion problem and employed ten different pairs of numer-
ical approximations for the discretization process, including first-order (UDS), second-order (CDS,UDS-2,WUDS), third-order
(Quick) and fourth-order (CDS-4) approximations, resulting in first-, second- and third-order numerical models. According to
the numerical results, it was observed that using the CDS was the best approach to apply the RRE methodology, even when
the discretization error for the Quick/CDS-4 model presented the smallest discretization error before the application of RRE.

To speed up the convergence of the numerical codes, two different multigrid methods were employed: on triangular
grids, an algebraic multigrid (AMG) algorithm adapted from Ruge and Stüben [23] was employed; and on square grids, a geo-
metric multigrid (GMG) algorithm was used [24,25]. The AMG features employed to achieve the numerical results include
the following: correction scheme (CS) [23,26,27]; V-cycle; a connection strength parameter (h) equal to 0.25; and a
parameter describing the strong dependence on the coarser grid (e) equal to 0.35. Otherwise, for GMG, the main features
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used included a full approximation scheme (FAS) [24,25], V-cycle, and a grid-size ratio of 2. For both multigrid methods, lex-
icographic Gauss-Seidel [28] was employed as a smoother (with one internal iteration); the number of cycles was high en-
ough to achieve the machine round-off error; double-precision operations were used for all the calculations; and a null
temperature was employed for the whole domain as an initial guess.

While for the primary variable of interest the adopted approximation scheme was the CDS, for other variables of interest
(specially the global ones), other schemes/techniques had to be employed. Therefore, to numerically evaluate the integrals
related to the average temperature of the whole domain and the heat transfer rates at the four boundaries, the rectangle rule
[29] was employed. Moreover, for the evaluation of Qe, the upstream differencing scheme (UDS) [5,18] was used to numer-
ically approximate the derivatives (Eq. (3)); for Qs, the downstream differencing scheme (DDS) [5,18] was employed for the
same purpose. In both cases, these approximations were employed while always using the numerical results for the nodal
temperatures (the primary variable of interest) previously obtained. Otherwise, the temperature at the domain center was
evaluated by determining the arithmetical average of the temperatures of the volumes with one of the vertices at the coor-
dinates x = 1/2 and y = 1/2. This procedure was needed once neither the triangular nor the square grids featured a nodal point
that was located exactly at the domain geometric center.

According to the results reported by Marchi and Germer [13], it is clear that RRE can behave in different ways depending on
the type of variable: local vs. global or primary (the dependent variable T in the partial differential equation) vs. secondary (a
variable that is derived from a primary one). Hence, it is important to study RRE for different types of variables. Thus, each var-
iable of interest was chosen for the following reasons: Tc involves the arithmetic average of the temperature at the neighbor
control volumes to evaluate the temperature at the domain center; Tm involves the rectangle rule for numerical integration;
and Qe and Qs involve the UDS and DDS for the evaluation of their derivatives and the rectangle rule for their integrations.

3.2. Numerical solutions with RRE

Once the numerical solutions are obtained, according to the Section 3.1, Richardson extrapolations can be used to reduce
the numerical errors associated with the discretization process according to the following expression:
/g;m ¼ /g;m�1 þ
/g;m�1 � /g�1;m�1

rpm�1 � 1
; ð8Þ
where / is the numerical solution of a given variable of interest; the index g refers to the grid on which the numerical solu-
tion is evaluated; the index m is the number of Richardson extrapolations; pm are the true orders of the discretization error
[4]; and r is the refinement ratio (r = hg�1/hg), where
h ¼ ðA=NÞ1=2 ð9Þ
is the reference size of the control volumes employed for the domain discretization. In Eq. (9), A is the whole domain area
and N is the total number of volumes into which the domain is split. As seen in Eq. (9), the grid type (triangular or square)
does not influence the value of h. For three-dimensional problems, the area A should be replaced by the volume V of the en-
tire domain, while the power 1/2 should be replaced by 1/3. In practice, the total area or the total volume for two- and three-
dimensional problems, respectively, are evaluated by the summation of the area or the volume related to each control vol-
ume of the adopted grid.

Equation (8) is valid for g = [2,G] and m = [1,g-1], where g = 1 refers to the coarsest grid, g ¼ G is the most refined grid,
m = 0 refers to the numerical solution without any extrapolation and m = 1 is related to the standard Richardson extrapola-
tion. For each value of /g;m in Eq. (8), numerical solutions of / on two different grids (g and g-1) for the m-1 extrapolation are
needed.

For a given value of g, Eq. (8) can be used recursively g-1 times, providing m Richardson extrapolations. In the current
work, RRE results are obtained when m > 1. The values of the true orders (pm) are related to the exponents of the truncated
terms of the Taylor series employed in the approximation schemes for the derivatives. More details about Eq. (8) and/or RRE
theory are presented by Marchi et al. [12].
4. Numerical results

Two different domain geometries are employed in the current work. The first one consists of a unitary square domain,
which is discretized into an isosceles right-triangular or square grid, and the results are presented and analyzed in Sections
4.1–4.4. The second geometry, a half square triangle, and its results are described in Section 4.5 to verify whether the numer-
ical results obtained for the first domain geometry can be directly applied to other geometries.

4.1. Consistency of triangular and square grids

Twelve different grids are employed in the current work for both triangular and square grids: from grids with only 4 real
volumes (22) up to 16,777,216 real volumes (224), respecting a (two-dimensional) refinement ratio of 2. Double precision
was used for all operations, and the number of multigrid cycles for both grid geometries was high enough to minimize
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the iteration error. The numerical results for the six variables of interest are compared to the values of the analytical solu-
tions, with 30 significant figures, obtained with quadruple precision. These comparisons allow for the evaluation of the real
numerical error in order to study the efficiency of RRE to reduce the numerical errors.

For all numerical simulations, the number of multigrid cycles was kept high enough to achieve the machine round-off
error. In this case, the iteration error was at least 6 orders of magnitude smaller than the discretization error. It was verified
by the observation of the l1-norm, which decreased by at least 12 orders of magnitude and began to present oscillatory
behavior. This procedure was used to guarantee that the magnitude of all the other error sources was much smaller than
the discretization one and thereby allow the use of the Richardson extrapolations and, consequently, the RRE methodology.

The consistency of both the triangular and square volumes can be observed in Fig. 3: as expected, for both cases, the mean
l1-norm of the numerical error of the temperature decreases with grid refinement (h represents the two-dimensional grid
spacing). Considering the same number of volumes for both triangular and square grids, Fig. 3 shows that the mean l1-norm
is always higher on triangular grids in comparison to the square counterparts by a factor of approximately 2.3–2.4 (excepted
by the two coarsest grids). This result is in agreement with that reported by Juretić and Gosman [19], in whose work it was
observed that square grids provide the most accurate numerical results for two-dimension problems.

4.2. Apparent orders using RRE

The use of several grid sizes allows for the evaluation of apparent orders (pU) for all the variables of interest. Apparent or-
ders [30] should be used for the a posteriori verification of the values obtained a priori for the true orders of the numerical
error. Details about the evaluation of the true orders and their use in the RRE methodology are explained by Marchi et al. [12].

The results of the apparent orders (pU) for the heat transfer rate at x = 1 (Qe) for both grid volume geometries are pre-
sented in Fig. 4. When m = 0, the results are related to the asymptotic error order, while for m = 1 and m = 2, the results
Fig. 4. Apparent orders versus h for Qe. Unitary square domain.

Fig. 3. Mean l1-norm of the numerical error E(T) without RRE versus h. Unitary square domain.



Fig. 5. Modulus of the numerical error with (Er) and without (Eh) RRE versus h for (a) Tc; (b) Tm; (c) Qe. Unitary square domain.
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are related to the second and third true error orders, respectively. Apparent orders tend to assume values of 2, 4 and 6, in
accordance with the results presented by Giacomini and Marchi [31] for the first-order approximations (UDS) of derivatives.
This result, however, comes from a type of order degeneration, when the UDS presents an asymptotic error order of unitary
value and not of a value of 2. Nevertheless, because the apparent orders tend to 2, 4, 6 and so on, these values were employed
as true orders for RRE. Similar behavior was observed for the other heat transfer rates (Qn,Qs,Qw) and for the other variables
of interest (Tc,Tm), although for these two, the expected true order values were those that were found.

4.3. Triangular grid versus square grid

The discretization error results for the variables of interest are presented in Fig. 5. The numerical results for the heat
transfer rates at y = 0 (Qs), y = 1 (Qn) and x = 0 (Qw) are similar to those for the heat transfer rate at x = 1 (Qe) and are,
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therefore, omitted. In all cases, the results for both the triangular and square grids are presented, where Eh is the numerical
error without RRE and Er is the numerical error with RRE. As anticipated by the l1-norm (Fig. 3), in every case, the numerical
errors observed, without RRE, on square grids are smaller than their counterparts on triangular grids. Even for Qe, Fig. 5(c), the
square grid results are slightly better than those for the triangular grids, although the curves for both are almost coincident.

Considering the results for the grid with 214 = 16,384 volumes (h � 8 � 10�3) on triangular grids, it can be seen in Fig. 5
that the numerical errors are under 10�12 for all the variables when RRE is employed. In comparison, taking the same grid,
but not employing RRE, the numerical errors are approximately 10�4 or 10�5. In this case, the use of RRE could reduce
numerical errors by approximately 7 or 8 orders of magnitude, proving the efficiency of RRE in reducing the numerical error
in triangular grids. This effect is similar to that observed for square grids: taking the same grid (with 16,384 volumes), the
numerical error without RRE is approximately 10�4 to 10�6, while the use of RRE provides numerical errors of approximately
10�14 or 10�15. Comparing both results, the use of RRE could reduce numerical errors by approximately 8 to 10 orders of
magnitude, as previously observed by Marchi et al. [12] and Marchi and Germer [13].

The better performance of RRE on square grids, when compared to that on triangular ones, can be related to two factors:
(1) triangular grids present higher magnitudes of discretization errors, caused by the mesh skewness for two of the triangle
sides [18,19], considering the grid arrangement; and (2) triangular grids also present higher magnitudes of machine round-
off errors when a higher number of arithmetic operations are needed to evaluate the coefficients, which is more appreciable
for refined grids.

4.4. Further comparisons of numerical results with and without RRE

One of the possible uses of RRE is clearly illustrated in Table 1: for a given error magnitude, the use of the RRE methodology
allows for the use of coarser grids, when compared to the numerical results obtained without RRE. The analyzed unknown is
the temperature at the domain center (Tc); other unknowns, however, present a similar behavior. The effects of RRE on reduc-
ing the numerical error become more appreciable for smaller error magnitudes, on both triangular and square grids. Table 1
cleary shows how the ratio between the number of volumes needed to provide a given error magnitude with and without RRE
rapidly increases with the number of extrapolations. For example, on triangular grids, if the error magnitude is fixed at
approximately 1 � 10�4, the observed ratio presents a value of 4 (associated to 3 extrapolations); for a smaller error magni-
tude, at approximately 2 � 10�8, this ratio achieves a value of 4096 (associated to 5 extrapolations). This effect is also ob-
served on square grids, and it is in agreement with the results presented by Marchi et al. [12] and Marchi and Germer [13].

The results presented in Table 1 also show that although RRE is efficient in reducing the number of control volumes nec-
essary to achieve a given numerical error level on both triangular and square grids, the chosen grid type influences the re-
quired grid refinement. For each of the numerical error magnitudes presented in Table 1, it is observed that when using RRE,
Table 1
RRE performance for given error magnitudes for Tc.

Error magnitude E � 1 � 10�4 E � 1 � 10�6 E � 2 � 10�8

Triangular grid without RRE 210 = 1024 218 = 262,144 224 = 16,777,216
Triangular grid with RRE 28 = 256 210 = 1024 212 = 4096
Number of extrapolations (triangular grid) 3 4 5
Ratio between the number of volumes without and with RRE (triangular grid) 4 256 4096
Square grid without RRE 26 = 64 214 = 16,384 218 = 262,144
Square grid with RRE 26 = 64 28 = 256 210 = 1024
Number of extrapolations (square grid) 2 3 4
Ratio between the number of volumes without and with RRE (square grid) 1 64 256
Ratio between the number of volumes on triangular and square grids (both results with RRE) 4.0 4.0 4.0

Table 2
RRE performance for given grid sizes for Tc.

Number of volumes 26 = 64 210 = 1024 214 = 16,384

Error magnitude on triangular grid and without RRE 5.20 � 10�3 3.20 � 10�4 2.00 � 10�5

Error magnitude on triangular grid and with RRE 3.73 � 10�3 3.83 � 10�7 2.25 � 10�13

Number of extrapolations (triangular grid) 2 4 6
Ratio between the numerical error without and with RRE (triangular grid) 1.39 8.36 � 102 8.89 � 107

Error magnitude on square grid and without RRE 2.52 � 10�4 9.90 � 10�6 5.95 � 10�7

Error magnitude on square grid and with RRE 8.53 � 10�5 9.17 � 10�10 5.27 � 10�16

Number of extrapolations (square grid) 2 4 6
Ratio between the numerical error without and with RRE (square grid) 2.95 1.08 � 104 1.13 � 109

Ratio between the error magnitude on triangular grid and the error magnitude on square grid (both
results without RRE)

2.06 � 101 3.23 � 101 3.36 � 101

Ratio between the error magnitude on triangular grid and the error magnitude on square grid (both
results with RRE)

4.37 � 101 4.18 � 102 4.27 � 102



Fig. 6. Effective orders for the numerical errors of Fig. 5 (unitary square domain).
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a specific triangular grid always presented four times more volumes than the analogous square grid in achieving the same
level of numerical error. This result is attributed to the higher discretization error levels associated with the triangular grid
when compared to the square one, as reported by Juretić and Gosman [19].

Another possible use of RRE is illustrated in Table 2: in this case, the grid sizes were fixed and the numerical error asso-
ciated with these grids was evaluated for Tc. Once again, the behavior of other variables of interest is similar to that pre-
sented. Table 2 shows that the ratio between the numerical errors observed without the use of RRE and those observed
with RRE expands quickly with the increase in the number of volumes, a fact which is related to the increase in the number
of extrapolations.

From Tables 1 and 2 and Fig. 5(a), it is observed that on both grid types the use of RRE quickly reduces the error magni-
tude, except that for the coarsest grids, for which the RRE performance is not appreciable. This behavior is expected because
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the RRE methodology becomes more efficient with the increase in the number of extrapolations, which is achieved with grid
refinement. The reduction of the numerical error is accelerated with the increase in the number of extrapolations until the
machine round-off error (�10�13) is achieved, which is compatible with the employed precision (in the current work, double
precision).

Table 2 also presents information regarding the ratio between the numerical error magnitudes on triangular and square
grids, with and without the use of RRE. For the same number of control volumes, the numerical error associated with trian-
gular grids is approximately 32–33 times that observed in an analogous square grid, without the use of RRE. An exception is
observed when only 26 = 64 volumes are employed: this ratio is approximately 20 times. Such behavior, however, can be
explained by once again observing the results presented in Fig. 4: the apparent orders for both triangular and square grids
are not close enough to the asymptotic value of 2 on the 64-control-volume grid. Thus, the ratio between the numerical er-
rors of the two grid types presents a different value than that obtained when asymptotic behavior is achieved.

A similar effect is also observed when RRE is employed: while on the 64-control-volume grid, the ratio between the
numerical errors in the two grid types is approximately 43.7; when the results for more-refined grids are compared, this
ratio achieves a value of over 400, despite the fact that RRE is effective in reducing the numerical error in each grid type.
From these results, it is again observed that the numerical errors associated with the triangular grid are larger than those
obtained for a corresponding square grid, as predicted by Juretić and Gosman [19].

The rapid reduction in numerical errors achieved by the use of the RRE is related to the increase in the effective orders of
the solutions for all the variables. These orders are related to the fact that when the numerical error consists of only trun-
cation error (in which case it is called discretization error), it can be represented by [28] the following:
Eð/Þ ¼ C0hp0 þ C1hp1 þ C2hp2 þ . . . ¼
X1
m¼0

Cmhpm ; ð10Þ
where C0, C1, C2, . . . are coefficients that are independent of h; and p0, p1, p2, . . . are the true orders of Eð/Þ, whose set is rep-
resented by pm. The values of pm are generally positive integers [32], consisting of an arithmetic progression, where
0 < p0 < p1 < p2 < . . ., and can be evaluated by the following:
pm ¼ p0 þmðp1 � p0Þ; ð11Þ
where p0 the asymptotic order of the error and m the number of Richardson extrapolations. Equation (11) is valid for
g ¼ ½1;G� and m ¼ ½0; g � 1�.

The increase in the effective orders on both triangular and square grids is presented in Fig. 6 for the temperature at the
domain center (Tc), the average temperature of the whole domain (Tm), and the heat transfer rate at the x = 1 boundary (Qe).
The other variables of interest, however, present similar behavior. To provide a better analysis of the efficiency of RRE, the
true orders (pm) are also presented. As seen in Fig. 6, the use of RRE increases the effective order to values over 10 on both
triangular and square grids. These effective orders present values close to the expected ones (true orders) and asymptotically
tend to the pm values with the grid refinement. This behavior, however, is only observed until the machine round-off error is
achieved, which influences and degenerates the order results. Comparing the values plotted in Figs. 5 and 6, it is seen that the
minimum values for the numerical errors correspond to the maximum values of the effective orders, which are as high as 12.

As previously mentioned in Section 4.1, in the current work, the adopted grid refinement ratio was equal to 2. However, it
must be observed that this is not always necessary. If there is an interest in obtaining several extrapolations for coarse grids,
a grid refinement ratio with a value close to unity can be employed. However, it is known that Richardson extrapolations
present better results for refined grids. The use of RRE on coarse grids needs to be further investigated: good results for these
grids would allow for the use of RRE in practical CFD problems, in which grids are relatively coarse.

Another remark that can be made about the adopted grid refinement is related to the fact that there is no coincidence
among the positions of the nodal points on different grids. This fact, however, does not seem to have any effect on either
Fig. 7. Half square triangle domain with 8 control volumes.



Fig. 8. Modulus of the numerical error with (Er) and without (Eh) RRE versus h for (a) Tnodal; (b) Tm; (c) Qe. Half square triangle domain.
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numerical behavior or RRE performance: such effects are more closely related to variable type – global or local. Global vari-
ables of interest, such as Tm and Qe, are not affected by the absence of coincident of nodal points: as seen in Fig. 4 for Qe, the
evaluated apparent orders correspond to the expected true orders. This is because global variables of interest involve numer-
ical results for several grid nodes and, because of this, eventual new discretization error terms can be mutually canceled by
summing them during the numerical integration process. In contrast, for local variables of interest, the efficiency of the RRE
methodology is related to the asymptotic behavior of the numerical solutions. If this behavior is not observed, Richardson
extrapolations cannot be applied [33]. Fortunately, for all local variables of interest studied in the current work, this asymp-
totic behavior was observed; otherwise, a technique that allows the numerical solution to present asymptotic behavior
should be used.



Fig. 9. Effective orders for the numerical errors of Fig. 8 (half square triangle domain).
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To summarize, the use of RRE is efficient for the reduction of numerical error in both triangular and square grids. Its per-
formance is much better than that of a simple grid refinement and is limited only by the machine round-off errors, which
depends on a series of variables (such as the algorithm of the numerical code, hardware and software). For both grid types,
the use of RRE was effective for grids with up to 214 = 16,384 volumes (h � 8 � 10�3) at maximum; for more-refined grids,
the machine round-off errors became the dominant term in the numerical error. As a consequence, although the discretiza-
tion error decreases with the grid refinement, the machine round-off error increases with it such that the numerical error
always presents a minimum value [34]. In this case, for more refined grids, even if the RRE methodology reduces the discret-
ization error, the numerical error tends to increase when the machine round-off error presents a higher magnitude. Such a
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situation can be avoided by using quadruple precision, whose round-off error is approximately 10�30–10�32, as demon-
strated by Marchi et al. [12].

4.5. A second domain geometry: a half square triangle

In this case, a domain geometry consisting of a half square triangle (Fig. 7) was also employed to provide other results
regarding the efficiency of the RRE methodology for triangular grids. The studied mathematical model is based on the
two-dimensional Laplace equation with Dirichlet boundary conditions:
@2T
@x2 þ

@2T
@y2 ¼ 0; 0 < y < x; 0 < x < 1;

Tðx; y ¼ xÞ ¼ sinðpxÞ sinhðpxÞ
sinhðpÞ ; Tð1; yÞ ¼ Tðx;0Þ ¼ 0:

8>><
>>:

ð12Þ
For this new geometry, the analytical solution for the temperature field is the same as that for the first geometry,
Tðx; yÞ ¼ sinðpxÞ sinhðpyÞ= sinhðpÞ. Other variables of interest for this second geometry are the following: (1) the tempera-
ture at position x = 3/4 and y = 1/4 (Tnodal); (2) the average temperature (Tm) of the whole domain; and the heat transfer rates
on the three boundaries, namely: (3) y = 0 (Qs), (4) x = 1 (Qe), and (5) x = y (Qi). For this geometry, only triangular grids were
employed, retaining the same discretization procedures adopted for the first domain geometry (square domain, discretized
with triangular grids).

Eleven different grids are employed for this new geometry, starting with the coarsest one, with 2 real control volumes,
and ending with the finest one, with 2097,152 real control volumes (221), respecting a (two-dimensional) refinement ratio
of 2. The RRE methodology was applied to all the variables of interest. As seen in Fig. 8(a) and (b), the RRE methodology was
efficient in reducing the discretization error for two types of variables of interest: the nodal temperature (Tnodal) at x = 3/4
and y = 1/4 and the average temperature of the entire domain (Tm). The performance of RRE with respect to these two vari-
ables was as expected, based on the previously presented results: RRE could reduce the numerical errors by approximately 6
to 8 orders of magnitude for a grid with 32,768 control volumes. Unfortunately, however, for the heat transfer rates, the ex-
pected behavior was not observed. Only Qe is presented in Fig. 8 because Qs and Qi exhibit similar behavior. Although the use
of RRE reduced the numerical discretization error for this kind of variable, the RRE performance for this kind of variable was
much smaller than the expected one, as seen in Fig. 8(c): the numerical errors were reduced by only a factor of about 10 (one
order of magnitude).

The increase in the effective orders for Tnodal, Tm and Qe are presented in Fig. 9. As seen, for this second domain geometry,
the expected behavior for the increase in the effective orders occurred only for Tnodal and Tm (Fig. 9(a) and (b)). For these
variables, the effective orders increase with the grid refinement until the grid contains 2048 control volumes. However,
when the grid contains 32,768 control volumes, the effective orders are not negative: these results are most likely adversely
affected by the round-off errors. For more-refined grids (131,072 control volumes and so on), the machine round-off error
becomes the most important component of the numerical error and therefore RRE is no longer effective in reducing the
numerical error. For the heat transfer rates, such as Qe (Fig. 9(c)), however, the increase in the effective orders is not observed
for the half square triangle domain: RRE only accelerates the tendency of the effective order to approach the asymptotic va-
lue of 2. The reasons why RRE is not effective for this kind of variable of interest in the second employed geometry is not yet
clear and requires supplementary studies, which are in progress. One hypothesis for this degradation in RRE performance for
the heat transfer rates is related to the application of boundary conditions. For this second domain geometry and for the cho-
sen discretization, there is an extra component of the discretization error related to the fact that, for at least one of the
boundaries, the line that connects the centroids of the real and the ghost cells does not pass exactly through the mid-face.
This new discretization error component could be attenuated somehow for nodal and global variables of interest but could
be effective for variables of interest that are located exactly on the boundaries, such as the heat transfer rates.

5. Conclusion

Isosceles right-triangular (for two domain geometries: unitary square and half square triangle) and square grids (for a
unitary square domain) were employed for the discretization of a two-dimensional Laplace equation with Dirichlet bound-
ary conditions by the finite volume method to study the efficiency of RRE. The implemented numerical model features a sec-
ond-order approximation scheme (CDS); boundary conditions applied with ghost-cells; discretization with triangular grids
according to the methodology for unstructured grids; discretization with square grids according to the procedures for struc-
tured grids; an algebraic multigrid for triangular grids and a geometric multigrid for square ones to speed up the numerical
convergence; a lexicographic Gauss-Seidel smoother; a sufficiently high number of multigrid cycles to achieve the machine
round-off error; and double-precision calculations.

The main results of the current work are as follows:

(1) RRE is efficient in reducing numerical errors in triangular grids, achieving effective orders for the numerical error of
approximately 11.
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(2) Despite the versatility of triangular grids, the use of square grids is recommended (if the geometry of the domain
allows its use) due to the smaller discretization errors associated with this grid type. This result is in accordance with
the results presented by Juretić and Gosman [19]. The current work also extends these results for the case in which
RRE is employed.

(3) Considering different grid types but using the same approximation scheme, the RRE results depend on the numerical
error without extrapolation: the numerical error becomes smaller on square grids before implementing the RRE meth-
odology; after implementing RRE, the numerical error remains smaller on square grids when compared that on trian-
gular ones.

(4) The numerical results also suggest that the use of RRE is efficient for other grid types, such as non-orthogonal ones.
(5) It must be noted, however, that the efficiency of RRE is not the same for all variables of interest and all domain geom-

etries: although the numerical error was reduced, the expected behavior of RRE was not observed in all cases (partic-
ularly for the variables of interest located at the domain boundaries).

The theoretical basis of RRE and the results reported in other studies [6–8,12,13,35] allow us to state that the results of
the present work also apply, among others, to two- and three-dimensional Laplace, Poisson, Burgers and Navier-Stokes equa-
tions, as well as to unsteady problems. However, for some of the variables of interest at specific domain geometries, RRE
cannot achieve its theoretical efficiency.
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