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Algebraic multigrid interpolation, correction scheme (CS), lexicographic Gauss-Seidel and V-cycle. Compara-
Square grids tive studies among the CPU time of the GMG, AMG and singlegrid are made. It was verified
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shown to be sensitive to both the variation of the grid reduction factor and the strong
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the AMG one.
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1. Introduction

The multigrid method [1,2] belongs to a group of iterative solvers, and it is one of the most efficient and widespread
methods to solve large systems of linear equations [3]. Its efficiency is based on the fact that the multigrid method presents
a potential to solve N x N linear systems with only O(N) computational effort [4]. Two different approaches can be accom-
plished employing the multigrid method according to the kind of data and information employed and also how the operators
deal with them: the geometric multigrid (GMG) and the algebraic multigrid (AMG). The main difference between AMG and
GMG is related to the manner of constructing the coarser grids [5]: the AMG method requires no knowledge of the geometry
of the problem [6]. The GMG method [1,2] employ fixed grid hierarchies and, therefore, an efficient interplay between
smoothing and coarse-grid correction has to be ensured by selecting appropriate smoothing processes [1]. On the other
hand, the AMG method [5-8] fixes the smoother to some simple relaxation scheme and enforces an efficient interplay with
coarse-grid correction by choosing the suitable coarser levels and the interpolation [1]. The grid hierarchies in the AMG is
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generated in the setup phase (which is an initial or start-up phase), by considering the coefficient matrix, as well as the build
interpolation, restriction and coarse-grid operators [6,9].

The application of the AMG method includes problems in which the use of the GMG method is difficult or even imprac-
ticable [7], such as: unstructured grids, large matrix equations which are not at all derived from continuous problems, ex-
treme anisotropic equations and so on. A remarkable use of the AMG method takes place when there is none information
about the problem geometry [9]. Table 1, adapted from Chang et al. [10], provides a comparison between the AMG and
the GMG methods.

Both strategies, GMG and AMG, present similar steps. The first one is the generation of the coarser grids (levels), which is
followed by the transfer of information among different grids (restriction and prolongation operators). After that comes the
solution of the linear system in each grid using an iterative smoother algorithm (solver), and the choice of a multigrid cycle
(F-cycle, V-cycle, W-cycle, among other ones) [1,2]. The decision about which iterative method to use as smoother (solver),
how to coarsen the problem, or even how to transfer information between the grids, often involve considerable algorithmic
research [4].

According to Trottenberg et al. [1], a single modification in the algorithm might result in a significant reduction of the CPU
time requirements. The efficiency of the multigrid methods is also related to the adaptations of the multigrid components,
which should be made properly according to the underlying physical problem and the variational formulation [11]. Unfor-
tunately, the works available in the literature do not present deep studies about the components of the AMG algorithm and
their optimization. More precisely, in such works, new coarsening algorithms and/or new interpolation operators are intro-
duced, like the work of Xiao et al. [12], or to papers in which the AMG performance is compared to the GMG one [11,13]. In
the latter case, such comparisons are limited to the CPU time, the number of cycles and the study of the multigrid efficiency
provided by the speedup value.

The CPU time and its growth, according to the number of unknowns, were studied by Watanabe et al. [13], for both AMG
and GMG. Both multigrid methods were also studied by Langer and Pusch [11], where comparisons for the number of cycles
spent by the AMG and by the GMG, as well as the time requirements for the auxiliary grids generation were presented. The
number of cycles was also revised by Wu and Elman [14], by using as stop criterion a given tolerance value; it was seen that
the GMG convergence was slower than the AMG for convection-diffusion problems. Campos et al. [15] made a comparison
between the performances of the AMG and the GMG, both with parallelized and preconditioned algorithms which are suit-
able for a non-linear system of differential equations. Additionally, simulations were performed varying the number of grids,
for both the AMG and the GMG, and the grid reduction factor for the AMG, executed by 1, 2, 4 or 6 processors; the perfor-
mance of the AMG algorithm was better than the one obtained by the GMG for both CPU time and memory.

Systematic studies about the multigrid parameters where found only for the GMG method. Gaspar et al. [16,17] presented
theoretical and numerical results for the GMG with triangular grids, by applying distinct multigrid cycles, different numbers
of inner iterations and proposing a new smoother (solver). On the other hand, Oliveira et al. [18] computed optimum values
for the inner iterations and the levels used in heat diffusion problems with structured square grids.

Motivated by all these previous works, the purpose of this paper is to study the components and the parameters associ-
ated to the AMG method, by applying the numerical AMG1R6 code implemented by Ruge and Stiiben [7], in order to find the
optimum parameters for the AMG. The meaning of optimum values for each AMG parameter, considered here, is associated
to the minimization of the CPU time, i.e., the values for each AMG parameter which corresponds to the smallest CPU time in
each simulation, keeping fixed the values for the other parameters.

Two-dimensional Laplace and Poisson type equations are employed, using both square structured (both equations) and
triangular grids (Laplace equation), in order to investigate the influence of the number of inner iterations (v) and the number
of levels (L) for both AMG and GMG methods, providing comparisons on the performances of such methods. Moreover, in the
case of AMG, two parameters (which influence the coarser grids generation) are also investigated: the grid reduction factor
(0) and the strong dependence factor in the coarse grid (¢).

Although most works present the values used for each AMG parameter, or at least, some of them [1,2,6,7,14,19,20], none
of these papers explain clearly why such values are employed; in most cases, it is only said that the used value is a universal
practice, without giving more details. Based on these facts, this work tries to fill this lack of information providing the opti-
mized values for the AMG parameters, compared to the standard ones.

As usual, the standard AMG algorithm adopts the following values for its parameters: v=1 [1,2,6,7,19,20], L = Liyaximum
[14,19,20], 6=0.25 [1,7,10,19,20] and ¢ = 0.35 [7,19]. In some works available in the literature [1,2,6], the authors employ
values other than the ones listed here. However, they do not clearly explain the reasons which take them to use such values.

Table 1
Comparison between the GMG and the AMG methods (adapted from Chang et al. [10]).
Features GMG AMG
Solved problem Continuous problem Linear systems of algebraic equations
Used information Geometrical structure of the problem Only entries of the matrix
Program Necessity of composing a program for each problem Only one program for different problems

Efficiency Very good Good
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For the values of L, some works do not even mention the number of grids employed [6,7,11]. The values listed above are the
most utilized in literature and will be used in this paper to compare the optimized parameters presented in this work. A pa-
per with preliminary results contained in this work was published at CONEM/2010 [21].

2. Mathematical and numerical models

Three two-dimensional heat transfer problems, with Dirichlet boundary conditions, are investigated in this work, gov-
erned by the following differential equation in the Cartesian coordinate system [22]:

o*T O°T

e oy S W

where x and y are the coordinate directions, T denotes the temperature, and S is a source term (which can be null, providing
the Laplace equation, or either a constant or a function of x and/or y, providing a Poisson type equation). While the Laplace
equation is employed twice, for two different sets of boundary conditions, listed in Table 2, the Poisson type equation has as
source term S = —2[(1 — 6x%)y?(1 — ?) + (1 — 6y?)x*(1 — x?)]. In order to distinguish the two sets of boundary conditions
employed for the Laplace equation, the labels Laplace 1 and Laplace 2 are used in this work, according to the boundary con-
ditions listed in Table 2.

When square-structured grids are employed, both the Laplace as well as Poisson type equations are discretized by apply-
ing the finite difference method (FDM) [23]. On the other hand, for the triangular grids, the Laplace equation is discretized by
employing the finite volume method (FVM) [24], applying the boundary conditions with ghost cells. For both grid types, a
unitary square domain is employed and the second order central differencing scheme (CDS) is used to the derivative approx-
imations. Whatever the discretization method used, the discretization process for the whole domain provides a system of
linear equations of the type AT = b, where the coefficients matrix A is pentadiagonal, symmetric and positive definite, T is
the unknowns vector and b is the source term vector.

3. The algebraic multigrid (AMG) method

The AMG method is composed by two steps [1,5-7]. The first one, called setup phase, is responsible for the grid gener-
ation and the construction of the transfer operators (restriction and prolongation) among the grids involved in this process.
The second step is the solution phase, which is direct and employs the operators previously defined in the setup phase. In the
solution phase, the coarser grids are visited according to a previously proposed cycle. In the construction of the coarser grids,
it is necessary to make a partition of the original grid nodes, i € Q" where Q" denotes the indices set {1,2,...,n}. This par-
tition gives rise to two disjoint subsets: the C", representing the variables which should be contained in the coarse level (C-
variables), and the F", the complementary set, in which are placed the nodes not included in the coarse grid. This partition is
based on the strong algebraic connections; moreover, in order to determine it, some other sets must be defined as [9]:

Ni:{jth:j#i,aij;éO}, 2)

Si= {j € N; : —a; > O max|ay|with fixedd, 0 < 6 < 1}, (3)
dik<0

Si={icQ:ies]}, (4)

where: N; is the neighborhood of the given point i, S; determines the set of points which strongly influences i and SiT is the set
of points which are strongly dependent of i. The parameter 0 (0 < 6 < 1) which denotes the grid reduction factor is a constant
which quantifies how much a given point is strongly connected to the other ones. The influence of this parameter on the CPU
time is also investigated in this work.

After providing the partition, for each point i, other three subsets are obtained: C;, D; and DY, necessary to the grid coars-
ening. The subset C;=C"NS; selects the neighbor points in the coarse grid which strongly influence the point i, while the

Table 2
Problem labels, boundary conditions and analytical solutions for Eq. (1).
Problem Boundary conditions Analytical solution
label
Laplace 1 T(0,y) =T(x,0) =0 T(x,y) =xy
T(x,1) =xT(1,y) =y
Laplace 2 T(0,y) =T(x,0) =T(1,y) =0 T(x,y) = sin (nx) 5‘.“‘;1((7”"
T(x,1) = sin(mx) s
Poisson T(0,y) =T(x,0)=0 T(x,y) = (x> —xH(y* —y?)
T(1,y) =T(x,1) =0
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subset Df =D;NnS;, where D; = N; — G;, is composed by all the points in the neighborhood of F' which strongly influence the
point i, and the subset D} = D; — S; contains the weakly connected points. The interpolator operator (responsible for the
transfer of information from a coarser to a finer grid) is given by [2]

(Iﬁ,e”) _ {e,ﬂ, ifi e C" 5

H ips h
Yjecwief, ifi € FY,

where

Wi = —

(6)

The influence of the parameter ¢ > 0, the strong dependence factor in the coarse grid, on the CPU time is also studied in
this work. This parameter is employed in the judgment if a point j € D; strongly influences a given point in C, in such way
that the interpolation is also influenced. So, it is needed to define a data set by Iwamura et al. [19]:

D_ ). s . . |aU| . i
P = {] eD:: ; |ag| > 8<max|aik|>max\aﬂ| with fixed ¢ > 0}. 7)

More details about the adopted algorithm employed for the interpolation procedure can be found in Iwamura et al. [19].

4. Numerical results

Around 700 numerical simulations were done, in order to study the influence of the following parameters on the CPU
time: the number of inner iterations (v) in the smoothing algorithm (solver), the number of grids (L), the grid reduction factor
(0) and the strong dependence factor in the coarse grid (¢). For all the performed investigations, three different problem sizes
were considered: for square grids (FDM), 257 x 257 = 66,049, 1025 x 1025 = 1,050,625 and 4097 x 4097 = 16,785,409
nodes; for triangular grids (FVM), 218 = 262,144, 22° = 1,048,576 and 2%* = 16,777,216 volumes. In order to provide a com-
plete overview of the effects of optimized parameters on the CPU time after all the optimizations performed here, for square
grids (FDM) were studied grids as coarse as 5 x 5 =25 up to 4097 x 4097 = 16,785,409 nodes (each node corresponding to
one unknown). Otherwise, for triangular grids, the number of volumes varies from 22 = 4 up to 224 = 16,777,216; in this case,
also the influence of the number of unknowns (N) is studied in this work. All the simulations were done in order to compute
the optimum value for each one of the tested parameters. The choice of these values is made in such a way that they offer the
minimum CPU time for the AMG algorithm, while the values of the other parameters are fixed.

The computational code employed in this work is based on the AMG1R6 code, implemented by Ruge and Stiiben [7]. In
this code, the setup phase is based on the standard coarsening (based on the strong negative connections) and standard
interpolation (chosen by the use of the standard coarsening). Otherwise, in the solution phase one has: V-cycle, null initial
guess, lexicographic Gauss-Seidel as smoother (solver), non-dimensional residual L,-norm (based on the initial guess norm)
and tolerance of 108, The original code of Ruge and Stiiben was changed in order to allow the evaluation of the implemented
modifications on the CPU time performance. The input data is also modified for each grid type (square or triangular), to allow
the use of a specific matrix generator, coupled to the main program.

4.1. Inner iterations (v)

The determination of the optimum number of inner iterations was done based on three sets of grids, for each one of the
grid geometries, as previously described. The range of values considered was v = 1-20. In the cases in which the CPU time
was smaller than 10 s, the measured value corresponds to the arithmetic average among three simulations. For both grid
geometries, it was employed as many levels as possible, while the values of the grid reduction factor (0) and the strong
dependence factor in the coarse grid (&) were left constant and equal to 0.25 and 0.35, respectively, since these are the most
utilized in the literature.

Fig. 1 presents numerical results for each one of the three problems listed in Table 2. Both square and triangular grids
were employed: for square grids (FDM), Fig. 1 shows results for the grid with 4097 x 4097 nodes (totalizing 16,785,409 un-
knowns), while for triangular grids (FVM), the results are from a grid with 224 volumes (16,777,216 unknowns). Qualita-
tively, the results for the other grids are analogous to the ones presented in Fig. 1 and, because of this, are not
represented. According to the numerical results, the optimum value for the inner iterations (v) equals 2 for square grids,
independent on the solved problem. Otherwise, for triangular grids, the optimum value v equals 1. Consequently, an influ-
ence of the grid type (triangular or square grids) on the optimum number of inner iterations was observed.

The CPU time reduction, for square grids, obtained with the use of the Vopsimum = 2, in comparison to the current adopted
value (v =1) is about 7.5%, 9.9% and 1.1% for the Laplace 1, Laplace 2 and Poisson problems, respectively, in the considered
grid (4097 x 4097 = 16,785,409 nodes). The numerical results obtained in this work for the optimum value of v agree to the
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Fig. 1. CPU time versus inner iterations (v) for square (N = 4097 x 4097 = 16,785,409 nodes) and triangular (N = 2?4 = 16,777,216) grids.

ones presented by Gaspar et al. [16] for triangular grids, and Oliveira et al. [18] for square grids. However, it must be noticed
that these two works employed the GMG method.

4.2. Number of grids (L)

The influence of the number of grids on the CPU time is evaluated by using the optimum value of inner iterations obtained
in the previous subsection: v = 2 for square grids and v = 1 for triangular grids. For both grid geometries, the values of the grid
reduction factor () and the strong dependence factor in the coarse grid (¢) were left constant and equal to 0.25 and 0.35,
respectively.

In the numerical simulations performed in this paper, the number of grid levels (L) was considered in such a way that
1 < L < Linaximum» Where Liyaximum 1S the maximum number of different grids which can be employed in the multigrid cycle,
for a given grid spacing ratio (GMG) or for a given value of 6 (AMG). For example, in GMG, if E =512 x 512 elements grid
is employed, with a ratio r =2, the auxiliary grids are 256 x 256, 128 x 128, 64 x 64, 32 x 32, 16 x 16, 8 x 8, 4 x 4 and
2 x 2, which corresponds to the coarsest grid, with only one inner node, totalizing 9 grids (that is, Lyaximum =9). In the
AMG, for 0 = 0.25, the problems for triangular grids were investigated in such a way that the number of unknowns (inner
nodes) was the nearest possible when compared to square grids. In the AMG1R6 code [7], there is an option to solve a given
problem using all the grid levels, that is, by using the grid with the smallest number of inner nodes. The number of grid levels
employed, for triangular grids, was printed for each size problem and was used for the comparisons shown in Fig. 2. This
figure presents the behavior of the CPU time according to the number of grid levels employed, for the finest grid considered
(4097 x 4097 = 16,785,409 nodes for the square grid and 224 = 16,777,216 volumes for the triangular one).

As can be seen, for both grid types, the number of grids influences the CPU time: the smaller the number of grids em-
ployed (L), the higher the CPU time requirement is. Based on this, the optimum number of grids (L), which should be used
for all the numerical simulations, is the highest one, in other words, Loptimum = Lmaximum-

10000 - —m— Laplace 1 - Square
—0O— Laplace 2 - Square
—+— Poisson - Square
—A— | aplace 1 - Triangular
—A— Laplace 2 - Triangular
0 Limen

@ -

o 1000

1=

=1

=

0

[&]

7 8 9 10 " 12 13

Fig. 2. CPU time versus number of levels (L) for square (N = 4097 x 4097 = 16,785,409 nodes) and triangular (N = 224 = 16,777,216) grids.
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These results performed here agree with the ones obtained for the GMG method, presented by Oliveira et al. [18] and
Gaspar et al. [16], who also employed all the grid levels for the GMG method, like Wu and Elman [14], Iwamura et al.
[19] and Krechel and Stiiben [20] for the AMG method.

4.3. Grid reduction factor (0)

In order to investigate the effects of the grid reduction factor (9) on the CPU time, the optimum values obtained in pre-
vious subsections were left constant: v =1 for triangular grids and v = 2 for square ones and L = L;;qximum. The strong depen-
dence factor in the coarse grid (&), whose optimization is presented in the next subsection, was left constant and equal to
0.35. The value of 0 quantifies how much a given point is strongly connected to another one: depending on this relation,
a given point is considered or not in the coarse grid.

Most authors [1,7,10,19,20] have utilized the value of 0 equals to 0.25; this, however, is not a universal practice. For in-
stance, Briggs et al. [2] used 0 = 0.20, while Falgout et al. [6] apply 0 = 0.40 for their numerical simulations. If an analogy to
the GMG is done, it can be seen that 0 = 0.25 = 1/4 (in AMG) corresponds to the interpolation of four points in a finer grid, e.g.,
it is analogous to the grid spacing ratio r =2 (in GMG). Because of this assertion, in order to keep an analogy to the GMG,
besides the values of 6 =0.20, 0.25 and 0.40 (found in literature), the values of #=0.11 and 6 = 0.0625 were also studied.
These latter values correspond to the grid spacing ratio of r = 3 and r = 4, respectively, for the GMG.

The influence of the values of 0 on the CPU time is shown in Fig. 3, for both square and triangular grids. In this case, the
number of variables is concerned to the most refined grid (N =4097 x 4097 = 16,785,409 nodes in the square grid and
2%4=16,777,216 volume in the triangular one), once numerical results for the other grids present an analogous behavior.
The optimum values for 6 are shown for each grid type and for each studied problem and, in general, diverge from the com-
mon value of 6 =0.25 used as standard.

According to Fig. 3, the optimum values of 0 vary with the problem solved. Using square grids: 0 = 0.40 for Laplace 1,
0=0.25 for Laplace 2 and 0 = 0.20 for Poisson. However, considering only the values 0 = 0.20, 0.25 and 0.40, the maximum
increase in the CPU time was about 5.7% for all the problems. As can be seen, the influence of this parameter on CPU time
in square grids is limited. If all the nodes satisfy Eq. (3), as observed for all the numerical cases investigated here, all the
nodes are strongly connected to their respective neighbors and the influence on the CPU time is small.

The previous situation, however, does not apply to triangular grids: in this case, each node is connected to three other
ones, satisfying or not Eq. (3). Because of this assertion, the CPU time is much more influenced by the variations on the values
of the grid reduction factor (0). Basically, the use of smaller values of 0 implies in a smaller number of nodes employed in the
auxiliary grids and, consequently, it implies in a small quantity of grid levels, improving the performance of the adopted
algorithm. Based on these results, some other numerical simulations were performed in order to verify the influence of smal-
ler values of 6 on the CPU time. However, values smaller than 6 = 0.0625 cause, in most cases, the divergence of the algo-
rithm. It seems that this can be caused by the strong lost of information between finer and coarser grids, induced by the
use of a strongly reduced number of nodes in the coarse grids.

4.4. Strong dependence factor in the coarse grid (&)

The study of the strong dependence factor in the coarse grid (¢) on the CPU time is presented in this subsection. The values
employed for the other parameters are left constant and equal to the optimum ones, obtained in the previous subsections, for
each grid type and each solved problem. The value of ¢ defines the strong dependence in the node set of the coarse grid C;,

—m— Laplace 1- Square
—0O— Laplace 2 - Square
—+— Poisson - Square
—A— Laplace 1 - Triangular
—A— Laplace 2 - Triangular

o)

CPU time (s)

Fig. 3. CPU time versus grid reduction factor (6) for square (N = 4097 x 4097 = 16,785,409 nodes) and triangular (N = 22 =16,777,216) grids.
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according to Eq. (7), and influences the construction of the auxiliary grids in the AMG. However, various works in the liter-
ature [6,11,13,15,20] do not mention the values of ¢ used for the AMG. Ruge and Stiiben [7] employ ¢ = 0.35, while Iwamura
et al. [19] use different values of ¢ according to the constructed grid level: ¢ = 0.35 is considered when the number of levels is
smaller than or equal to 3, and ¢ = 0.45 is utilized when the number of levels is greater than 3. On the other hand, Trottenberg
et al. [1] employ ¢ =0.20 for the numerical solution of the Poisson equation.

The values of ¢ employed in this work varies from 0.20 to 0.50, with a step of 0.05, which covers all the values available in
the literature [1,7,19], providing different ways to evaluate the influence of this parameter on the CPU time. Fig. 4 presents
numerical results for the most refined grid using both the square (N = 4097 x 4097 = 16,785,409 nodes) and the triangular
grids (N = 224 = 16,777,216 volumes); the other grids present similar behavior. As can be observed, in all the cases, the best
results were obtained by using ¢ = 0.35 - the current value employed by Ruge and Stiiben [7] and Iwamura et al. [19]; the
exception is provided by the Poisson equation, in which the optimum value was 0.20 - exactly the one employed by Trot-
tenberg et al. [1] for the same equation type. The use of ¢ = 0.35 for the Poisson equation, however, increases the CPU time in
only 0.9%.

4.5. Number of unknowns (N)

In order to evaluate the efficiency of the adopted AMG compared to the theoretical one, which is of O(N) [4], this subsec-
tion provides the CPU time needed to solve different problems with different grid sizes. All the optimum parameters ob-
tained in the previous subsections, for different grid types and different problems, are employed in this section. For both,
triangular and square grids, the AMG results are compared to the SG (singlegrid) ones; the SG method corresponds to the
solution of the system of linear equations in only one grid (the basis grid), without using of auxiliary ones. In addition,
for square grids, the GMG could be employed and their results are also presented. The complexity order of the AMG and
GMG multigrid algorithms is evaluated by the computation of the CPU time (tcpy) equation, which has the form

toy = N, (8)

where c is a constant, N denotes the number of equations (number of nodes or volumes) and P is the exponent, which for the
multigrid method should be approximately unitary, and represents the order of complexity of the given algorithm.

Numerical results for square grids are presented in Fig. 5, while Fig. 6 provides the results for triangular grids. Graphically,
it is observed from Figs. 5 and 6 that the multigrid methods (AMG and GMG for square grids, and AMG for triangular ones)
present similar values of P: in all cases, it is close of unity. The results presented in Table 3 confirm this fact, in which the
values of P were obtained by the least square fitting, considering the results obtained in the four most refined grids for each
problem/grid type. As can be seen, the performances of both AMG and GMG are really closer to the theoretical one, for the
studied problems. The SG results are also closer to the theoretical ones, once the Gauss-Seidel algorithm was employed to
solve the system of linear equations obtained by the discretization procedures, and, theoretically, the order of complexity of
such algorithm is O(N?).

Although the values of P for both AMG and GMG methods using square grids are basically the same, it is possible to see
from Fig. 5 that the CPU time using AMG is always greater than the result provided by the GMG algorithm when it is con-
sidered the same N. This is an effect of the complexity of the AMG method, when compared to the GMG: while the AMG
method is more flexible, being applied in unstructured grids once it deals with only the matrices information, the GMG is
faster by the use of the geometrical structure of the problem, as can be seen at Table 1. Overall, comparing the CPU time
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Fig. 4. CPU time versus strong dependence factor in the coarse grid (¢) for square (N=4097 x 4097 = 16,785,409 nodes) and triangular
(N =22%=16,777,216) grids.
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Table 3

Values of P obtained for Eq. (8).
Problem label Grid type AMG GMG SG
Laplace 1 Square 1.05 1.09 1.92
Laplace 2 Square 1.00 1.07 1.91
Poisson Square 1.04 1.04 2.04
Laplace 1 Triangular 1.05 - 1.88
Laplace 2 Triangular 1.04 - 1.88

of the GMG and the AMG algorithms, for the same problem and the same value of N, the former is about 5 times faster than
the latter. This behavior is in agreement to the ones previously obtained by Watanabe et al. [13]. The behavior of the CPU
time, for both SG and AMG methods, presented in Fig. 6, is also in concordance to other works available in the literature

for triangular grids [16].

4.6. Standard versus optimized AMG algorithms

The last subsections were dedicated to the achievement of the optimum parameters of the AMG algorithm, which min-
imize the CPU time. The basis numerical code applied was the AMG1R6 one, implemented by Ruge and Stiiben [7]. In each
subsection, only one parameter was investigated, keeping the other ones fixed.

The values listed in Table 4 are the most common ones found in literature, although most works present the values used
for each AMG parameter, none explains clearly why such values are employed. This work tries to fill this lack of information
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Table 4

Standard and optimum values for the parameters of the AMG algorithm.
Problem label Grid type v v L and L 0" 0 g €
Laplace 1 Square 1 2 Linaximum 0.25 0.40 0.35 0.35
Laplace 2 Square 1 2 Linaximum 0.25 0.25 0.35 0.35
Poisson Square 1 2 Linaximum 0.25 0.20 0.35 0.20
Laplace 1 Triangular 1 1 Linaximum 0.25 0.0625 0.35 0.35
Laplace 2 Triangular 1 1 Linaximum 0.25 0.0625 0.35 0.35

" Standard values found in literature.

Table 5
Comparison of CPU time between the standard and the optimized algorithms, for grids with N=4097 x 4097 = 16,785,409 nodes (square grid) and
N =224=16,777,216 nodes (triangular grid).

Problem label Grid type tepy” [seC] tepu [sec] %
Laplace 1 Square 62.2 55.8 0.90
Laplace 2 Square 63.1 56.6 0.90
Poisson Square 75.6 69.7 0.92
Laplace 1 Triangular 112.8 96.2 0.85
Laplace 2 Triangular 115.1 99.2 0.86

" Standard algorithm.

Table 6

Values of P obtained for Eq. (8) and the number of V-cycles needed for the convergence achievement.
Problem label Grid type P P V-cycles” V-cycles
Laplace 1 Square 1.06 1.05 10 6
Laplace 2 Square 1.05 1.00 10 6
Poisson Square 1.12 1.04 13 9
Laplace 1 Triangular 1.08 1.05 29 25
Laplace 2 Triangular 1.07 1.04 30 25

" Standard algorithm.

and provides the optimized values for the AMG parameters, compared to the standard ones, as presented in this section. Ta-
ble 4 also presents the optimized parameters found in this work.

The comparison of the CPU time between the standard and its counterpart optimized algorithm is presented in Table 5. In
the simulations performed here, the same microcomputer and the same compiler options were employed for both the stan-
dard and the optimized algorithms. As can be seen in Table 5, the CPU time reduction obtained with the optimum values of
the parameters varies from 8% to 15%. Triangular grids, which are related to unstructured grids, were the most benefited by
the parameters optimization: the CPU time reduction for both studied problems varies from 14% to 15%.

Another way to compare the performance of the standard and the optimized algorithms is verifying the values of P in the
Eq. (8) tepu = cNF, obtained by least square fitting, for both cases, and the number of V-cycles which are needed for the con-
vergence achievement; these results are presented in Table 6. The optimization of AMG parameters not only reduces the CPU
time requirements, but it also reduces the values of P in all the cases. Although the previous results presented by the stan-
dard algorithm are close to the theoretical value of P = 1, the performance of the optimized algorithm is better, with values of
P closer to the unity: these improvement is easier observed for more refined grids. Another consequence of the parameters
optimization is the reduction of the V-cycles employed for the algorithm convergence. In all the cases, the number of
V-cycles is smaller for the optimized algorithm and its reduction achieves 40% to the Laplace equation, using square grids.
Such reduction can be attributed to an association of the increasing of the v from unity to 2 and the CPU time decreasing,
which did not show the expected behavior when compared to the one verified for the number of V-cycles.

5. Conclusion

The optimum parameters for the AMG method, which lead to the CPU time reduction, were determined in this paper. For
this purpose, systematical simulations were performed, for each one of the following parameters: the number of inner iter-
ations (v), the number of grids (L), the grid reduction factor (0) and the strong dependence factor in the coarse grid (¢). The
influence of the optimization of such parameters on the CPU time was analyzed by the use of different grids, which is related
to different number of unknowns (N). The basis numerical code applied was the AMG1R6 one, implemented by Ruge and
Stiiben [7]. The finite difference method was employed to the discretization of the differential equations in square grids,
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while the finite volume method was used for triangular grids. In all the cases, simulations were up to tolerance (1078), ap-
plied to the non-dimensional residual l,-norm (based on the initial guess norm).
Based on the numerical results, the most interesting remarks are given below:

(1) The number of inner iterations (v) strongly influences the CPU time. The optimum values of v are 2 for square grids,
and 1 for triangular grids.

(2) The CPU time is strongly dependent of the number of levels (L). For all the problems and both grid types, the optimum
value is L = Lygximum- This result is independent of the grid type (triangular or square grid), or even about the multigrid
approach (AMG or GMG).

(3) There is not a standard value for the grid reduction factor (9) when square grids are employed: the optimum values
were equal to 0.20, 0.25 and 0.40 for the Laplace 1, Laplace 2 and Poisson problems, respectively. For triangular grids,
otherwise, the optimum value was equal to 0.0625 for both the Laplace 1 and the Laplace 2 problems.

(4) For all cases investigated in this paper, except by the Poisson problem (using square grids), the strong dependence
factor in coarse grid (&) presented as optimum value 0.35. In the exception case, the optimum value equals 0.20.

(5) The optimization of the AMG parameters improves the algorithm performance to values closer to the theoretical ones,
reducing the values of P to values closer to the unity in Eq. (8). This optimization is also responsible for a reduction in
the CPU time, which can achieve up to 15%, and the decreasing of the number of V-cycles up to 40%, considering the
same stop criterion.

(6) This work presents results for grids more refined than the ones available in the literature, for both triangular and
square grids.

(7) The performance of the GMG approach is better than the AMG approach: the former takes only 20% of the CPU time
spent when compared to the latter methodology.
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