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Curitiba, PR, Brazil
prisciladzen@ufpr.br
2Department of Mechanical Engineering, Federal University of Paraná
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Abstract. The nonlinear heat equation has large applications in several areas, such as Engineering, Biology, and
Medicine. In this paper, we compare Newton’s and Picard’s methods to numerically solve the one-dimensional
nonlinear heat equation, where the thermal conductivity depends on the temperature of the medium. First, we
discretize the equation in time using the implicit Euler method, obtaining a sequence of nonlinear boundary value
problems with the sweep in time performed by standard Time-Stepping method. For the spatial derivative that is
also dependent on the temperature gradient, we use the Finite Difference Method. The nonlinear systems obtained
are linearized using Newton’s and Picard’s methods. Based on the numerical tests we compare the number of itera-
tions and the computational times to solve the systems using each of the solution methods and list their advantages
and disadvantages for this type of problem.
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1 Introduction

Problems involving heat transfer have been studied in several application areas, especially those beginning
with Fourier’s Law, where heat flow is proportional to the temperature gradient.

In [1] the temperature dependence of thermal conductivity in semiconductors was solved with the Fourier
equation, applying the finite difference method (FDM) and using Newton’s method for linearization of the non-
linear systems. They obtained good results and the method used proved to be stable for the problem analyzed.
[2] solved the Fourier equation using random thermal conductivity coefficients and used the Multigrid method to
speed up convergence.

Newton’s method is a typical method for solving nonlinear problems where the iterative process generates a
sequence of points that at each iteration approaches the solution. The convergence is quadratic provided the choice
of the initial estimate is appropriate [1]. On the other hand, Picard’s method is known as the method of successive
approximations, that is, it linearizes the system and then solves the resulting equations of the system. Among its
main advantages are ease of implementation, maintenance of the symmetry of the system of equations, and a lower
computational cost for each iteration. But such a method can have convergence problems in highly nonlinear cases,
as reported by [3], The one, two, and three-dimensional finite element method involving both steady and transient
states was used to solve the multidimensional saturated variable flow problem.

The solution of highly nonlinear problems was also the object of studies in [4] and [5], where they used
Newton’s and Picard’s methods and a modification to Picard’s method for Richards’ equation.

[6] compared linearization methods, L-scheme, Newton’s, and Modified Picard, for coupled multiphase flow
and reactive transport in porous media. [7] compared such methods proposed by [6] for the one-dimensional
problem of two-phase flow in a rigid porous medium, using the finite volume method for the spatial and implicit
Euler for the temporal discretizations. For solving the generated linear systems they used the lexicographic coupled
Gauss-Seidel solver, accelerating convergence with the Multigrid method and W-cycle.
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In this work we discretize the one-dimensional nonlinear heat equation using the finite difference method
(FDM) for the spatial and implicit Euler for the temporal discretizations. And for the linearizations, we use
Newton’s and Picard’s methods. After that, we perform a study to indicate the advantages and disadvantages of
each of the methods.

2 Mathematical and Numerical model

For [8], heat transfer is the transit of energy due to a temperature difference in the medium, and when this
difference exists, one body gives off heat to the other. This heat exchange generates a rate classified as the thermal
conductivity coefficient, which in general, in realistic problems, depends on the temperature itself.

Thus, the one-dimensional heat equation that will be treated in this paper, as described in [1] is

ρcp
∂u

∂t
− ∂

∂x

(
k(u)

∂u

∂x

)
+ f = 0, (1)

in the spatial interval x ∈ [a, b] and time t ∈ (0, tf ], where ρ is the density, cp is the pressurization heat capacity,
and k is the thermal conductivity. Note that ρ and cp are constant values, but k depends on the temperature u.

The boundary and initial conditions are given, respectively by:

u(a, t) = ua, u(b, t) = ub, t > 0, (2)

and

u(x, 0) = u0(x), x ∈ [a, b], (3)

where u(x, t) and f(x, t) represent respectively, the temperature and the source term at position x and time t.
Rewriting the Equation (1) and using the chain rule, we have

ρcp
∂u

∂t
= ∂uk(u)

(
∂u

∂x

)2

+ k(u)
∂2u

∂x2
+ f, (4)

where ∂u represents the partial derivative with respect to variable u.
Analytical solutions are not always easy to find, so numerical modeling can be used. We will adopt here a

uniform mesh over the spatial domain where each point u(xi) will be denoted by ui with xi given by

xi = a+ (i− 1)h, i = 1, 2, ..., N, (5)

where h = b−a
N−1 is the spacing between the nodes in the spatial mesh, with N being the number of nodes.

From Equation (4), with time step τ =
tf
M , where M is the number of time steps, and using the implicit Euler

method for time discretization, we have

ρcp
un+1
i − uni

τ
= ∂uk

n+1
i

(
∂un+1

i

∂x

)2

+ kn+1
i

∂2un+1
i

∂x2
+ fn+1

i , (6)

where n + 1 is the current time step, i denotes the position in space and kn+1
i denotes k(un+1

i ). The spatial
discretization of the derivatives involved in Equation (6) will be given by the FDM, with Central Difference Scheme
(CDS) of second order. Therefore, we have

∂un+1

∂x
=
un+1
i+1 − u

n+1
i−1

2h
and

∂2un+1

∂x2
=
un+1
i+1 − 2un+1

i + un+1
i−1

h2
. (7)
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Substituting Equation (7) into Equation (6), we have

ρcp

(
un+1
i − uni

τ

)
= ∂uk

n+1
i

(
un+1
i−1 − u

n+1
i+1

2h

)2

+ kn+1
i

(
un+1
i−1 − 2un+1

i + un+1
i+1

h2

)
+ fn+1

i . (8)

3 Linearization Methods

The nonlinearity of the heat equation can be handled using several methods. In this work, we use Newton’s
and Picard’s linearization methods.

3.1 Newton’s Method

Newton’s iteration scheme can be thought of as a parallel chord method with an update, that is, we use the
tangent of the function as the iteration matrix and update this slope matrix at each iteration. Newton’s scheme
has quadratic convergence, this is secured as long as the initial estimate is close to the solution [9]. For the
implementation of Newton’s method [1] we will introduce a column vector Gn+1 = [Gn+1

1 , Gn+1
2 , ..., Gn+1

N ]T

with the components:

Gn+1
1 = un+1

1 − ua, Gn+1
N = un+1

N − ub, (9)

Gn+1
i = ρcp

(
un+1
i − uni

τ

)
− ∂ukn+1

i

(
un+1
i−1 − u

n+1
i+1

2h

)2

− kn+1
i

(
un+1
i−1 − 2un+1

i + un+1
i+1

h2

)
− fn+1

i , (10)

for i = 2, 3, . . . , N − 1.
The system of nonlinear equations given in Equation (10) and the boundary conditions, Equation (9), are

written as one equation

Gn+1(un+1) = 0, (11)

where

un+1 = [un+1
1 , un+1

2 , ..., un+1
N ]T . (12)

Introducing the iterative process by un+1,ν+1, where ν + 1 is current iteration, and starting by some initial
guess un+1,0, the nonlinear system Equation (11) can be solved by the

un+1,ν+1 = un+1,ν −
(
Ln+1,ν

)−1 Gn+1(un+1,ν), ν = 0, 1, 2, ... (13)

where Ln+1,ν is the Jacobian matrix of Gn+1 with respect to un+1,ν . So:

Ln+1,ν =
∂Gn+1

∂un+1

(
un+1,ν

)
. (14)
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3.2 Picard Method

It is possible to derive a simpler method from the fixed point problem, which is called successive replacement
or Picard, which has among its characteristics the ease of implementation, conservation of the symmetry of the
system of equations and lower computational cost for each iteration [10], but may present convergence problems in
highly nonlinear problems [3]. According to [9], the Picard iterative technique presents itself as a robust fixed-point
method that is globally convergent with a linear or sublinear rate.

Picard’s method is usually used in the initial iterations of a general strategy for solving systems of nonlinear
equations, to enable the convergence of faster methods, such as Newton’s method, discussed earlier. This is because
the method has a large radius of convergence, but has a low rate of convergence, so it is interesting to combine the
method with faster methods that have a low radius of convergence. [3] [4].

Linearization using Picard’s method, is computationally classified by [3] [5] [11][12] as simple to implement,
and computationally cheaper. Still, it is not as accurate because the approximation is made by a linear and a
nonlinear part, [7], and where is used the Gaussian elimination or Gauss-Seidel methods as solvers.

Isolating the variable un+1
i at Equation (8), and generating the iterative process, we have Picard’s method

given by

un+1,ν+1
i =

uni
A

+
Aχk0
4h2

∂uk
n+1,ν
i

(
un+1,ν
i+1 − un+1,ν+1

i−1

)2
+

Ak0
h2

kn+1,ν
i

(
un+1,ν
i+1 − 2un+1,ν

i + un+1,ν+1
i−1

)
+Afn+1

i , (15)

where A = τ
ρcp

, ν + 1 is the current iteration and uni represents the converged solution at the previous time step.

Note that when we have the positions in space i and i− 1, we use the results of iteration ν, while at position
i+ 1, we use ν + 1.

4 Results

This work aimed at comparing Newton’s and Picard’s methods for the model described in [1], in other words,
we consider a thin homogeneous rod along the x axis in the interval x ∈ [1, 3], with no heat sources and no
radiation. The density ρ and the heat capacity cp are unit constants and the thermal conductivity is given by

k(u) = κ0e
(χu), (16)

where κ0 and χ are physical constants associated with greater or lesser nonlinearity. Consider the boundary
conditions expressed by

u(1, t) = 2, u(3, t) = 1, t > 0, (17)

and the initial condition given by

u(x, 0) = 2− x− 1

2
+ (x− 1)(x− 3), x ∈ [1, 3]. (18)

The numerical simulations were performed with Matlab software, version R2015a. The verification of the
code for Picard’s method was done by comparing it with the results presented by [1] for Newton’s method, and
tested for the points M = N = 2p + 1, with p ∈ Z ranging from 5 to 12. We will present the results for the
case p = 12, since the other cases presented similar results. In Equations (10) (15), respectively, for Newton’s
and Picard’s methods, ∂u(k

n+1,ν
i ) = χκ0 e

(un+1,ν
i ). We will use the variation for κ0 being the values 10−3, 10−2

and 10−1; and χ being the values −9.0,−7.0,−5.0,−3.0 and −1.0. We use as a stopping criterion for solving
the system of linear equations resulting from the linearization process, the l2 norm of the difference between the
solutions of two consecutive iterations, with a tolerance of 10−8, according to [1].

In Table 1, the comparison between the methods was made by the number of mean linearizations at each time
step, until the tolerance was reached. We can observe that with Newton’s method, the number of linearizations
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remains roughly stable for any value of κ0 and χ, while with Picard’s method this number increases with increasing
κ0 and χ. This behavior can be confirmed by measuring the computational time (tCPU ) required to obtain the
numerical solution in both methods, as shown in Figure 1.

Table 1. Several mean linearizations of Newton’s and Picard’s methods considering a mesh with N = M = 4097
points, for various values of κ0 and χ.

κ0 10−3 10−2 10−1

χ -9.0 -5.0 -1.0 -9.0 -5.0 -1.0 -9.0 -5.0 -1.0

Newton’s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.6

Picard’s 3.0 7.0 36.9 10.7 51.1 315.8 72.7 332.6 1994.8

We can notice that Picard’s method, Figure 1, has lower tCPU in most cases compared to Newton’s method,
despite performing a larger number of linearizations. Notice the cases that κ0 = 10−1 and χ = −3.0 or χ = −1.0,
the Newton’s method is more efficient than Picard’s method. This fact was also observed by [3] [6], where the
authors showed that Picard’s method is more efficient when you have low nonlinearities.

Figure 1. Computational time used by Newton’s and Picard’s methods, considering a mesh with N = M = 4097
points, for various values of κ0 and χ.

5 Conclusions

In this work, the one-dimensional heat transfer equation with thermal conductivity depending on the tempera-
ture itself was considered. This equation was solved numerically using the implicit Euler Method for the temporal
discretization and the FDM with CDS-type approximation for the spatial discretization. Newton’s and Picard’s
linearizations were compared. The results showed the efficiency of Picard’s compared to Newton’s methods when
dealing with problems with a low degree of nonlinearity. In the information collected, we observe that the number
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of linearizations for Newton’s method remains roughly constant and much lower than Picard’s method, but when
computational time is taken into account, Newton’s method loses its efficiency.
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