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Abstract. In Engineering there are several problems to be studied, such as applications in biomedicine, which
are typical problems in Computational Fluid Dynamics (CFD). To solve these problems, numerical methods are
used regardless of complexity, geometry, physical parameters, boundary and initial conditions. Linear or nonlinear
models can be considered to assess both temporal and spatial evolution. However, one of the main disadvantages
of numerical methods is the determination of computational errors associated with their use, in which numerical
solutions can be affected by truncation, iteration, rounding, and programming errors. Although numerical errors
cannot be eliminated, they must be controlled or minimized. The discretization error is considered the most signif-
icant among the sources of numerical error, requiring its analysis. Therefore, this work aims to verify the accuracy
of the discretization error of a one-dimensional model of tumour growth, using a priori and a posteriori estimates
of numerical solutions. We predict the asymptotic behaviour of the discretization error in the a priori estimation.
We estimate the magnitude of the error based on multiple meshes using the Richardson estimator in the a posteriori
estimation. The model used in this work is described by a system of partial differential equations in a transient
regime, with four variables involved in the process of tumour cell invasion, resulting in the description and evolu-
tion of cancer cell density, extracellular matrix (ECM) density, the concentration of matrix degradative enzymes
(MDE) and tissue inhibitors of metalloproteinases (TIMP). To discretize the mathematical model, we used the
finite difference method with Central Difference Scheme (CDS) for spatial discretization and the Crank-Nicolson
method for temporal discretization. The nonlinear terms involved in the model were linearized by applying the
Taylor series expansion. To advance in time, this discretization procedure results in the resolution of a set of alge-
braic equations to be solved with the aid of the iterative Gauss-Seidel method. The simulations are performed with
Dirichlet boundary conditions. We use the manufactured solutions method for code verification and error analysis.

Keywords: Error analysis, Mathematical model, Numerical simulations.

1 Introduction

Mathematical models in Computational Fluid Dynamics (CFD) require using methods that provide accurate
and reliable numerical solutions. As some of these models do not present a known analytical solution, we used
numerical approximations to transform the continuous model into a discrete one. A widely used discretization
method is the finite difference method (FDM). [1, 2].

The discretization of differential equations, using FDM, results in a system of algebraic equations whose
resolution uses iterative methods, such as Gauss-Seidel. However, solutions can be affected by numerical errors.
In this context, numerical verification procedures are addressed with the aim to identify the extent to which a
mathematical model is adequately solved using a numerical method [3].

The main interest is the quantification of the numerical error (E) and the determination of its order of ac-
curacy. Among the sources of error, the one resulting from discretization methods, or discretization error (Eh),
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was considered the most significant. As it is not always possible to obtain the analytical solution, we needed an
estimate (Uh) for the Eh involved [3].

In this sense, verifying the order of accuracy of the numerical solution is the objective in this work. For that,
two methods are discussed: error estimation a priori and error estimation a posteriori.

The a priori estimate of the order of accuracy we performed by deducing the asymptotic order based on the
Taylor series. We used such an approach to verify the order of accuracy of numerical solutions effectively. To
estimate a posteriori the magnitude of the order of discretization error, the Richardson error estimator was used.

In this article, we work with a continuous model of avascular tumour growth. Such a model was proposed by
Anderson et al. [4], investigated and improved by Chaplain et al. [5] and Kolev and Zubik-Kowal [6]. However,
in none of these works error analysis was performed, nor was the order of accuracy verified for the discretization
error.

The model used in this work is composed of four partial differential equations (PDEs) and presents nonlinear
terms. Such a model we discretized by the FDM with CDS in space and the Crank-Nicolson method for the
time. We linearised the nonlinear terms by applying Taylor series expansion and used the Manufactured Solutions
Method (MSM) for code verification and error analysis.

2 Mathematical model

The mathematical model developed in Kolev and Zubik-Kowal [6] describes the growth of generic solid
tumours in the avascular stage, intending to analyze the interactions between the tumour and the surrounding
tissue. The model presents four PDEs with the variables: density of cancer cells, the density of the extracellular
matrix (ECM), the concentration of matrix-degrading enzymes (MDE) and the concentration of tissue inhibitors
of metalloproteinases (TIMP) (known as endogenous inhibitor), denoted by n, f , m and u, respectively.

Considering the one-dimensional evolution, that is, x ∈ R and t ∈ (0, tf ], the model is given by

∂n

∂t
= dn∇2n︸ ︷︷ ︸

diffusion

− γ∇.(n∇f)︸ ︷︷ ︸
haptotaxis

+µ1n(1− n− f)︸ ︷︷ ︸
proliferation

, (1)

∂f

∂t
= − ηmf︸︷︷︸

degradation

+µ2f(1− n− f)︸ ︷︷ ︸
renovation

, (2)

∂m

∂t
= dm∇2m︸ ︷︷ ︸

diffusion

+ αn︸︷︷︸
production

− θum︸︷︷︸
neutralization

− βm︸︷︷︸
decay

, (3)

∂u

∂t
= du∇2u︸ ︷︷ ︸

diffusion

+ ξf︸︷︷︸
inhibits production

− θum︸︷︷︸
neutralization

− ρu︸︷︷︸
decay

. (4)

Furthermore, the model establishes that the migration of tumour cells creates spatial gradients that direct the
migration of invasive cells by a mechanism called haptotaxis, represented by γ. The constants dn, dm and du are
the diffusion constants for the density of cancer cells, MDE and inhibitor, respectively. The tumor cell proliferation
rate and the ECM growth rate are represented by µ1 and µ2, while η, α, θ, β, ξ and ρ are positive constants and
their values can be seen in [7, 8].

In order to find an analytical solution to verify the code and perform the error analysis, we use the MSM.
Manufactured solutions are exact solutions to a set of equations that have been modified with mandatory terms [9].

Thus, rewriting the Eqs. (1)-(4), coupled with the source terms, we have

∂n

∂t
− dn∆n+ γ∇.(n∇f)− µ1n(1− n− f) = fn, (5)

∂f

∂t
+ ηmf − µ2f(1− n− f) = ff , (6)

∂m

∂t
− dm∆m− αn+ θum+ βm = fm, (7)

∂u

∂t
− du∆u− ξf + θum+ ρu = fu. (8)

The source terms fn, ff , fm and fu are obtained so that the Eqs.(5)-(8) satisfy the analytical solutions n(x, t) =
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m(x, t) = u(x, t) = et sin (2πx) and f(x, t) = e−t sin (2πx), given in [10]. Initial and boundary conditions are
obtained using the analytical solutions.

3 Numerical Model

The solution of the mathematical model of interest, Eqs. (1) - (4), we obtain through the numerical approxi-
mation in each of its terms, using the FDM. The spatial terms of (1)-(4) were discretized using CDS. To discretize
the temporal terms, we used the Crank-Nicolson method.

Applying the operators correctly and remembering that we are working with the one-dimensional model, we
can rewrite Eq. (1), the equation referring to the variable n, as

∂n

∂t
= dn

∂2n

∂x2
− γ(

∂n

∂x

∂f

∂x
+ n

∂f

∂x2
) + µ1n(1− n− f). (9)

Considering one-dimensional problems, the domain x ∈ R : 0 ≤ x ≤ 1 is partitioned into Nx points in the
coordinate direction x creating a mesh with the points xi = (i− 1)hx, where i = 1, . . . , Nx and hx = 1/(Nx− 1)
is the length of each interval. We also consider ht = tf/Nt, where Nt is the number of steps in time. Approaching
Eq. (9) using explicit method in time and CDS in space, at point i, at time level k we have:

Nk+1
i −Nk

i

ht
= dn(

Nk
i−1 − 2Nk

i +Nk
i+1

h2
x

)− γ(
Nk

i+1 −Nk
i−1

2hx

F k
i+1 − F k

i−1

2hx
+ n

F k
i−1 − 2F k

i + F k
i+1

h2
x

)

+µ1N
k
i − µ1(N

k
i )

2 − µ1N
k
i F

k
i ,

(10)

where N and F are approximations for the variables n and f . Approaching Eq. (9) using time-implicit method
and CDS in space, at point i, at time level k + 1 we have:

Nk+1
i −Nk

i

ht
= dn(

Nk+1
i−1 − 2Nk+1

i +Nk+1
i+1

h2
x

)− γ(
Nk+1

i+1 −Nk+1
i−1

2hx

F k+1
i+1 − F k+1

i−1

2hx
+ n

F k+1
i−1 − 2F k+1

i + F k+1
i+1

h2
x

)

+µ1N
k+1
i − µ1(N

2)k+1
i − µ1N

k+1
i F k+1

i .

(11)

We can see that in Eq. (11) there is a quadratic term, which can be linearized using Taylor series expansion [8, 11]

(N2)k+1
i ≃ −(N2)ki + 2Nk

i N
k+1
i . (12)

Computing the average between the equations (10) and (11) we have the Crank-Nicolson method. In order
to simplify the notation, the points of the computational mesh are labeled so that P = (i, k), E = (i + 1, k),
W = (i−1, k), P1 = (i, k+1), E1 = (i+1, k+1) and W1 = (i−1, k+1). Using the Crank-Nicolson method
and the quadratic term of the Eq. (11) being linearized by (12), we can rewrite our system as

NP1 =
aPNP + aENE + aWNW + aE1NE1 + aW1NW1

aP1
, (13)

where,
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aP1 = −2µ1N
k
i + (

2γ

h2
− µ)F k+1

i − 2

ht
−

γ(F k+1
i+1 + F k+1

i−1 )

h2
x

+ µ− 2dn
h2
x

,

aP =
2

ht
− 2dn

h2
x

−
γ(F k

i+1 − F k
i + F k

i−1)

h2
x

+ µ(1− F k
i ),

aE = − γ

4h2
x

(F k
i+1 − F k

i−1) +
2dn
h2
x

,

aW =
dn
h2
x

+
γ

4h2
x

(F k
i+1 − F k

i−1),

aE1 = − γ

4h2
x

(F k+1
i+1 − F k+1

i−1 ) +
dn
h2
x

,

aW1 =
γ

4h2
x

(F k+1
i+1 − F k+1

i−1 ) +
dn
h2
x

.

The discretizations of the variables f , m and u are made analogously.

4 Numerical verification

The objective of numerical verification is to determine the extent to which a mathematical model is adequately
solved using a numerical method. A challenge in simulation is the level of accuracy. Although numerical errors
from simulations cannot be eliminated, they must be controlled or minimized.

The numerical error (E) can be defined as the difference between the analytical solution (Φ) of a variable of
interest and its numerical solution (ϕ). Among the sources of numerical error, the discretization error (Eh) is the
most significant [11] and can be defined by

Eh = c0h
p0 + c1h

p1 + c2h
p2 + c3h

p3 + . . . =

∞∑
V=0

cV h
pV , (14)

where the coefficients cj , j = 0, 1, 2, 3, . . . are real numbers obtained as a function of the dependent variable of the
problem and its derivatives, but are independent of h. The true orders, pV , are the exponents of h and are integers
following the relationship 1 ≤ p0 < p1 < p2 < p3 . . .. The smallest exponent, p0, is called asymptotic order,
known in the literature as order of accuracy and denoted by PA. When h → 0, the term c0h

p0 in Eq. (14) is the
main component of Eh [12].

You can calculate PA through effective (PE) and/or apparent orders (PU ), depending on the type of solution
available. For this, the numerical solutions ϕF , ϕC and ϕSC obtained in the fine (given by hF ), coarse (hC) and
super coarse (hSC), respectively, generated with refining ratio q = hC

hF
= hSC

hC
[3].

PE =
log[E(ϕC)

E(ϕF ) ]

log(q)
, PU =

log(ϕC−ϕSC

ϕF−ϕC
)

log(q)
. (15)

Note that the effective order (PE) depends on the knowledge of the analytical solution.
When the analytical solution ϕ is unknown, the discretization error cannot be calculated. So, the concept

of uncertainty (U) is used. The uncertainty of a numerical solution is calculated by the difference between the
estimated analytical solution (ϕ∞) for a variable of interest and its numerical solution (ϕ) [3], that is,

U(ϕ) = ϕ∞ − ϕ. (16)

To estimate the discretization error, Richardson’s error estimator based on the apparent and asymptotic or-
ders were used because it is widely reported in the literature, thereby serving as a reference estimator [13]. The
Richardson’s error estimators are given by

URi(PU ) =
(ϕF − ϕC)

(qPU − 1)
, URi(PA) =

(ϕF − ϕC)

(qPA − 1)
. (17)
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5 Results

Considering x ∈ [0, π/6] and final time tf = 0.5, we use the variable of interest, the central point of the
domain in the last time step.

We can check from Table 1, the discretization error varying hx and ht, considering q = 2 and all four
variables of the mathematical model n, f , m and u.

Table 1. Discretization error varying hx and ht.

hx ht Ehn(ϕ) Ehf (ϕ) Ehm(ϕ) Ehu(ϕ)

5.2360e-02 2.5000e-02 3.1510e-04 9.1596e-05 2.5889e-04 1.0022e-05
2.6180e-02 1.2500e-02 7.8884e-05 2.2952e-05 6.4869e-05 2.4858e-06
1.3090e-02 6.2500e-03 1.9728e-05 5.7412e-06 1.6226e-05 6.2020e-07
6.5450e-03 3.1250e-03 4.9324e-06 1.4355e-06 4.0572e-06 1.5497e-07
3.2725e-03 1.5625e-03 1.2331e-06 3.5889e-07 1.0143e-06 3.8738e-08
1.6362e-03 7.8125e-04 3.0828e-07 8.9724e-08 2.5359e-07 9.6842e-09

The discretization error is given in Fig. 1. We can see that the smaller the size of hx and ht (represented in
Fig. 1 simply by h), the smaller the discretization error.

Figure 1. Discretization error versus h (representing the hx and ht of Table 1) for the variables n, f, m and u.

Then we perform the calculation of the effective (PE) and apparent orders (PU ), in order to verify a posteriori
of the numerical solutions, that PU and PE tend monotonically to PA when h → 0. This can be seen in Table 2,
and corroborated by Fig. 2.

Table 2. Effective (PE) and apparent (PU ) orders for each variables n, f, m and u.

n f m u
hx PU PE PU PE PU PE PU PE

5.2360e-02
2.6180e-02 1.9980 1.9966 1.9967 2.0114
1.3090e-02 1.9975 1.9995 1.9958 1.9991 1.9959 1.9991 2.0142 2.0028
6.5450e-03 1.9994 1.9998 1.9989 1.9997 1.9989 1.9997 2.0036 2.0007
3.2725e-03 1.9998 1.9999 1.9997 1.9999 1.9997 1.9999 2.0009 2.0001
1.6362e-03 1.9999 1.9999 1.9999 1.9999 1.9999 1.9999 2.0002 2.0000

The other objective of this work is to calculate the uncertainty of numerical solutions, which is an estimate
of the discretization error (Eh). The Table 3 presents the uncertainty using the Richardson estimator (URI , Eq.
17) with the apparent PU and asymptotic orders PA for the variable n . Similarly, we perform the uncertainty
calculation based on PA and PU using URI in the other variables (f, m and u). Similar results were achieved.
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Figure 2. Effective and apparent orders, with PA = 2.

Table 3. Numerical uncertainty based on asymptotic (PA) and apparent orders (PU ) using Richardson’s estimator
on variable n.

hx ht ϕ URi(PU ) URi(PA)

5.2360e-02 2.5000e-02 1.644507

2.6180e-02 1.2500e-02 1.644271 -7.8740e-05

1.3090e-02 6.2500e-03 1.644212 -1.9764e-05 -1.9719e-05

6.5450e-03 3.1250e-03 1.644197 -4.9346e-06 -4.9318e-06

3.2725e-03 1.5625e-03 1.644193 -1.2332e-06 -1.2331e-06

1.6362e-03 7.8125e-04 1.644192 -3.0829e-07 -3.0828e-07

For all analyzed variables (n, f, m and u), we found that the error estimate decreased with the increase in the
number of nodes in the mesh. This estimate reached 10−7 for the variable n and 10−9 for the variable u.

To ensure that the error estimate is reliable, Marchi and Silva [3] showed that

URI(PA)

Eh
< 1 <

URI(PU )

Eh
, when PU → PA monotonically with values less than PA, (18)

URI(PU )

Eh
< 1 <

URI(PA)

Eh
, when PU → PA monotonically with values greater than PA. (19)

Therefore, we can see in the Table 4 the ratio between the Richardson estimator (for PA and PU ) and the
truncation error.

Table 4. Ratio between the uncertainty (U) and the truncation error (Eh) in the variable n.

hx URi(PA)/Eh URi(PU )/Eh

5.2360e-02

2.6180e-02 0.998168

1.3090e-02 0.999541 1.001834

6.5450e-03 0.999885 1.000458

3.2725e-03 0.999971 1.000114

1.6362e-03 0.999992 1.000028

We can see from Eqs. (18)-(19) and confirmed by Table 4, that the ratio between the estimator and the
truncation error for the variable n approaches 1, with mesh refinement. The same happened with the other variables
(f, m and u). This can be seen in Fig. (3).

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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Figure 3. Ratio between the uncertainty (U) and the truncation error (Eh) in the variables n, f , m, u.

6 Conclusions

In this paper, we check the errors for a tumour growth model using the central differencing scheme in space
and the Crank-Nicolson in time, in order to discretize the set of PDEs. Due to the discretization process, numerical
solutions are affected by numerical errors. An analysis of the truncation error was presented, verifying that the
effective and apparent orders of the discretization error converge to the asymptotic order. We also verified that the
numerical uncertainty, or error estimate, using the Richardson estimator, was considered reliable.

Acknowledgements. The present work was carried out thanks to UEL and UFPR for the opportunity to study.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] G. H. Golub, J. M. Ortega, and others. Scientific computing and differential equations: an introduction to
numerical methods. Academic press, 1992.
[2] R. H. Pletcher, J. C. Tannehill, and D. Anderson. Computational fluid mechanics and heat transfer. CRC
press, 2012.
[3] C. H. Marchi and A. F. C. d. Silva. Unidimensional numerical solution error estimation for convergent apparent
order. Numerical Heat Transfer: Part B: Fundamentals, vol. 42, n. 2, pp. 167–188, 2002.
[4] A. R. Anderson and others. Mathematical modelling of tumour invasion and metastasis. Computational and
mathematical methods in medicine, vol. 2, n. 2, pp. 129–154, 2000.
[5] M. A. Chaplain. Mathematical modelling of tissue invasion. Cancer modelling and simulation, 2003.
[6] M. Kolev and B. Zubik-Kowal. Numerical solutions for a model of tissue invasion and migration of tumour
cells. Computational and mathematical methods in medicine, vol. 2011, 2011.
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