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Abstract. By the technological advancements in agriculture, rural production is searching for ways to improve
grain storage. Rigorous control of temperature and moisture is essential as they are the main factors contributing
to product deterioration and plague proliferation. One of the most effective ways of achieving this is by aeration, a
process widely applied to maintaining grain quality in silos and warehouses. This work aimed to develop a control
system for the aeration of stored grains based on experimental data from literature and process simulations. The
control strategy employed in the aeration aims to maintain temperatures uniform inside the silo and cool down the
grain mass whenever possible. During this process, the grain mass is split into multiple thin layers according to
the flow of air (upwards). The mathematical model used was proposed by Thorpe and associates psychometric
properties of the air with mass and energy balance equations. In this sense, the system of equations resulting
from the mass and energy balances was solved iteratively for each time increment and each layer. Additionally,
the model equations were discretized using the Finite Volume Method combined with the Upwind Differencing
Scheme for the spatial approximations as well as explicit, implicit, and Crank-Nicolson temporal formulations.
Moreover, a posteriori analysis of the discretization error orders was carried out. The proposed model in this study
has proved satisfactory, with some variations depending on the combination between the method and the spatial
and temporal approximations employed.
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1 Introduction

With technological advancements in agriculture and the high global demand for food, rural production must
seek ways to improve grain storage. In this sense, aeration is the most widely employed control process, which
consists of the forced passage of air through the stored grain mass using ventilation and exhaust fans coupled to a
ventilation system installed at the bottom of silos and warehouses. The aeration modifies the microclimate of the
grain mass, inhibiting the development of organisms that are harmful to the grains, Pereira [1].

There are several reasons aeration is employed. The main ones are cooling and maintenance of the grain
mass at low temperatures to ensure adequate storage. Additionally, aeration helps in the drying, prevents heating
and dampening of the grain mass, removes odors, and inhibits insect activity and the development of microflora,
avoiding the appearance of fungi that spoil the product, Lopes et al. [2].

It is possible to find various papers in the literature that discuss the numerical simulation of the aeration
process, such as Lopes et al. [2, 3], Kwiatkowski Jr [4] and Oliveira et al. [5]. In all of these studies, the Finite
Difference Method with the Upwind Difference Scheme (UDS) formulation in space and explicit in time is used
to solve numerically the mathematical model proposed by Thorpe [6]. However, in Rigoni et al. [7], several other
spatial and temporal discretization techniques were introduced.

This work aims to go deeper into the study of numerical simulations of the aeration process of a soybean
grain mass, according to the Thorpe model [6], to help control the factors that might bring damage to it. To achieve
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this, we provide a comparison of two discretization methods, the Finite Volume Method (FVM) and the Finite
Difference Method (FDM).

2 Mathematical Model

The proposed model is given by Eqs 1 and 2, which represent the equations of temperature (T ) and moisture
content (U ) of the grain mass, respectively

{
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∂T

]
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= −uapa

∂R
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+

dm

dt
(0.6 + U), (2)

where: t - time (s), y - axis in the vertical diretion (oriented from bottom to top) (m), U - grain moisture content
(decimal), ua - Darcy’s velocity of dry air (ms−1), cσ - specific heat of grain (Jkg−1 ◦C), cW - specific heat
of moisture content (Jkg−1 ◦C), ca - specific heat of air (Jkg−1 ◦C), R - mixing ratio, ρa - density of dry air
(kgm−3), ρσ - grain density (kgm−3), hv - specific heat of water vapor (Jkg−1), hs - heat of sorption (Jkg−1),
T - grain temperature (◦C), ϵ - grain mass porosity (decimal), dm - loss of dry matter to time (kgs−1) and QR

- grain heat of oxidation (Js−1m−3). Moreover, we will disregard the thermal conductivity (keff ) and the term
∂HW

∂T , following the simplifications presented by Lopes et al. [2].
The calculation domain is depicted in Fig. 1, with an upward airflow, that is, y ∈ [0, L], where L is the silo

height.

Figure 1. Calculation Domain [7].

As the grain mass goes through the drying process before being stored at the silo, the initial grain temperature
across the whole domain is T (y, 0) = TI . The initial moisture content (UI ), according to Thorpe [6], and is given
by

U(y, 0) =
UP

100− UP
= UI , (3)

where UP corresponds to the initial moisture content, written as a percentage (%).
As for the moisture content in y = 0 (UC), the equation is given by Chung and Pfost [8] as follows

U(0, t) = − 1

B
ln

[
ln

(
URA

100

)(
−TB + C

A

)]
= UB , (4)

where, A, B and C depend on the type of stored grain, TB is the temperature at the base of the silo, that is, the
temperature of the aeration airflow, URA is the relative humidity of aeration air, given by

URA = 100

Ur

100

((
6× 1025

)
/
(
1000 (Tamb + 273.15)

5
))

e−6800/(Tamb+273.15)(
(6× 1025) /

(
1000 (Tamb + 273.15)

5
))

e−6800/(TB+273.15)
, (5)

with Tamb - being the room temperature and Ur - the relative humidity of the ambient air.
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The boundary conditions in y = L, follow Neumann conditions, such as

∂T

∂y

∣∣∣
y=L

=
∂U

∂y

∣∣∣
y=L

= 0. (6)

3 Numerical Model

The Finite Volume (FVM) is a method to discretize differential equations based on achieving the balance of
certain physical properties in a control volume (CV), also called cell, of the domain. In this study, the physical
properties are the temperature and moisture content.

There can be more than one property stored in a given cell of the grid. When all properties are stored at the
center of the volume, there is what is called a co-localized arrangement (non-stagerred grid), and when this does
not occur, there is a staggered arrangement (Maliska [9]). We chose to work with the co-localized arrangement
as it is easier to implement and requires only one type of CV for all the integrations of the mathematical model
equations.

The FVM uses the integral form of the continuity equation. The solution domain is divided into a finite
number of contiguous CV, and the continuity equation is applied to each one of them (Fig. 2). At the center of
each CV there is a computational node where the values of the variables are calculated. The values of the variables
at the boundaries of the CV are obtained by interpolation of the node values, Maliska [9].

Figure 2. Discretized domain.

As we can see in Fig. 2, NC represents the boundary volume, ∆y = L/Ny is the distance between the
centers of two contiguous cells and Ny is the number of volumes in the spatial direction. Since the problem is
transient, there is also ∆t = tf/Nt, where tf is the final time and Nt is the number of time steps. Thus, by
discretizing the spatial approximation of T and R using the UDS, and the temporal approximation of T using the
θ formulation in Eq. 1, and adding a source term F to fit the analytical solution proposed by Rigoni et al. [10], we
achieve:

Aθ
PT
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n
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P
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∆y
(Tn
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where
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(10)
In every equation, θ represents the explicit (θ = 0), implicit (θ = 1) or Crank-Nicolson (θ = 0.5) formula-

tions, Maliska [9].
Approximating the spatial derivative of R by UDS and the temporal derivative concerning the variable U in

Eq. 2, we have that:

Un+1
P = Un

P − uaρa∆t

ρσ∆y

(
Rθ

P −Rθ
S

)
+

∆tdmdt
ρσ

(
0.6 + Uθ

P

)
. (11)

The equations presented correspond to inner volumes, that is, it is necessary to obtain the equations at the
boundaries of the domain to have complete algebraic equations. There are several techniques for this in the litera-
ture and in this study, we will use the ghost volume one.

The ghost volume technique consists of adding control volumes outside the physical domain so that the bal-
ance between the properties in the ghost volumes and their neighbors satisfies the problem’s original boundary
conditions. Thus, for the boundary conditions, in y = L, for the temperature T , and the water content U , respec-
tively, we have:

Tn+1
NC = Tn

NC−1 (12)

and
Un+1
NC = Un

NC−1. (13)

4 Results

The codes were written in Fortran 95, with quadruple precision. A comparison of the analytical and numerical
solutions, solved with both the FDM and FVM, widely used in the literature for such model, is presented.

We analyzed the temperature according to time (final time, tf = 3600s) of the grain mass at different heights
of, 0.15m, 0.27m, 0.40m and 0.54m, in an experimental silo of L = 1m height and 100mm diameter, with TI =
52.90C and TB varying about 310C due to the aeration process, Oliveira [5].

Figure 3 presents the behavior of the temperature versus time in a spatial grid of Ny = 2048 volumes and a
temporal grid of Nt = 4096 time steps. The numerical solutions of the grain mass tend to the analytical solutions
when discretized by the FVM, which is similar to the behavior when using the FDM, for all explicit, implicit and
Crank-Nicolson formulations at different heights.

It is important to highlight that the FDM is serving as a base of comparison since the subject of this study is
the performance of the FVM. As it is possible to see below, the method describes well the behavior of the grain
mass temperature, regardless of each temporal discretization used.
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(a) Explicit

(b) Crank-Nicolson

(c) Implicit

Figure 3. Comparison between the analytical and numerical solutions with the use of the FVM and the FDM for
Ny = 2048 and Nt = 4096.

To evaluate the numerical models, we compared their solutions using an error analysis to monitor their effec-
tive order error (pE) (Marchi [11]), and the error decay following the refinement of the grid. The equation for the
effective order error is given as

pE =

log

(
Φ− ϕ2

Φ− ϕ1

)
log(q)

, (14)

where Φ is the exact analytical solution, ϕ1, ϕ2 are numerical solutions and q = h2/h1 which is the grid refinement
ratio, where h1 and h2, represent a fine and coarse grid, respectively.

According to Marchi [11], the effective order (pE) tends to the asymptotic order (pL) as the grid is refined.
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Given the combinations of the spatial discretization method pL = 1 (UDS), with the temporal discretization
methods pL = 1 (Explicit and Implicit) and pL = 2 (Crank-Nicolson), the asymptotic orders for all approximations
analyzed tend to pL = 1 (Ferziger e Peric [12]).

Figure 4 shows the effective orders for the different heights of grain mass studied (y=0.15m, 0.27m, 0.40m
and 0.54m), at different time increments, 450s, 675s, 1125s and 1575s, using the FVM and FDM. Moreover, a
simulation of the whole process, 3600s is presented.

(a) For y = 0.15m and t = 450s (b) For y = 0.27m and t = 675s

(c) For y = 0.40m and t = 1125s (d) For y = 0.54m and t = 1575s

Figure 4. Effective discretization error orders according to the refinement of the grid.

We note, one can note that regardless of the height or time, the effective order tends to the asymptotic order
(pE ⇒ pL = 1), corroborating the theory with the data from the numerical simulation for the FVM as well as the
FDM. In Figs. 5 and 6, we fixed the time at t = 3600s and observe the decay of the discretization error when the
grid is refined. The more refined the grid, the smaller the discretization error. In this sense, we have, for the model
studied, an efficient discretization using the FVM when compared to the FDM.

(a) For y = 0.15m (b) For y = 0.27m

Figure 5. Discretization error versus the grid refinement for y = 0.15m and y = 0.27m.
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(a) For y = 0.40m (b) For y = 0.54m

Figure 6. Discretization error versus the grid refinement for y = 0.40m and y = 0.54m.

5 Conclusions

We performed an error analysis and compared the effective order of the discretization error and the error
decay with the refinement of the grid in the simulation of the aeration process of a grain mass using the finite
volume and finite difference methods. We observe that the FVM represents well the decay of discretization error
with the refinement of the grid and reaches the expected effective order for different heights, such as the FDM,
widely used in the literature, does. Thus, we can consider using the FVM in the simulation of the Thorpe model for
the aeration of a grain mass, using the UDS for spatial discretization and the explicit, implicit, and Crank-Nicolson
for temporal discretizations.
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