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Bloco IV do Setor de Tecnologia, Centro Politécnico, Jardim das Américas, 81531-980, Curitiba, PR, Brazil
lucaraki@ufpr.br
3Department of Mechanical Engineering, Maringá State University
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Abstract. This work aims to study the discretization error of a numerical model describing the atmospheric
transport of the Asian Rust spores in Paraná. The model was obtained from the discretization of a two-dimensional
Partial Differential Equation with diffusive, convective, and reactive terms by the finite difference method. To study
the behavior of the discretization error, a priori and a posteriori analyzes were performed. From the verification
process, it was found that the apparent order converged to the asymptotic order. Thus, the process of estimating
numerical errors through the Richardson Estimate presented promising results.
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1 Introduction

Several physical phenomena that occur in nature can be modeled by Partial Differential Equations (PDE).
Depending on the initial and boundary conditions it is not possible to obtain analytical solutions. An alternative
is to take a numerical approach, which consists of approximating the derivatives with a discretization method.
However, this approach generates an accumulation of errors that can be caused in various ways, such as truncation,
iteration, or rounding errors [1]. Among these sources, the truncation error arises when a continuous mathematical
concept is replaced by a discrete concept. It constitutes the most significant portion that influences the quality of
numerical solutions. Although this error cannot be eliminated, it must be studied and at least minimized.

When the numerical error is influenced only by the truncation error, it is called a discretization error. The
ways of estimating the discretization error can be divided into two types: a priori and a posteriori estimates. The a
priori estimates are used to predict the behavior of the discretization error before obtaining any numerical solution.
On the other hand, posterior estimates are used to effectively estimate the magnitude of the discretization error
using numerical solutions. In general, numerical verification procedures are used to identify the extent to which
a mathematical model is adequately solved using a numerical method [1]. Several methods can be used posterior
to estimate the discretization error. In this work, Richardson estimator [2] will be used to study the discretization
error of a numerical model that describes the two-dimensional atmospheric transport of Asian Rust spores in the
state of Paraná.

This work is structured as follows: Section 2 presents details on the Asian Rust, necessary to understand the
physical characteristics of the problem. Section 3 presents the model mathematician that describes the transport
of spores of Rust Asian. Section 4 presents the numerical model obtained by discretizing a mathematical model
using the finite difference method. In Section 5, the theory of numerical error is presented, necessary to estimate
the discretization error of the numerical model. Section 6 presents the results obtained in this work. Finally, in
Section 7 some considerations are presented.
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2 Asian Rust

Asian Rust is the main disease that affects soybean plantations in the state of Paraná. Its etiological agent
is a biotrophic fungus called Phakopsora pachyrhizi which depends on living hosts to survive and multiply. The
fungus that causes this disease can survive outside hosts through micro-organisms, called spores. These spores are
structures, like seeds, that serve to spread the fungus to other plants and places through the winds [3]. Spores can
remain viable during atmospheric transport for long periods, resulting in contamination of large soybean-producing
areas. Literature, some works study the influence of atmospheric currents on the transport of Asian Rust spores,
such as [4–9].

In the state of Paraná, most of the contamination of soybean crops that occurred in the field was during the
off-season period, due to the existence of secondary hosts for the fungus. As a way of reducing the number of
cases of the disease in the off-season and delaying the occurrence of the disease during the harvest, a period of 60
to 90 days without live plants in the field, called the soybean-free period, was implemented in Paraná. However,
new cases of the disease were being identified in the state after the period of the sanitary vacuum and after the
occurrence of cold fronts. The wind regime that occurs in Paraná is directly influenced by the terrestrial rotation in
the east-west direction. On the other hand, during the occurrence of cold fronts, atmospheric currents move in the
opposite direction. Until 2018/2019, the period of sanitary void was not practiced in countries neighboring the state
of Paraná, such as Paraguay, where soybean cultivation was constant throughout the year. In the work presented
by [9], it was found that cold fronts may be responsible for the atmospheric transport of Asian Rust spores to the
state of Paraná in the 2018/2019 harvest. This phenomenon was modeled and studied through an EDP.

3 Mathematical Model

The equation that describes the two-dimensional atmospheric transport of Asian Rust spores, through cold
fronts, presented in [9], is given by an EDP with diffusive, convective, and reactive terms.
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In (1), the function representing the concentration of spores is represented by C(x, y, t), which depends on
two spatial variables x and y, and a temporal variable t. The parameter D represents the molecular diffusion
coefficient of spores during atmospheric transport. The velocity field representing cold fronts is given by the
terms v(x, y, t) = vx(x, y, t)̂i+ vy(x, y, t)ĵ and, finally, λ represents the spore mortality rate during atmospheric
transport.

4 Numerical Model

The discretization of the model (1) is performed by the finite difference method over a two-dimensional
domain [0, 1000] × [0, 700] that includes the physical geometry of the state of Paraná and its surroundings. The
first-order derivative of the temporal term is approximated by the regressive finite difference formula. The second-
order derivatives of the diffusive term are approximated by the central finite difference formula. In the first-order
derivatives of the convective term, the scheme is applied First Order Upwind (FOU).

In order to simplify the notation, the points of the computational mesh are labeled by cardinal points, so that
P = (i, j), E = (i+ 1, j), W = (i− 1, j), N = (i, j + 1), S = (i, j − 1), EE = (i+ 2, j), WW = (i− 2, j),
NN = (i, j + 2) and SS = (i, j − 2). The spacings between mesh points in the spatial domains x and y, and in
the temporal domain t, are denoted by hx, hy and ht, respectively. In this way, the model’s discretized equation
(1) is given by
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In the equation (2), the terms,
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appear in order to simplify the notation
The equation (2) requires the calculation of the spore concentration at the mesh points E = (i+ 1, j, k + 1),

W = (i−1, j, k+1), N = (i, j+1, k+1), S = (i, j−1, k+1), EE = (i+2, j, k+1), WW = (i−2, j, k+1),
NN = (i, j + 2, k + 1), SS = (i, j − 2, k + 1) and P = (i, j, k), resulting in an implicit scheme, so that k and
k+1 represent the previous and current time level, respectively, which leads to the resolution of a system of linear
equations at each time level to generate the numerical solution.

5 Numerical Error

The truncation error E of a numerical approximation (ϕ) can be represented, generically, by [1]

E(ϕ) = C1h
pL + C2h

p2 + C3h
p3 + ... (4)

where C1, C2, C3, ... are coefficients that are independent of h. The terms, pL, p2, p3, ... are the true orders of
E(ϕ); ϕ is the variable of interest; h is the size of the mesh elements. In this work, the numerical approximation
(ϕ) is represented by the variable C which represents the concentration of spores.

In the equation (4) the smallest exponent of h is defined as asymptotic order pL. This term is a positive integer
that satisfies the condition pL ≥ 1. When the size of h approaches zero in the equation (4), the first term (pL) is
the main component.

The numerical error (E) of a variable of interest is defined as the difference between the analytical solution
(Φ) and its numerical solution (ϕ), i.e.

E(ϕ) = Φ− ϕ. (5)

As the model (1) has no known analytical solution [9], it is not possible to calculate the numerical error using
the equation (5). Thus, it is necessary to estimate the numerical error. This estimate is also called the uncertainty
(U) of the numerical solution, calculated by the difference between the estimated analytical solution (ϕ∞) and its
numerical solution (ϕ), that is

U(ϕ) = ϕ∞ − ϕ. (6)

The value of (ϕ∞) in (6) can be calculated using Richardson Extrapolation based on asymptotic order,
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(qpL − 1)
, (7)

or based on apparent order,
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so that
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. (9)
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6 Results

The results presented in [9] were considered the influence of nine cold fronts for the atmospheric transport
of Asian Rust spores to the state of Paraná, between October 2018 and February 2019, which corresponds to
the harvest period in the state. Numerical results were obtained by iteratively solving the equation (2) by the
Gauss-Seidel method, considering as stopping criterion, the relative error between two consecutive iterations with
a tolerance of ε = 10−6. In this work, the discretization error of the equation 2 will be analyzed, considering only
the influence of a cold front with a duration time of tf = 3 hours, according to the simulations carried out in [9].

6.1 Estimation of the a priori discretization error

In the model (1), the discretization error E(hx, hy, ht) is given by
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ht

2!

∂2C

∂x2

∣∣∣∣k+1

P

− (ht)
2

3!

∂3C

∂t3

∣∣∣∣k+1

P

− (hx)
2

3

∂3Cvx
∂x3

∣∣∣∣k+1

P

− (hy)
2

3

∂3Cvy
∂y3

∣∣∣∣k+1

P

+

+O(h3
t )−O(h3

x)−O(h3
y). (10)

Comparing the equations (10)-(4), it can be seen that the asymptotic order of the discretization error of the
model (1) is pL = 1.

With the equation (9) it is possible to verify the behavior of the apparent order (pU ) with the reduction of the
spacing between the mesh points: hx, hy and ht. The results obtained are shown in Table 1. The terms Mx, My

and Mt that appear represent the number of partitions performed in the spatial and temporal domains, respectively.

Table 1. Behavior of (pU ) with constant refining ratio q = 2 between meshes. Asymptotic order, pL = 1.

Mx hx My hy Mt ht pU

20 50 20 35 40 0,075 –
40 25 40 17.5 80 0.0375 –
80 12.5 80 8.75 160 0.01875 1.210479
160 6.25 160 4.375 320 0.009375 1.198745
320 3.125 320 2.1875 640 0.0046875 1.087947

The apparent order (pU ) calculations presented in Table 1 were performed considering the magnitude of the
results obtained by the equation (2) in five spatial grids (20, 40, 50, 80, 160 and 320), in the standard L1. From the
behavior of the apparent order presented, it can be observed that pU → pL, when hx, hy and ht → 0.

6.2 Estimation of a posteriori discretization error

To estimate the magnitude of the discretization error a posteriori the uncertainty (U) of the numerical solution
(equation 5) was calculated. For this, the estimated analytical solution (ϕ∞) was obtained, according to the
equations (6)-(7). Table 2 shows the behavior of the estimated analytical solution calculated using the Richardson
Extrapolation based on asymptotic and apparent orders.
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Table 2. Estimated Analytical Solution (ϕ∞) - Richardson extrapolation based on asymptotic and apparent orders.

Mx hx My hy Mt ht ϕ∞(pL) ϕ∞(pU )

20 50 20 35 40 0,075 – –
40 25 40 17.5 80 0.0375 – –
80 12.5 80 8.75 160 0.01875 0.17595661 0.17734123
160 6.25 160 4.375 320 0.009375 0.17891442 0.17818012
320 3.125 320 2.1875 640 0.0046875 0.17907412 0.17917156

To analyze the behavior of the uncertainty (U) of the results, the Figure 1 was obtained, so that, U(pL1),
U(pL2), U(pL3), U(pU1), U(pU2) and U(pU3), represent the respective mesh sequences (40, 80), (80, 160) and
(160, 320), used to calculate the uncertainty (U) based on asymptotic and apparent orders.

Figure 1. Numerical uncertainty (U) versus h

From the results presented by Figure 1, it can be seen that as the mesh refinement is performed, the uncertainty
of the numerical solution decreases, reaching an order of 10−4 for the meshes (80 and 160) and (160 and 320).

7 Conclusions

The present work aimed to study the behavior of the discretization error of a numerical model that describes
the atmospheric transport of spores from the Asian Rust to the state of Paraná due to the influence of cold fronts.

From the results obtained in this work, it was verified that the discretization error is minimized as the mesh
refinement is performed. This behavior was expected, since the more points are used to obtain the numerical
solution, the closer the numerical model is to the continuous model. In this work, only the behavior of a source of
numerical error was studied. As a proposal for future work, a study can be carried out on other sources of errors
that influence the quality of numerical solutions, such as iteration and rounding errors.
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