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Abstract. The aim of this paper is to minimize the CPU time necessary for solving the 3D 

Poisson equation with Dirichlet boundary conditions. The Finite Difference Method is used to 

discretizate the differential equation with central differencing scheme. The systems of 

equations are solved with the lexicographic and red–black Gauss–Seidel methods associated 

to the geometric multigrid with correction scheme and V-cycle. It used trilinear interpolation 

and full coarsening with ratio r = 2. Comparisons are made among: (1) Restriction injection 

and full weighting; (2) Inner iteration number (v); (3) Number of mesh levels (L) and (4) 

unknowns number (N). With the analysis of algorithm complexity was possible to verify the 

optimum values this multigrid method in relation of optimization of CPU time. 
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INTRODUCTION 

To reduce the discretization error in computational fluid dynamics (CFD) problems, very 

refined meshes are required that generate very large equation systems. Solving these systems 

through basic iteration (solvers) methods requires large CPU time. This is because at the 

beginning of the iterative process the convergence rate is large, decreasing considerably as the 

number of iterations increases. 

There are many research papers that aim to increase the convergence rate of iterative 

methods. For this, a method that can be used is the multigrid (Briggs et al., 2000; Wesseling, 

1992). It consists of the use of thicker auxiliary meshes (with fewer nodes) than the mesh in 

which the problem is solved. Restriction and extension processes are used to transfer 

information between the various meshes. Various solvers may be used in the relaxation or 

smoothing process. The sequence with which the various meshes are visited is called the 

multigrid cycle (cycle V, W, F among others). In each type of cycle one can start from the 

thicker mesh, in the scheme called full multigrid (FMG), or the finer mesh, in the so-called 

standard scheme. Two types of schemas can be used with the multigrid method: CS 

(Correction Storage) and FAS (Full Approximation Storage). They are indicated respectively 

for linear and non-linear problems (Briggs et al., 2000). Finally, we can distinguish the 

geometric and algebraic multigrid methods, respectively indicated for structured and 

unstructured meshes. 

The efficiency of the multigrid method has not been fully achieved in practical 

engineering applications in the area of CFD. With the increasing complexity of applications, 

the demand for more efficient and robust methods is also increasing Trottenberg et al. (2001). 

These methods are expected to have a good reduction in computational time, to use low 

memory, and to address non-linearity and couplings with no major impairment in 

performance. 

Wesseling and Oosterlee (2001) reviewed the developments of the geometric multigrid 

method in CFD in the 1990s, showing the state of the art for incompressible and compressible 

flows. According to them the geometric multigrid remains an active topic of research in CFD 

and is one of the most significant developments in numerical analysis in the second half of the 

twentieth century. Theoretically, the current algorithms used with the geometric multigrid can 

still be much optimized in relation to the computational time needed to solve a CFD problem; 

for example, to solve the Navier-Stokes equations, the CPU time can be reduced still from 10 

to 100 times (Brandt et al., 2002) of the current one. Reducing computational time to solve 

the same problem results in reduced project costs. An increase in the efficiency of the method 

also allows, in the same computational time, to solve a problem in a more refined mesh, that 

is, with greater number of nodes; This means obtaining a numerical solution with less 

discretization error (Roache, 1998), improving the quality and reliability of the projects. 

According to Trottenberg et al. (2001), experiments with the multigrid method show that 

its parameters (number of meshes, the smoothing or solver, the number of iterations in the 

solver, cycles, schedules and restriction and interpolation schemes) can have a strong 

influence on the efficiency of the algorithm . There are no general rules for choosing these 

parameters, but certain values may be recommended for certain situations. The rate of 

convergence depends on the choices made. A simple choice of the number of meshes to use 

can significantly affect computational time. This justifies the importance of studying the 

various parameters of the multigrid method. In the literature we find some work on the 

influence of parameters in the multigrid method, for example: Pinto et al. (2005) studied the 

optimal parameters of the multigrid for the diffusion, advection-diffusion and Burgers 1D 
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equations; Rabi and De Lemos (2001) studied the optimal parameters for a 2D advection- 

diffusion; and Santiago and Marchi (2007) performed an analysis of the parameters for the 

Navier 2D problem involving two equations. 

The objective this work is to verify the effect of the parameters on the CPU time for a 

multigrid method. The optimum value of a parameter is found when the solution is obtained 

in the lowest CPU time for fixed values of the other parameters. Such optimization involves 

the study of the multigrid components: the number of inner iterations of the solver (v), the 

number of grid levels (L), and also the type of restriction. In the present study, the term “CPU 

time” is used instead of “work units” due to the reasons pointed by Trottenberg et al. (2001) 

and Larsson et al. (2005). 

The present work involves a linear three-dimensional heat conduction problem, governed 

by the Laplace equation with Dirichlet boundary conditions. The numerical method used is 

that of finite differences (Golub and Ortega, 1992; Tannehill et al., 1997) with CDS 

approximation and uniform meshes. This paper is organized as follows: in section 1, the 

mathematical models and discretizations are presented. In section 2 the numeric results. And 

section 3 concludes the paper. 

1  MATHEMATICAL MODELS AND DISCRETIZATIONS 

One three-dimensional Poisson equation problem in the unitary cube domain, with 

Dirichlet boundary conditions, is investigated in this work. It is governed by the following 

differential equation in the Cartesian coordinate system (Incropera et al., 2007): 

 
2 2 2

2 2 2
,

T T T
S

x y z

  
  

  
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where x, y and z are the coordinate directions, T is the temperature, and S is a source term. The 

Poisson equation has a source term, defined by  
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       The Finite Difference Method (FDM) (Tannehill et al., 1997) is employed in the 

discretization of Eq. (1). It used second-order central differencing scheme (CDS). The unitary 

cube domain is divided into Nx nodes in the x-direction, Ny nodes in the y-direction and Nz 

nodes in the z-direction, using uniform grids in each direction, totalizing N nodes 

 . . .N Nx Ny Nz   
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where h is the distance between two different nodes of the grid in any direction. Eq. (3) can be 

represented by one system of linear equations of the type: 

 

AT = b,                                                              (4) 
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which must be solved. By means of the discretization procedures applied, it can be noticed 

that the coefficients matrix A in Eq. (4) is heptadiagonal, symmetric and positive-definite; T is 

the solution temperature vector and b is the independent vector. 

1.1 Multigrid method and computational details 

The linear equation, Eq. (1), is solved by using the geometric multigrid method (GMG), as 

described by Wesseling (1992). It used correction scheme (CS). The V-cycle was chosen 

because of its simplicity for programming implementation and for its smaller computational 

work for isotropic problems.  

Trilinear interpolation, injection operator and full weighting (Trottenberg et al, 2001) were 

chosen for all the studied cases. The solver algorithms used in this work are lexicographical 

and red-black Gauss–Seidel (Parter, 1988; Zhang, 1996). In all the numerical simulations, the 

number of grid levels (L) was taken in such way that 1 to
max

L , where 
max

L  is the maximum 

number of different grids which can be employed in the multigrid cycle. Standard coarsening 

with ratio r = 2 is used. 

Each V-cycle is repeated until the achievement of a given stop criterion, which is based on 

the non-dimensional 2l norm  of the residual – the reference is the 2l norm of the initial 

guess – as found in (Trottenberg et al., 2001). The null-value was taken as the initial guess for 

the whole domain. The admitted tolerance was equal to 10
-10

 for all the analyzed cases in this 

work.  

The numerical codes were generated by using the Fortran Visual Studio 2008, using 

quadruple precision. The simulations were realized in the microcomputer with processor Intel 

Core 2 Duo of 2.66 GHz, 8 GB of RAM and xp64 bits Windows operating system. 

2  NUMERIC RESULTS 

With the purpose of analyzing the influence of different multigrid components on the 

CPU time in one Poisson equation, about several numerical simulations were performed. The 

methodology employed consists in, for a given component of interest, keeping the other ones 

with a fixed value and, by comparison, choosing the set of components which have shown the 

best performance. Same methodology used in Oliveira et al., (2017). The numerical 

simulations belong to categories: number of smoothing steps, type restrictions, number of 

grids and comparison among solvers lexicographical and red-black Gauss-Seidel.  

2.1 Number of smoothing steps (v) 

The main purpose of this subsection is to establish the optimum number of smoothing 

steps  optimum
 , which provides the lowest CPU time ( cput ) for a given set of components.  In 

order to reduce the number of numerical simulations and to achieve cput  minimization for all 

the dependent variables, the number of levels is fixed equal to maxL , full weighting is chosen 

as the restriction operator and the lexicographical Gauss-Seidel (LEX-GS) and red-black 

Gauss-Seidel (RB-GS) as solvers. 
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Figure 1 shows the influence of the number of smoothing (v) on CPU time for the 3D 

Poisson equation. For the lexicographical Gauss-Seidel solver, the number of smoothing that 

presented the lowest CPU time was 
1 2

3v   , whereas for the red-black Gauss-Seidel solver 

it was 
1 2

2   . Notice that 
1

   and 
2

   are the numbers of pre- and post-smoothing, 

respectively (see Oliveira et al., 2017). 

 

 

Figure 1: Analysis of number of smoothing for (a) lexicographical Gauss-Seidel and (b) red-black Gauss-

Seidel, both using full weighting restriction 

 

2.2. Type of restriction 
 

Were considered two types of restriction: injection (INJ) and full weighting (FW). The 

injection restriction identifies and relates grid functions to coarse grid points and with their 

corresponding grid functions at fine grid points.  

The influence of the number of smoothings (v) on CPU time using the two types of 

restriction was tested using the lexicographical Gauss-Seidel solver. The red-black Gauss-

Seidel solver was tested only with full weighting restriction as it diverges when used with 

injection restriction and lexicographical ordination. 

The optimum number of smoothings using injection restriction was 1 2 5   , whereas 

for full weighting restriction it was 1 2 3   . The lowest CPU time using the 

lexicographical Gauss-Seidel solver was obtained using injection restriction. For the 

257x257x257 grid, it was about one time faster than the full weighting restriction (see 

Oliveira et al., 2017). 

 

2.3. Grid levels (L) 

 
Some authors, such as Suero et al. (2012) and Gaspar et al. (2009), have also analyzed the 

number of grid levels for problems involving the multigrid method. In the previous 

subsections, the number of grids used for the multigrid was kept invariable and equal to
max

L . 

Since other components that influence CPU time performance have been previously studied, 

in this subsection only the effect of L on CPU time performance was evaluated.   
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Figure 2 summarizes the numerical results obtained of the effect of L on CPU time for the 

Poisson equation and red-black Gauss-Seidel solver. This solver was used because it results in 

lower CPU time than the lexicographical Gauss Seidel. It is easily observed that the lowest 

CPU time is achieved when using
max

L . Similar results were achieved with lexicographical 

Gauss-Seidel solver. 

 
Figure 2: Number of levels versus CPU time for the grids ( 5x5x5N   a  257x257x257N   

N = 257x257x257) for the Poisson equation and red-black Gauss-Seidel solver 

 

     Results of the current work agree with those presented by Tannehill et al. (1997). These 

authors have investigated the existence of optimal components in multigrid method in a two-

dimensional Laplace problem, using an isotropic 128x128 element grid, and from two to 

seven grids, and reported, regarding the CPU time, that the performance when using four or 

five grids was nearly the same as when using seven grids (which corresponds to
max

L ). 

According to the numerical results of the current work, the recommended value of L is always 

max
L  (see Oliveira et al., 2017).

  
 

2.4. Comparison between solvers and complexity analysis 

 
This subsection aims to compare how much CPU time is necessary to solve the 3D 

Poisson equation using the lexicographical Gauss-Seidel solver with injection restriction, and 

red-black Gauss-Seidel solver with weighting restriction. Such types of restriction were 

chosen as they result in lower CPU time, as shown in subsection 2.2. 
Figure 3 shows the CPU time obtained with lexicographical Gauss-Seidel and red-black 

Gauss-Seidel solvers for the 3D Poisson equation. The CPU time obtained with the red-black 
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Gauss-Seidel solver is slightly lower than with the lexicographical Gauss-Seidel solver. For 

the 257x257x257 grid, it is about 1.17 times faster (see Oliveira et al., 2017). 

 

Figure 3: Comparison between lexicographical Gauss-Seidel (injection restriction) and Red-Black Gauss-

Seidel (full weighting restriction)  

 

Exponent p, which was obtained using the least square method, was computed for the 

function ( ) p

cput N c N , where p is the order solver associated with the method used, c is the 

coefficient that depends on each method and N is the number of unknowns of the system. For 

the ideal multigrid 1p  , which means that the computational effort increases linearly with 

the size of grid (Trottenberg et al., (2001) and Hirsh (1988)). So, for a given hardware and 

compiler, as the value of p decreases, the efficiency of the algorithm increases. 

 Table 1 shows the coefficient for the geometric curve fitting for the multigrid method. 

The best result was obtained using the multigrid method with red-black Gauss-Seidel solver 

and full weighting restriction (see Oliveira et al., 2017). 

The CPU time necessary to solve the 3D Poisson equation using the singlegrid and 

multigrid methods was assessed. The red-black Gauss-Seidel solver was used in both cases. 

Table 2 shows the coefficient for the geometric curve fitting for the single grid and multigrid 

methods, both using the red-black Gauss-Seidel solver, which is in agreement with the 

literature. For more refined grids, the coefficient p, on the multigrid method, tends to one (see 

Oliveira et al., 2017). 
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Table 1. Coefficient for the geometric curve fitting              c p 

Multigrid Method (lexicographical Gauss-Seidel) 

full weighting restriction. 

1.5261E-05 1.03558 

Multigrid Method (lexicographical Gauss-Seidel) 

Injection Restriction. 

1.16102E-05 1.04817 

Multigrid Method (red-black Gauss-Seidel) 9.53101E-06 1.05397 

 

 

       Table 2. Coefficient for the geometric curve fitting 

Method c p 

Multigrid Method (red-black Gauss-Seidel) 9. 3101E-06 1.05397 

Singlegrid Method (red-black Gauss-Seidel) 1.60094E-06 1.64497 

3  CONCLUSION 

This work aimed to assess the effect of multigrid components on CS scheme. For the 

numerical analysis, three-dimensional problem governed by Poisson equation, with Dirichlet 

boundary conditions, were employed and discretized with the Finite Difference Method and 

second order CDS approximations. Based on the results of this work, these are the most 

interesting remarks: 

1) The number of smoothings influences CPU time. This parameter depends on the 

solver and restriction type. It was obtained:  

a) 5  as the optimum number for the lexicographical Gauss-Seidel solver with 

injection restriction; 

b) 3   and as 2  the optimum number for the lexicographical Gauss-Seidel 

solver and red-black Gauss-Seidel solver respectively. Both using full 

weighting restriction. 

2) The CPU time obtained with red-black Gauss-Seidel solver is slightly faster than 

with lexicographical Gauss-Seidel solver. For the 257x257x257 grid, it is about 

1.17 times faster.   



F. Oliveira, S.R. Franco, M.A.V. Pinto  

CILAMCE 2017 

Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering 

P.O. Faria, R.H. Lopez, L.F.F. Miguel, W.J.S. Gomes,  M. Noronha (Editores), ABMEC, Florianópolis, SC, 

Brazil, November 5-8, 2017. 

 

3) The number of levels influences CPU time. The lowest CPU time was obtained 

with 
max

L , regardless of the solver and restriction type used. 

4) The CPU time obtained with multigrid method is lower than with single grid 

method. The orders of complexity obtained from these two methods are 1.05397 

and 1.64497, respectively.  
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