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Abstract. In this work it is studied the effect of some Multigrid Method parameters on the necessary CPU time to 
obtain the numerical solution for a two-dimensional linear thermoelastic problem and the Laplace one. The considered 
parameters are: grid size, inner iteration and number of grids. The mathematical model is discretized by finite 
difference method using uniform grids and numerical approximations of second order. The systems of algebraic 
equations are solved by MSI solver associated to the Geometric Multigrid Method with V-Cicle and Correction Scheme 
(CS). The transfer of information among grids is made by injection process in restriction and by full weighting 
operator in prolongation. The obtained results are compared to the ones of the Laplace problem, and also to single-
grid ones for both problems, and to other results from literature. It was verified that the coupling of two equations does 
not degenerate the performance of the multigrid method when compared with the case of one equation. 
 
Keywords: solver, finite difference method, CFD, numerical methods, thermoelasticity, 2D-Laplace´s equation 

 
1.  Introduction 
 

For the development of new technologies, it is common the resolution of complex problems in both fluid mechanics 
and heat transfer. The modeling of such problems, in general, results in partial differential equations, whose analytical 
solution is unknown or difficult to be obtained, even if some simplifications are employed. In order to overpass these 
difficulties, numerical approaches can be used, transforming a continuous problem in a discrete one. Diverse 
methodologies can be employed for this purpose and one of the most used is the Finite Difference Method (FDM) 
(Tannehill et al., 1997). The discretization of equations applying the FDM leads to a system of algebraic equations of 
the type  

 
bx
rr

=A                                                                                                                                                                          (1) 
 

where A is the coefficients matrix, b  is the independent vector and 
r

x
r

 is the variable vector. When very fine grids are 
employed the matrix A becomes very large, and consequently, its resolution is impracticable by direct methods, due to 
the high computational cost to invert the matrix A (Golub and Van Loan, 1989). The alternative, therefore, is the use of 
iterative methods. Researches have been made in order to minimize the CPU time necessary to solve the system given 
by Eq. (1), without affecting the solution quality (Ferziger and Peric, 1999; Pinto et al. 2005; Pinto and Marchi, 2006). 
In this context, a method that is used frequently to improve the convergence rate is the multigrid one (Briggs et al., 
2000).  

The multigrid method, studied originally by Fedorenko (1964), improves significantly the convergence rate of 
conventional iterative ones. Researches about the multigrid method made by Brandt (1977), Stüben (1999) and 
Wesseling and Oosterlee (2001) presented good numerical results, in respect to the convergence rate, for fluid dynamic 
problems. The multigrid method has become popular and, currently, is one of most efficient iterative methods for 
solution of  system of equations, like the Eq. (1) (Hirsch, 1988; Tannehill et al, 1997, Ghia et al., 1982; Rubini, 1992).  

The basic idea of the method is to use a set of grids and to execute iterations in each grid level and approximations 
of the solutions of this equation in coarse grids (Briggs et al., 2000). The transfer of information from one grid to 
another requires the definition of transfer operators, called prolongation and restriction. The restriction operators 
transfer the information from the fine grid to the coarse one and the prolongation ones transfer the information from the 
coarse grid to the fine one. The system of equations is solved in each grid level with an iterative method, which has the 
property of reducing the oscillatory errors.  

One efficient technique used to reduce the strong oscillations of the residue in each grid, defined by  
 

          xbR
rrr

A−= ,                                                                                                                                 (2) 
 
is to smooth the oscillations for a relaxation method.  

Pinto et al. (2005) defined transfer operators for any coarsening ratio. 
The ideal convergence rate for multigrid is independent of the grid size, i.e., it does not depend on the number of the 

grid nodes (Hirsch, 1988; Ferziger and Peric, 1999). Moreover, Ferziger and Peric affirm that the more important 
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property of multigrid method is the independence of the number of iterations from the number of grid nodes, in the 
finest grid, to obtain the convergence. The application of the multigrid method results in an approximately linear 
increase of CPU time with grid refinement, allowing the resolution of problems in much finer grids, and, therefore, 
more accurate solutions can be obtained (Hortmann and Peric, 1990).  

Several multigrid algorithms can be found in literature, and they can be divided in two different schemes: CS 
(Correction Scheme) and FAS (Full Approximation Scheme). The two schemes can be implemented computationally 
with the V-Cycle, W-Cycle, F-Cycle, Full Multigrid (FMG) and other methodologies (Briggs et al, 2000; Trottenberg, 
2001). CS-scheme is generally used in linear problems and FAS in nonlinear ones (Brandt, 1977).  

All the algorithms are dependent on parameters that influence the CPU time. Manipulations in the parameter values 
of the multigrid method can improve the convergence rate by a factor next to 2, using the best combination of these 
parameters (Ferziger and Peric, 1999). Many of these parameters are studied and optimized by Pinto et al. (2005) for 
linear advection problems, advection-diffusion and Burger’s equation. Pinto and Marchi (2006) made an analysis of CS 
and FAS schemes with some solvers and standard coarsening ratio for the Laplace’s equation and suggested the use of 
the maximum possible number of grids. Tannehill et al. (1997) affirmed that the optimum performance of the multigrid 
method is obtained with diverse grids and suggested the use of 5 or 6 grids for the 2D-Laplace problem with a 129x129 
nodes grid. Oliveira et al. (2006) also made a study to find the optimum values for some parameters of the method 
multigrid in linear and nonlinear one-dimensional problems.  

In this work, it is proposed for the obtainment of the optimum values for the geometric multigrid method, for the 
CPU time optimization, for steady-state, two-dimensional linear model of thermoelasticity (TE), with two coupled 
equations and Dirichlet boundary conditions. It is intended to verify if the performance of multigrid has any change 
when compared to a one equation problem. The following parameters of the multigrid method are analyzed: the solver 
inner iterations number (ITI), the number of grids (L) and the number of variables (N). The results are compared to a 
two-dimensional diffusion problem, using Laplace problem (LP), which is solved by both multigrid and single-grid 
methods, and with other results from literature. The analyses are made considering the results of the multigrid method, 
methods for only one grid (single-grid) and the Gauss Elimination (direct) method. The effect of the functions/variables 
coupling  and , that appears in the two equations, is also studied to verify if it interferes in the iterative procedure 
performance, when the multigrid method is used. The multigrid method properties are not preserved when applied to the 
Navier-Stokes equations, with high Reynolds numbers (Ferziger and Peric, 1999). Therefore, one also intends to apply 
the conclusions of this qualitative study to Navier-Stokes equations in alternative formulations without pressure- 
velocity coupling. 

u v

This text is organized as follows: in Section 2 the mathematical and numerical models are presented. In Section 3, 
the computational code is commented. In Section 4, the results are presented and in Section 5 the general conclusions 
are shown.  

 
2. Mathematical and numerical models 

 
The results of thermoelasticity problem are compared with the ones of a linear problem of two-dimensional heat 

conduction (Laplace problem), both in steady state and with Dirichlet boundary conditions, in cartesian coordinates.  
 
Problem 1: The constitutive equations of two-dimensional steady state linear thermoelasticity problem, for elastic 

bodies, whose materials are homogeneous and isotropic (from the Hooke’s law), can be reduced to two differential 
partial equations, written in terms of the displacements 
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where 
λ
λ

λ −
+

=
1
1C , and λ  is the Poisson’s ratio, α  is the coefficient of thermal expansion and u  and  are 

displacements in coordinate directions x and  y, respectively. The temperature field is given by the analytical solution of 
the two-dimensional problem diffusion, 

v

 

( ) ( ) ( )
)sinh(

sinhsin,
π
ππ yxyxT =                                                                                                                                              (5) 

 
The analytical solution proposed for the system formed for Eqs. (3) and (4) is 
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( ) 2, xyyxv γ=                                                                                                                                                                 (7) 

 
in which 1=γ  and 01.0=β  are parameters. 

The analytical solution is given by Eqs. (6) and (7), which was obtained by the Manufactured Method Solutions 
(Roache, 2002). In general, the use of the fabricated solutions is recommended to verify the existence of eventual errors 
of programming and numerical errors. The substitution of the derivatives of the functions  and  in the Eqs. (3) and 
(4) results in the parcels of the source term,  and , respectively. 

u v
uS vS

The problem is solved in the domain , which is partitioned in a number of nodes given by  { 10;10 ≤≤≤≤=Ω yx }
 

yx NNN =                                                                                                                                                                    (8) 
 

where  and  are the number of nodes in the directions x and y, respectively. Each grid node is defined as xN yN

( ) ( ) ( )( )yxii hjhiyx 1,1, −−= , with 
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h                                                                             (9) 

 
where , ,  and are the grid size of elements in the directions x and y, in this order. xNi ,...,1= yNj ,...,1= xh yh

The governing equations are discretizated using the Finite Difference Method (FDM), for orthogonal cartesian 
coordinates and uniform grid in the two coordinate directions. The second order derivatives and mixed derivatives that 
appear in the first term of each equation are approximated with the Central Difference Scheme (CDS), which possesses 
second order of accuracy. The discretization of the Eqs. (3) and (4) results in  
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where the coefficients are evaluated by the following expressions: ,  

and , in which 

2
,, /1 xwPeP haa −== ( ) 2

,, /1 ysPnP hCaa λ+−==

sPnPwPePPP aaaaa ,,,,, −−−−= iNjP x +−= )1( ; these coefficients for both equations are very 
similar and does not depend on u  and v . The numerical approximation for the displacements u  and  is represented 
by 

v
φ . The numerical approximation for the source term of Eq. (2) is given by 
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where , ,  and  are numerical approximations of the mixed-derivative that appears in Eq. 

(3). The approximation for the term  of the Eq. (4) is made in a similar form. The Eq. (10) is valid for inner nodes of 
the calculation domain and Dirichlet boundary conditions are applied taking into account the analytical solution. 

1,1 ++ jiv 1,1 −− jiv 1,1 +− jiv 1,1 −+ jiv
v
pb

Equation (10) represents an algebraic system of equations that has the form of Eq. (1), which is a five-diagonal 
matrix  times , symmetrical and positive-definite (Briggs et al., 2000). In the approximation of the mixed 

derivative of Eq. (3) appears the function , that is placed in the  source term, as can be observed in Eq. (11). The 
same procedure occurs with the approximation of the mixed derivative of Eq. (4); therefore, the numerical solutions of 
Eq. (10) is coupled because the solution of  is dependent on the solution of . The parcels  and , that appear in 
Eqs. (3) and (4), are added to the respective source terms.  
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Problem 2:  The mathematical model of the Laplace problem is given by (Ferziger and Peric, 1999) as 
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( ) ( ) 0,00, == yTxT ,   and                                                                                                          ( ) xxT =1, ( ) yyT =,1
 

where T represents the temperature. The analytical solution of this problem is given by  
 
( ) xyyxT =,                                                                                                                                                                 (13) 

 
The numerical model adopted to solve the Laplace problem is the same used for the thermoelasticity problem. 

In this work, the geometric multigrid (Wesseling and Oosterlee, 2001) is adopted, with the V-Cycle CS scheme for 
both problems. In this scheme the transferred information in each grid level are the residue (in the restriction) and the 
correction of the solution (in the prolongation). In the CS scheme, the Eq. (1) is solved only in the finest grid; in coarse 
grids, only the residual equation is solved (Briggs et al., 2000). The correction is transferred to be added to the solution 
of the current grid and, therefore, the next refined grid has its initial estimate trought up to date with a correction value 
that will contribute for the elimination of the low frequency errors (Trottenberg, 2001). In this work, the injection 
restriction and the prolongation by bilinear interpolation are adopted. 

The ideal solver to be used with the multigrid method is one which has good smooth properties, for example, the 
Gauss-Seidel method (Briggs et al., 2000). Modified Strongly Implicit Method – MSI (Schneider and Zedan, 1981), 
presented better performance than the Gauss-Seidel one, as previous results of Pinto and Marchi (2006). Here, the MSI 
method was chosen as standard solver, and the coarsening ratio is equal to 2 (standard value in literature); this means 
that the size of the element on a finer grid is the half size of the element in an immediately coarser grid. Other 
coarsening ratios were studied by Pinto et al. (2005) for one-dimensional problems of advection, advection-diffusion 
and Burgers’ equation. For the test-problem of thermoelasticity, an algorithm of the multigrid method, CS scheme with 
V-Cycle, for two grids is described  
 

Table 1. Scheme CS for two grids with V-Cycle (Adapted from Briggs et al., 2000) 
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The described algorithm in Tab. 1 is applied for two grids but it can be extended for some grids. In order to facilitate 

the notation, the vectorial notation for u
r

, v
r

 and b
r

 was omitted only in the algorithm. The restriction and prolongation 
operations a represented by h

hI 2  and hre hI2 , respectively. The systems of equations for u
r

 and v
r

 are smoothed in the 

finest grid hΩ  (steps 1 and 3), in order to obtain an approximation of the solution with ITI iterations. The residue is 
calculated in steps 2 and 4, as indicated in the Eq. (2), and then it is transferred to the residual source terms (step 5) of 
the coarser grid h2Ω  and the system of equations is solved (steps 6 and 7). In step 9, the correction is transferred to the 
finest grid and the initial guest is re-estimated. In steps 10 and 11, the systems are solved for the finest grid with a 
corrected initial guess. The described algorithm covers only one V-Cycle CS scheme. The following procedure 
dev  until the achievement of a stop criterion:  elops diver e calls of 

 
s LMG
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1.  1=i  
 

le (no converged) or ( maxitei ≤ ), do   
hbv ,,,,0  

 and vv =0  
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 the solution is updated  (step 3) with 
 (Adapted from Wesseling, 1992). 

3. 

 procedure is used to generate the exact solution in all coarse grids. Thus, the convergence 
ri

 

 2.  ( )uu u,,0LMG bvv
        3.  uu =0
             =i

   end while 

In step 2, the algorithm is called as many times as necessary until achieving the established convergence criterion or 
achieving the maximum number of cycles chosen ( maxite ); while it does not occur,
the approximated solution of the previous cycle

 
 Verification of the computational code  
 
The algorithm described in the previous Section was implemented in FORTRAN 95 language, using the Visual 

Compaq FORTRAN 6.6. The simulations were made in a PC with Processor Intel Duo Core 2.66 GHz and 2 GB RAM, 
using double precision arithmetic. 

Tests of coherency have been made for the verification of the computational code, to establish both the tolerance 
and the convergence criterion, although the analytical solution of the problem has been obtained, as cited in Section 2. 
The adopted procedure is described as follows: in the finest possible grid and taking into account the limitations of 
computational physical memory, the program is run until the elimination the iteration error. In this point, the solution of 
the algebraic system of equations is saved in a file and is taken as the exact solution of the system. With the average 
norm 1l  (Ferziger and Peric, 1999) calculated in each iteration, the number of significant fi  was verified, without 

varying with the iterations. Considering this verification, a tolerance whose magnitude is 1210−  was obtained, that is 
two orders of magnitude over the significant figures verified for round-off-error. The tolerance, therefore, is defined 
s 1210−=ε . The same
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φ  is the exact solutio of the system of equations, kn φ  is the solution in k -iteration, N  is the total number 

 nodes in the grid, kE  is the k -iteration error, of 1l  denotes the average norm of the error during the k -iteration and 
i  denotes the node. Thus, one obtains minor possible relative error compared to the true solution of the system of 

equations, generating, therefore, greater confidence and quality of the solutions. The adopted initial estimate in this 
work is 0=u

r
 and 0=v

r
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4. 

ted and compared. Commentaries on the effect of the coupling of the equations will be made in the last 

4.1

 
Results  
 

The results obtained for the multigrid method parameters considered in this work are presented in this section. 
About 180 simulations have been made. The number of inner iterations influences on the CPU time, number of grids 
and size of the problem in the two cases are analyzed. The considered simulation results are for the grids 257x257, 
513x513 and 1025x1025. For the study about the size of the problem, the simulations have been made for all grids, 
since the coarsest grid, 5x5, until the finest grid, 2049x2049. The results of single-grid and the direct method (EG) also 
are resenp
Section.  

 
. Inner iterations – (ITI) 
 
For each grid and each problem, simulations with number of iterations have been made varying from 1=ITI  until 

10=ITI , and also 15=ITI . Figure 1 shows that, for all the tested grids, the minor CPU time occurred for 2=ITI ,  
for both the thermoelasticity problem (TE) and the Laplace problem (LP). The CPU time increases al ly with 
the number of inner iterations, as ved in Fig. 1. The optimum number of inner iterations 

most linear
 can be obser ( )optimumITI  for the 



two cases can be established as 2=optimumITI . The CPU time observed for the of thermoelasticity problem in the finest 
grid is approximately 4 times larger than the time observed for the Laplace problem in the same grid size. The results 
show that the coupling of the equations does not influence the optimum number of inner iterations. The results are 
sim ar to those prese  of heat conduction 
(Laplace problem), eve

 

il nted by Pinto and Marchi (2006) for the two-dimensional linear problem
n using another criterion of tolerance for the convergence.  

 
 

igure 1.  Influence of number of inner iterations on the CPU time.                                         F
 

4.2. Number of Grids – (L) 
 

The study of the number of uence (L) takes into accoun  iterations obtained 
previously. The intention is to optimize the CPU time. Figure 2 shows that or CPU time occ  the number 
of grids around the maximum 

 grids infl t the number of optimum inner
 the min urs with

( )maximumL , or the maximum, that is, ( ) ( )optimumCPUmaximumCPU LtLt ≈ . For the finest grid 

considered in this analysis, i.e., 1025x1025 nodes, the difference between maximumL  CPU time and optimumL  CPU time is 
around 2%. For the Laplace’s problem this difference is lower than 0,5%. One notices that when the number of grids is 
diminished in relation to the optimum, the CPU time increases very quickly. The simulations wit , 3 and , 
for the largest problem (largest N) for example, require a lot of CPU time. The conclusions of this analysis are the same 
ones for both problems studied TE and LP, except by the difference of the CPU time between optimumL  and maximumL . 
One notices, therefore, that the coupling of the equations of the thermoelastic problem does not influence the optimum 
number of grids. Similar results for linear and nonlinear one-dimensional problems have been obtained by Pinto et al. 
(2005) and Pinto and Marchi (2006). The results obtained in this work, for the 2D Laplace’s equation with 

129x129=N , are according to the conclusions of Tannehill et al. (1997), who affirmed that the use of

h L = 4  2 grids

 5 or 6 grids, for 
sults in the same performance of 7 grids. Hirsch (1988) cites, in his work, that generally 
998) affirms that the use of only 2 levels of grids is not recommended. 

4.3

the same problem, practically re
 or 5 grids are used. Roache (14

 
. Number of variables (N) 

 
The optimum number of iterations ( )optimumITI  and the optimum number of grids ( )optimumL , obtained previously, 

are considered in this study about the influence of the size of the problem on the CPU time. In this analysis, all sizes of 
grids are considered, i.e., from the minor 5x5 to the greatest supported by the PC memory, 2049x2049, using the 
multigrid method. The results obtained from single-grid method (unique grid) with MSI solver and with the Gauss 
Elimination for the thermoelasticity problem are also shown. In this case, the adopted grid were 5x5, 9x9,…, 257x257 
and 5x5,…, 33x33, respectively. Very refined grids for the single-grid method require extremely high CPU time, taking 
hours or even days for achieving the convergence, using direct method. For the Laplace’s problem, the results of the 
single-grid method and the Gauss Elimination are not presented, but they can be found in Pinto and Marchi (2006). For 
small grids, the CPU time is about zero. In this case, a methodology was adopted to obtain a time value which 
eliminated as possible the CPU time error due to uncertainty of measurement by the TIMEF function. The main idea is 
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to obtain an acceptable precision of the CPU time. Thus, for all grids whose time of simulation is less than 10 seconds, 
an external cycle in the main routine was made in order to the program make the number of necessary simulations until 
it gets 10 seconds or more. The time of a simulation, therefore, is the average consumed time for all simulations, in that 
rid. For example, in the thermoelastic problem, the size grid 5x5, simulated with the multigrid method, solver MSI, 

and optimum parameter  the average time of 
0.000262 second by sim
 

g
s L and ITI, needed 38175 simulations to reach 10,02 seconds, resulting in
ulation.   

 

e single-grid one and approximately 6103.1 × faster than the Gauss Elimination method. In comparison between the 
multigrid method, for the 33x33 grid, the last one is about 1400 times faster and comparing 

 the single-grid one, is about 1.4 time. 
 

 

time a considered ge

 
                                                        Figure 2. Influence of number of grids on the CPU time 
 
Figure 3 shows the influence of the number of variables on the CPU time, for the two problems, in the multigrid 

case. It can be noticed that, in the multigrid method, when the size of the problem is increased, the CPU time grows 
almost linearly. For the thermoelastic problem, the multigrid method presents better results than the single-grid one 
starting from 33x33 nodes. For this grid, single-grid starts to present significantly larger CPU time than the multigrid 
method. The CPU time of the thermoelastic problem is on average 5.3 times larger than the CPU time for the Laplace’s 
problem using the multigrid method. parison between the multigrid and single-grid methods, for the 
thermoelasticity problem and 257x257 grid, the multigrid method is approximately 70 times faster than the single-grid. 
For the 1025x1025 grid, by extrapolation, is obtained that the multigrid method is approximately 1000 times faster than 

 In com

th
Gauss Elimination and the 
to

4.4. Analysis of methods 

To determine the order (p) to the solver associated to the methods and the behavior of the curve in function of the 
ometric least square fitting method is presented, given by  , 

 
( ) p

CPU cNNt =                                                                                                                                                         (15) 
 

where p  represents the order of  solver associa d to the used method, or incli e curve, and c  is coefficient 
that depends of each method and each solver. The value of the exponent p in Eq. (15) gives important information to the 
analysis of solver. The ideal multigrid method is that one whose p = 1, so the nearer the unit the value of p, the better is 
its performance. The obtained values of c  and 

te nation of th

p  to all N are in Tab. 2 and to 3333×>N  in Tab. 3. They confirm that 
the CPU time of the multigrid method and solver MSI, for the two tested problem almost linearly if all size of 
problems is considered, as observed in Fi

s, increase 
g. 3. The order of solver is not much affected when the two problems are 

sol
und the ideal. When 3333

ved with MG-MSI. In fact, the exponents p of the Eq. (15), with the multigrid method are 1.17 and 1.18, for the 
thermoelastic and Laplace problems, respectively, i.e., aro ×>N , p is obtained far better in 
two roblems, Tab 3, with 1.05 and 1.06.   p



The values of p o ethod demonstrate a 
weak performance whe

 

btained for the single-grid method with MSI and the Gauss Elimination m
n increase the size of the problem. 

 

 
Table 2  c and ed from etric least square fitting for 

MSI a s Elim tion in o problems. 
 

  

Figure 3.  Influence of size of problem on the CPU time for the methods  
MG-MSI, SG-MSI and Gauss Elimination 

. Values of
solvers 

 p obtain
nd Gaus

 geom
ina  tw

MG SGProblem Solver c p c p 
Laplace MSI 2. x10-6 1.18 1.60x10 1.97 -802

MSI 1.26x10-5 1.17 2.16x10-7 1.90 Thermoela -9sticity EGauss ---- x1---- 3.90 0 3.35 
 

Table 3. Values c and from etric least square fitting for  
rs M  problems to 333

of 
solve

p obtained 
SI in two

 geom
3×>N . 

 
MG  SGProblem Solver c p c p 

Laplace MSI 8.71x10-6 1.05 6.62x10-9 2.06 
Thermoelasticity MSI 5.23x10-5 1.06 8.03x10-8 2.01 

 
5.  Conclusion 
 

In this work, it was analyzed the influence of diverse parameters of the geometric multigrid method, with CS 
scheme, on the necessary CPU time to solve problems with two coupled equations and Laplace’s problem (only one 
equation). The analyzed parameters were: number of inner iterations )(ITI , number of grids (L) and number of nodes 

con opted. 

1)  inner iterations is 2, in any grid, in the two s. The ITI can affect the CPU time 

maximumoptimum

(N). To discretizate the equations the Finite Difference Method with Central Difference Scheme and Dirichlet boundary 
ditions was ad
Based on the results of this work, it was verified that: 
The optimum number of problem
significantly. 

2) The optimum number of grids is around the maximum, i.e., LL ≈ . The number of grids can affect the 
CPU time significantly. 

3) he coupling of two equations does not degenerate the performance of the multigrid method when compared to the 

 
 

T
case of one equation. 
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