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Abstract. In this work it is studied the effect of some Multigrid Method parameters on the necessary CPU time to
obtain the numerical solution for a two-dimensional linear thermoelastic problem and the Laplace one. The considered
parameters are: grid size, inner iteration and number of grids. The mathematical model is discretized by finite
difference method using uniform grids and numerical approximations of second order. The systems of algebraic
equations are solved by MSI solver associated to the Geometric Multigrid Method with V-Cicle and Correction Scheme
(CS). The transfer of information among grids is made by injection process in restriction and by full weighting
operator in prolongation. The obtained results are compared to the ones of the Laplace problem, and also to single-
grid ones for both problems, and to other results from literature. It was verified that the coupling of two equations does
not degenerate the performance of the multigrid method when compared with the case of one equation.
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1. Introduction

For the development of new technologies, it is common the resolution of complex problems in both fluid mechanics
and heat transfer. The modeling of such problems, in general, results in partial differential equations, whose analytical
solution is unknown or difficult to be obtained, even if some simplifications are employed. In order to overpass these
difficulties, numerical approaches can be used, transforming a continuous problem in a discrete one. Diverse
methodologies can be employed for this purpose and one of the most used is the Finite Difference Method (FDM)
(Tannehill et al., 1997). The discretization of equations applying the FDM leads to a system of algebraic equations of
the type

AX=b (1)

where A is the coefficients matrix, b is the independent vector and X is the variable vector. When very fine grids are
employed the matrix A becomes very large, and consequently, its resolution is impracticable by direct methods, due to
the high computational cost to invert the matrix A (Golub and Van Loan, 1989). The alternative, therefore, is the use of
iterative methods. Researches have been made in order to minimize the CPU time necessary to solve the system given
by Eq. (1), without affecting the solution quality (Ferziger and Peric, 1999; Pinto et al. 2005; Pinto and Marchi, 2006).
In this context, a method that is used frequently to improve the convergence rate is the multigrid one (Briggs et al.,
2000).

The multigrid method, studied originally by Fedorenko (1964), improves significantly the convergence rate of
conventional iterative ones. Researches about the multigrid method made by Brandt (1977), Stiiben (1999) and
Wesseling and Oosterlee (2001) presented good numerical results, in respect to the convergence rate, for fluid dynamic
problems. The multigrid method has become popular and, currently, is one of most efficient iterative methods for
solution of system of equations, like the Eq. (1) (Hirsch, 1988; Tannehill et al, 1997, Ghia et al., 1982; Rubini, 1992).

The basic idea of the method is to use a set of grids and to execute iterations in each grid level and approximations
of the solutions of this equation in coarse grids (Briggs et al., 2000). The transfer of information from one grid to
another requires the definition of transfer operators, called prolongation and restriction. The restriction operators
transfer the information from the fine grid to the coarse one and the prolongation ones transfer the information from the
coarse grid to the fine one. The system of equations is solved in each grid level with an iterative method, which has the
property of reducing the oscillatory errors.

One efficient technique used to reduce the strong oscillations of the residue in each grid, defined by

R=b-AX, 2

is to smooth the oscillations for a relaxation method.

Pinto et al. (2005) defined transfer operators for any coarsening ratio.

The ideal convergence rate for multigrid is independent of the grid size, i.e., it does not depend on the number of the
grid nodes (Hirsch, 1988; Ferziger and Peric, 1999). Moreover, Ferziger and Peric affirm that the more important
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property of multigrid method is the independence of the number of iterations from the number of grid nodes, in the
finest grid, to obtain the convergence. The application of the multigrid method results in an approximately linear
increase of CPU time with grid refinement, allowing the resolution of problems in much finer grids, and, therefore,
more accurate solutions can be obtained (Hortmann and Peric, 1990).

Several multigrid algorithms can be found in literature, and they can be divided in two different schemes: CS
(Correction Scheme) and FAS (Full Approximation Scheme). The two schemes can be implemented computationally
with the V-Cycle, W-Cycle, F-Cycle, Full Multigrid (FMG) and other methodologies (Briggs et al, 2000; Trottenberg,
2001). CS-scheme is generally used in linear problems and FAS in nonlinear ones (Brandt, 1977).

All the algorithms are dependent on parameters that influence the CPU time. Manipulations in the parameter values
of the multigrid method can improve the convergence rate by a factor next to 2, using the best combination of these
parameters (Ferziger and Peric, 1999). Many of these parameters are studied and optimized by Pinto et al. (2005) for
linear advection problems, advection-diffusion and Burger’s equation. Pinto and Marchi (2006) made an analysis of CS
and FAS schemes with some solvers and standard coarsening ratio for the Laplace’s equation and suggested the use of
the maximum possible number of grids. Tannehill et al. (1997) affirmed that the optimum performance of the multigrid
method is obtained with diverse grids and suggested the use of 5 or 6 grids for the 2D-Laplace problem with a 129x129
nodes grid. Oliveira et al. (2006) also made a study to find the optimum values for some parameters of the method
multigrid in linear and nonlinear one-dimensional problems.

In this work, it is proposed for the obtainment of the optimum values for the geometric multigrid method, for the
CPU time optimization, for steady-state, two-dimensional linear model of thermoelasticity (TE), with two coupled
equations and Dirichlet boundary conditions. It is intended to verify if the performance of multigrid has any change
when compared to a one equation problem. The following parameters of the multigrid method are analyzed: the solver
inner iterations number (ITI), the number of grids (L) and the number of variables (N). The results are compared to a
two-dimensional diffusion problem, using Laplace problem (LP), which is solved by both multigrid and single-grid
methods, and with other results from literature. The analyses are made considering the results of the multigrid method,
methods for only one grid (single-grid) and the Gauss Elimination (direct) method. The effect of the functions/variables
coupling u and v, that appears in the two equations, is also studied to verify if it interferes in the iterative procedure
performance, when the multigrid method is used. The multigrid method properties are not preserved when applied to the
Navier-Stokes equations, with high Reynolds numbers (Ferziger and Peric, 1999). Therefore, one also intends to apply
the conclusions of this qualitative study to Navier-Stokes equations in alternative formulations without pressure-
velocity coupling.

This text is organized as follows: in Section 2 the mathematical and numerical models are presented. In Section 3,
the computational code is commented. In Section 4, the results are presented and in Section 5 the general conclusions
are shown.

2. Mathematical and numerical models

The results of thermoelasticity problem are compared with the ones of a linear problem of two-dimensional heat
conduction (Laplace problem), both in steady state and with Dirichlet boundary conditions, in cartesian coordinates.

Problem 1: The constitutive equations of two-dimensional steady state linear thermoelasticity problem, for elastic
bodies, whose materials are homogeneous and isotropic (from the Hooke’s law), can be reduced to two differential
partial equations, written in terms of the displacements
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where C, :?—j, and A is the Poisson’s ratio, « is the coefficient of thermal expansion and u and v are

displacements in coordinate directions x and 'y, respectively. The temperature field is given by the analytical solution of
the two-dimensional problem diffusion,

T(xy)= sin(;zx)ssiir:;(&y)) (5)

The analytical solution proposed for the system formed for Egs. (3) and (4) is
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u(x, y) = Bsin(m)1 (6)
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v(x, )=y’ (7)

inwhich y =1 and £ =0.01 are parameters.

The analytical solution is given by Egs. (6) and (7), which was obtained by the Manufactured Method Solutions
(Roache, 2002). In general, the use of the fabricated solutions is recommended to verify the existence of eventual errors
of programming and numerical errors. The substitution of the derivatives of the functions u and v in the Egs. (3) and

(4) results in the parcels of the source term, S" and SV, respectively.
The problem is solved in the domain Q= {O <x<10<y< 1}, which is partitioned in a number of nodes given by

N =N,N, (8)
where N, and N, are the number of nodes in the directions x and y, respectively. Each grid node is defined as

(i, vi)=((i-2)h,.(j -1y ), with h, = N 1_1 and h, = !

9)
X y -1

where i=1..,N,, j=1..,Ny, h, and hy are the grid size of elements in the directions x and y, in this order.

The governing equations are discretizated using the Finite Difference Method (FDM), for orthogonal cartesian
coordinates and uniform grid in the two coordinate directions. The second order derivatives and mixed derivatives that
appear in the first term of each equation are approximated with the Central Difference Scheme (CDS), which possesses
second order of accuracy. The discretization of the Egs. (3) and (4) results in

ppdi | +ap b ji1+aApshjatAp s +aAp e =bE (10)
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where the coefficients are evaluated by the following expressions: ap, =ap,, =-1/h;, ap, =ap = —(l+ C, )/ hy
and app =—app —ap, —ap, —apg, IN Which P=(j-1)N, +i; these coefficients for both equations are very

similar and does not depend on u and v. The numerical approximation for the displacements u and v is represented
by ¢ . The numerical approximation for the source term of Eq. (2) is given by

bY —C (Vi+1,j+1 +Vigja Vi ja ~ Vi+l,j—l) oar cos(;zx)sinh(;zy) _gu (11)
P 4h,h, sinh(z)

Where Viyg jias Vi joas Vi ja @nd Vi jq are numerical approximations of the mixed-derivative that appears in Eq.

(3). The approximation for the term b"; of the Eq. (4) is made in a similar form. The Eq. (10) is valid for inner nodes of

the calculation domain and Dirichlet boundary conditions are applied taking into account the analytical solution.
Equation (10) represents an algebraic system of equations that has the form of Eq. (1), which is a five-diagonal
matrix N, times N,, symmetrical and positive-definite (Briggs et al., 2000). In the approximation of the mixed

derivative of Eq. (3) appears the function v, that is placed in the bp source term, as can be observed in Eqg. (11). The
same procedure occurs with the approximation of the mixed derivative of Eq. (4); therefore, the numerical solutions of

Eq. (10) is coupled because the solution of u is dependent on the solution of v. The parcels S" and S", that appear in
Egs. (3) and (4), are added to the respective source terms.

Problem 2: The mathematical model of the Laplace problem is given by (Ferziger and Peric, 1999) as

2 2
a—z+a—1=0, in 0<x<landO<y<l1 (12)
OX oy



T(x0)=T(0,y)=0, T(x1)=x and T, y)=y
where T represents the temperature. The analytical solution of this problem is given by
T(x,y)=xy (13)

The numerical model adopted to solve the Laplace problem is the same used for the thermoelasticity problem.

In this work, the geometric multigrid (Wesseling and Oosterlee, 2001) is adopted, with the V-Cycle CS scheme for
both problems. In this scheme the transferred information in each grid level are the residue (in the restriction) and the
correction of the solution (in the prolongation). In the CS scheme, the Eq. (1) is solved only in the finest grid; in coarse
grids, only the residual equation is solved (Briggs et al., 2000). The correction is transferred to be added to the solution
of the current grid and, therefore, the next refined grid has its initial estimate trought up to date with a correction value
that will contribute for the elimination of the low frequency errors (Trottenberg, 2001). In this work, the injection
restriction and the prolongation by bilinear interpolation are adopted.

The ideal solver to be used with the multigrid method is one which has good smooth properties, for example, the
Gauss-Seidel method (Briggs et al., 2000). Modified Strongly Implicit Method — MSI (Schneider and Zedan, 1981),
presented better performance than the Gauss-Seidel one, as previous results of Pinto and Marchi (2006). Here, the MSI
method was chosen as standard solver, and the coarsening ratio is equal to 2 (standard value in literature); this means
that the size of the element on a finer grid is the half size of the element in an immediately coarser grid. Other
coarsening ratios were studied by Pinto et al. (2005) for one-dimensional problems of advection, advection-diffusion
and Burgers’ equation. For the test-problem of thermoelasticity, an algorithm of the multigrid method, CS scheme with
V-Cycle, for two grids is described

Table 1. Scheme CS for two grids with VV-Cycle (Adapted from Briggs et al., 2000)

LMG (ug,u,v,,V,by,by,h)

Begin
Smooth A"u" =b ITI times with initial guest u;
Calculate the residue: R" =b — Afu";
Smooth A™" =b" ITI times with initial guest v} ;
Calculate the residue: R =b' — AlV";
Restrict the residue: b2" = 12'"R" and b2" = I2"R]'

Smooth: A"e?" = bu2h ITI times with initial guest e2" =0 ;

N o o b~ w0 bdPRE

Smooth: AZ"e? =pZ" ITI times with initial guest
e =0;

8. Obtain: e = 15,e" and e = 1],e2";

9. Correct the solution: u" «—u" +e" and v" < v" +e;

10. Smooth: AMu" =b/ ITI times with initial guest u";

11. Smooth: A" =b!" ITI times with initial guest v";
and of LMG (ug,u,v,,V,b,,b,,h)

The described algorithm in Tab. 1 is applied for two grids but it can be extended for some grids. In order to facilitate
the notation, the vectorial notation for G, V and b was omitted only in the algorithm. The restriction and prolongation
operations are represented by Iﬁh and IQh , respectively. The systems of equations for G and vV are smoothed in the
finest grid Q" (steps 1 and 3), in order to obtain an approximation of the solution with ITI iterations. The residue is
calculated in steps 2 and 4, as indicated in the Eq. (2), and then it is transferred to the residual source terms (step 5) of

the coarser grid Q%" and the system of equations is solved (steps 6 and 7). In step 9, the correction is transferred to the
finest grid and the initial guest is re-estimated. In steps 10 and 11, the systems are solved for the finest grid with a
corrected initial guess. The described algorithm covers only one V-Cycle CS scheme. The following procedure
develops diverse calls of LMG until the achievement of a stop criterion:
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Choose ug, v§ and ite,,
1 i=1
while (no converged) or (i <ite,, ), do
2. LMG(ug,u,vg,V,by,b,,h)
3. up=uand vy =v
i=i+1
end while

In step 2, the algorithm is called as many times as necessary until achieving the established convergence criterion or
achieving the maximum number of cycles chosen (ite,,, ); while it does not occur, the solution is updated (step 3) with

the approximated solution of the previous cycle (Adapted from Wesseling, 1992).
3. Verification of the computational code

The algorithm described in the previous Section was implemented in FORTRAN 95 language, using the Visual
Compagq FORTRAN 6.6. The simulations were made in a PC with Processor Intel Duo Core 2.66 GHz and 2 GB RAM,
using double precision arithmetic.

Tests of coherency have been made for the verification of the computational code, to establish both the tolerance
and the convergence criterion, although the analytical solution of the problem has been obtained, as cited in Section 2.
The adopted procedure is described as follows: in the finest possible grid and taking into account the limitations of
computational physical memory, the program is run until the elimination the iteration error. In this point, the solution of
the algebraic system of equations is saved in a file and is taken as the exact solution of the system. With the average
norm |, (Ferziger and Peric, 1999) calculated in each iteration, the number of significant figures was verified, without

varying with the iterations. Considering this verification, a tolerance whose magnitude is 10~ was obtained, that is
two orders of magnitude over the significant figures verified for round-off-error. The tolerance, therefore, is defined
ase =102, The same procedure is used to generate the exact solution in all coarse grids. Thus, the convergence
criterion is defined as

N

D B e — |

LIE @) = 1T (14)

where ¢, is the exact solution of the system of equations, ¢, is the solution in k -iteration, N is the total number

of nodes in the grid, E, is the k -iteration error, I_1 denotes the average norm of the error during the k -iteration and
i denotes the node. Thus, one obtains minor possible relative error compared to the true solution of the system of

equations, generating, therefore, greater confidence and quality of the solutions. The adopted initial estimate in this
work is G =0 and Vv =0. The CPU time is measured using the function TIMEF of FORTRAN 95 PORTLIB library.
The uncertainty of this function is approximately +£0.05 s (Pinto et al, 2005).

4, Results

The results obtained for the multigrid method parameters considered in this work are presented in this section.
About 180 simulations have been made. The number of inner iterations influences on the CPU time, number of grids
and size of the problem in the two cases are analyzed. The considered simulation results are for the grids 257x257,
513x513 and 1025x1025. For the study about the size of the problem, the simulations have been made for all grids,
since the coarsest grid, 5x5, until the finest grid, 2049x2049. The results of single-grid and the direct method (EG) also
are presented and compared. Commentaries on the effect of the coupling of the equations will be made in the last
Section.

4.1. Inner iterations — (ITI)

For each grid and each problem, simulations with number of iterations have been made varying from ITI =1 until
ITI =10, and also ITI =15. Figure 1 shows that, for all the tested grids, the minor CPU time occurred for ITI =2,
for both the thermoelasticity problem (TE) and the Laplace problem (LP). The CPU time increases almost linearly with
the number of inner iterations, as can be observed in Fig. 1. The optimum number of inner iterations (ITIoptimum) for the



two cases can be established as 1Tl imym = 2. The CPU time observed for the of thermoelasticity problem in the finest

grid is approximately 4 times larger than the time observed for the Laplace problem in the same grid size. The results
show that the coupling of the equations does not influence the optimum number of inner iterations. The results are
similar to those presented by Pinto and Marchi (2006) for the two-dimensional linear problem of heat conduction
(Laplace problem), even using another criterion of tolerance for the convergence.
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Figure 1. Influence of number of inner iterations on the CPU time.

4.2. Number of Grids — (L)

The study of the number of grids influence (L) takes into account the number of optimum inner iterations obtained
previously. The intention is to optimize the CPU time. Figure 2 shows that the minor CPU time occurs with the number
of grids around the maximum (Lyzyimam )+ OF the maximum, that is, tepy (Lmaximum ) = tepu (Loptimm ) FOF the finest grid

considered in this analysis, i.e., 1025x1025 nodes, the difference between L jmym CPU time and Loim,m CPU time is

around 2%. For the Laplace’s problem this difference is lower than 0,5%. One notices that when the number of grids is
diminished in relation to the optimum, the CPU time increases very quickly. The simulations with L = 4, 3 and 2 grids,
for the largest problem (largest N) for example, require a lot of CPU time. The conclusions of this analysis are the same
ones for both problems studied TE and LP, except by the difference of the CPU time between Lyimym and Liayimum -

One notices, therefore, that the coupling of the equations of the thermoelastic problem does not influence the optimum
number of grids. Similar results for linear and nonlinear one-dimensional problems have been obtained by Pinto et al.
(2005) and Pinto and Marchi (2006). The results obtained in this work, for the 2D Laplace’s equation with
N =129x129, are according to the conclusions of Tannehill et al. (1997), who affirmed that the use of 5 or 6 grids, for
the same problem, practically results in the same performance of 7 grids. Hirsch (1988) cites, in his work, that generally
4 or 5 grids are used. Roache (1998) affirms that the use of only 2 levels of grids is not recommended.

4.3. Number of variables (N)

The optimum number of iterations (ITloptimum) and the optimum number of grids (Lopﬁmum), obtained previously,

are considered in this study about the influence of the size of the problem on the CPU time. In this analysis, all sizes of
grids are considered, i.e., from the minor 5x5 to the greatest supported by the PC memory, 2049x2049, using the
multigrid method. The results obtained from single-grid method (unique grid) with MSI solver and with the Gauss
Elimination for the thermoelasticity problem are also shown. In this case, the adopted grid were 5x5, 9x9,..., 257x257
and 5x5,..., 33x33, respectively. Very refined grids for the single-grid method require extremely high CPU time, taking
hours or even days for achieving the convergence, using direct method. For the Laplace’s problem, the results of the
single-grid method and the Gauss Elimination are not presented, but they can be found in Pinto and Marchi (2006). For
small grids, the CPU time is about zero. In this case, a methodology was adopted to obtain a time value which
eliminated as possible the CPU time error due to uncertainty of measurement by the TIMEF function. The main idea is
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to obtain an acceptable precision of the CPU time. Thus, for all grids whose time of simulation is less than 10 seconds,
an external cycle in the main routine was made in order to the program make the number of necessary simulations until
it gets 10 seconds or more. The time of a simulation, therefore, is the average consumed time for all simulations, in that
grid. For example, in the thermoelastic problem, the size grid 5x5, simulated with the multigrid method, solver MSI,
and optimum parameters L and ITI, needed 38175 simulations to reach 10,02 seconds, resulting in the average time of
0.000262 second by simulation.

® A
| |
¥ A
]
100 : A O A a2}
@ O [
||
E ® ® 2 4
=t
0.
O 10 9| —m— TE - 257x257 e =
®  TE-513x513 T—m ; :
A TE - 1025x1025 % 8 *
O LP - 257x257
O— LP -513x513 0
O LP - 1025x1025 )
1 *  Minimum o £ £ £
T e T T T S S S
0 1 2 3 4 5 6 7 8 9 10

Number of Grids

Figure 2. Influence of number of grids on the CPU time

Figure 3 shows the influence of the number of variables on the CPU time, for the two problems, in the multigrid
case. It can be noticed that, in the multigrid method, when the size of the problem is increased, the CPU time grows
almost linearly. For the thermoelastic problem, the multigrid method presents better results than the single-grid one
starting from 33x33 nodes. For this grid, single-grid starts to present significantly larger CPU time than the multigrid
method. The CPU time of the thermoelastic problem is on average 5.3 times larger than the CPU time for the Laplace’s
problem using the multigrid method. In comparison between the multigrid and single-grid methods, for the
thermoelasticity problem and 257x257 grid, the multigrid method is approximately 70 times faster than the single-grid.
For the 1025x1025 grid, by extrapolation, is obtained that the multigrid method is approximately 1000 times faster than

the single-grid one and approximately 1.3x10° faster than the Gauss Elimination method. In comparison between the

Gauss Elimination and the multigrid method, for the 33x33 grid, the last one is about 1400 times faster and comparing
to the single-grid one, is about 1.4 time.

4.4. Analysis of methods

To determine the order (p) to the solver associated to the methods and the behavior of the curve in function of the
time, a considered geometric least square fitting method is presented, given by

tepy (N)=cNP (15)

where p represents the order of solver associated to the used method, or inclination of the curve, and c is coefficient

that depends of each method and each solver. The value of the exponent p in Eq. (15) gives important information to the
analysis of solver. The ideal multigrid method is that one whose p = 1, so the nearer the unit the value of p, the better is
its performance. The obtained values of ¢ and p to all N are in Tab. 2 and to N >33x33 in Tab. 3. They confirm that

the CPU time of the multigrid method and solver MSI, for the two tested problems, increase almost linearly if all size of
problems is considered, as observed in Fig. 3. The order of solver is not much affected when the two problems are
solved with MG-MSI. In fact, the exponents p of the Eq. (15), with the multigrid method are 1.17 and 1.18, for the
thermoelastic and Laplace problems, respectively, i.e., around the ideal. When N >33x33, p is obtained far better in
two problems, Tab 3, with 1.05 and 1.06.



The values of p obtained for the single-grid method with MSI and the Gauss Elimination method demonstrate a
weak performance when increase the size of the problem.
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Figure 3. Influence of size of problem on the CPU time for the methods
MG-MSI, SG-MSI and Gauss Elimination

Table 2. Values of ¢ and p obtained from geometric least square fitting for
solvers MSI and Gauss Elimination in two problems.

Problem Solver MG SG
c p c p
Laplace MSI 2.02x10° | 1.18 | 1.60x10° | 1.97
Thermoelasticity MSI 1.26x10° | 1.17 | 2.16x107 | 1.90
EGauss - | 3.90x10° | 3.35

Table 3. Values of ¢ and p obtained from geometric least square fitting for
solvers MSI in two problemsto N >33x33.

Problem Solver MG SG
c p c p
Laplace MSI | 8.71x10° | 1.05 | 6.62x10° | 2.06
Thermoelasticity | MSI 5.23x10° | 1.06 | 8.03x10° | 2.01

5. Conclusion

In this work, it was analyzed the influence of diverse parameters of the geometric multigrid method, with CS
scheme, on the necessary CPU time to solve problems with two coupled equations and Laplace’s problem (only one
equation). The analyzed parameters were: number of inner iterations (IT1), number of grids (L) and number of nodes
(N). To discretizate the equations the Finite Difference Method with Central Difference Scheme and Dirichlet boundary

conditions was adopted.
Based on the results of this work, it was verified that:

1) The optimum number of inner iterations is 2, in any grid, in the two problems. The ITI can affect the CPU time
significantly.

2) The optimum number of grids is around the maximum, i.e., Lypimum ~ Lmaximum - The number of grids can affect the

CPU time significantly.
3) The coupling of two equations does not degenerate the performance of the multigrid method when compared to the

case of one equation.
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