

Energy Densities

- To visualise the effectiveness of propellants a useful measure is the specific energy or available energy per unit mass:
- Chemical: order of 10 MJ/kg
- Nuclear Fission: 100,000 GJ/kg from U to 2Sn
- Nuclear Fusion:
 700 000 GJ/kg
 4H to He

Nuclear Rockets - Fission

- Heat is exchanged between the solid reaction core and a gaseous working fluid such as water or hydrogen.
- Proven and tested, first in 1959 in the USA (Project NERVA), and yielded specific impulses in the range 1000-2000 s.
- The relatively low working temperature, limited by the structural strength of the reactor core is a disadvantage. It is worsened by hot hydrogen corrosion of the reactor core. This can be alleviated using a helium heat exchange loop, at the cost of greater complexity and mass.

Why Use Nuclear Power in Space

Nuclear Power is Necessary for Human Exploration of Space

 Reacting 1kg of Uranium 235 through fission can yield 500,000 times the energy produced by the decay of 1kg of Plutonium 238 for 10 years.

Nuclear Electric Fission Rockets

- Nuclear fission produces energy in the form of heat which is then transformed to electricity through thermodynamic or thermoelectric conversion.
- The electric output then drives an arc jet or ion engine.
- Operation on the Russian TOPAZ 10kW reactor satellite for reconnaissance missions.

TOPAZ Reactor Configuration

FIGURE 17. Configuration of the TOPAZ I Reactor (Bennett 1989).

Figure 2. Top View of the TOPAZ II Reactor.

TOPAZ Overall Configuration

Nuclear Fission Rockets - USP100

- Similar to TOPAZ but more powerful with 100kW output.
- Electrical output powers multiple redundant arcjet thrusters.

