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An analytic approach to determine the optimal conditions for maximizing altitude of a sounding rocket 
at burn-out state or stationary state is suggested. The one-dimensional rocket momentum equation 
including thrust, gravitational force, and aerodynamic drag is solved. The typical case that has an analytic 
solution of the rocket equation is considered. Also, numerical calculations are conducted for comparisons. 
To build a standard approach to determine the optimal conditions, flights in a constant atmosphere where 
the air density is constant are considered. The analytic solutions agree well with the numerical ones. It 
is shown that the optimal condition for maximizing altitude at burn-out state or stationary state can be 
predicted with a characteristic equation.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Sounding rockets carry scientific instruments to altitudes from 
50 km to more than 300 km to explore the atmosphere at high al-
titude or near outer space. Scientific studies with a sounding rocket 
are simple, fast, and inexpensive compared to those with a satel-
lite. The costs for a sounding rocket mission are much lower than 
those required for an orbiter mission, since sounding rocket mis-
sions do not need expensive boosters, extended telemetry or track-
ing coverage. Mission costs are also low because of the acceptance 
of a higher degree of risk in the mission compared to orbital mis-
sions [13]. Many countries are running sounding rocket programs 
and trying to develop technologies related to sounding rockets 
to exploit these advantages [1,17,10,5,12,7,3,8,18,2,16]. Most sci-
entific measurements, observations, or experiments for sounding 
rocket missions are carried out near apogee. The low speed near 
apogee provides favorable chances to explore or observe space in 
a short time period. Furthermore, there are some important re-
gions of space that are too low to be sampled by satellites; thus, 
sounding rockets provide platforms to carry out in-situ measure-
ments in these regions [8]. Some missions are carried out during 
free-fall that provides microgravity environments [15,21] or good 
hypersonic condition at low cost [14,19].

Sounding rockets usually have parabolic trajectories during the 
whole flight range in order to secure safety of launching site or 
citizens and to collect used rocket bodies or parts. In parabolic 
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motions, there are no accelerations or body forces in the lateral 
direction, which makes it simple to analyze the lateral motion of 
a rocket. Therefore, in the present study, we consider vertical di-
rection only, for simplicity. The motion of a rocket can then be 
described with a one-dimensional momentum equation that in-
cludes thrust, gravitational force, and aerodynamic drag force.

The rocket mass varies with time, and the drag force is propor-
tional to the square of the rocket velocity, which makes the gov-
erning equation nonlinear. Thus, we cannot obtain analytic solu-
tions in a general form. Hence in most cases, numerical approaches 
are used to obtain solutions of the rocket equation because of 
easy implementation with less assumptions. Analytic solutions, on 
the contrary to numerical ones, are exact without numerical er-
rors, give insights to understand the behavior of the system, show 
the critical parameters, and lead to ways to determine the opti-
mal conditions. Therefore it is necessary to find out analytic solu-
tions if possible. An approximate analytic solution can be obtained 
with neglecting drag force but it contains serious errors especially 
near ground. There are also approximate solutions with the Tay-
lor series expansion, the perturbation method or the least square 
method [9], but they are complex and unhandy. An analytic exact 
solution of the rocket equation including drag force exists only in 
a typical situation where the three forces are well balanced. In the 
present study, we consider the typical cases where analytic exact 
solutions exist.

The design target of a sounding rocket is the altitude. The ejec-
tion conditions of propellant jet determine thrust force, rocket ve-
locity or boost time that eventually change the rocket altitude at 
burn-out state or at stationary state. Therefore, it is necessary to 
determine an optimal jet condition for maximizing the altitude at 
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Nomenclature

g gravitational acceleration
h altitude
K drag parameter
m rocket mass
ṁ rate of rocket mass change or mass flow rate of pro-

pellant jet
q velocity parameter for rocket velocity
t time
ue velocity of propellant jet

v rocket vertical velocity
p static pressure
ρ density

Subscripts

b burn-out state
o ground state
opt optimal condition for maximizing altitude
s stationary state
given launching conditions. Despite the wide usage of sounding 
rockets, as far as we know, there are no analytic methods that are 
simple and convenient enough to determine the optimal condition 
for maximizing altitude. Hence, the objective of the present study 
is to suggest an analytic method to determine the optimal condi-
tion for maximizing altitude at burn-out state or stationary state.

As a beginning study, we first consider the flight in a con-
stant atmosphere where the air density is constant, since variable 
air density makes it impossible to obtain analytic solutions valid 
through whole flight range. In the standard atmosphere, the air 
density diminishes and thus the aerodynamic drag decreases as the 
altitude increases, which means that assuming constant air density 
leads to considerable underestimations of the altitude. However, 
even though limited to the flight in a constant atmosphere, the 
approach in the present study will show a standard procedure 
to obtain analytic solutions and to determine optimal conditions. 
Also, useful bases would be built for developing methods to solve 
the governing equation for the fights in a real atmosphere.

2. One-dimensional rocket equation

2.1. Equation in boost phase

The motion of a rocket in boost phase climbing in the verti-
cal direction can be described with the following one-dimensional 
rocket equation [20,6].

m
dv

dt
= F − D − mg. (2.1)

The mass of a rocket decreases with the mass flow of propellant.

m = mo +
t∫

o

ṁdt, (2.2a)

ṁ = dm

dt
. (2.2b)

The mass flow rate ṁ is equal to the rate of the rocket mass and 
has a negative sign by definition.

The terms F and D stand for thrust force and drag force, re-
spectively. The rocket thrust is composed of two parts:

F = ṁue + Ae(pe − pa). (2.3)

The term Ae is the area at the exit plane of a rocket nozzle and 
the term pa is the ambient air pressure. For an adiabatic nozzle 
flow, the total enthalpy is constant, and then we can assume that 
the jet velocity ue is constant. The jet velocity has the negative 
sign since its direction is opposite to the rocket velocity; thus, the 
thrust term ṁue has the positive sign. If the nozzle flow has a per-
fect expansion, the second term of the thrust vanishes. Hereafter, 
we ignore the second term of the thrust for simplicity.
The aerodynamic drag force D can be represented with the drag 
parameter K as follows:

D = K v2, (2.4a)

K = S

2
Cdρa. (2.4b)

The terms S , Cd and ρa denote cross-section area of a rocket, aero-
dynamic drag coefficient and ambient air density, respectively. In 
the present study, we consider the aerodynamic drag coefficient as 
a constant for simplicity. Then, for a constant atmosphere where 
the ambient air density is constant, we can treat the drag parame-
ter K as a constant.

Then the governing equation becomes

m
dv

dt
= ṁue − K v2 − mg. (2.5)

The mass is variable with time, and the square of the solution 
appears in the drag force, which makes the governing equation 
nonlinear. Thus, we cannot obtain analytic solutions in a general 
form. However, there is a typical case where an analytic solution 
exists. We introduce a velocity parameter as follows:

q =
√

ṁue − mg

K
. (2.6)

The governing equation can then be reduced as

m
dv

dt
= K

(
q2 − v2). (2.7a)

Separating variables leads to

dv

q2 − v2
= K

m
dt. (2.7b)

This equation can be represented according to the mass instead of 
the time as follows:

dv

q2 − v2
= K

m

dm

ṁ
. (2.7c)

If the velocity parameter is constant, the left hand side can be an-
alytically integrated, yielding an analytic solution of the governing 
equation if the term K/mṁ is analytically integrated.

2.2. Equation in coast phase

After the propellant is totally consumed, the flight phase turns 
into coast phase, where a rocket climbs with inert force until sta-
tionary state or apogee. The mass flow of propellant jet disappears 
in the equation and the rocket mass is kept constant. Also the ve-
locity parameter shown in boost phase is irrelevant in coast phase. 
Then the rocket equation becomes

mb
dv = −K v2 − mb g. (2.8)

dt
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Separating variables in the above equation yields

dv

K v2 + mb g
= − 1

mb
dt, or (2.9a)

vdv

K v2 + mb g
= − 1

mb
dh. (2.9b)

In coast phase, the initial velocity is the velocity at burn-out state 
and the final velocity is zero at stationary state.

3. Analytic solutions

3.1. Solutions of the governing equation

3.1.1. Solutions in boost phase
Since, in the present study, the velocity parameter is constant, 

the mass flow rate is variable and can be expressed with the mass 
and the velocity parameter.

ṁ = mg + Kq2

ue
. (3.1.1a)

Inserting this relation to the governing equation leads to

dv

q2 − v2
= K ue

mg + Kq2

dm

m
. (3.1.1b)

Integrating the governing equation from the ground state yields

1

2q
ln

(
q + v

q − v

)v

o
= ue

q2
ln

(
m

mg + Kq2

)m

mo

. (3.1.2a)

Rearranging this equation leads to

ln

(
q + v

q − v

)
= 2ue

q
ln

(
m

mo

mo g + Kq2

mg + Kq2

)
. (3.1.2b)

Hence, we can express the rocket velocity as a function of the mass 
as follows:

v = q
x − 1

x + 1
, (3.1.3a)

x =
(

m

mo

mo g + Kq2

mg + Kq2

)σ

=
(

m

mo

Go + q2

G + q2

)σ

, (3.1.3b)

G = mg

K
, (3.1.3c)

σ = 2ue

q
. (3.1.3d)

The rocket mass ratio is defined as the ratio between the masses 
at ground state and at burn-out state as follows:

Ω = mo

mb
> 1. (3.1.4)

The term x at ground state or at burn-out state becomes

xo =
(

mo

mo

Go + q2

Go + q2

)σ

= 1, (3.1.5a)

xb =
(

mb

mo

Go + q2

Gb + q2

)σ

=
(

1

Ω

Go + q2

Gb + q2

)σ

. (3.1.5b)

The time derivative of the mass flow rate expressed in Eq. (3.1.1a)
becomes

dṁ

dt
= g

ue
ṁ. (3.1.6a)

Separating variables leads to
dṁ

ṁ
= g

ue
dt. (3.1.6b)

Integrating this equation and inserting the mass flow rate in 
Eq. (3.1.1a) yields

ln
G + q2

Go + q2
= g

ue
t. (3.1.6c)

Then, we have

m =
(

mo + Kq2

g

)
exp

(
g

ue
t

)
− Kq2

g
. (3.1.6d)

The time can be represented as a function of the mass by rear-
ranging the above equation.

t = ue

g
ln

(
mg + Kq2

mo g + Kq2

)
= ue

g
ln

(
G + q2

Go + q2

)
. (3.1.7a)

The burn-out time when the propellant is totally consumed can be 
determined as

tb = ue

g
ln

(
Gb + q2

Go + q2

)
. (3.1.7b)

The altitude of a rocket at burn-out state can be obtained with the 
time integration of the velocity.

hb =
tb∫

o

vdt =
mb∫

mo

q
x − 1

x + 1

ue

mg + Kq2
dm. (3.1.8)

This integral cannot be analytically obtained, thus should be calcu-
lated with numerical integration. In the present study, numerical 
integration with the Simpson rule [4] is used to calculate altitude.

3.1.2. Solutions in coast phase
In coast phase, the governing equation can be analytically inte-

grated. Eq. (2.9a) can be expressed as follows:

dt = −mb
dv

mb g + K v2
= −mb

K

dv

Gb + v2
. (3.1.9a)

Integrating this equation from the burn-out state to the stationary 
state yields

tbs = ts − tb = − mb

K
√

Gb
tan−1

(
v√
Gb

)o

vb

= mb

K
√

Gb
tan−1

(
vb√
Gb

)
. (3.1.9b)

The altitude can be analytically obtained with Eq. (2.9b) as fol-
lows:

dh = −mb
vdv

mb g + K v2
= −mb

K

vdv

Gb + v2
. (3.1.10a)

Integrating this equation from the burn-out state to the stationary 
state yields

hbs = hs − hb = −1

2

mb

K
ln

(
Gb + v2)o

vb

= mb

2K
ln

(
Gb + v2

b

Gb

)
. (3.1.10b)
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3.2. Optimal condition for maximum altitude at burn-out state

The rocket altitude changes according to the velocity parameter, 
since the rocket velocity also changes. Now, we find an analytic 
way to determine the optimal velocity parameter for maximizing 
altitude at burn-out state. The governing equation (2.7b) can be 
rewritten according to altitude instead of time as follows:

dv

q2 − v2
= K

m

dh

v
. (3.2.1a)

Separating variables and integrating the equation from ground 
state to burn-out state yields

vb∫
o

vdv

q2 − v2
=

hb∫
o

K

m
dh. (3.2.1b)

The left hand side of the above equation is reduced as

−1

2
ln

(
q2 − v2)vb

o = −1

2
ln

(
1 − v2

b

q2

)

= −1

2
ln

[
4xb

(xb + 1)2

]
. (3.2.2a)

Differentiating this term with respect to the velocity parameter 
yields
(

− 1

2xb
+ 1

xb + 1

)
dxb

dq
= 1

2xb

xb − 1

xb + 1

dxb

dq
. (3.2.2b)

Differentiating the right hand side in Eq. (3.2.1b) with respect to 
the velocity parameter leads to

hb∫
o

d

dq

K

m
dh + K

mb

dhb

dq
− K

mo

dho

dq
. (3.2.3)

The Leibniz rule [11] is applied to the right hand side. The deriva-
tive of the altitude at ground state is zero. Also, for the maximum 
altitude, the derivative of the altitude at burn-out state should be 
zero. The mass at a given altitude would change with the velocity 
parameter and thus the derivative of the mass with respect to the 
velocity parameter could not vanish. Thus the following equation 
must be satisfied for the maximum altitude at the burn-out state.

1

2xb

xb − 1

xb + 1

dxb

dq
= −

hb∫
o

K

m2

dm

dq
dh. (3.2.4)

The logarithm of the term xb becomes

ln(xb) = 2ue

q
ln

(
1

Ω

Go + q2

Gb + q2

)
. (3.2.5a)

Differentiating this equation with respect to the velocity parameter 
yields

1

xb

dxb

dq
= −2ue

q2

[
q

2ue
ln(xb)

]

+ 2ue

q

[
2q

Go + q2
− 2q

Gb + q2

]
. (3.2.5b)

Thus, we have

1

xb

dxb

dq
= −1

q

[
ln(xb) − 4que Gb(1 − Ω)

(Go + q2)(Gb + q2)

]
. (3.2.5c)
The rocket mass can be expressed as a function of the time and 
the velocity parameter.

m = m(t,q). (3.2.6a)

The derivative of the mass with respect to the velocity parameter 
becomes

dm

dq
= ∂m

∂t

)
q

dt

dq
+ ∂m

∂q

)
t
. (3.2.6b)

According to the expression of the mass in Eq. (3.1.6d), we have

∂m

∂t
= g

ue

(
mo + Kq2

g

)
exp

(
g

ue
t

)
= mo g + Kq2

ue

mg + Kq2

mo g + Kq2

= mg + Kq2

ue
, (3.2.6c)

∂m

∂q
= 2Kq

g

[
exp

(
g

ue
t

)
− 1

]
= 2Kq

g

[
mg + Kq2

mo g + Kq2
− 1

]

= 2q(m − mo)

Go + q2
. (3.2.6d)

According to the expression of the time in Eq. (3.1.7a), the first 
term on the right hand side in Eq. (3.2.5b) becomes

∂m

∂t

dt

dq
= mg + Kq2

ue

ue

g

× (dm
dq g + 2Kq)(mo g + Kq2) − 2Kq(mg + Kq2)

(mo g + Kq2)(mg + Kq2)
.

(3.2.6e)

Hence, Eq. (3.2.5b) is reduced as

dm

dq
= dm

dq
+ 2q(mo − m)

Go + q2
+ 2q(m − mo)

Go + q2
. (3.2.6f)

This equation is trivial and does not give an explicit expression of 
the derivative of the mass with respect to the velocity parameter. 
However, it suggests that the derivative could be expressed in the 
following form.

dm

dq
= 2q(m − mcr)

Go + q2
, (3.2.7a)

mcr = βmb. (3.2.7b)

If β is Ω , then the critical mass mcr becomes mo . The coefficient 
β would change with the rocket mass or rocket mass ratio.

Hence, the characteristic equation to determine the optimal 
condition for maximizing altitude at burn-out state becomes

ln(xb) − 4que Gb(1 − Ω)

(Go + q2)(Gb + q2)
= Sb, (3.2.8a)

Sb = xb + 1

xb − 1

4Kq2

Go + q2

hb∫
o

m − βmb

m2
dh. (3.2.8b)

It is necessary to calculate the integral in the above equation by 
numerical integration since it could not be analytically integrated.

It is impossible to obtain explicit analytic solution of the above 
characteristic equation, since the term xb is a function of the ve-
locity parameter. Thus, it is inevitable to calculate with iterations. 
The above equation can be reduced to the fourth order one as fol-
lows:(

q2

Gb

)2

+ B

(
q2

Gb

)
+ Ω = 0, (3.2.9a)

B = Ω + 1 − 4ue(1 − Ω)
. (3.2.9b)
[ln(xb) − Sb]q
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Then, we can obtain a converged solution of the characteristic 
equation with iterations:

qb,k+1 =

√√√√
Gb

√
B2

k − 4Ω − Bk

2
. (3.2.9c)

However, if the coefficient B is not negative, it is impossible to 
obtain a solution since the term inside the square root becomes 
negative, which means we cannot start iteration with a wild guess. 
Hence, to avoid such serious situations, it is necessary to change 
the order of the equation and build a reduced order equation in 
the following form.

q3[ln(xb) − Sb
] − 4ueGb(1 − Ω)

( Go
q2 + 1)(

Gb
q2 + 1)

= 0, or (3.2.10a)

q
[
ln(xb) − Sb

] − 4ue Gb(1 − Ω)

( Go
q + q)(

Gb
q + q)

= 0. (3.2.10b)

The iterative procedure to solve the above characteristic equations 
can be represented as

qk+1 = 3

√√√√ 4ue Gb(1 − Ω)

[ln(xb,k) − Sb,k]( Go

q2
k

+ 1)(
Gb

q2
k

+ 1)
, or (3.2.11a)

qk+1 = 4ue Gb(1 − Ω)

[ln(xb,k) − Sb,k]( Go
qk

+ qk)(
Gb
qk

+ qk)
. (3.2.11b)

The term Sb in the above equation decreases and so does the 
estimated velocity parameter qk+1 as the coefficient β increases. 
Therefore, we can determine the coefficient β with iteration as fol-
lows:

βk+1 = βk

[
1 − Cβ

(
q

hb

∂hb

∂q

)
k

]
, (3.2.12a)

β0 = 2 + Ω

3
, (3.2.12b)

∂hb

∂q
= ue

K

mb∫
mo

{
G − q2

G + q2
− 2x

x2 − 1

[
ln(x) − 4que(G − Go)

(Go + q2)(G + q2)

]}

× x − 1

x + 1

dm

G + q2
. (3.2.12c)

It is necessary to calculate the integral in Eq. (3.2.12c) by numer-
ical integration. The constant Cβ of 1.0 guarantees fast and stable 
convergence for all cases considered in the present study. In case 
this coefficient is higher than 2.0, the iterative sequence could be 
unstable.

Preliminary numerical experiments show that the first order 
approximation (3.2.11b) converges faster than the third order ap-
proximation (3.2.11a) and gives exactly same results. These equa-
tions are stable and, thus, converge within several iterations.

3.3. Optimal condition for maximum altitude at stationary state

The rocket in coast phase ascends until stationary state or 
apogee where the rocket velocity is zero. Hence, the optimal condi-
tion for maximizing altitude at stationary state would be different 
from that at burn-out state. In coast phase, there is no thrust force 
and thus the governing equation can be expressed as

− dv

v2 + Gb
= K

mb

dh

v
. (3.3.1a)

Separating variables yields
− vdv

v2 + Gb
= K

mb
dh. (3.3.1b)

Integrating the governing equation from ground state to stationary 
state yields

vb∫
o

vdv

q2 − v2
−

o∫
vb

vdv

v2 + Gb
=

hb∫
o

K

m
dh +

hs∫
hb

K

mb
dh. (3.3.2a)

The second term on the left hand side becomes

−1

2
ln

(
v2 + Gb

)o
vb

= 1

2
ln

(
Gb + v2

b

Gb

)
. (3.3.2b)

Differentiating the above term with respect to the velocity param-
eter yields

vb

Gb + v2
b

d

dq

(
q

xb − 1

xb + 1

)

= xb − 1

xb + 1

q

Gb + v2
b

[
xb − 1

xb + 1
+ 2q

(xb + 1)2

dxb

dq

]
. (3.3.2c)

Differentiating the right hand side of Eq. (3.3.2a) with respect to 
the velocity parameter leads to
hb∫

o

d

dq

K

m
dh + K

mb

dhb

dq
− K

mo

dho

dq

+
hs∫

hb

d

dq

K

mb
dh + K

mb

dhs

dq
− K

mb

dhb

dq
. (3.3.3)

The second and the last terms cancel out. The rocket mass af-
ter burn-out state is constant and thus its derivative is zero. The 
derivative of altitude at ground state is zero, and, for the maxi-
mum altitude, the derivative of altitude at stationary state should 
be zero. But, as mentioned in the above section, the first term re-
mains. Hence, the characteristic equation to determine the optimal 
condition for maximizing altitude at stationary state becomes

1

2xb

xb − 1

xb + 1

dxb

dq
+ xb − 1

xb + 1

q

Gb + v2
b

[
xb − 1

xb + 1
+ 2q

(xb + 1)2

dxb

dq

]

=
hb∫

o

d

dq

K

m
dh. (3.3.4a)

Inserting the derivative of xb with respect to velocity parameter 
described in Eq. (3.2.5c) yields

Gb + q2

2q

[
ln(xb) − 4que Gb(1 − Ω)

(Go + q2)(Gb + q2)

]

= q
xb − 1

xb + 1
− (

Gb + v2
b

) xb + 1

xb − 1

hb∫
o

d

dq

K

m
dh. (3.3.4b)

Rearranging this equation with inserting the derivative of the mass 
with respect to the velocity parameter described in Eq. (3.2.7)
yields

ln(xb) − 4que Gb(1 − Ω)

(Go + q2)(Gb + q2)
= Ss, (3.3.5a)

Ss = 2q2

Gb + q2

xb − 1

xb + 1

+ Gb + v2
b

Gb + q2

xb + 1

xb − 1

4Kq2

Go + q2

hb∫
m − βmb

m2
dh. (3.3.5b)
o
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This characteristic equation can be reduced as the fourth order 
one. However, with the same reason as mention in the above sec-
tion, we consider reduced order approximations as follows:

q3[ln(xb) − Ss
] − 4ue Gb(1 − Ω)

( Go
q2 + 1)(

Gb
q2 + 1)

= 0, or (3.3.6a)

q
[
ln(xb) − Ss

] − 4ue Gb(1 − Ω)

( Go
q + q)(

Gb
q + q)

= 0. (3.3.6b)

The iterative procedure to solve the above characteristic equations 
can be represented as

qk+1 = 3

√√√√ 4ue Gb(1 − Ω)

[ln(xb,k) − Ss,k]( Go

q2
k

+ 1)(
Gb

q2
k

+ 1)
, or (3.3.7a)

qk+1 = 4ueGb(1 − Ω)

[ln(xb,k) − Ss,k]( Go
qk

+ qk)(
Gb
qk

+ qk)
. (3.3.7b)

The term Ss in the above equation decreases and so does the 
estimated velocity parameter qk+1 as the coefficient β increases. 
Therefore, we can determine the coefficient β with iteration as fol-
lows:

βk+1 = βk

[
1 − Cβ

(
q

hb

dhs

dq

)
k

]

= βk

[
1 − Cβ

q

hb

(
dhb

dq
+ dhbs

dq

)
k

]
, (3.3.8a)

β0 = 1 + Ω

2
, (3.3.8b)

dhbs

dq
= mb vb

Gb + v2
b

xb − 1

xb + 1

×
{

1 − 2xb

x2
b − 1

[
ln(xb) − 4que Gb(1 − Ω)

(Go + q2)(Gb + q2)

]}
.

(3.3.8c)

The derivative of altitude at burn-out state with respect to the ve-
locity parameter and the constant Cβ are as same as in Eq. (3.2.12).

Preliminary numerical experiments show that the first order 
approximation (3.3.7b) converges faster than the third order ap-
proximation (3.3.7a) and gives exactly same results in most cases. 
However, in the case with a small mass ratio less than 1.5, the 
third order approximation shows more stable convergence. The 
number of iterations for convergence is almost same as that for 
the burn-out situation.

4. Numerical solutions

If the mass and velocity of the rocket are known at (n) state, 
then the velocity at (n + 1) state can be obtained. The discretized 
governing equation becomes

mn+1/2
vn+1 − vn

�t
= ṁn+1/2ue − K v2

n+1/2 − mn+1/2 g, (4.1a)

�t = tn+1 − tn = ue

g
ln

(
mn+1 g + Kq2

mn g + Kq2

)
. (4.1b)

The index n + 1/2 denotes the midpoint between (n) and (n + 1) 
states

mn+1/2 = mn + mn+1

2
, (4.2a)

vn+1/2 = vn + vn+1

2
, (4.2b)
ṁn+1/2 = ṁn + ṁn+1

2
= (mn + mn+1)g + 2Kq2

2ue
. (4.2c)

The governing equation can be then rewritten as follows:

mn+1/2
vn+1 − vn

�t
= ṁn+1/2ue − K

4

(
v2

n+1 + 2vn vn+1 + v2
n

)
− mn+1/2 g. (4.3a)

This discretized equation becomes a quadratic one as follows:

K v2
n+1 +

(
2K vn + 4

mn+1/2

�t

)
vn+1 + K v2

n

− 4

(
mn+1/2

vn

�t
+ ṁn+1/2ue − mn+1/2 g

)
= 0. (4.3b)

The solution of the above equation at (n + 1) state becomes

vn+1 = −Bn +
√

B2
n − K Cn

K
, (4.4a)

Bn = K vn + 2
mn+1/2

�t
, (4.4b)

Cn = K v2
n − 4

(
mn+1/2

vn

�t
+ ṁn+1/2ue − mn+1/2 g

)
. (4.4c)

The discretized momentum equation for coast phase can be ob-
tained if the thrust term is extracted from the equations and the 
mass is fixed as the mass at burn-out state.

5. Calculation conditions

The present study considers a rocket dry mass of 750 kg, as 
well as dry masses of 500 kg and 1000 kg for comparisons. The 
total mass or the propellant mass is changed according to the mass 
ratio. In the present study, the mass ratio is varied from 1.5 to 6, 
which means the rocket total mass is changed from 1025 kg to 
4500 kg.

The cross-section diameter of the rocket is 0.4 m. The aerody-
namic drag coefficient for a sounding rocket is usually in the range 
between 0.7 and 1.5. In the present study, the aerodynamic drag 
coefficient of 1.1 is considered. The effects of the Mach number on 
the aerodynamic drag coefficient are ignored for simplicity.

The temperature and pressure in the combustor chamber con-
sidered in the present study are 2500 K and 100 bar, respectively. 
The nozzle flow is assumed to be perfectly expanded to the stan-
dard atmospheric pressure through the isentropic process. The ab-
solute jet velocity at the nozzle exit is about 1916 m/s.

The numerical solution approaches a more exact result as the 
number of piecewise intervals increases. The sufficient number of 
piecewise intervals is determined with a numerical experiment. If 
the number of intervals is as great as 150, the numerical integra-
tion with the trapezoid rule yields almost the same result as that 
with the Simpson rule. The number of piecewise intervals is fixed 
as 200 in the present calculations. The mass change during each 
interval is assumed to be constant.

6. Results

6.1. Solution profiles

Fig. 1 compares the velocity profiles between analytic and nu-
merical solutions. The vertical dashed line indicates the burn-out 
time. The rocket velocities increase gradually with time until burn-
out state, but after then, decrease due to the gravity force.

Fig. 1a shows the variation of velocity profiles according to the 
rocket mass with a fixed rocket mass ratio of 4. Regardless of the 
rocket masses, each analytic solution is identical to the numerical 
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Fig. 1. Velocity profile according to time.

one. The case with a higher mass yields a higher velocity but a 
similar running time to the others. Fig. 1b shows the variations 
of velocity profile according to the rocket mass ratio with a fixed 
rocket mass of 750 kg. Regardless of the rocket mass ratios, each 
analytic solution is identical to the numerical one. The case with 
a higher mass ratio yields a higher rocket velocity and a longer 
running time. The profile in coast phase is concave because the 
drag is proportional to the square of velocity.

Fig. 2 shows the changes of altitude with time. The rocket mass 
at burn-out state is 750 kg. The vertical dashed line indicates 
the burn-out time. In boost phase, the rocket altitude increases 
through concave curves until burn-out state, since the velocity 
increases. In coast phase, the rocket altitude changes through a 
convex curve, since the rocket is decelerated by gravity force. The 
increase of rocket mass ratio results in a proportional increase of 
the maximum altitude.

Fig. 3 shows the changes of the mass flow rate with time. 
The rocket mass at burn-out state is 750 kg. The mass flow rate 
changes according to Eq. (3.1.1a). Regardless of the rocket mass 
ratios, the mass flow rate decreases gradually almost in a linear 
mode. The abrupt drop of the curve indicates the burn-out time. 
The increase of mass ratio results in the proportional increase of 
the mass flow rate.

6.2. Optimal conditions at burn-out state

To estimate the characteristic changes of the altitude at burn-
out state according to the velocity parameter, the following nor-
malized parameters are introduced.

φb = q − qopt,b

q
. (6.1a)
opt,b
Fig. 2. Changes of altitude according to time.

Fig. 3. Changes of mass flow rate according to time.

ηb = hb

hb(qopt,b)
. (6.1b)

Fig. 4 shows variations of the normalized altitude at burn-out 
state according to the normalized velocity parameter. The vertical 
dashed line indicates the optimal velocity parameter calculated by 
the characteristic equation. The reduced order approximations of 
the characteristic equation (3.2.11) give the exact predictions of the 
optimal velocity parameter regardless of the rocket mass ratios or 
of the rocket masses. The change of the normalized altitude on the 
left side where the velocity parameter is lower than the optimal 
one is more sensitive to the change of the velocity parameter than 
the other side.

Fig. 4a represents the effects of the mass ratio on the variations 
of the normalized altitude. The case with a lower mass ratio results 
in a little more sensitive variations of the normalized altitude ac-
cording to the change of the normalized velocity parameter. Fig. 4b 
represents the effects of the rocket mass on the variations of the 
normalized altitude. The normalized curves with different rocket 
masses nearly coincide even though the changes of the rocket mass 
are remarkably large, which suggests that the variation of the nor-
malized altitude is almost irrelevant to the rocket mass.

Fig. 5 shows variations of the optimal velocity parameters with 
the rocket mass or the rocket mass ratio at burn-out state. For 
a given rocket mass ratio, the optimal velocity parameter grows 
with the rocket mass but the growth rate slightly decreases as the 
rocket mass increases. For a given rocket mass, the optimal velocity 
parameter increases with the rocket mass ratio in a linear mode.
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Fig. 4. Variation of altitude at burn-out state with velocity parameter.

Fig. 5. Variation of optimal velocity parameter at burn-out state.

6.3. Optimal conditions at stationary state

To determine the characteristic changes of the altitude at sta-
tionary state or apogee according to the velocity parameter, the 
following normalized parameters are introduced.

φs = q − qopt,s

qopt,s
. (6.2a)

ηs = hs

hs(qopt,s)
. (6.2b)

Fig. 6 shows variations of the normalized altitude at station-
ary state according to the velocity parameter. The vertical dashed 
Fig. 6. Variation of altitude at stationary state with velocity parameter.

line indicates the optimal velocity parameter at stationary state. 
The reduced order approximations of the characteristic equation 
(3.3.7) give the exact predictions of the optimal velocity parame-
ter regardless of the rocket mass ratios or the rocket masses. The 
change of the normalized altitude on the left side where the ve-
locity parameter is lower than the optimal one is more sensitive 
than the other side.

Fig. 6a represents the effects of the mass ratio on the variations 
the normalized altitude. On the contrary to the situation at burn-
out state, the case with a lower mass ratio shows a less sensitive 
variation of the normalized altitude to the change of the normal-
ized velocity parameter. Fig. 6b represents the effects of the rocket 
mass on the variations the normalized altitude. Like the situa-
tion at burn-out state, the normalized curves with different rocket 
masses almost coincide even though the difference of the rocket 
mass is remarkably large, which suggests that the variation of the 
normalized altitude is almost irrelevant to the rocket mass.

Fig. 7 shows variations of the optimal velocity parameters with 
the rocket mass or the rocket mass ratio at stationary or apogee 
state. For a given rocket mass ratio, the optimal velocity parame-
ter grows with rocket mass. While, on the contrary to the situation 
at burn-out stare, for a given rocket mass, the optimal velocity pa-
rameter decreases steeply with the mass ratio until the minimum 
value and, after then, bounce back and grows gradually with the 
rocket mass ratio in a linear mode.

7. Conclusions

The one-dimensional rocket momentum equation including 
thrust, gravitational force, and aerodynamic drag is examined to 
determine analytically the optimal condition for maximizing alti-
tude of a sounding rocket at burn-out state or at stationary state. 
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Fig. 7. Variation of optimal velocity parameter at stationary state.

The rocket flights in a constant atmosphere where the air density 
is constant are considered.

The rocket velocity for a given velocity parameter can be ob-
tained analytically that matches the numerical one. Characteristic 
equations are derived from the analytic solutions to determine the 
optimal velocity parameter for maximizing altitudes at burn-out 
state and at stationary state. The characteristic equations provide 
accurate predictions of the optimal conditions at burn-out state 
and at stationary state.

The velocity parameter for maximizing altitude at burn-out 
state exists. The increase of the rocket mass at a given mass ra-
tio results in the increases of the optimal velocity parameter but 
the increasing rate is reduced as the rocket mass increases. And, 
the optimal velocity parameter at a given rocket mass grows with 
the rocket mass ratio in a linear mode. Also, the velocity parame-
ter for maximizing altitude at stationary state exists and is higher 
than that at the burn-out situation. Like the situation at burn-out 
state, the optimal velocity parameter grows with rocket mass but, 
on the contrary to the burn-out situation, there is a mass ratio 
where the optimal velocity parameter is the minimum at a given 
rocket mass.

As a beginning study, the present works are restricted to the 
rocket fights in a constant atmosphere where the air density is 
constant regardless of the altitude. In the future, further studies 
will be conducted to extend the present analytic approach to the 
flight in a real atmosphere.
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