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One explanation often given is the huge amount of scien-
tific legacy code in the world—after all, differential equa-
tions remain the same over time and so do their solvers, so
there’s no reason to rewrite such code. But a great deal of
new code is written in Fortran95 as well. One of us recently
served on a review panel for granting computer time to
high-impact scientific computing applications that effec-
tively use thousands of processors, and every single one of
the applications he reviewed was written in Fortran. At last
year’s conference on computational physics in South Korea
(CCP2006), most of the plenary speakers who talked about
codes used Fortran. Perhaps scientists prefer Fortran be-
cause they’re productive when using it.

The Rise of Fortran95
One reason developers write new scientific applications in
Fortran95 is that it’s a natural language for expressing sci-
ence and engineering ideas. Computer scientists who dis-
parage Fortran are either thinking of Fortran66 or
Fortran77, or they’re just repeating what someone else has
told them. Very few of them are well versed in the details of
Fortran95, which is a modern, object-based language that’s
backward-compatible with Fortran77.

Fortran95 supports most C++ or Java features with the
notable exceptions of inheritance and dynamic polymor-
phism. In fact, Fortran95 arrays act like objects that contain
information about size, dimension, and stride; array syntax
permits powerful and expressive operations on these “ob-
jects.” Pointers support complex structures such as linked
lists, but alternatives such as allocatable and automatic ar-
rays are available for simple access to dynamic memory. The
developer can create classes with the module construct,
which strictly enforces type-checking and encapsulation. All
types are then resolved at compile time—runtime typing er-
rors can’t occur, so the debugging process speeds up. In
short, Fortran95 isn’t your grandfather’s FORTRAN!

A second reason for the scientific community’s preference
for Fortran is performance. Fortran compilers are very ma-
ture. Many compiler optimization techniques rely on safely
reordering instructions to take advantage of processor fea-
tures. A rather simple, primitive language by today’s stan-
dards, Fortran77 is relatively easy for compilers to analyze.
All array addressing in Fortran77 occurs via array indices;
in languages such as C, direct pointer arithmetic and the
possibility that different arguments can refer to the same lo-
cation (pointer aliasing) greatly complicate code analysis for
compilers. As a result, safe code reordering is much easier
to determine in Fortran77. (This isn’t to say that optimized
code isn’t possible in other languages, but you must be much
more of an expert to write it.)

Although Fortran95 introduces some features that might
degrade performance, it’s designed to retain much of For-
tran77’s high-performance advantage: you can still write
performance-critical, low-level subroutines in Fortran77
(to help the compiler optimize) and then call them from
Fortran95. This is extremely easy because the two lan-
guages are compatible.

Beneficial Features
Fortran’s object-based features are most useful when writ-
ing large, complex applications involving multiple au-
thors. As computers have grown more powerful, scientific
software has also become more ambitious and complex. In
earlier years, most scientific codes were written by indi-
viduals for their own research; collaborative scientific soft-
ware is a relatively recent development. Although
Fortran95 doesn’t support inheritance or dynamic poly-
morphism, developers can emulate these features in soft-
ware,1 if needed. Inheritance relies on a family of data
structures in which the children contain their parents’
data, much like Russian matryoshka dolls. Such structures
aren’t as widely needed in scientific application as in other

WHY FORTRAN?

By Viktor K. Decyk, Charles D. Norton, and Henry J. Gardner

A MONG MANY COMPUTER SCIENTISTS, FORTRAN IS AN F-WORD. YET, IT’S STILL THE

MOST WIDELY USED LANGUAGE IN SCIENTIFIC COMPUTING, ESPECIALLY WHEN HIGH

PERFORMANCE IS REQUIRED. WHY IS THIS SO?



JULY/AUGUST 2007 69

areas of computing, an observation that computer scien-
tists don’t always appreciate. Dynamic polymorphism de-
scribes the ability to use a single name to refer to a family
of types and procedures—such polymorphic types and
procedures are examples of abstractions. (It’s unfortunate
that C++ bundles the concepts of inheritance and poly-
morphism together. Java does not.) In scientific applica-
tions, we’ve found that polymorphic procedures are more
useful than inheritance; in Fortran, they’re emulated with
a case statement in a controlling procedure.

Computer scientists have gone beyond object-oriented
programming to consider how classes can be organized
into more abstract units. Specifically, these language-in-
dependent abstractions, called design patterns,2 organize
classes to solve recurring programming problems. A guid-
ing principle of design patterns is to avoid inheritance in
favor of object composition, which is fortunate for lan-
guages that naturally support the latter rather than the for-
mer. Although most design patterns were first formed in
nonscientific contexts, some are useful for science, and all
three of us—the authors of this article—have effectively
implemented them in our own scientific codes.3 The basic
idea behind design patterns is to encapsulate, in one place,
the variation and control of some important code capabil-
ity. Developers can then use the resulting polymorphic

procedures without making other procedures aware of
those choices.

In general, Fortran95 adopts new ideas conservatively, af-
ter they’ve proved themselves in use by trying to maintain
the high performance that’s so important to scientific cal-
culations. Fortran’s competition comes from high-level,
sometimes interactive, languages such as Matlab, Python,
or Mathematica, rather than from C++ or Java. This is nat-
ural: as computers become more powerful, some of the
problems that originally required high performance no
longer do. (The Macintosh on your desktop is more pow-
erful than the Cray C90 you used to use.) When this hap-
pens, the human interface becomes much more important
than performance. However, a great many problems of in-
terest in science and engineering won’t even be solved with
exaflop computers.

The Next Step
Fortran continues to evolve. The current standard, For-
tran2003,4 introduces full object-oriented support, stan-
dardized interoperability with C, and procedure pointers,
among other features, but compilers have been slow to ap-
pear. Fortran programmers are at the frontier of writing
massively parallel applications, so they’re attempting to en-
hance Fortran itself with features to support parallel com-
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A s a child, John Backus was unconcerned with either time
or money. Born into a wealthy Delaware family, he was a

restless youth with no clear focus or direction. Though he
was able to gain admission to the University of Virginia, he
did so badly in his studies that he was forced to leave the
school in 1943 and spent the remainder of the war as a
draftee in the army. He gained discipline only after he re-
turned from the war and enrolled in a mathematics program
at Columbia University. Mathematics led him to IBM. IBM in-
troduced him to computer programming, and computer
programming led him to think about the business of science.

By 1950, when Backus joined IBM, programming was be-
coming a serious economic problem. “The expense of oper-
ating a computing installation,” he observed, “is almost
equally divided between machine costs and personnel
cost.”1 Programmers had few tools to assist them in their
work, and most wrote their programs either in the basic
codes that controlled the machine or with an assembly lan-
guage that substituted simple names for those codes. IBM
had one of the few more advanced programming tools, a
system called Speedcode.

Speedcode consisted of an elementary language and a spe-
cial set of routines to handle scientific (floating-point) calcula-
tions, but it created bloated and inefficient programs. Backus
defended the system by conceding the problems with the fi-
nal code and then arguing that “Speedcoding reduces [over-
all] coding and testing time considerably,” and hence, “it will
often be the more economical way of solving the problem.”1

In 1953, Backus proposed that the company create an al-
ternative that could translate mathematical formulae into
computer code, a project that quickly acquired the name
Fortran. He felt the system would have to have a more ex-
pressive language than that of Speedcode and be more effi-
cient. If the “object program [was] only half as fast as its
hand coded counterpart, then acceptance of our system
would be in serious danger,” he conceded.1

The problem of producing efficient code wasn’t easily
solved. Backus’s Fortran compiler was a complicated system
that divided the source program into its fundamental units,
analyzed the connections between these units, and, from
this analysis, tried to create code that would make good use
of the machine. “We were often astonished at the surprising
transformation in the indexing operations and in the
arrangement of the computation which the compiler
made,” Backus recalled. “We would not have thought to
make [such changes] as programmers ourselves.”1
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puting. The proposed high-performance Fortran (HPF)
standard combined additions to Fortran90 with directives
for data distribution, but HPF’s performance was generally
worse than that obtained from message passing in For-
tran90; thus, support for it withered in the US. Neverthe-
less, work on HPF-J lives on in Japan: the Japanese Earth
Simulator has experienced performance with it that’s nearly
as good as that achieved with message passing.5 In the mean-
time, the desire to make parallel computing easier in For-
tran hasn’t abated in the US, and the Fortran standards
committee is currently evaluating co-Array Fortran—a par-
allel programming paradigm from Cray—for inclusion in
Fortran2008.6

One concern we often hear is that Fortran is rarely
taught to students anymore—any programming course
they take generally covers whatever language is in vogue at
the moment. Currently, this means Java, but the concerns
of computer science and scientific computing rarely over-
lap, so computational science students who need to learn
Fortran must do so on their own. They seem to pick it up
quite well, and it helps for computational science students
to be “multilingual.” Unfortunately, many computational
science students don’t know how to design complex pro-
grams in any language. We think that teaching design pat-
terns in scientific contexts would be a good approach to
solving this problem.

I n the early days of computing, scientific programming
dominated, and FORTRAN was king, but the world has

moved on: computers are now mostly used for tasks that
have very little to do with science, and other languages now

dominate. Nevertheless, scientific computing is still impor-
tant, especially on high-performance computers, and For-
tran still rules this niche for very good reasons.

For perspective, we close with some insightful quota-
tions about Fortran from Bjarne Stroustrup, the designer
of C++:7

It would be nice if every kind of numeric software could be writ-
ten in C++ without loss of efficiency, but unless something can
be found that achieves this without compromising the C++ type
system, it may be preferable to rely on Fortran... .

…

Fortran is harder to compete with. It has a dedicated following
who [...] care little for programming languages or the finer
points of computer science. They simply want to get their work
done.

…

I see C++ as a language for scientific computation and would like
to support such work better than what is currently provided. The
real question is not “if?” but “how.”

…

C++ was designed to be a systems programming language and
a language for applications that had a large systems-like
component.

…

A T  I S S U E

When Fortran was released in April 1957, it found quick ac-
ceptance among users of the IBM 704, the company’s big sci-
entific processor. At every site, a few individuals claimed that
they could write better code in assembly language, but the
majority found Fortran to be simpler and adequately efficient.
By 1960, other vendors had started to write their own Fortran
compilers; by 1964, the American Standards Association had
created a common definition of the language. Fifty years after
its creation, Fortran is still employed for scientific computation
and is one of the oldest computer artifacts still in use.

When Backus reviewed his creation, he concluded that the
language’s initial goals remained unfulfilled. The “plain fact
is that few languages make programming sufficiently chea-
per or more reliable,” he wrote in 1977. “There is a desper-
ate need for a powerful methodology to help us think about
programs and no conventional language even begins to
meet that need.”2 These claims were a bit of an overstate-
ment. Certainly, few people believed that the software of

1977 could have been produced with only the tools of ma-
chine code and assembly languages. Fewer still would
accept such an opinion in 2007. Nonetheless, Backus’s state-
ments point to a fundamental motivation for the develop-
ment of computer languages: the desire to make computing
less expensive.
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I am not among those who think that a single language should
be all things to all people.
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