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ABSTRACT  
 

  Rockets are central components to the furthering of space exploration and the 

advancement of human communication. In this project, rocketry was explored first theoretically 

and then experimentally in order to measure different variables and understand the effects of 

changing parameters on the flight of a model rocket. After the parameters of payload and total 

impulse were tested, the relationships between each factor and apogee were analyzed. Team 

Rocket began by deriving Tsiolkovsky’s Rocket Equation and utilizing the OpenRocket software 

to simulate rocket launches and test the aforementioned parameters. Scholars then constructed 

and launched model rockets to try to replicate the simulation data experimentally. Both 

simulation and experimental data confirmed that there was a negative, nonlinear correlation 

between payload and apogee where an increase in payload led to a decrease in apogee which was 

modeled by an exponential equation. Experimental data also supported a positive, logarithmic 

correlation between engine impulse and apogee. Overall, researchers concluded that optimal 

height can be achieved by maximizing impulse and reducing the payload as much as possible 

while maintaining the center of gravity above the center of pressure. 

 

INTRODUCTION AND HISTORICAL BACKGROUND 

 

Today’s advanced rockets have existed for just a fraction of the time that man has been 

firing self-propelled projectiles. Devices that could be classified as rockets in various forms have 

emerged in the world’s historical record for approximately a millennium; the underlying 

principles and physical models of rocket flight have been known for significantly longer. 

 

Over two thousand years ago, circa 400 B.C.E., Greek 

mathematician Archytas of Tarentum constructed a wooden pigeon 

suspended on a wire over a fire. The pigeon was filled with water and as 

the bird was heated, steam was forced through small apertures in the rear, 

causing the illusion of flight (1). Nearly three hundred years later, Greek 

engineer Hero of Alexandria created a device dubbed an aeolipile (Fig. 1) 

(1). 

 

This mechanism featured a sphere on an axle over a heated bath. 

The supports of the sphere were hollow, which allowed steam to fill it. 

Pressurized steam was then forced out of the L-shaped pipes. The sphere  
 

spun as a result of the fundamental action-reaction principle that would be  Figure 1: Hero’s aeolipile (1) 
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canonized more than fifteen hundred years later as Newton’s Third Law (2). This action-reaction 

principle is the foundation of modern rocketry, and of all previous advances in the field. 

 

The next notable advance in rocketry would not come for another two centuries. In 

China, alchemists worked tirelessly to combine perceived passive (yin) and active (yang) 

substances to create a youth drug (3). Eventually, they combined saltpeter, sulfur, and charcoal in 

proper proportions to form rudimentary gunpowder (2). This powder was the first instance of the 

chemical that would be refined into the black powder fuel that is standard in modern model 

rockets (2). In the twelfth century, the Chinese developed the first device that could justifiably be 

called a rocket. The ti lao shu (ground rat) was a self-propelled tube that shot along the ground 

and was used primarily to startle enemy troops in combat (3). 

 

In 1687, Newton famously published his Philosophiae Naturalis Principia Mathematica, 

which among other things outlined the Third Law of Motion, demonstrated by Hero some 

eighteen hundred years earlier (2). This law would again be confirmed in 1720 with an 

experiment performed on a car outfitted with a steam-powered motor (1). Nothing noteworthy 

would happen in the field of rocketry for another two centuries. 

 

 In the early twentieth century, three men—Tsiolkovsky, Goddard, and Oberth—

drastically furthered human understanding of rocketry. Tsiolkovsky discovered the equation 

which governs rocket-powered flight (2). Goddard performed many experiments with solid-fuel 

rockets in conjunction with meteorological surveys, but soon decided a liquid-fuel rocket would 

achieve higher altitudes much more efficiently (2). He additionally produced the first liquid-

powered rocket (Fig. 2) (1). 

 

Goddard also pioneered gyroscopic guidance systems, payload compartments for 

instruments, parachute recovery of instruments and rockets, and many other things which have  

 

earned him the name “Father of Modern Rocketry” (1). Oberth, the 

third pioneer, wrote extensively on the subject of rocketry. Because 

of his books, many amateur rocketry groups emerged around the 

world, developing into the model rocketry community that exists 

today (1). 

 

World War II featured landmark developments in rocketry 

under the guidance of Wernher von Braun and his team of 

researchers (3). Moreover, it forced rockets once again into the 

position of military tools rather than scientific instruments. 

Following the war, the United States and Soviet Russia entered into 

the Cold War. The Cold War featured, as a critical component, the 
Figure 2: Dr. Goddard posing with his 

liquid-fuel rocket (1) 
Space Race, which would compel the public’s interest in rocketry 

for years to come (2). 

 

From the Space Race came many important achievements, primarily in the formation of 

NASA and its Apollo space program. The Apollo missions combined elements that had already  
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been established—multi-staged rockets, liquid fuel, 

recoverable instruments—and combined them into 

the Saturn V rocket (Fig. 3) (2). The Saturn V was a 

vessel unmatched by anything else known to 

rocketry, ultimately proving powerful enough to 

carry several men to the moon and back.  

 

The Apollo missions—all flown in Saturn V 

rockets—formed the pinnacle of modern rocketry. 

Although space exploration via rocketry has been 

deemphasized at the public level, several private  

enterprises and amateur rocketeers around the world  

have continued on the trail paved by Archytas, the  Fig. 3: The Saturn V rocket (2) 

alchemists of China, Newton, von Braun, and the Apollo missions. From the humble beginnings 

of Archytas’s pigeon, rocketry has made possible both commercial and scientific enterprises: 

from the vast network of communications satellites to the Hubble Space Telescope, from space 

tourism to the International Space Station. 

 

ELEMENTS OF THEORY 

 

Mathematical Models of Rocket Trajectories 

 

Tsiolkovsky’s Rocket Equation 

 

One of the first mathematical models created to simulate the motion of rockets was 

formulated by Soviet scientist Konstantin Tsiolkovsky. A pioneer in what would eventually 

become astronautic theory, Tsiolkovsky first developed his equation in the idealistic setting of 

deep space, where external forces (i.e. aerodynamic drag and lift) do not exist. His equation was 

founded on the following idea: during a rocket’s flight, propellant from its thrust system is 

constantly ejected from the base of the rocket. The mass of the rocket, by consequence, is 

constantly changing throughout flight.  

 

Consider a rocket of mass   traveling at velocity   at time   in deep space. The rocket 

emits a quantity of mass     with ejection velocity   , producing a change in its momentum, 

  . 

 

Newton’s second law of motion relates the net force ∑   to a change in momentum such 

that: 

 

∑   
  

  
 (1.1) 

 

where the change in momentum is equivalent to: 

 

   ((     )(    )     (       )  (  )) (1.2) 

 



[1-4] 

 

Solving yields: 

 

             (1.3) 

 

The exhaust mass is equivalent to the mass lost by the rocket. Then, using        : 

 

∑    
  

  
   

  

  
 (1.4) 

 

In the theorized deep space setting, there are no external forces, and thus ∑    : 

 

   

  

  
  

  

  
 (1.5) 

 

Integrating and further simplifying yields: 

 

       (
  

 
) (1.6) 

 

where    represents the initial mass of the rocket and fuel. 

 

Tsiolkovsky’s equation (1.6), however, is clearly flawed for practical circumstances 

regarding rocket motion and launch. The forces of gravity and aerodynamic drag have significant 

implications on the rocket’s motion and flight path. Returning to Tsiolkovsky’s original 

assumption (1.4) and then including weight and drag produces:  

 

 
  

  
     

 

 
         

  

  
 (1.7) 

 

where    represents the coefficient of drag, which is experimentally derived,   represents 

the density of the air, and   represents the cross sectional area of the rocket. 

 

Developments in Gravitational Forces 

 

Although a closed form solution cannot be directly developed from equation (1.7) 

without the use of technology, this formula permits an appropriate model of the rocket’s motion, 

with the inclusion of real-world conditions.  

 

In order to better model the rocket flight, the gravitational components must be accounted 

for in Tsiolkovsky’s equation (1.6): 

 

       (
  

 
)     (2.1) 

 

 Assuming that the mass in relation to time is a linear function, let         where   

is defined as the change of mass in relation to the change in time and is experimentally 

equivalent to 3 grams per 0.7 seconds for an Estes A8-3 rocket. Simplifying: 



[1-5] 

 

 

 ( )       (  
  

  
)     (2.2) 

 

Then, integrating from     to the burnout time     : 
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Additional Developments in Drag Forces 

 

However, while equation (2.3) does factor in the alterations due to the gravitational 

forces, it still does not account for the additional force of drag. Beginning with (1.7), we assume 

that the thrust, or   
  

  
, is constant, and that the mass, given by        , is approximately 

equal to    throughout the flight. Then, substituting    for  , separating the variables, and then 

integrating from the start of flight to the time of engine burnout:  

 

∫
  

      
 
       

  
  

 

 ∫   
  

 

 (3.1) 

 

 Substituting constants   
 

 
     and         and then simplifying: 
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       (  √

 

 
) (3.2) 

 

 Generalizing the equation by setting      and  ( )    , isolating  ( ), and 

integrating: 

 

∫ √
 

 

  

 

    (
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 (3.3) 

 

 Simplifying forms a general approximation of the height traveled after   seconds of 

powered flight with constant thrust  : 

 

  ( )  
  

 
  (    (

√  

  
 )) (3.3) 

 

 Substituting the engine burnout time into this equation gives the height of the rocket 

when it has run out of fuel. To find the apogee of the rocket, an equation for motion in which the 

rocket moves only under the influence of gravity and air resistance must be generated, given by: 
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          (3.4) 

 

 Separating variables and integrating again, with integral bounds of the burnout event to 

the apogee event: 

 

∫
    

        

 

  

 ∫   
  

  

 (3.5) 

 

 Simplifying and rearranging the integral expressions produces the time after launch at 

which the rocket reaches apogee: 

       √
  

  
      (√

 

   
  ) (3.6) 

 

Developing a Closed-Form Expression for the Apogee 

 

 Continuing with the derivation of the time of the apogee point, the equation can be 

further manipulated to derive a formula for the height traveled by the rocket to apogee. 

Substituting the burnout velocity    from (3.2), finding an expression for the height of the rocket 

as a function of time, and then replacing the time of apogee will produce a calculation of the 

desired apogee. Generalizing the integral bounds from (3.5): 

 

     √
  

  
      (√

 

   
  )|

    ( )

     

 (4.1) 

 

 Isolating  ( ) while substituting    from (3.6): 

 

 ( )  √
   

 
   (√

  

  
(    )) (4.2) 

 

 Integrating this with respect to time and simplifying produces a final equation for the 

apogee of the rocket, defined as  (  ) to distinguish it from the function   ( ) deduced earlier 

for the powered segment of flight. Notice that   (  ), the height of the rocket at burnout, is 

referring to this derived function for powered flight. 
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 Substituting the previously derived expressions for   ,   , and   (  ) forms a general 

equation for the apogee of a rocket flying under the influence of gravity and air resistance in 

terms of the defined constants: 

 

 (  )  
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√  

  
  )√  

 

   
     (

√  

  
  )) (4.4) 

 

Aerodynamics and Stability  

 

Aerodynamics is the study of the motion of air especially with respect to moving or 

flying objects. Optimizing aerodynamics is crucial to the success of a model rocket. There are 

four forces acting on the model rocket: thrust—the force caused by the engine to move the rocket 

forward, weight---the gravitational force acting on the mass of the rocket, lift—the restoring 

force that stabilizes the rocket and helps control the motion of the flight, and drag—the 

aerodynamic force acting parallel to the relative wind (4). 

 

In model rocketry, there are two key points: the center of 

pressure and the center of gravity. The center of pressure is the 

point where all forces of pressure seem to be concentrated and 

where the drag and lift act upon. Weight and thrust act on the 

center of gravity, where all of the mass seems to be concentrated. 

The thrust pushes the rocket upward in its motion while the 

weight and drag act antiparallel to the direction of motion. The lift 

pushes the rocket in the direction of the wind for stabilization (4). 

In figure 4, the center of pressure is located below the center of 

gravity. Such a positioning is ideal for a model rocket.  

 

In the flight of a model rocket, it is crucial to control 

thrust and lift while minimizing drag. This could be easily done 

on the Alpha-type model rockets. These rockets had balsa wood 

fins, which made the drag easily manipulable through sanding and 

curving the fins. The Alpha fins were progressively sanded to 

have rounded edges, which are more aerodynamic. This made it 

easier for the wind to flow along the edge of the fin, giving the 

rocket less drag. The rocket was stabilized by the position of the 

center of pressure. In the rocket which partook in the mass 

variation study, the center of pressure was located at 19.05 

centimeters below the tip of the nose cone. The center of gravity 

was at 18.10 centimeters below the nose cone tip, without 

accounting for the mass of an engine. According to Bernoulli's 

principle, flowing fluid (i.e. air) travels faster along certain areas  

 

like the fins. The air pressure is thus reduced in these areas and 

causes the force of lift. Additionally, when a gust of wind blows 

horizontally, the rocket tips slightly. The fins have a larger 

surface area than the rest of the rocket and thus, the nose tips  

Figure 4: Four forces acting on a rocket in 

flight shown by arrows The blue circle is 

the center of gravity. The red circle is 
center of pressure (adapted from (1)) 
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against the wind. The lift however restores this because it tips the nose in the direction of the 

wind. Figure 5 shows how the lift affects the overall motion of the model rocket. If the lift and 

wind cancel each other out, the rocket will maintain a stable and neutral path. The restorative 

force can also make the rocket maintain an oscillation when the lift restores the shifts from the 

wind’s gusts. The final motion is unstable when the lift fails to stabilize the rocket or it 

destabilizes the rocket. This also occurs when the center of pressure is above the center of 

gravity. The center of gravity acts like a pivoting point and when the lift acts on the rocket rather 

than turning it slightly, it would flip the rocket. 

 

 

An interesting phenomenon with the 

center of gravity is that it shifts during rocket 

flight (4). The center of pressure, dependent on 

the surface and shape of the rocket, remains 

the same throughout the flight. The center of 

gravity changes as the mass changes in the 

rocket. Each engine induces a different center 

of gravity. The different engines vary in the 

amount of propellant they have and also the 

amount of mass. During flight, the propellant 

is used up and the parachute deploys. This 

deploying of the chute also decreases mass. 

The nose cone pops off, the chute is released, 

wadding is ejected, and altimeter is also 

pushed out in certain cases. Through one 

flight, the center of gravity changes a 

tremendous amount because the engine and 

altimeter weigh more than the rocket body 

itself. By using larger engines, the stability  
Figure 5: Possible model rocket flights representing stability These 

three paths are caused by differences in lift, wind, and center of 

pressure and gravity (4). 

 

changes much more through the course of a 

flight. 

 In modern rockets, various systems have been developed to control the stability of the 

rockets (5). Movable fins at the rear of the rocket are one form of this control. As the fins move 

and rotate, a torque is created around the center of gravity. This rotation allows for a steady 

oscillation in times of turbulence. Another form of stability is a gimbaled system, through which 

the exhaust nozzle can be turned. The thrust can be moved accordingly to the position of the 

center of gravity. Older rockets had additional rockets—known as vernier rockets—which would 

also generate torque around the rocket. Although model rockets do not have these mechanisms, it 

is interesting to note some of the methods used to control stability (6). 

 

Computer Simulation 

 

The open-source program OpenRocket by Sampo Niskanen (7) was used in this 

experiment to simulate rocket launches. The program required the parameters and dimensions of 

the parts, materials, and engines of a model rocket and output a simulation of the rocket in flight 

under ideal conditions. 
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The software modeled the four phases of 

rocket flight (Fig. 6). The first phase is the launch, 

during which the engine is ignited and the rocket is 

launched from the ground. Then, the rocket 

experiences powered flight. In this phase, the 

motor continues to power and accelerate the 

rocket. Next, the rocket enters coasting flight and 

glides without engine power until it reaches 

apogee. Finally, the recovery phase is the period in 

which the nose cone pops off and the parachute is 

deployed. The rocket then descends slowly and 

safely to the ground. 

 

Because the software accounted for these 

four phases, it provided a graph of altitude versus 

time, which could then be compared to the 

experimental data collected. It also gave ballpark 

estimates of the maximum height (apogee) and 

how long it would take to reach. 

 

 

Using the parameters of rockets in the 

OpenRocket software, the experimental launches 

were simulated. The major factors implemented  

Figure 6: This is a diagram of an ideal model rocket flight, 
showing the various stages of rocket flight: powered flight, 

coasting flight, apogee, and recovery. This was created by Team 

Rocket on Inkscape (adapted from (8)) 

during the real-world trials were accounted for in the models. 

 

The software allowed for modifications of the relative positions of various parts, and it 

displayed the location of the rocket’s center of gravity and center of pressure. OpenRocket also 

simulated the flights by going through the following process (7): first, the software initialized the 

rocket at a known position and orientation at time    . Next, it computed factors such as wind 

velocity, turbulence, airspeed, launch angle, wind direction, drag, motor thrust, and gravitational 

forces on the flight of the rocket. Then, moments of inertia and the mass of the rocket were used 

to calculate the linear and rotational acceleration of the rocket. Finally, the program integrated 

the equations of motion for the rocket’s position and orientation during a time step    and added 

this to the current time as such:     . 

 

One of the major variables tested during the experimental stage was the effect of mass on 

the model rockets’ apogee and flight. This was modeled by Niskanen’s software by adding a 

variable mass component to the body tube of the rocket. It was important to contain the majority 

of the mass to a central position located at the front of the body tube for balance, and the 

additional mass was added in this area during the actual field experiments. 

 

On OpenRocket, establishing a new configuration with a constant A8-3 Estes engine and 

altering the mass component by set intervals produced the following graph: 
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Figure 7: This graph shows simulated apogee as a function of rocket mass, showing a negative cubic regression. The data were taken 

from simulations on OpenRocket software. The graph was created by Team Rocket on Microsoft Excel. 

 

Figure 7 shows a negative association between the total rocket mass and the apogee of 

the rocket flight. The best-fit line shows a large coefficient of determination with a cubic fit. In 

addition, the lack of outliers demonstrates the relative strength of the relationship between the 

explanatory and response variables. The form of the distribution is curved convexly, but it is 

generally clear that larger masses will result in reduced flight apogees and that smaller masses 

will allow the rocket to reach higher heights.  

 

 In addition to observing the effect of mass on apogee, the effect of mass on acceleration 

was studied by analyzing frames in videos of the launches. The FBRD was launched four times 

with varied masses. The model rocket was launched first with no added mass (total mass of 

56.29 grams), then with an additional 10.56 grams, then with 20.46 grams more, and finally with 

an added 30.34 grams. Each of these launches was recorded using a high resolution camera with 

a frame rate of 24 frames per second. A custom meter stick was created in Autodesk Inventor 

Professional and Microsoft Paint, scaled based on a meter stick in the video, and then edited into 

each of the frames of the video. Then, starting from the beginning of the rocket’s liftoff, the 

rocket’s position in each later frame was recorded. These data points were then plotted and fitted 

to a third-degree polynomial. The data show that the heavier the rocket, the shallower the curve 

of its position-time graph (Fig. 8). This demonstrates that successively adding mass to rockets 

will consistently decrease the initial launch acceleration. 

 

 
Figure 8: This graph shows height reached as a function of time, meant to show acceleration, showing a positive cubic regression. The 

experimental data was analyzed via video editing software. The graph was created by Team Rocket on Microsoft Excel. 
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 Another parameter that could be modeled using OpenRocket was the model of engine 

used during the launch. The Estes engines differ in three main features, characterized by the 

classification of the model rocket engine. For example, an Estes A8-3 rocket has an average 

thrust of 8 Newtons with a 3 second firing delay. The “A” in the rocket name refers to the 

strength of the impulse; an “A” engine has an impulse of 2.5 Newton-seconds, and each 

subsequent letter type has a doubled impulse (e.g. a “C” engine has an impulse four times as 

strong as an “A” engine). These parameters can also dramatically affect the flight patterns of the 

model rockets, which can also be simulated by the OpenRocket software. Continuing with 

Niskanen’s sample model rocket, the effects of various changes on the apogee were examined: 

 

 
Figure 9: This table shows apogee by engine type, using OpenRocket simulations and Equation 4.4. 

The table was created by Team Rocket on Microsoft Word.  

 

Figure 9 shows that, in both OpenRocket simulations and calculations of equation (4.4), 

any increases in impulse are associated with significant increases in apogee. In fact, the increase 

from “A” (2.5 N-s) engines to “B” (5 N-s) engines caused the apogee to more than double in 

both the simulation and the equation. For all three engines, the equation apogee was less than the 

corresponding apogee in the OpenRocket simulation. This is because the simulations on 

OpenRocket use a different method of predicting apogee than equation (4.4). 

 

EXPERIMENTAL DESIGN 
 

The OpenRocket simulations were used to test the parameters affecting rocket flight. The 

aspects of the Estes model rockets were measured and varied in the software parameters. With 

these quantifications, OpenRocket estimated the apogees of the specific rocket designs; these 

estimates were then compared to observed measurements during experimental launch. 

 

There were three different models of rockets used in the experiment. Despite the slight 

differences in parameters such as number and composition of fins, diameter, and length, each 

model met certain basic requirements. Each was comprised of a removable polystyrene nose 

cone, a primary cardboard body tube, and a cardboard inner tube containing the engine. The solid 

propellant in each engine was black gunpowder. Fins were made of smooth cardboard, 

polystyrene, or balsa wood. There were three models of rockets used: the Generic E2X, the 

Viking, and the Alpha. The Generic E2X rockets used preassembled sets of four trapezoidal fins 

and were the largest of the three models. The Viking rockets had up to five cardstock fins that 

were easily customizable, but needed to be attached with glue. The Alpha rockets had three balsa 

wood fins that could easily be sanded to add curvature. Each rocket also had an engine block to 

prevent the engine from moving during launch, a rubber shock cord to attach the nose cone to the 

body tube, a launch lug through which the metal rod of the launch pad was threaded, and a 

plastic parachute or streamer to prevent damage to the rocket during recovery. 

 

After the construction and simulation of the model rockets, preparations for launch were 

made in an open field. The longest diagonal on the field was measured and the launch equipment 



[1-12] 

 

was placed at its midpoint. A launch pad was set up at this midpoint with observers stationed at 

the ends of the diagonal. Their tasks were to measure the angle of elevation of the rocket at 

apogee with AltiTrak angle-measuring devices; these angles were used in combination with the 

distance of the observer from the rocket to calculate the apogee. The launch pad had a metal rod 

which was threaded through the launch lug of the rockets to provide a more vertical launch. 

Parallel to this metal launch rod, a two-meter stick was set up. Two or three timers measured the 

time taken to reach apogee to the nearest hundredth of a second. 

 

To launch the rockets, an engine was inserted into the inner tube through the bottom with 

the nozzle facing outwards. An altimeter, which measures height in comparison to relative air 

pressure, was inserted through the top of the rocket, behind the nose cone to measure apogee. 

Each rocket had three ⅛ inch holes drilled into the body to facilitate the measurement of 

pressure. Wadding, made of thin paper, was also inserted into the rocket above the engine to 

prevent heat damage to the altimeter and body tube. An igniter was inserted into the engine and 

connected to a launch controller. Then, the metal rod was threaded through the launch lug and 

the rocket was placed on the launch pad. Finally, the fuse was ignited from several meters away 

using a launch controller. The operation of the engine allowed the flight of the rocket to be 

separated into four phases as described earlier. By analyzing individual frames from the video 

recording of the launch, the acceleration at liftoff was calculated using the two-meter stick as a 

reference for distance and individual frames as a reference for time. 

 

RESULTS AND ANALYSIS 
 

Variation of Rocket Mass 

 

One aspect of this study was to experimentally determine the effects of the rocket’s mass 

on its apogee. Two different model rockets were each launched four times with different masses 

added to each flight. The masses were added to the rocket by lead shots, which were placed 

within the hollow nose cone. Lighter weights—ranging from zero to ten grams—were added to 

one rocket, and heavier ones—up to thirty grams—were added to another. As the compositions 

of the rockets were not entirely similar, the two data sets were examined separately. The first 

model rocket examined, The Firefly, produced the progression as seen in Figure 10.  

 

 
Fig 10: Apogee vs. Lighter Masses. This graph shows the trend in lighter masses. Also can be seen is 

the comparison with theoretical predictions. The theoretical equation under predicts the apogees. 
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The expected points come from calculations made using equation (4.4) with the 

dimensions of The Firefly and data  from ThrustCurve.org (9). In this case the expected points 

follow a widely different trend than the general trend of the data. Error in this regard was 

expected due to the simplifying assumptions made in deriving equation (4.4); however it is not 

clear that the wide variation between the data and the expected points can be entirely explained 

by these approximations. In addition to contradicting the OpenRocket simulation based on mass 

and the results of equation (4.4), these initial results of the variation of mass were inconclusive. 

While it was expected for the apogee to continuously decrease as more mass was added, there 

were several possible experimental errors that may have affected the data. The rightmost point 

(67.6, 55.33) may be a result of these errors; the probable outlier lies out of the general trend of 

the graph, and makes the overall strength of the scatterplot relatively weak. Another possible 

source of error is a technical difficulty that was encountered; during the fourth launch of the 

Firefly, the ejection charge of the engine caused the shock cord to snap, allowing the recovery 

system with the altimeter to be launched significantly higher than the apogee of the Firefly. This 

would have caused a higher-than-accurate measured apogee on the altimeter.  

  

In order to more closely examine the effects of mass on the apogee, the team conducted 

another study by launching a different rocket, the FBRD. Over four launches, lead shot was 

added to the nose cone of the FBRD to increase its mass by increments of ten grams. The 

progression is plotted in figure 11. The experimental, simulated, and theoretical are plotted in 

figure 11 and noted in figure 12. From figure 12, it can be seen that the theoretical predictions 

are much closer to the experimental than are the simulated. 

 

 
Fig. 11: Apogee as a function of rocket mass. The experimental, theoretical and, simulated points are plotted. 

 

These data are more consistent with what the simulation and equation (4.4) predict for the 

apogee as a function of mass. With lighter masses, external sources of error (e.g. wind) had a 

much greater effect on the data, but the heavier masses lessened the effects of these factors, thus 

yielding more fitting data. These data therefore show that while the addition of mass stabilizes 

rocket flight and makes it less susceptible to external factors, increasing mass generally 

decreases apogee. Thus, rocket scientists must find a delicate balance for mass in that a rocket 

must be heavy enough for stable flight, but light enough to reach the intended apogee. The fit 

shows that greater mass decreases the apogee. The negative non-linear association roughly 
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follows the trend predicted by equation (4.4), though the data are clearly offset to some degree 

from these expected values. This offset can likely be explained by the simplifying assumptions 

made in deriving equation (4.4) but is not large enough to suggest an entire inconsistency 

between our observations and predictions. 

 

 
Fig. 12: Comparison of experimental, theoretical, and simulated apogees. This chart compares the 

field results with predicted results, showing the accuracy of these measures.  

 

The overall study of mass versus apogee showed that the two variables—explanatory and 

response—have a negative association under ideal conditions. While there were exceptions in 

specific circumstances when the external forces overruled the addition of mass, the general trend 

between was clear. Moreover, we can observe explicit similarities between the simulation in 

Figure 7 and the above two graphs. Both the simulated data and collected data show that mass 

and apogee have an exponential relationship.  

 

Variation of Engine Type 

 

The study was further concerned with discerning how changing the engine specifications 

in a given rocket would affect its apogee. This aspect of rocket flight was investigated by 

considering the apogees reached by a single rocket launched using three different engine types: 

the A8-3, the B6-4, and the C6-3. The Alpha rocket The Survivor was used to gather the data. 

Each engine has its own specifications. Figure 13 shows a graph of theoretical expectations and 

experimental data for the apogee of the rocket as a function of engine impulse. The overall fit is 

logarithmic, with a positive association between the engine impulse and apogee. 

 

 
Fig. 13: Apogee as a function of impulse. 
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Plotting the impulse versus apogee data shows a non-linear, positively associated 

relationship. The least squares regression line for this graph is:  

 

 ̂                   
 

where  ̂ represents the expected apogee values and   represents the strength of the 

impulse. The residual sum of squares for this regression analysis is 41.29, indicating a very good 

fit. With this regression line, predictions can be made for different types of engines that we did 

not use. Statistically, caution must be taken because of extrapolation beyond the range of the data 

points.  

 

Predictions for Larger Engine Types 

 

 
Figure 14: Predictions for Larger Engines—Impulse vs. Apogee 

 

Figure 14 above shows predictions up to a G engine. This however does fail to account 

for various possible factors such as the changes in relationship beyond a certain engine size. 

Furthermore, as the engine itself gets larger, it will need a larger rocket. Thus these predictions 

can only be seen as a crude depiction of what may occur. The 20 N-s and 40 N-s approximations 

are much more reliable because of their proximity to the actual data set. However, the 80 and 

160 N-s estimations may not be as accurate. 
 

CONCLUSIONS 
 

 The goal of this experiment was to measure the effects of changing parameters on the 

flight patterns of a model rocket and to be able to use functions to accurately predict the extent of 

these effects on future launches. In addition to measuring the correlation of mass with both 

apogee and initial acceleration, the relationship between engine impulse and apogee was also 

explored. Rocket mass and apogee have a nonlinear, inverse relationship which can be modeled 

by an exponential function. In some cases, external forces such as wind overpowered the effects 

of mass; despite this, it is clear that increasing mass decreases apogee. Additionally, increasing 

the payload of the rocket decreases its initial acceleration. The position of a rocket with a given 

mass and engine type can be modeled by a cubic polynomial function, and engine type and 

apogee have a logarithmic relationship. Overall, it can be established that implementing engines 

with stronger impulses yields in higher launches. Therefore, to optimize apogee, scientists should 

construct rockets in a manner that minimizes mass yet maintains a distribution of mass such that 

the rocket remains stable in flight. Furthermore, it is evident that the most aerodynamic rocket 

designs must be both light and have an engine with a large impulse, which is in accordance with 

the derived rocket apogee equation. 
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