Grupo de pesquisa:

CFD, propulsão e aerodinâmica de foguetes

(CFD/UFPR) – junho/2002

21 Nov 2019

Laboratórios (100 m²): Lena 1: alunos Lena 2: professores

Localização: salas 7-30 e 7-31 do DEMEC/TC

Equipamentos principais: 23 computadores (192 GB, Xeon, 12 núcleos) 1 impressora laser

PESQUISADORES atuais (9)

Do DEMEC/TC/UFPR (2): Prof. Carlos Henrique Marchi (líder) Prof. Luciano Kiyoshi Araki

De outras instituições (7): UFPR e outras = 2 (Geovani e Nicholas) UTFPR = 2 (Guilherme e Cosmo) UP = 2 (Diego e Alysson) UNICENTRO = 1 (Martins) **COLABORAÇÕES** passadas e atuais: 7

UNICENTRO

ORIENTANDOS atuais no DEMEC/TC/UFPR: 22

IC = 2 TG = 2

 $M = 9 \qquad D = 8$

PD = 0 estágio = 1

ORIENTAÇÕES concluídas no DEMEC/TC/UFPR, $2002 \rightarrow: 101$

	2
$\Box = 21$	

<mark>ر 1</mark>			1
) —	- /
			- 🚄 📕

PD = 1 outros =

Métodos usados na engenharia

Linhas de pesquisa

- Propulsão de foguetes
- Aerodinâmica de foguetes
- Otimização de métodos numéricos
- Verificação e validação de soluções numéricas

Modelos matemáticos

Equações (1D/2D/3D/t): Laplace Poisson Fourier Advecção-difusão Burgers Euler **Navier-Stokes** Turbulência

Metodologia

- Métodos numéricos:
 - Diferenças finitas
 - **Volumes Finitos**
- Ordem das aproximações numéricas: 1, 2, 3 e 4
- Tipos de malhas:
 - Uniformes e não uniformes
 - Quadradas e triangulares
 - Estruturadas e não estruturadas
 - Não ortogonais
- Solvers: GS, TDMA, PDMA, ADI e MSI com multigrid
- Linguagem de programação: Fortran 90

Aerodinâmica

Escoamento supersônico sobre um cone

Ar sobre cone (L/D = 3): campo p

Ar sobre cone (L/D = 3): C_{Df}

M Re Exp Mach2D

3 4,00 x 10⁶ 0,084 \pm 0,003 0,08406 \pm 0,0007

4 2,16 x 10⁶ 0,078 \pm 0,005 0,07779 \pm 0,0009

5 1,05 x 10⁶ 0,076 \pm 0,005 0,07556 \pm 0,0009

Escoamento supersônico sobre um cone

brasileiro

Foguete VS-30 (IAE) em túnel de vento

Ar sobre o foguete VLS

Motor-foguete SSME e Space Shuttle

Esquema de motor-foguete bipropelente com refrigeração regenerativa

Detalhes dos canais de refrigeração

Motor-foguete

Vulcain do

Ariane V

Motor Vulcain (Ariane V)

- F(nivel do mar) = 103 tf
- Tw-max = 750 K
- To = 3.500 K
- Po = 100 atm
- $q''max = 60 MW/m^2$
- Canais = 360
- Altura = 9,5 a 12 mm
- Largura = 1,3 a 2,6 mm

Modelos físicos para escoamento na tubeira

1: Gás com propriedades constantes

2: Gás com propriedades variáveis

3: Gases congelados

4: Gases em equilíbrio químico local

5: Gases com taxa finita de reação

a) invíscido

b) laminar

c) turbulento

Escoamento reativo 2D laminar

$$C^{\phi} \left[\frac{\partial}{\partial t} (\rho \phi) + \frac{\partial}{\partial x} (\rho u \phi) + \frac{1}{r} \frac{\partial}{\partial y} (r \rho v \phi) \right] = \frac{\partial}{\partial x} \left(\Gamma^{\phi} \frac{\partial \phi}{\partial x} \right) + \frac{1}{r} \frac{\partial}{\partial y} \left(r \Gamma^{\phi} \frac{\partial \phi}{\partial y} \right) + P^{\phi} + S^{\phi}$$

Equação	ϕ	C^{ϕ}	Γ^{ϕ}	P^{ϕ}	S^{ϕ}
Massa	1	1	0	0	0
QML-x	и	1	μ	$-\frac{\partial p}{\partial x}$	$\frac{1}{3}\frac{\partial}{\partial x}\left(\mu\frac{\partial u}{\partial x}\right) + \frac{1}{r}\frac{\partial}{\partial y}\left(\mu\frac{\partial v}{\partial x}\right) - \frac{2}{3}\frac{\partial}{\partial x}\left[\frac{\mu}{r}\frac{\partial}{\partial y}(rv)\right]$
QML-y	v	1	μ	$-\frac{\partial p}{\partial y}$	$\frac{1}{3r}\frac{\partial}{\partial y}\left(r\mu\frac{\partial v}{\partial y}\right) + \frac{\partial}{\partial x}\left(\mu\frac{\partial u}{\partial y}\right) - \frac{2}{3}\frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right) - \frac{4}{3}f\frac{u}{r^2}v - \frac{2}{3r}fv\frac{\partial \mu}{\partial y}$
Energia	Т	\mathcal{C}_p	k	$\frac{\partial p}{\partial t} - uP^u - vP^v$	$2\mu \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + f \left(\frac{v}{r} \right)^2 \right] + \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 - \frac{2}{3} \mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + f \frac{v}{r} \right)^2 + S_{eq/tf}$
Espécies	Y_i	1	0	0	\dot{w}_i

Escoamento reativo 2D laminar

Equilíbrio químico local

$$S_{eq/tf} = -\frac{\partial}{\partial x} \left(\sum_{i=1}^{N_e} \rho h_i Y_i u \right) - \frac{1}{r} \frac{\partial}{\partial y} \left(\sum_{i=1}^{N_e} r \rho h_i Y_i v \right)$$

Taxa finita:

$$S_{eq/tf} = -\sum_{i=1}^{N_e} h_i \dot{w}_i \qquad p = \sum_{i=1}^{N_e} p_i$$

$$c_p = \sum_{i=1}^{N_e} Y_i (c_p)_i$$
 $R = \sum_{i=1}^{N_e} Y_i R_i$ $p = \rho R T$

Modelos químicos para H_2/O_2

9 equilíbrio e 6 taxa finita

Modelo	Número de reações	Número de espécies	Espécies envolvidas
0	0	3	H_2O, O_2, H_2
1	1	3	H_2O, O_2, H_2
2	2	4	H ₂ O, O ₂ , H ₂ , OH
3	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H
4	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H
5	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H
7	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H
10	6	8	$H_2O, O_2, H_2, OH, O, H, HO_2, H_2O_2$
9	18	8	$H_2O, O_2, H_2, OH, O, H, HO_2, H_2O_2$

Malha 56x20, Mach2D, invíscido

Malha 56x50, Mach2D, laminar

Mach2D, 224x80/200, p parede

Propulsão

Mach, invíscido, 720x80, CDS-2, Mach2D

Mach, invíscido, 1792x640, Mach2D

Mach, invíscido, 1792x640, Mach2D

Mach, invíscido, 1792x640, Mach2D

Otimização de métodos numéricos

- Métodos *multigrid* geométricos e algébricos
- Aproximações numéricas
- Multiextrapolação de Richardson
- Programação //, *solvers* etc

Otimização do Mach2D com //

- v, L, N
- Solver
- Operadores de transferência

- Ciclos
- FAS x CS
- GMG x AMG
- MG x FMG

Efeito de *v* sobre o tempo de CPU FAS-FMG e *solver* GS-Lex em VF

Efeito de *L* sobre o tempo de CPU FAS-FMG e *solver* GS-Lex em VF

Efeito de N sobre o tempo de CPU FAS-FMG e *solver* GS-Lex em VF

Laplace 2D em DF com CDS-2

Multigrid em 1 ou 2 equações

MER em Tc, Advecção-difusão 1D, VF

h

$$\mathbf{PER}$$

$$f(\phi) = (\phi) - (\phi)$$

$$f(\phi) = (\phi) - (\phi)^{p_0} + (\phi)^{p_1} + (\phi)^{p_2} +$$

Tabela de MER

g \ m	0	1	2	3	4
1	1,0				
2	2,0	2,1			
3	3,0	3,1	3,2		
4	4,0	4,1	4,2	4,3	
5	5,0	5,1	5,2	5,3	5,4

Malhas quadradas e triangulares

•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•

h

h

Verificação e validação de soluções numéricas

- Verificar códigos e soluções numéricas
- Validar soluções numéricas
- Avaliar e desenvolver estimadores de erros numéricos
- Gerar resultados numéricos de referência
- Incerteza dos dados da simulação

Tipos de erros

V&V: estimador de erro para MER

Poisson 1D, DF, T(3/4) nodal, CDS-2

Benchmark da cavidade 2D

Ref.	Ref. Re = 100			Re = 400				Re = 1000	
	-Ψ _{min}	x	У	-ψ _{min}	x	у	-Ψ _{min}	x	у
2	0.1022			0.1017					
3	0.1034						0.114		
4							0.1193		
5	0.103423	0.6172	0.7344	0.113909	0.5547	0.6055	0.117929	0.5313	0.5625
6	0.10330	0.61667	0.74167	0.11399	0.55714	0.60714	0.11894	0.52857	0.56429
7	0.1034	0.6188	0.7375	0.1136	0.5563	0.6000	0.1173	0.5438	0.5625
9	0.103506	0.6094	0.7344				0.119004	0.5313	0.5625
10	0.1030	0.6196	0.7373	0.1121	0.5608	0.6078	0.1178	0.5333	0.5647
11	0.103519	0.6157	0.7378				0.118821	0.5308	0.5659
12							0.1157		
13	0.10330			0.11389			0.118930		
14							0.1189366	0.5308	0.5652
15	0.103511	0.617187	0.734375				0.118806	0.531250	0.562500
17	0.103	0.6125	0.7375	0.113	0.5500	0.6125	0.117	0.5250	0.5625
16							0.118942	0.5300	0.5650
18							0.11892	0.53125	0.56543
CFD2009	0.1035212	0.61621	0.73730	0.11398887	0.55371	0.60547	0.118936708	0.53125	0.56543
CFD2016							0.1189366104	0.5307901165	0.56524055

Re = 10, **Ref. 2:** -*ψmin* = 0.0999; **Present:** -*ψmin* = 0.1001132

Otimização de métodos numéricos

Comparisons of *uc* with other authors for the problem 4.

Type II-2D variable, with 2D polynomial interpolation, p = 1.

Reference	ис	U	p_{U}
[23]	-0.06080		
[24]	-0.0620561		
[6]	-0.0620		
[25]	-0.06205		
[7]	-0.0620561	±6E-07	2.07
Present	-0.06205613519461	-3E-14	9.41

Navier-Stokes 2D, VF, CDS-2 com MER Problema clássico da cavidade quadrada com tampa móvel

Agradecimentos (financiadores):

Para interessados em IC, TG, M, D, PD, colaborações:

www.cfd.ufpr.br

www.foguete.ufpr.br

chmcfd@gmail.com