
 Practical 

Information on 

Gears

This chapter provides fundamental theoretical and practical information about gearing.  It also introduces various gear-related 

standards as an aid for the designer who is going to use gears for his planning.   
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Practical Information on Gears

Intentional deviations from the involute tooth profile are used to 
avoid excessive tooth load deflection interference and thereby 
enhances load capacity.  Also, the elimination of tip interference 
reduces meshing noise.  Other modifications can accommodate 
assembly misalignment and thus preserve load capacity.

(1) Tooth Tip Relief

There are two types of tooth relief.  One modifies the 
addendum, and the other 
the dedendum.  See Figure 
1.1.  Tip relief is much 
more popular than root 
modification.
Care should be taken, 
however, not to modify 
excessively since that will 
cause bad effect in meshing.

(2) Crowning and End Relief

Crowning and end relief are tooth surface modifications in the 
axial direction.  
Crowning is the removal of a slight amount of tooth from the 
center on out to reach edge, making the tooth surface slightly 
convex.  This method allows the gear to maintain contact in the 
central region of the tooth and permits avoidance of edge contact 
with consequent lower load capacity.  Crowning also allows a 
greater tolerance in the misalignment of gears in their assembly, 
maintaining central contact. The crowning should not be larger 
than necessary as otherwise it would reduce dimentions of tooth 
contact, thus weakening durable strength.
End relief is the chamfering of both ends of tooth surface.  See 
Figure 1.2.
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(3) Topping And Semitopping

In topping, often referred to as top hobbing, the top or tip 
diameter of the gear is cut simultaneously with the generation 
of the teeth. See page 387 "The Generating of a Spur Gear". 
Also, refer to Figure 3.5, 3.6 and 3.7 in that section. An 
advantage is that there will be no burrs on the tooth top.  Also, 
the tip diameter is highly concentric with the pitch circle. 
Semitopping is the chamfering of the tooth's top corner, which 
is accomplished simultaneously with tooth generation.  Figure 
1.3 shows a semitopping cutter and the resultant generated 
semitopped gear. Such a tooth tends to prevent corner damage.  
Also, it has no burr.  The magnitude of semitopping should not go 
beyond a proper limit as otherwise it would significantly shorten the 
addendum and contact ratio.

Figure 1.4 specifies a recommended magnitude of semitopping 
They are independent modifications but, if desired, can be 
applied simultaneously.

1 GEAR TOOTH MODIFICATIONS

Fig. 1.1 Tip relief

Fig. 1.2 Crowning and end relief

Crowning End relief

Fig.1.3 Semitopping cutter and the gear profile generated

Teeth form of semitopping cutter Semitopped teeth form

Fig.1.4 Recommended 
magnitude of 
semitopping
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(1)  Relationship Among the Gears in a Planetary Gear System
In order to determine the relationship among the numbers of 
teeth of the sun gear A (za), the planet gears B (zb) and the 
internal gear C (zc) and the number of planet gears (N) in 
the system, the parameters must satisfy the following three 
conditions:

 Condition No.1:           zc = za + 2 zb                                                         (2.1)

This is the condition necessary for the center distances of 
the gears to match.  Since the equation is true only for the 
standard gear system, it is possible to vary the numbers of 
teeth by using profile shifted gear designs.

To use profile shifted gears, it is necessary to match the 
center distance between the sun A and planet B gears, a1, 
and the center distance between the planet B and internal C 
gears, a2.
                                     a1  = a2 (2.2)

Condition No.2:                              = Integer (2.3)

This is the condition necessary for placing planet gears 
evenly spaced around the sun gear.  If an uneven placement 
of planet gears is desired, then Equation (2.4) must be 
satisfied.

                                                          = Integer (2.4)

Where θ : half the angle between adjacent 
planet gears (°      )
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2.1  Planetary Gear System

  The basic form of a planetary gear system is shown in Figure 
2.1.  It consists of a sun gear A, planet gears B, internal gear C 
and carrier D.

The input and output axes of a planetary gear system are 
on a same line.  Usually, it uses two or more planet gears to 
balance the load evenly.  It is compact in space, but complex 
in structure.  Planetary gear systems need a high-quality 
manufacturing process.  The load division between planet gears, 
the interference of the internal gear, the balance and vibration of  
the rotating carrier, and the hazard of jamming, etc. are inherent 
problems to be solved.
Figure 2.1 is a so called 2K-H type planetary gear system.  The 
sun gear, internal gear, and the carrier have a common axis.

2 GEAR TRAINS

N
za + zc

180
( za  + zc )θ

Fig.2.1  An example of a planetary gear system

Sun gear A

Carrier D

Internal gear C

Planet gear B

za =16

zb = 16

zc = 48

Fig.2.2 Conditions for selecting gears
Condition No.1 of planetary 

gear system

Condition No.2 of planetary 
gear system

Condition No.3 of planetary 
gear system

C
C

C

B BA

B B

A

B B

A

zb m za m zb m

zc m

a1 a2
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θ

a 1

 



Practical Information on Gears

No.

5

Condition No.3        zb +2 < (za +zb) sin                       (2.5)

Satisfying this condition insures that adjacent planet 
gears can operate without interfering with each other.  
This is the condition that must be met for standard gear 
design with equal placement of planet gears.  For other 
conditions, the system must satisfy the relationship:
                           dab< 2a1 sin θ (2.6)
Where:

    dab : tip diameter of the planet gears
     a1   : center distance between the sun and 

planet gears
Besides the above three basic conditions, there can be 
an interference problem between the internal gear C and 
the planet gears B.  See Section 4.2  Internal Gears (Page 
394).  

(2) Transmission Radio of Planetary Gear System 
 In a planetary gear system, the transmission ratio and the 
direction of rotation would be changed according to which 
member is fixed.  Figure 2.3 contain three typical types of 
planetary gear mechanisms,

   Transmission  ratio =                       =                                        (2.7)

Note that the direction of rotation of input and output axes 
are the same.  Example:  za = 16,  zb = 16,  zc = 48, 
then transmission ratio = 4.

(b) Solar Type 

In this type, the sun gear is fixed.  The internal gear C is the 
input, and carrier D axis is the output.  The speed ratio is 
calculated as in Table 2.2.

   Transmission  ratio =                         =                                   (2.8)

Note that the directions of rotation of input and output axes 
are the same.
Example:  za =16,  zb =16,  zc = 48,
then the transmission ratio = 1.3333333

(c) Star Type 

This is the type in which Carrier D is fixed. The planet gears 
B rotate only on fixed axes. In a strict definition, this train 
loses the features of a planetray system and it becomes an 
ordinary gear train. The sun gear is an input axis and the 
internal gear is the output. The transmission ratio is :

   Transmission Ratio = -                       (2.9)

Referring to Figure 2.3(c), the planet gears are merely idlers. 
Input and output axes have opposite rotations.
Example:  za =16,  zb =16,  zc= 48; 
then transmission ratio = -3 .

Table 2.1 Equations of transmission ratio for a planetary type

1

2

3

Description

Rotate sun gear 
a once while 
holding carrier
System is fixed 
as a whole while 
rotating 

Sum of 1 and 2

Sun gear A
za

+ 1

    +

    1 +

Planet gear B
zb

  -

    +   

-

  -

    +  

0
(fixed)

Carrier D

0

    +

    +

No.

Table 2.2 Equations of transmission ratio for a solar type

1

2

3

Description

Rotate sun gear 
a once while 
holding carrier
System is fixed 
as a whole while 
rotating 

Sum of 1 and 2

Sun gearA
za

+1

-1

0
(fixed)

Planet gearB
zb

 -

  - 1

 -  -1

Internal gearC
zc

 -

- 1

 -   -1

Carrier D

0

- 1

- 1

N
 180°

Fig.2.3  Planetary gear mechanism

C(Fixed)

D

B

A

B B

D
D(Fixed)

C C

A(Fixed) A

(a) Planetary type (b) Solar type (c) Star type

zc

za

zc

za
zb

za
zc

za

zc

za

zc

za
zc

za
zc

za

zc

za
zb

za

zb

za
zc

za

zb

za

zc

za

zc

za

1+

zc

za

zc

za

za

zc +1

1

zc

za

-1

- -1 zc

za + 1

1

(a)  Planetary Type

In this type, the internal gear is fixed.  The input is the sun gear 
and the output is carrier D.  The transmission ratio is calculated 
as in Table 2.1.

Internal gearC
zc
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2.3 Constrained Gear System

A planetary gear system which has four gears is an example of 
a constrained gear system.  It is a closed loop system in which 
the power is transmitted from the driving gear through other 
gears and eventually to the driven gear.  A closed loop gear 
system will not work if the 
gears do not meet specific 
conditions.

Let z1, z2 and z3 be the 
numbers of gear teeth, as in 
Figure 2.5.  Meshing cannot 
function if the length of 
the heavy line (belt) does 
not divide evenly by pitch.  
Equation (2.11) defines this 
condition.

           +                    +         = integer       (2.11)

F igure  2 .6  shows  a 
constrained gear system 
in which a rack is meshed.  
The heavy line in Figure 
2.6 corresponds to the belt 
in Figure 2.5.  If the length 
of the belt cannot be evenly 
divided by pitch then the 
system does not work.  It 
is described by Equation 
(2.12).

           +                    +       = integer         (2.12)

2.2 Hypocycloid Mechanism

In the meshing of an internal gear and an external gear, if the 
difference in numbers of teeth of two gears is quite small, a 
profile shifted gear could prevent the interference.  Table 2.3 is 
an example of how to prevent interference under the conditions 
of z2 = 50 and the difference of numbers of teeth of two gears 
ranges from 1 to 8.

Table 2.3  The meshing of internal and external gears 
       of small difference of numbers of teeth

 

All combinations above will not cause involute interference or 
trochoid interference, but trimming interference is still there. 
In order to assemble successfully, the external gear should be 
assembled by inserting in the axial direction. A profile shifted 
internal gear and external gear, in which the difference of 
numbers of teeth is small, belong to the field of hypocyclic 
mechanism, which can produce a large reduction ratio in single 
step, such as 1/100.

     Transmission ratio = (2.10)

In Figure 2.4 the gear train has a difference of numbers of teeth 
of only 1;  z1 = 30 and z2 = 31.  This results in a transmission 
ratio of 30.

46
m = 1, α = 20°

z1

x1

z2

x2

αb

a
ε

49

0

50

1.00 0.60 0.40 0.30 0.20 0.11 0.06 0.01

61.0605° 46.0324° 37.4155° 32.4521° 28.2019° 24.5356° 22.3755° 20.3854°
0.971 1.354 1.775 2.227 2.666 3.099 3.557 4.010

1.105 1.512 1.726 1.835 1.933 2.014 2.053 2.088

48 47 45 44 43 42

z1
z2 - z1

Fig.2.4 The meshing of internal gear and external gear 
        in which the numbers of teeth difference is 1

a

Fig.2.5 Constrained gear system

θ1

θ2

z2 z2

z1

z3

θ1

z2 z2

z1

Fig.2.6 Constrained gear system
containing a rack

Rack
a

180
z3θ 2

180
z2   (180 + θ 1 + θ 2)

180
z1θ 1

180
z1θ 1

180
za    (180 + θ 1)

πm
a
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There are direct and indirect methods for measuring tooth 
thickness.  In general, there are three methods:
 •  Chordal tooth thickness measurement
 •  Span measurement
 •  Over pin or ball measurement

3.1 Chordal Tooth Thickness Measurement

This method employs a tooth caliper that is referenced from 
the gear's tip diameter.  Thickness is measured at the reference 
circle.  See Figure 3.1.
(1) Spur Gears

Table 3.1 presents equations for each chordal tooth thickness
measurement.

3 TOOTH THICKNESS

No.

2

Table 3.1 Equations for spur gear chordal tooth thickness

1

z m sinψ

        (1 - cosψ) + ha

         +

Formula

3

4

Item

Tooth thickness

Tooth thickness half angle

Chordal tooth thickness

Chordal height

Symbol

s

ψ

s

ha

         + 2x tanα   m
 =10
 =20°
 =12
 = + 0.3
 =13.000
 =17.8918
 = 8.54270°
 =17.8256
 =13.6657

m
α
z
x
ha

s
ψ
s
ha

(2) Spur Racks and Helical Racks
The governing equations become simple since the rack tooth 
profile is trapezoid, as shown in Table 3.2.

ExampleNo.

2

Table 3.2  Chordal tooth thickness of racks

1

ha

FormulaItem

Chordal tooth thickness

Chordal height

Symbol

s

ha

           or
= 3
= 20°
= 4.7124
= 3.0000

m
α
s
ha

NOTE:  These equations are also applicable to helical racks.

Fig.3.1 Chordal tooth thickness method

s

h a
dψ

2
z m

z
90

2
π

π z
360x tanα







2
πm

2
πmn
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(3)  Helical Gears

The chordal tooth thickness of helical gears should be measured 
on the normal plane basis as shown in Table 3.3.  Table 3.4 
presents the equations for chordal tooth thickness of helical 
gears in the transverse system.

ExampleNo.

2

Table 3.3  Equations for chordal tooth thickness of helical gears in the normal system

1

        +

zv mn sinψ v

          (1- cosψv) + ha

Formula

3

4

5

Item

Normal tooth thickness

Number of teeth of an 
equivalent spur gear

Tooth thickness half angle

Chordal tooth thickness

Chordal height

Symbol

sn

zv

ψv

s

ha

         + 2xn tanα n  mn

= 5
= 20°
= 25°   00' 00''
= 16
= + 0.2
= 06.0000
= 08.5819
= 21.4928
= 04.57556°
= 08.5728
= 06.1712

mn

αn

β
z
xn

ha

s
zv

ψv

s
ha

ExampleNo.

2

Table 3.4  Equations for chordal tooth thickness of helical gears in the transverse system

1

         + 

zv mt cosβ  sin ψ v

                    (1 - cosψv ) + ha

Formula

3

4

5

Item

Normal tooth thickness

Numer of teeth in an 
equivalent spur gear

Tooth thickness half angle

Chordal tooth thickness

Chordal height

Symbol

sn

zv

ψv

s

ha

         + 2xt tanα t   mt cosβ
= 4
= 20°
= 22° 30' 00''
= 20
= + 0.3
= 04.7184
= 06.6119
= 25.3620
= 04.04196°
= 06.6065
= 04.8350

mt

α t

β
z
xt

ha

s
zv

ψv

s
ha

NOTE:  Table 3.4 equations are also for the tooth profile of a Sunderland gear.

(4) Bevel Gears
Table 3.5 shows the the equations for chordal tooth thickness 
of a Gleason straight bevel gear. Table 3.6 shows the same 
of a standard straight bevel gear. And Table 3.7 the same of a 
Gleason spiral bevel gear.

ExampleNo.

2

Table 3.5  Equations for chordal tooth thickness of gleason straight bevel gears

1

s - 

ha +

πm - s2

        - ( ha1 - ha2 )tan α  - Km

Formula

3

4

Item
Tooth thickness factor 
(Coefficient of horizontal profile 
shift)

Tooth thickness

Chordal tooth thickness

Chordal height

Symbol

K

s1

s2

s

ha

Obtain from Figure 3.2
= 4
= 20°
= 90°
= 16
   = 0.4
= 00.0259
= 05.5456
= 21.8014°
= 07.5119
= 07.4946
= 05.7502

= 40

= 02.4544
= 68.1986°
= 05.0545
= 05.0536
= 02.4692

m
α
Σ
z1

K
ha1

δ1

s1

s1

ha1

z2

ha2

δ2

s2

s2

ha2

z1/z2  

2
π 





πzv

360 xn tanα n

zv

90

2
zv mn

cos3 β
z

2
π 





cos3 β
z

πzv

360xt tanα t

zv

90

2
zv mt cosβ

2
πm

6 d 2

s3

4 d
s2 cos δ
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ExampleNo.

2

Table 3.6  Equations for chordal tooth thickness of standard straight bevel gears

1

zv m sinψ v

ha +R  (1 - cosψ v) 

Formula

3

4

6

Item

Tooth thickness

Number of teeth of an 
equivalent spur gear

Back cone distance

Tooth thickness half angle

Chordal tooth thickness

Chordal height

Symbol

s

zv

Rv

ψv

s

ha

= 4
= 20°
= 90°
= 16

 = 64
= 04.0000
= 21.8014°
= 06.2832
= 17.2325
= 34.4650
= 25.2227°
= 06.2745
= 04.1431

= 40
= 160

= 68.1986° 

= 107.7033
= 215.4066
= 00.83563°
= 06.2830
= 04.0229

m
α
Σ
z1

d1

ha

δ1

s
zv1

Rv1

ψv1

s1

ha1

z2

d2

δ2

zv2

Rv2

ψv2

s2

ha2

If a straight bevel gear is cut by a Gleason straight bevel cutter, 
the tooth angle should be adjusted according to:

     Tooth angle (°      )  =                        + hf tanα  (3.1)

This angle is used as a reference in determining the tooth 
thickness, s, in setting up the gear cutting machine.

2
πm

cosδ
z

2 cosδ
d

zv

90

πR
180

2
s 





Fig.3.2  Chart to determine the tooth thickness factor k for gleason straight bevel gear
Speed ratio,   z1 / z2
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ExampleNo.

2

Table 3.7  Equations for chordal tooth thickness of gleason spiral bevel gears

1

    - ( ha1 - ha2 )             - Km

p - s2

FormulaItem

Tooth thickness factor

Tooth thickness

Symbol

K

s2

s1

Obtain from Figure 3.3
= 90°
= 20
= 3.4275
= 0.060
= 9.4248
= 5.6722

= 1.6725

= 3.7526

= 3
= 40

= 20°
= 35°

Σ
z1

ha1

K
p
s1

ha2

s2

m
z2

αn

βm

The calculations of chordal tooth thickness of a Gleason 
spiral bevel gear are so complicated that we do not intend to go 
further in this presentation.

Speed ratio,  z1 / z2

To
ot

h 
th

ic
kn

es
s 

fa
ct

or
. 

K

Number of teeth of pinion

z= 15
z= 16
z= 17

z= 20

z= 25
Over 30

Fig.3.3  Chart to determine the tooth thickness    
             factor k for gleason spiral bevel gears

2
p

cosβm

tanαn
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(5)  Worm Gear Pair

Table 3.8 presents equations for chordal tooth thickness of axial 
module worm gear pair.  Table 3.9 presents the same of normal 
module worm gear pair.

ExampleNo.

2

Table 3.8  Equations for chordal tooth thickness of axial module worm gear pair

1

         +  

st1 cos γ
zv mt  cosγ sinψv2

ha1 + 

ha2 +                   (1 - cosψv2)

Formula

3

4

5

Item

Axial tooth thickness of worm

Transverse tooth thickness of 
worm wheel

No. of teeth in an equivalent 
spur gear
(Worm wheel)

Tooth thickness half angle 
(Worm wheel)

Chordal tooth thickness

Chordal height

Symbol

st1

st2

zv2

ψv2

s1

s2

ha1

ha2

         + 2xt2 tanα t  mt

= 3
= 20°
= 2
= 38
= 65

= 03.0000
= 08.97263°
= 20.22780°
= 04.71239

= 04.6547
= 03.0035

= 30
= 90

= + 0.33333
= 04.0000

= 05.44934
= 31.12885
= 03.34335°
= 05.3796
= 04.0785

mt

α n

z1

d1

a

ha1

γ
α t

st1

s1

ha1

z2

d2

xt2

ha2

st2

zv2

ψ v2

s2

ha2

ExampleNo.

2

Table 3.9  Equations for chordal tooth thickness of normal module worm gear pair

1

        +

sn1

zv2 mn sinψ v2

ha1 +

ha2 +          (1 - cosψ v2)

Formula

3

4

5

Item

Axial tooth thickness of worm

Transverse tooth thickness of 
worm wheel

No. of teeth in an equivalent 
spur gear (Worm wheel)

Tooth thickness half angle 
(Worm gear)

Chordal tooth thickness

Chordal height

Symbol

sn1

sn2

zv2

ψv2

s1

s2

ha1

ha2

          + 2xn2 tanα n   mn

= 3
= 20°
= 2
= 38
= 65

= 03.0000
= 09.08472°
= 04.71239

= 04.7124
= 03.0036

= 30
= 91.1433

= 00.14278
= 03.42835

= 05.02419
= 31.15789
= 03.07964°
= 05.0218
= 03.4958

mn 

α n

z1

d1

a

ha1

γ
sn1

s1

ha1

z2

d2

xn2

ha2

sn2

zv2

ψ v2

s2

ha2

2
πmt

2
π 





cos 3 γ
z2

πzv2

360 xt2 tanα t
zv2

90

4 d 1

(st1
 sin γ  cos γ) 2

2
zv mt  cos γ

2
πmn

2
π 

  




cos 3 γ
z2

πzv2

360 xn2 tanα n
zv2

90

4 d 1

(sn1
 sin γ ) 2

2
zv mn
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= 3 ,
= 25°  00' 00''
= + 0.4
= 21.88023°
= 04.63009
= 05
= 42.0085

= 20° , = 24

12

3.2  Span Measurement of Teeth

Span measurement of teeth, W, is a measure over a number of 
teeth, k, made by means of a special tooth thickness micrometer. 
The value measured is the sum of normal tooth thickness on the 
base circle, sbn, and normal pitch, pbn (k – 1).  See Figure 3.4.

(1) Spur and Internal Gears
The applicable equations are presented in Table 3.10.

ExampleNo.

2

Table 3.10  Span measurement of spun and internal gear teeth

1

m cosα  {π (k - 0.5)  + z invα}
 + 2xm sinα

FormulaItem

Span number of teeth

Span measurement over k 
teeth

Symbol

k

W

kth = z K ( f ) + 0.5 See NOTE

Select the nearest natural number of zmth as zm

= 3
= 20°
= 24
=  + 0.4
= 03.78787
= 04
= 32.8266

m
α
z
x
kth

k
W

ExampleNo.

2

Table 3.11  Equations for span measurement  of the normal system helical gears

1

mn cosα n {π(k - 0.5 )+ z invα t }
                                              +2xn mn sinα n

FormulaItem

Span number of teeth

Span measurement over k 
teeth

Symbol

k

W

kth = z K ( f ,β ) + 0.5 See NOTE

Select the nearest natural number of zmth as zm

 mn

β
xn

α t
kth

k
W

αn z

NOTE:   
K  (  f  ) =      {secα (1+2 f ) 2 - cos2α -invα-2 f  tanα}       (3.2)

where    f  =

Figure 3.4 shows the span measurement of a spur gear.  This 
measurement is on the outside of the teeth.
For internal gears the tooth profile is opposite to that of the 
external spur gear.  Therefore, the measurement is between the 
inside of the tooth profiles.

(2) Helical Gears

Tables 3.11 and 3.12 present equations for span measurement of 
the normal and the transverse systems, respectively, of helical 
gears.

NOTE:

K   ( f ,β ) =            1 +                                   (cos2β  + tan2α n ) (secβ  + 2 f  )2 - 1 - invα t - 2 f  tanα n (3.3)

                       where   f  =

π
1

π
1 












 cos2β + tan2α n

sin2β

z
xn

W

d

Fig.3.4  Span measurement over k teeth (spur gear)

z
x
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There is a requirement of a minimum facewidth to make a 
helical gear span measurement.  Let bmin be the minimum value 
for facewidth.  See Fig.3.5.  
Then            bmin = W sinβb  + Δb              (3.5)  
where βb is the helix angle at the base cylinder,
    β b = tan-1 (tanβ  cosα t )
         = sin-1  (sinβ  cosα n)

From the above, we can determine Δb > 3 mm to make a stable 
measurement of  W.

Internal gears are similarly measured, except that the 
measurement is between the pins.  See Figure 3.9.  Helical 
gears can only be measured with balls.  In the case of a worm,
three pins are used, as shown in Figure 3.10.  This is similar to 
the procedure of measuring a screw thread.

ExampleNo.

2

Table 3.12  Equations for span measurement of the transverse system helical gears

1

mt cosβ  cosα n {π  (k - 0.5)  +
z invα t } + 2xt mt sinα n

FormulaItem

Span number of teeth

Span mesurement over k teeth

Symbol

k

W

kth  = z K ( f ,β  )  + 0.5 See NOTE

Select the nearest natural number of zmth as zm

NOTE:

 K   ( f ,β ) =           1  +                                   (cos2β   +  tan2α n  (secβ  + 2 f )2  - 1 -invα t  -2 f  tanα n               (3.4)
                       
              where        f  = 



  (3.6)



3.3 Measurement Over Rollers(or generally called over
          pin/ball measurement)

As shown in Figure 3.6, measurement is made over the outside 
of two pins that are inserted in diametrically opposite tooth 
spaces, for even tooth number gears, and as close as possible 
for odd tooth number gears. The procedure for measuring a 
rack with a pin or a ball is as shown in Figure 3.8 by putting pin 
or ball in the tooth space and using a micrometer between it and 
a reference surface.

= 3 ,
= 22°   30' 00''
=  + 0.4
= 18.58597°
= 04.31728
= 04
= 30.5910

= 20°, = 24mt

β
xt

α n

kth

k
W

α t z

π
1 












 cos2β  + tan2α n

sin2β

z cos β
xt

Fig.3.5  Facewidth of helical gear

b βb

W

Fig. 3.6  Over pin (ball) measurement

dp dp

d 0

M M

Even number of teeth Odd number of teeth
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(1) Spur Gears
In measuring a standard gear, the size of the pin must meet the 
condition that its surface should have the tangent point at the 
standard pitch circle.  While, in measuring a shifted gear, the 
surface of the pin should have the tangent point at the d + 2xm 
circle.

ExampleNo.

2

Table 3.13  Equations for calculating ideal pin diameters

1

tanα ' + η

z m cosα (invφ + η)

cos- 1

Formula

3

4

Item

Spacewidth half angle

Pressure angle at the point pin 
is tangent to tooth surface

Pressure angle at pin center

Ideal pin diameter

Symbol

η

α '

φ

d'p

         - invα    -
= 1
= 20°
= 20
= 0
= 0.0636354
= 20°
= 0.4276057
= 1.7245

m
α
z
x
η
α '
φ
d'p

ExampleNo.

2

Table 3.14  Equations for over pins measurement for spur gears

1

Find from involute function table

Even teeth                          + dp

Odd teeth                       cos          + dp

        -     +  invα +

Formula

3

4

Item

Pin diameter

Involute function φ

Pressure angle at pin center

Measurement over pin (ball)

Symbol

dp

inv φ

φ

M

NOTE 1

= 1.7
= 0.0268197
= 24.1350°
= 22.2941

dp

invφ

φ

M

NOTE: The units of angles η and φ are  radians.

The ideal diameters of pins when calculated from the equations 
of Table 3.13 may not be practical.  So, in practice, we select a 
standard pin diameter close to the ideal value. After the actual 
diameter of pin dp is determined, the over pin measurement M 
can be calculated from Table 3.14.

NOTE:  The value of the ideal pin diameter from Table 3.13, or its approximate value, is applied as the actual diameter of pin dp here.

2 z
π 



 z

2x tanα







 ( z + 2x) m

z m cosα

z mcosα
dp

2z
π

z
2x tanα

cos φ
z m cosα

cos φ
z m cosα

z
90°

dp

Fig.3.7  Over pins measurement of spur gear

φ

tan α '

α '

inv φ

η

inv α

d b d
d +

 2x
m

M
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Number of 
teeth z

010
020
030
040
050

060
070
080
090
100

110
120
130
140
150

160
170
180
190
200

15

Table 3.15 is a dimensional table under the condition of 
module m = 1 and pressure angle α = 20° with which the pin 
has the tangent point at d + 2xm circle.
 

Profile shift coefficient,  x
- 0.4 - 0.2 0 0.2 0.4 0.6 0.8 1.0

1.6231
1.6418
1.6500
1.6547

1.6577
1.6598
1.6614
1.6625
1.6635

1.6642
1.6649
1.6654
1.6659
1.6663

1.6666
1.6669
1.6672
1.6674
1.6676

1.6348
1.6599
1.6649
1.6669
1.6680

1.6687
1.6692
1.6695
1.6698
1.6700

1.6701
1.6703
1.6704
1.6705
1.6706

1.6706
1.6707
1.6708
1.6708
1.6708

1.7886
1.7245
1.7057
1.6967
1.6915

1.6881
1.6857
1.6839
1.6825
1.6814

1.6805
1.6797
1.6791
1.6785
1.6781

1.6777
1.6773
1.6770
1.6767
1.6764

1.9979
1.8149
1.7632
1.7389
1.7248

1.7155
1.7090
1.7042
1.7005
1.6975

1.6951
1.6931
1.6914
1.6900
1.6887

1.6877
1.6867
1.6858
1.6851
1.6844

2.2687
1.9306
1.8369
1.7930
1.7675

1.7509
1.7392
1.7305
1.7237
1.7184

1.7140
1.7104
1.7074
1.7048
1.7025

1.7006
1.6989
1.6973
1.6960
1.6947

2.6079
2.0718
1.9267
1.8589
1.8196

1.7940
1.7759
1.7625
1.7521
1.7439

1.7372
1.7316
1.7269
1.7229
1.7195

1.7164
1.7138
1.7114
1.7093
1.7074

3.0248
2.2389
2.0324
1.9365
1.8810

1.8448
1.8193
1.8003
1.7857
1.7740

1.7645
1.7567
1.7500
1.7444
1.7394

1.7351
1.7314
1.7280
1.7250
1.7223

3.5315
2.4329
2.1542
2.0257
1.9516

1.9032
1.8691
1.8438
1.8242
1.8087

1.7960
1.7855
1.7766
1.7690
1.7625

1.7567
1.7517
1.7472
1.7432
1.7396

m = 1 , α = 20°

Table 3.15  The size of pin which has the tangent point at 
                   d + 2xm circle of spur gears

(2) Spur Racks and Helical Racks

In measuring a rack, the pin is ideally tangent with the tooth 
flank at the pitch line.  The equations in Table 3.16 can, thus, be 
derived.  In the case of a helical rack, module m, and pressure 
angle α, in Table 3.16, can be substituted by normal module mn 

, and normal pressure angle αn , resulting in Table 3.16A.

ExampleNo.

2

Table 3.16  Equations for over pins measurement of spur racks

1

H -                   +            1  +

FormulaItem

Ideal pin diameter

Measurement over pin (ball)

Symbol

d'p

M

= 1
= 20°
= 1.5708
= 1.6716
= 1.7
= 14.0000
= 15.1774

m
α
s

d'p
dp

H
M

cosα
πm - s

2 tanα
πm - s

2
dp 



 sinα

1

dp

Fig.3.8  Over pins measurement for a rack using a pin or a ball

πm
s

MH

2 
ta

nα
πm

 -
 s
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(3) Internal Gears

As shown in Figure 3.9, measuring an internal gear needs a 
proper pin which has its tangent point at d + 2xm circle.  The 
equations are in Table 3.17 for obtaining the ideal pin diameter.  
The equations for calculating the between pin measurement, M, 
are given in Table 3.18.
 

ExampleNo.

2

Table 3.16A  Equations for Over Pins Measurement of Helical Racks

1

H -        +            1 + 

FormulaItem

Ideal pin diameter

Measurement over pin (ball)

Symbol

d'p

M

ExampleNo.

2

Table 3.17  Equations for calculating pin diameter for internal gears

1

tanα ' - η

z m cosα (η - invφ)

cos -1

Formula

3

4

Item

Spacewidth half angle

Pressure angle at the point pin 
is tangent to tooth surface

Pressure angle at pin center

Ideal pin diameter

Symbol

η

α '

φ

d'p

         + invα     + =  1
= 20°
= 40
=  0
= 0.054174
= 20°
= 0.309796
= 1.6489

m
α

z
x
η

α '
φ

d'p

NOTE:  The units of angles η  , φ are radians.

ExampleNo.

2

Tabl 3.18  Equations for between pins measurement of internal gears

1

Find from involute function table

Even teeth                           - dp

Odd teeth                       cos         - dp

         + invα    -                  +

Formula

3

4

Item

Pin (ball) diameter

Involute function φ

Pressure angle at pin center

Between pins measurement

Symbol

dp

inv φ

φ

M

See NOTE

= 1.7
= 0.0089467
= 16.9521°
= 37.5951

dp

invφ

φ

M

NOTE:  First, calculate the ideal pin diameter.  Then, choose the nearest practical actual pin size.

= 1
= 20°
= 1.5708
= 1.6716
= 1.7
= 14.0000
= 15.1774

mn

αn
s

d'p
dp
H
M

= 15°β
cosαn

πmn - s

2 tanαn

πmn - s
2
dp 



 sinαn

1

2 z
π 



 z

2x tanα







 ( z + 2x ) m

z m cosα

z m cosα
dp

2z
π

z
2x tanα

cosφ
z m cosα

cosφ
z m cosα

z
90°







Fig. 3.9  Between pin dimension of internal gears

φ

tan α '

α '

inv φ
η

inv α ' d b
d

d +
 2xm

M
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Table 3.19 lists ideal pin diameters for standard and profile 
shifted gears under the condition of module m = 1 and pressure 
angle α = 20°, which makes the pin tangent to the reference 
circle d + 2xm.

equivalent (virtual) teeth number zv.
Table 3.20 presents equations for deriving over pin diameters.  
Table 3.21 presents equations for calculating over pin 
measurements for helical gears in the normal system.

(4) Helical Gears

The ideal pin that makes contact at the d + 2xn mn reference  
circle of a helical gear can be obtained from the same above 
equations, but with the teeth number z substituted by the 

Number 
of teeth 

z

010
020
030
040
050

060
070
080
090
100

110
120
130
140
150

160
170
180
190
200

Profile shift coefficient,     x
- 0.4 - 0.2 0 0.2 0.4 0.6 0.8 1.0

- 
1.4687
1.5309
1.5640
1.5845

1.5985
1.6086
1.6162
1.6222
1.6270

1.6310
1.6343
1.6371
1.6396
1.6417

1.6435
1.6451
1.6466
1.6479
1.6491

1.4789
1.5604
1.5942
1.6123
1.6236

1.6312
1.6368
1.6410
1.6443
1.6470

1.6492
1.6510
1.6525
1.6539
1.6550

1.6561
1.6570
1.6578
1.6585
1.6591

1.5936
1.6284
1.6418
1.6489
1.6533

1.6562
1.6583
1.6600
1.6612
1.6622

1.6631
1.6638
1.6644
1.6649
1.6653

1.6657
1.6661
1.6664
1.6666
1.6669

1.6758
1.6759
1.6751
1.6745
1.6740

1.6737
1.6734
1.6732
1.6731
1.6729

1.6728
1.6727
1.6727
1.6726
1.6725

1.6725
1.6724
1.6724
1.6724
1.6723

1.7283
1.7047
1.6949
1.6895
1.6862

1.6839
1.6822
1.6810
1.6800
1.6792

1.6785
1.6779
1.6775
1.6771
1.6767

1.6764
1.6761
1.6759
1.6757
1.6755

1.7519
1.7154
1.7016
1.6944
1.6900

1.6870
1.6849
1.6833
1.6820
1.6810

1.6801
1.6794
1.6788
1.6783
1.6779

1.6775
1.6772
1.6768
1.6766
1.6763

1.7460
1.7084
1.6956
1.6893
1.6856

1.6832
1.6815
1.6802
1.6792
1.6784

1.6778
1.6772
1.6768
1.6764
1.6761

1.6758
1.6755
1.6753
1.6751
1.6749

1.7092
1.6837
1.6771
1.6744
1.6732

1.6725
1.6721
1.6718
1.6717
1.6716

1.6715
1.6714
1.6714
1.6714
1.6713

1.6713
1.6713
1.6713
1.6713
1.6713

m = 1 , α = 20°Table 3.19  The size of pin that is tangent at reference circle  d + 2xm of  internal gears

5

ExampleNo.

2

Table 3.20  Equations for calculating pin diameter for helical gears in the normal system

1

cos-1

tanα 'v + ηv

zv mn cosα n (invφv + η v)

              - inv αn  -

Formula

3

4

Item

Number of teeth of an 
equivalent spur gear

Spacewidth half angle

Pressure angle at the point pin 
is tangent to tooth surface

Pressure angle at pin center

Ideal pin diameter

Symbol

zv

η v

α 'v

φv

d'p

= 1
= 20°
= 20
= 15°   00' 00''

 = + 0.4
= 22.19211
= 00.0427566
= 24.90647°
= 00.507078
= 01.9020

mn

α n

z
β
xn

zv

η v

α 'v
φv

d'p

NOTE: The units of angles ηv and φv are radians.

cos3 β
z

2zv

π
zv

2xn tanαn





 zv+2xn

zv cosα n
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ExampleNo.

2

Table 3.21 Equations for calculating over pins measurement for helical gears in the normal system

1

Find from involute function table

Even Teeth                      + dp

Odd Teeth                                cos          + dp

                -        + inv α t  + 

Formula

3

4

Item

Pin (ball) diameter

Involute function φ

Pressure angle at pin center

Measurement over pin (ball)

Symbol

dp

inv φ

φ

M

See NOTE

Let  dp = 2, then 
=  20.646896°
=  00.058890
=  30.8534°
=  24.5696

 

α t

inv φ
φ

M

NOTE: The ideal pin diameter of Table 3.20, or its approximate value, is entered as the actual diameter of dp.

Table 3.22  Equations for calculating pin diameter for helical gears in the transverse system

Table 3.22 and Table 3.23 present equations for calculating pin 
measurements for helical gers in the transverse (perpendicular 
to axis) system. 

5

ExampleNo.

2

1

cos -1

tanα 'v + η v

zv mt cosβ  cosα n (inv φv + η v)

       - inv αn - 

Formula

3

4

Item

Number of teeth of an 
equivalent spur gear

Spacewidth half angle

Pressure angle at the point pin 
is tangent to tooth surface

Pressure angle at pin center

Ideal pin diameter

Symbol

zv

ηv

α 'v

φv

d'p

=  3
=  20°
=  36
=  33° 33' 26.3''
=  16.87300°
=   + 0.2
=  62.20800
=  00.014091
=  18.26390
=  00.34411
=  00.014258
=  04.2190

mt

α t

z
β
α n

xt

zv

η v

α 'v
φv

inv φv

d'p

ExampleNo.

2

Table 3.23  Equations for calculating over pins measurement for helical gears in the transverse system

1

Find from involute function table

Even teeth                  + dp

Oddteeth                              cos          + dp

                      -       + invα t  + 

Formula

3

4

Item

Pin (ball) diameter

Involute function φ

Pressure angle at pin center

Measurement over pin (ball)

Symbol

dp

inv φ

φ

M

See NOTE

=0 4.5
= 0 0.027564
=024.3453°
= 115.892

dp

inv φ
φ

M

NOTE: The ideal pin diameter of Table 3.22, or its approximate value is applied as the actual diameter of pin dp here.

mn z cosα n

dp

2z
π

z
2xn tanα n

cos β  cos φ
zmn cosα t

z
90°

cos β  cos φ
zmn cosα t

cos3 β
z

2zv

π
zv

2xt tanα t

zv + 2
zv cosα n 



 cos β

xt

mt z cos β  cosα n

dp

2z
π

z
2xt tanα t

cos φ
zmt cosα t

z
90°

cos φ
zmt cosα t

NOTE: The units of angles ηv and φv are radians.
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(5) Three Wire Method of Worm Measurement

The teeth profile of type III worms which are most popular are 
cut by standard cutters with a pressure angle αn = 20°.  This 
results in the normal pressure angle of the worm being a bit 
smaller than 20°.  The equation below shows how to calculate a 
type III worm in an AGMA system.

                     αn  =  α0 -                  sin3γ (3.7)

where r : Worm reference radius
 r0  : Cutter radius
 z1 : Number of threads
 γ : Lead angle of worm

The exact equation for a three wire method of type III worm 
is not only difficult to comprehend, but also hard to calculate 
precisely.  We will introduce two approximate calculation 
methods here:
(a) Regard the tooth profile of the worm as a straight 

tooth profile of a rack and apply its equations.

Using this system, the three wire method of a worm can be 
calculated by Table 3.24.

ExampleNo.

2

Table 3.24  Equations for three wire method of worm measurement, (a)-1

1

d1 -        + dp        1 +

FormulaItem

Ideal pin diameter

Three wire measuremnt

Symbol

d'p

M

= 2
= 1
= 03.691386°
= 20.03827°
= 03.3440
Let dp be 03.3 
= 35.3173

= 20°
= 31

mx

z1

γ
α x

d'p
dp    

M

αn

d1

These equations presume the worm lead angle to be very small 
and can be neglected.  Of course, as the lead angle gets larger, 
the equations' error gets correspondingly larger.  If the lead 
angle is considered as a factor, the equations are as in Table 
3.25.

ExampleNo.

2

Table 3.25  Equations for three wire method of worm measurement, (a)-2

1

d1 -        + dp       1 +

                            -

FormulaItem

Ideal pin diameter

Three wire measurement

Symbol

d'p

M

z1

90
r0 cos2 γ  + r

r

2cosα x

πmx

2cosα n

πmn

2 tanα x

πmx

sinα x

1 





2 tanα n

πmn

sinα n

1 





2d1

(dp cosα n sin γ )2

= 2
= 1
= 03.691386°
= 01.99585
= 03.3363
Let dp be 03.3 
= 35.3344

= 20°
= 31

mx

z1

γ
mn

d'p
dp

M

αn

d1

Fig.3.10  Three wire method of a worm

dp

d M
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(b) Consider a worm to be a helical gear.

This means applying the equations for calculating over pins 
measurement of helical gears to the case of three wire method 
of a worm.  Because the tooth profile of Type III worm is not an 
involute curve, the method yields an approximation.  However, 
the accuracy is adequate in practice.

Tables 3.26 and 3.27 contain equations based on the axial 
system.  Tables 3.28 and 3.29 are based on the normal system.

Table 3.26  Equation for calculating pin diameter for worms in the axial system

5

ExampleNo.

2

1

cos-1

tanα 'v  + η v

zvmx cosγ cosα n (inv φv  + η v )

    - inv αn

Formula

3

4

Item

Number of teeth of an 
equivalent spur gear

Spacewidth half angle

Pressure angle at the point pin 
is tangent to tooth surface

Pressure angle at pin center

Ideal pin diameter

Symbol

zv

ηv

α 'v

φv

d'p

= 2
= 20°
= 1
= 31
= 3.691386°
= 3747.1491
= – 0.014485
= 20°
= 0.349485
= 0.014960
= 3.3382

mx

α n

z1

d1

γ
zv

η v

α 'v
φv

invφv

d'p

ExampleNo.

2

Table 3.27  Equation for three wire method for worms in the axial system

1

Find from involute function table

                    + dp

               -      + inv α t

Formula

3

4

Item

Pin (ball) diameter

Involute function φ

Prssure angle at pin center

Three wire measurement

Symbol

dp

inv φ

φ

M

See NOTE 1
= 3.3
= 76.96878°
= 04.257549
= 04.446297
= 80.2959°
= 35.3345

dp

α t

invα
invφ
φ
M

NOTE 1.  The value of ideal pin diameter from Table 3.26, or its approximate value, is to be used as the actual pin diameter, dp.

NOTE 2.         α t  = tan-1

cos3   (90°   - γ  )    

z1

2zv

π

zv

zv cosα n 





mx z1 cos γ  cosα n

dp

2z1

π

tanγ  cosφ
z1mx cosα t 

sin γ
tan αn 





NOTE:  The units of angles ηv and φv are radians.
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Tables 3.28 and 3.29  show the calculation of a worm in the 
normal module system.  Basically, the normal module system 
and the axial module system have the same form of equations.  
Only the notations of module make them different.

Table 3.28  Equation for calculating pin diameter for worms in the normal system

5

ExampleNo.

2

1

cos -1

tanα 'v + η v

zv mn cosα n (inv φv + η v)

    - inv αn

Formula

3

4

Item

Number of teeth of an 
equivalent spur gear

Spacewidth half angle

Pressure angle at the point pin 
is tangent to tooth surface

Pressure angle at pin center

Ideal pin diameter

Symbol

zv

ηv

α 'v

φv

d'p

= 2.5
= 20°
= 1
= 37
= 3.874288°

 = 3241.792 
= -0.014420
= 20°
= 0.349550
= 0.0149687
= 4.1785

mn

α n

z1

d1

γ
zv

η v

α 'v
φv

inv φv

d'p

ExampleNo.

2

Table 3.29  Equations for three wire method for worms in the normal system

1

Find from involute function table

                   + dp

           -     + inv α t

Formula

3

4

Item

Pin (ball) diameter

Involute function φ

Pressure angle at pin center

Three wire measurement

Symbol

dp

inv φ

φ

M

See NOTE 1.
= 4.2
= 79.48331°
= 03.999514
= 04.216536
= 79.8947°
= 42.6897

dp

α t

invα t

inv φ
φ
M

NOTE 1.  The value of ideal pin diameter from Table 3.28, or its approximate value, is to be used as the actual pin diameter, dp.

NOTE 2.  α t  = tan-1

cos3    (90°   - γ )  
z1

2zv

π

zv

zv cosα n 





mn z1 cosα n

dp

2z1

π

sin γ  cosφ
z1mn cosα t

sin γ
tanαn 





NOTE: The units of angles ηv and φv are radians.
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Backlash is the amount by which a tooth space exceeds the 
thickness of a gear tooth  engaged in mesh. The general purpose 
of backlash is to prevent gears from jamming by making 
contact on both sides of their teeth simultaneously.
there are several kinds of backlash:  circumferential backlash jt , 
normal backlash jn , radial backlash jr and angular backlash jθ (°), 
see Figure 4.1.

4.1  Backlash Relationships

Table 4.1 reveals relationships among circumferential backlash 
jt , normal backlash jn and radiall backlash jr .  

4  BACKLASH

Circumferential backlash jt has a relation with angular backlash 
jθ , as follows:

                 jθ =  jt  ×           ( degrees ) (4.1)

(1) Backlash of a Spur Gear Mesh

From Figure 4.1 we can derive backlash of spur gear mesh as:

            jn = jt cos α

             jr =

No.

2

Table 4.1  The relationships among the backlashes

1

jr  =

jr  =

jr  =

jr  =

The relation between circumferential 
backlash jt and radial backlash jr

3

Type of Gear Meshes

Spur gear

Helical gear

Straight bevel gear

Spiral bevel gear

Worm

Worm wheel

The relation between circumferential 
backlash jt and normal backlash jn

jn = jt cosα

jnn = jtt cosα n cosβ

jn = jt cosα

jnn = jtt cosα n cosβm

jnn = jtt1 cosα n sinγ

jnn = jtt2 cosα n cosγ

jr  =



 (4.2)



2 tanα x

jtt2

2 tanα t sinδ
jtt

2 tanα  sinδ
jt

2 tanα t

jtt

2 tanα
jt

2tan α
jt

πd
360

Fig.4.1  Kinds of backlash and their direction

jr

jn

jt

2 jr

αjθ

α

2
jt

2
jn
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(2) Backlash of Helical Gear Mesh

The helical gear has two kinds of backlash when referring to the 
tooth space.  There is a cross section in the normal direction of 
the tooth surface(n), and a cross section in the radial direction 
perpendicular to the axis,(t)
  jnn= backlash in the direction normal to the tooth surface
  jtn= backlash in the circular direction in the cross section           
        normal to the tooth
  jnt = backlash in the direction normal to the tooth surface  
        in the cross section perpendicular to the axis
  jtt = backlash in the circular direction perpendicular to the axis

(3) Backlash of Straight Bevel Gear Mesh

Figure 4.3 expresses backlash for a straight bevel gear mesh.

In the cross section perpendicular to the tooth of a straight bevel 
gear, circumferential backlash at pitch line jt , normal backlash jn 
and radial backlash jr'  have the following relationships:

         jn  =  jt cosα

        jr' =

The radial backlash in the plane of axes can be broken down into 
the components in the direction of bevel pinion center axis,  jr1 

and in the direction of bevel gear center axis,  jr2.

          jr1 = 

          jr2  =

These backlashes have relations as follows:
In the plane normal to the tooth:
           jnn  = jtn cosα n (4.3)

On the pitch surface:
           jtn  = jtt cosβ  (4.4)

In the plane perpendicular to the axis:

           jnt = jtt cosα t

           jr =



 (4.5)





                                      (4.6)





 (4.7)



2tanα t

jtt

2tanα
jt

2tanα  sinδ 1

jt

2tanα  cosδ 1

jt

Fig.4.2 Backlash of helical gear mesh

Fig. 4.3  Backlash of straight bevel gear mesh

jnt

αn

2 jr

jtt

jnn

jtn

jtn

jtt

α t

β

α

jr2

2
jt

2
jn

jr1
δ1

2tanα
jt

jr'
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(4) Backlash of a Spiral Bevel Gear Mesh

Figure 4.4 delineates backlash for a spiral bevel gear mesh.

In the tooth space cross section normal to the tooth:
         jnn  = jtn  cosα n (4.8)
On the pitch surface
         jtn= jtt cosβm (4.9)
In the plane perpendicular to the generatrix of the pitch cone:
         jnt = jtt cosα t

         jr' =

The transverse backlash in the plane of axes jr' can be broken 
down into the components in the direction of bevel pinion 
center axis,  jr1, and  in  the direction of bevel gear center axis,   
jr2.

           jr1 =

          jr2  =

(5) Backlash of Worm Gear Pair Mesh

Figure 4.5 expresses backlash for a worm gear pair mesh.

          On the pitch surface of a worm:
          jtn  = jtt1 sinγ
          jtn  = jtt2 cosγ

          tan γ =

In the cross section of a worm perpendicular to its axis:

          jnt1 = jtt1 cosα t

          jr =

In the plane perpendicular to the axis of the worm wheel:

          jnt2 = jtt2 cosα x

         jr =



 (4.10)






 (4.11)







 (4.12)






 (4.13)



2 tanα t

jtt

2 tan α t sin δ 1

jtt

2 tan α t cos δ 1

jtt

jtt1

jtt2

2 tanα t

jtt1

2 tanα x

jtt2



 (4.14)



Fig.4.4  Backlash of spiral bevel gear mesh

Fig.4.5  Backlash of worm gear pair

α t

jr2

2
jtt

2
jnt

jr1
δ1

2tan α
jtt

αn
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jnnjtt

jtn βm

αx

2 jr

jtt2

jnt2
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4.2   Tooth Thickness and Backlash

There are two ways to produce backlash.  One is to enlarge the 
center distance.  The other is to reduce the tooth thickness.  The 
latter is much more popular than the former.  We are going to 
discuss more about the way of reducing the tooth thickness.

In SECTION 3, we have discussed the standard tooth thickness 
s1 and s2.  In the meshing of a pair of gears, if the tooth thickness 
of pinion and gear were reduced by Δs1 and Δs2, they would 
produce a backlash of Δs1 and Δs2 in the direction of the pitch 
circle. Let the magnitude of Δs1 and Δs2 be 0.1.  We know that 
α = 20°   , then:  
     jt  = Δs1 + Δs2

        = 0.1+ 0.1 = 0.2
We can convert it into the backlash on normal direction jn:

      jn = jt cos α
               = 0.2 × cos 20 = 0.1879

Let the backlash on the center distance direction be jr, then:

      jr  =

         =                             =  0.2747
 
They express the relationship among several kinds of 
backlashes.  In application, one should consult the JIS standard.
There are two JIS standards for backlash – one is JIS B 1703-
76 for spur gears and helical gears, and the other is JIS B 1705-
73 for bevel gears.  All these standards regulate the standard 
backlashes in the direction of the pitch circle jt or jtt.  These 
standards can be applied directly, but the backlash beyond the 
standards may also be used for special purposes.  When writing 
tooth thicknesses on a drawing, it is necessary to specify, 
in addition, the tolerances on the thicknesses as well as the 
backlash.  For example:

Tooth thickness                      3.141
Backlash                                 0.100 ~ 0.200
Since the tooth thickness directly relates to backlash, the 
tolerances on the thickness will become a very important factor.

4.3   Gear Train and Backlash

The discussions so far involved a single pair of gears.  Now, we 
are going to discuss two stage gear trains and their backlash.  In 
a two stage gear train, as Figure  4.6 shows,  jt1 and jt4 represent 
the backlashes of first stage gear train and second stage gear 
train respectively.

If number one gear were fixed, then the accumulated backlash 
on number four gear jtT4  would be as follows:

                jtT4  =  jt 1                   +   jt4 (4.15)

This accumulated backlash can be converted into rotation in 
degrees:

                  jθ  =  jtT4            (degrees) (4.16)

The reverse case is to fix number four gear and to examine the 
accumulated backlash on number one gear jtT1.

                 jtT1 =  jt4                     +  jt1 (4.17)

This accumulated backlash can be converted into rotation in 
degrees:

                        jθ  =  jtT1             (degrees) (4.18)

- 0.050
- 0.100

2 tan α
jt

  2 × tan 20°
0.2

d2

d3

d3

d2

πd4

360

πd1

360

Fig.4.6  Overall accumulated backlash of two stage gear train

Gear 4

(z 4,d 4)
Gear 3

(z 3,d 3)
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(z 2,d 2)
Gear 1

(z 1,d 1)
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4.4  Methods of Controlling Backlash

In order to meet special needs, precision gears are used more 
frequently than ever before.  Reducing backlash becomes 
an important issue.  There are two methods of reducing or 
eliminating backlash – one a static, and the other a dynamic 
method.  The static method concerns means of assembling gears 
and then making proper adjustments to achieve the desired 
low backlash.  The dynamic method introduces an external 
force which continually eliminates all backlash regardless of 
rotational position.

(1)  Static Method

This involves adjustment of either the gear's effective tooth 
thickness or the mesh center distance.  These two independent 
adjustments can be used to produce four possible combinations 
as shown in Table 4.2.

(A) Case A 

By design, center distance and tooth thickness are such that they 
yield the proper amount of desired minimum backlash.  Center 
distance and tooth thickness size are fixed at correct values and 
require precision manufacturing.

(B) Case B

With gears mounted on fixed centers, adjustment is made to the 
effective tooth thickness by axial movement or other means.  
Three main methods are:
 jTwo identical gears are mounted so that one can be rotated 

relative to the other and fixed.  In this way,the effective 
tooth thickness can be adjusted to yield the desired low 
backlash.

 kA gear with a helix angle such as a helical gear is made in 
two half thicknesses.  One is shifted axially such that each 
makes contact with the mating gear on the opposite sides 
of the tooth. 

 lThe backlash of cone shaped gears, such as bevel and 
tapered tooth spur gears, can be adjusted with axial 
positioning.  A duplex lead worm can be adjusted 
similarly.

Figure 4.7 delineate these three methods.

(C) Case C

Center distance adjustment of backlash can be accomplished in 
two ways:

j Linear Movement
Figure 4.8jshows adjustment along the line-of-centers in a 
straight or parallel axes manner.  After setting to the desired 
value of backlash, the centers are locked in place.

k Rotary Movement
Figure 4.8 kshows an alternate way of achieving center 
distance adjustment by rotation of one of the gear centers by 
means of a swing arm on an eccentric bushing.  Again, once 
the desired backlash setting is found, the positioning arm is 
locked.

Table 4.2 The combination of adjustment

Gear 
Size

Center Distance

Fixed

A

B

Adjustable

C

D

Fixed

Adjustable

(D) Case D

Adjustment of both center distance and tooth thickness is 
theoretically valid, but is not the usual practice.  This would call 
for needless fabrication expense.

Fig.4.7  Ways of decreasing backlash in case B

Fig.4.8  Ways of decreasing backlash in case C

jRotary adjustment kParallel adjustment lAxial adjustment

jLinear movement

For large adjustment

kRotary movement

For small adjustment
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(2) Dynamic Methods

Dynamic methods relate to the static techniques.  However, 
they involve a forced adjustment of either the effective tooth 
thickness or the center distance.

(A)  Backlash Removal by Forced Tooth Contact
This is derived from static Case B.  Referring to Figure 4.7j, a 
forcing spring rotates the two gear halves apart.  This results in 
an effective tooth thickness that continually fills the entire tooth 
space in all mesh positions.

(B) Backlash Removal by Forced Center Distance Closing
This is derived from static Case C.  A spring force is applied to 
close the center distance;  in one case as a linear force along the 
line-of-centers, and in the other case as a torque applied to the 
swing arm.  
In all of these dynamic methods, the applied external force 
should be known and properly specified.  The theoretical 
relationship of the forces involved is as follows:
                    F > F1 + F2                                               (4.19)

       where: F1  =  Transmission Load on Tooth Surface
  F2  =  Friction Force on Tooth Surface

If F < F1 + F2, then it would be impossible to remove backlash.  
But if F is excessively greater than a proper level, the tooth 
surfaces would be needlessly loaded and could lead to 
premature wear and shortened life.  Thus, in designing such 
gears, consideration must be given to not only the needed 
transmission load, but also the forces acting upon the tooth 
surfaces caused by the spring load.

(3) Duplex Lead Worm Gear Pair

A duplex lead worm gear mesh is a special design in which 
backlash can be adjusted by shifting the worm axially.  It is 
useful for worm drives in high precision turntables and hobbing 
machines.  Figure 4.9 presents the basic concept of a duplex 
lead worm gear pair.

The lead or pitch, pL and pR , on the two sides of the worm 
thread are not identical.  The example in Figure 4.9 shows the 
case when pL > pR.  To produce such a worm wheel requires a 
special dual lead hob.  The intent of Figure 4.9 is to indicate 
that the worm tooth thickness is progressively bigger towards 
the left end.  Thus, it is convenient to adjust backlash by simply 
moving the duplex worm in the axial direction.

Fig.4.9  Basic concept of duplex lead worm gear pair 
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Gears are one of the basic elements used to transmit power and position.  As designers, we desire them to meet various demands:

Total Profile Deviation (Fα)
Total profile deviation represents the distance (Fα) shown in 
Figure 5.4.  Actual profile chart is lying in between upper 
design chart and lower design chart.

5 GEAR ACCURACY

jMaximum power capability
kMinimum size.
lMinimum noise (silent operation).
mAccurate rotation/position

To meet various levels of these demands requires appropriate 
degrees of gear accuracy.  This involves several gear features.

5.1  Accuracy of Spur and Helical Gears

JIS B 1702-01: 1998 and JIS B 1702-02: 1998 prescribe gear 
accuracy on spur and helical gears. These two revises the 
previous specification JIS B 1702: 1976. which described 9 
grades  grouped from 0 through 8.  In order to avoid confusion     
between old and new specifications, each grades in the revised 
JIS B 1702 has a prefix ‘N’, like N4 grade and N10 grade etc. 

JIS B 1702-1:1998  Cylindrical gears - gear accuracy - Part 1: 
Definitions and allowable values of deviations relevant to 
corresponding flanks of gear teeth. (This specification describes 
13 grades of gear accuracy grouped from 0 through 12, - 0, the 
highest grade and 12, the lowest grade ). 

JIS B 1702-2:1998  Cylindrical gears - gear accuracy - Part 2: 
Definitions and allowable values of deviations relevant to 
radial composite deviations and runout information. (This 
specification consists of 9 grades of gear accuracy grouped 
from 4 through 12, - 4, the highest grade and 12, the lowest 
grade ).

Single Pitch Deviation ( fpt )
The deviation between actual measured pitch value between 
any adjacent tooth surface and theoretical circular pitch.

Fig.5.3  Examples of pitch deviation for a 15 tooth gear

Fig.5.4  Total profile deviation fα

Fig.5.1  Single pitch deviation  fpt

theoretical

actual

+ fpt

pt

Fig.5.2  Total cumulative pitch deviation  (fp)

theoretical

actual

In the case of 3 teeth

+Fpk

k × pt

Total Cumulative Pitch Deviation (Fp )
Difference between theoretical summation over any number of 
teeth interval, and summation of actual pitch measurement over 
the same interval.
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Total Helix Deviation (Fβ )
Total helix deviation represents the distance (Fβ ) shown in 
Figure 5.5.  The actual helix chart is lying in between upper 
helix chart and lower helix chart.  Total helix deviation 
results in poor tooth contact, particularly concentrating 
contact to the tip area.  Modifications, such as tooth crowning  
and end relief can alleviate this deviation to some degree. 
Shown in Figure 5.6 is an example of a chart measuring  
total profile deviation and total helix deviation using a Zeiss 
UMC 550 tester. 

Total Radial Composite Deviation(Fi'' )

Total radial composite deviation represents variation in 
center distance when product gear is rotated one revolution 
in tight mesh with a master gear.

Runout Error of Gear Teeth (Fr )

Most often runout error is mesured by indicating the position 
of a pin or ball inserted in each tooth space around the gear 
and taking the largest difference.
Runout causes a number of problems, one of which is 
noise.  The source of this error is most often insufficient 
accuracy and ruggedness of the cutting arbor and tooling 
system.  And, therefore, it is very importnt to pay attention 
to these cutting arbor and tooling system to reduce runout 
error. Shown in Fig.5.8 is the chart of runout.  The values of 
runout includes eccentricity.

Fig.5.5  Total helix deviation (Fβ )

Fig.5.6  An example of a chart measuring total profile deviation 
and total helix deviation

Fig.5.7  Chart of total radial composite deviation

Fig.5.8  Runout error of a 16-tooth gear
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5.2 Accuracy of Bevel Gears

JIS B 1704:1978 regulates the specification of a bevel gear's 
accuracy.  It also groups bevel gears into 9 grades, from 0 to 8.
There are 4 types of allowable errors:
jSingle pitch error.
kPitch variation error
lAccumulated pitch error.
mRunout error of teeth (pitch circle).

These are similar to the spur gear errors.

 j Single pitch error 
The deviation between actual measured pitch value between 
any adjacent teeth and the theoretical circular pitch at the 
mean cone distance.

 k Pitch variation error 
Absolute pitch variation between any two adjacent teeth at 
the mean cone distance.

l Accumulated pitch error 
Difference between theoretical pitch sum of any teeth 
interval, and the summation of actual measured pitches for 
the same teeth interval at the mean cone distance.
 

 m Runout error of teeth  
This is the maximum amount of tooth runout in the radial 
direction, measured by indicating a pin or ball placed between 
two teeth at the central cone distance. 

Table 5.1 presents equations for allowable values of these 
various errors.

        where   W : Tolerance unit
                            W = 3 d  + 0.65m (mm)
                      d : Reference Diameter (mm)
The equations of allowable pitch variations are in Table 5.2.

Table 5.1  Equations for allowable single pitch error, accumulated
                 pitch error and pitch cone runout error, (mm)

Grade

JIS 0
JIS 1
JIS 2
JIS 3
JIS 4
JIS 5
JIS 6
JIS 7
JIS 8

Single pitch error 

00.4W + 2.650
0.63W + 5.000
01.0W + 9.500
01.6W + 18.00
02.5W + 33.50
04.0W + 63.00
06.3W + 118.0

 -
 -

Accumulated pitch 
error 

01.6W + 10.60
02.5W + 20.00
04.0W + 38.00
06.4W + 72.00
10.0W + 134.0

 -
 -
 -
 -

Runout error of pitch 
cone 

02.36 d
003.6 d
005.3 d
008.0 d
012.0 d
018.0 d
027.0 d
060.0 d
130.0 d

Table 5.2  The Formula of allowable pitch variation error (mm)

Less then 70
70 or more,but less than 100

100 or more,but less than 150
More than 150

Pitch variation error
1.3k
1.4k
1.5k
1.6k

Besides the above errors, there are seven specifications for 
bevel gear blank dimensions and angles, plus an eighth that 
concerns the cut gear set:
 j The tolerance of the blank tip diameter and the crown to 

back surface distance.
 k The tolerance of the outer cone angle of the gear blank.
 l The tolerance of the cone surface runout of the gear 

blank.
 m The tolerance of the side surface runout of the gear 

blank.
 n The feeler gauze size to check the flatness of blank back      

surface.
 o The tolerance of the shaft runout of the gear blank.
 p The tolerance of the shaft bore dimension deviation of 

the gear blank.
 q The tooth contact.

Item 8 relates to cutting of the two mating gears' teeth.  The  
tooth contact must be full and even across the profiles.  This 
is an important criterion that supersedes all other blank 
requirements.
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5.3  Running (Dynamic) Gear Testing

An alternate simple means of testing the general accuracy of a 
gear is to rotate it with a mate, preferably of known high quality, 
and measure characteristics during rotation.  This kind of tester 
can be either single contact (fixed center distance method) or 
dual (variable center distance method).  This refers to action on 
one side or simultaneously on both sides of the tooth.  This is 
also commonly referred to as single and double flank testing.  
Because of simplicity, dual contact testing is more popular than 
single contact.
 

(1)  Dual Contact (Double Flank) Testing

In this technique, the gear is forced meshed with a master gear 
such that there is intimate tooth contact on both sides and, 
therefore, no backlash.  The contact is forced by a loading 
spring.  As the gears rotate, there is variation of center distance 
due to various errors, most notably runout.  This variation 
is measured and is a criterion of gear quality.  A full rotation 
presents the total gear error, while rotation through one pitch 
is a tooth-to-tooth error.  Figure 5.9 presents a typical plot for 
such a test.

     where   W : Tolerance unit
                  W  = 3√ d  + 0.65m (μm)
                   d : Reference diameter (mm)
                  m : Module (mm)

 (2)  Single Contact Testing

In this test, the gear is mated with a master gear on a fixed 
center distance and set in such a way that only one tooth 
side makes contact.  The gears are rotated through this single 
flank contact action, and the angular transmission error of 
the driven gear is measured.  This is a tedious testing method 
and is seldom used except for inspection of the very highest 
precision gears.

Allowable errors per JGMA 116-01 are presented in Table 
5.3.

Grade Tooth-to-tooth composite error Total composite error

Table 5.3  Allowable values of running errors, (mm)

Extra fine (0) 1.12m + 3.55
01.6m +  5.00
2.24m +  7.10
3.15m +  10.0
04.5m +  14.0
06.3m +  20.0
09.0m +  28.0
12.5m +  40.0
18.0m +  56.0

  ( ( 1.4W  +    4.0) +  0.5  ( 1.12m +  3.55)
 ((12.0W  +  05.6) +  0.5  ((1.6  m +  05.0)
 ((12.8W  +  08.0) +  0.5  ((2.24m +  07.1)
 ((14.0W  +  11.2) +  0.5  ((3.15m +  10.0)
 ((15.6W  +  16.0) +  0.5  ((04.5m +  14.0)
 ((18.0W  +  22.4) +  0.5  ((06.3m +  20.0)
 ((11.2W  +  31.5) +  0.5  ((09.0m +  28.0)
 ((22.4W  +  63.0) +  0.5  ((12.5m +  40.0)
  ( 45.0W + 125.0) +  0.5  ((18.0m +  56.0)

1

2

3

4

5

6

7

8

Fig.5.9  Example of dual contact running testing report

One pitch running error

Total running error

One turn
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6.1 Tooth Contact of a Bevel Gear

It is important to check the tooth contact of a bevel gear both 
during manufacturing and again in final assembly.  The method is 
to apply a colored dye and observe the contact area after running.  
Usually some load is applied, either the actual or applied braking, 
to realize a realistic contact condition.  Ideal contact favors the 
toe end under no or light load, as shown in Figure 6.1; and, as 
load is increased to full load, contact shifts to the central part of 
the tooth width.

6  FEATURES  OF  TOOTH  CONTACT

Tooth contact is critical to noise, vibration, efficiency, strength, 
wear and life.  To obtain good contact, the designer must give 
proper consideration to the following features:

      ● Modifying the tooth shape
          Improve tooth contact by crowning or end relief.

      ● Using higher precision gear
         Specify higher accuracy by design.  Also, specify that the                
         manufacturing process is to include grinding or lapping.

      ● Controlling the accuracy of the gear assembly
         Specify adequate shaft parallelism and perpendicularity of 
         the gear housing (box or structure)

Tooth contact of spur and helical gears can be reasonably 
controlled and verified through piece part inspection.  However, 
for the most part, bevel gears and worm gear pair cannot be 
equally well inspected.  Consequently, final inspection of bevel 
and worm mesh tooth contact in assembly provides a quality 
criterion for control.  Then, as required, gears can be axially 
adjusted to achieve desired contact.

JIS B 1741: 1977 classifies tooth contact into three levels, as 
presented in Table 6.1.

Table 6.1  Levels of tooth contact

A

B

C

Types of gear

Cylindrical gears

Bevel gears

Worm wheels

Cylindrical gears

Bevel gears

Worm wheels

Cylindrical gears

Bevel gears

Worm wheels

Levels of tooth contact

Tooth width direction

More than 70%

More than 50%

More than 50%

More than 35%

More than 35%
More than 25%
More than 20%

Tooth height direction

More than 40%

More than 30%

More than 20%

The percentage in Table 6.1 considers only the effective width 
and height of teeth.

Even when a gear is ideally manufactured, it may reveal poor 
tooth contact due to lack of precision in housing or improper 
mounting position, or both.  Usual major faults are:
jShafts are not intersecting, but are skew (offset error)
kShaft angle error of gearbox.
lMounting distance error.

Errorsj and k can be corrected only by reprocessing the 
housing/mounting.  Error l can be corrected by adjusting the 
gears in an axial direction.  All three errors may be the cause of 
improper backlash.

Fig.6.1  Central toe contact 

Toe (Inner) end

Heel (Outer) end

100
60
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(1)  The Offset Error of Shaft Alignment

If a gearbox has an offset error, then it will produce crossed  
contact, as shown in Figure 6.2.  This error often appears as 
if error is in the gear tooth orientation.

The various contact patterns due to mounting distance errors 
are shown in Figure 6.4.

(2)  The Shaft Angle  Error of Gear Box

As Figure 6.3 shows, the tooth contact will move toward the 
toe end if the shaft angle error is positive;  the tooth contact will 
move toward the heel end if the shaft angle error is negative.

(3)  Mounting Distance Error
When the mounting distance of the pinion is a positive error, the 
contact of the pinion will move towards the tooth root, while 
the contact of the mating gear will move toward the top of the 
tooth.  This is the same situation as if the pressure angle of the 
pinion is smaller than that of the gear.  On the other hand, if the 
mounting distance of the pinion has a negative error, the contact 
of the pinion will move toward the top and that of the gear will 
move toward the root.  This is similar to the pressure angle of 
the pinion being larger than that of the gear.  These errors may 
be diminished by axial adjustment with a backing shim.

Mounting distance error will cause a change of backlash;  
positive error will increase backlash;  and negative, decrease.  
Since the mounting distance error of the pinion affects the tooth 
contact greatly, it is customary to adjust the gear rather than the 
pinion in its axial direction.

6.2  Tooth Contact of a Worm Gear Pair

There is no specific Japanese standard concerning worm gearing, 
except for some specifications regarding tooth contact in JIS B 
1741: 1977.
Therefore, it is the general practice to test the tooth contact and 
backlash with a tester.  Figure 6.5 shows the ideal contact for a 
worm mesh.

From Figure 6.5, we realize that the ideal portion of contact 
inclines to the receding side. 

Fig.6.2  Poor tooth contact due to offset error of shafts

Fig.6.3  Poor tooth contact due to shaft angle error

Fig.6.4  Poor tooth contact due to error in mounting distance

Fig.6.5  Ideal tooth contact of worm gear pair

Error

Error

(+) Shaft angle error

(-) Shaft 
    angle
   error

(+) Error (-) Error

Pinion Gear Pinion Gear

Rotating direction

Approaching side Receding side
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Because the clearance in the approaching side is larger than 
in the receding side, the oil film is established much easier in 
the approaching side.  However, an excellent worm wheel in 
conjunction with a defective gearbox will decrease the level 
of tooth contact and the performance. There are three major 
factors, besides the gear itself, which may influence the tooth 
contact:

j Shaft Angle Error.
k Center Distance Error.
l Locating Distance Error of  Worm Wheel.

Errorsj and k can only be corrected by remaking the housing. 
Errorl may be decreased by adjusting the worm wheel  along 
the axial direction.  These three errors introduce varying degrees 
of backlash.

(1)  Shaft Angle Error

If the gear box has a shaft angle error, then it will produce 
crossed contact as shown in Figure 6.6.
A helix angle error will also produce a similar crossed contact.

(3)   Locating Distance Error

Figure 6.8 shows the resulting poor contact from locating 
distance error of the worm wheel.  From the figure, we can see 
the contact shifts toward the worm wheel tooth's edge.  The 
direction of shift in the contact area matches the direction of 
worm wheel locating error.  This error affects backlash, which 
tends to decrease as the error increases.  The error can be 
diminished by micro-adjustment of the worm wheel in the axial 
direction.

(2)  Center Distance Error

Even when exaggerated center distance errors exist, as shown in 
Figure 6.7, the results are crossed contact.  Such errors not only 
cause bad contact but also greatly influence backlash. 
A positive center distance error causes increased backlash.  A 
negative error will decrease backlash and may result in a tight 
mesh, or even make it impossible to assemble.

Fig. 6.6  Poor tooth contact due to shaft angle error

Fig.6.7  Poor tooth contact due to center distance error

Fig.6.8  Poor tooth contact due to mounting distance error

Error

(+) Error

Error

Error

Error
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The purpose of lubricating gears is as follows:
    1.  Promote sliding between teeth to reduce the coefficient of 
          friction m .
    2.  Limit the temperature rise caused by rolling and sliding
          friction.

To avoid difficulties such as tooth wear and premature failure, 
the correct lubricant must be chosen.

7.1  Methods of Lubrication

There are three gear lubrication methods in general use:
           (1)      Grease lubrication.
           (2)     Splash lubrication (oil bath method).
           (3)     Forced oil circulation lubrication.

There is no single best lubricant and method.  Choice depends 
upon tangential speed (m/s ) and rotaing speed (min-1 ) .
At low speed, grease lubrication is a good choice.  For medium 
and high speeds, splash lubrication and forced oil circulation 
lubrication are more appropriate, but there are exceptions.  
Sometimes, for maintenance reasons, a grease lubricant is used 
even with high speed.  
Table 7.1 presents lubricants, methods and their applicable 
ranges of speed.
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The following is a brief discussion of the three lubrication 
methods.
(1)    Grease Lubrication
Grease lubrication is suitable for any gear system that is open or 
enclosed, so long as it runs at low speed.  There are three major 
points regarding grease:

  Choosing a lubricant with suitable cone 

penetration.
A lubricant with good fluidity is especially effective in an 
enclosed system.

 Not suitable for use under high load and

   continuous operation.
The cooling effect of grease is not as good as lubricating 
oil.  So it may become a problem with temperature rise 
under high load and continuous operating conditions.

  Proper quantity of grease
There must be sufficient grease to do the job.  However,      
too much grease can be harmful, particularly in an 
enclosed system.  Excess grease will cause agitation, 
viscous drag and result in power loss.

7  LUBRICATION  OF  GEARS Table 7.1-  Ranges of tangential speed (m/s) for spur and bevel gears

No.

1

2

3

Lubrication

Grease lubrication

Splash lubrication
Forced oil circultion 
lubrication

Range of tangential speed  v (m/s)

               

                                                 

0            5            10          15           20          25

Table 7.1 – Ranges of sliding speed (m/s) for worm wheels

No.

1

2

3

Lubrication

Grease lubrication

Splash lubrication
Forced oil circultion 
lubrication

Range of sliding speed   vs (m/s)

0            5            10          15          20           25
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(2)  Splash Lubrication (Oil Bath Method)

Splash lubrication is used with an enclosed system.  The 
rotating gears splash lubricant onto the gear system and 
bearings.  It needs at least 3 m/s tangential speed to be 
effective.  However, splash lubrication has several problems, 
two of them being oil level and temperature limitation.

 j  Oil level
There will be excess agitation loss if the oil level is 
too high. On the other hand, there will not be effective 
lubrication or ability to cool the gears if the level is too 
low.  Table 7.2 shows guide lines for proper oil level.
Also, the oil level during operation must be monitored, 
as contrasted with the static level, in that the oil level 
will drop when the gears are in motion.  This problem 
may be countered by raising the static level of lubrilling 
an oil pan.

 k Temperature limitation.
The temperature of a gear system may rise because 
of friction loss due to gears, bearings and lubricant 
agitation.  Rising temperature may cause one or more of 
the following problems:

  
   Lower viscosity of lubricant
   Accelerated degradation of lubricant.
   Deformation of housing, gears and shafts.
   Decreased backlash.
  

New high-performance lubricants can withstand up to 
80°C to 90°C.
This temperature can be regarded as the limit.  If the 
lubricant's temperature is expected to exceed this limit, 
cooling fins should be added to the gear box, or a cooling 
fan incorporated into the system.

Table 7.2  Adequate oil level

Type of Spur gears and helical gears Bevel gears Worm gear pair

Gear 

Oil level

Level 0

Horizontal shaft Vertical shaft (Horizontal shaft) Worm - above Worm -below

 h = Tooth depth, b = Facewidth, d2 = Reference diameter of worm wheel, d1 = Reference diameter of worm

(3)   Forced Oil Circulation Lubrication
Forced oil circulation lubrication applies lubricant to the 
contact portion of the teeth by means of an oil pump.  There 
are drop, spray and oil mist methods of application.
      O  Drop Method

An oil pump is used to suck-up the lubricant and then 
directly drop it on the contact portion of the gears via a 
delivery pipe.

      O  Spray Method
An oil pump is used to spray the lubricant directly on 
the contact area of the gears.

       O  Oil Mist Method
Lubricant is mixed with compressed air to form an oil 
mist that is sprayed against the contact region of the 
gears.  It is especially suitable for high-speed gearing.

Oil tank, pump, filter, piping and other devices are needed in 
the forced oil lubrication system.  Therefore, it is used only for 
special high-speed or large gear box applications.  
By filtering and cooling the circulating lubricant, the right 
viscosity and cleanliness can be maintained.  This is considered 
to be the best way to lubricate gears.

0

3h
↑↓
1h

1h
↑↓
 h

1b
↑↓
 b

↑↓

 d13
1

3
1

 d23
1 2

1

4
1

 d1
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7.2     Gear Lubricants

An oil film must be formed at the contact surface of the teeth to 
minimize friction and to prevent dry metal-to-metal contact. 

The lubricant should have the properties listed in Table 7.3.

Table 7.3  The properties that lubricant should possess

No.

1

2

3

4

5

6

Properties

Correct 
and proper 
viscosity

Antiscoring 
property

Oxidization 
and heat 
stability
Water 
antiaffinity 
property

Antifoam 
property

Anticorrosion 
property

Description

Lubricant should maintain  proper vicosity to form a stable oil film at the specified  
temperature and speed of operation.

Lubricant should have the property to prevent the scoring failure of tooth surface 
while under high-pressure of load.

A good lubricant should not oxidize easily and must perform in moist and high-
temperature environment for long duration.
Moisture tends to condense due to temperature change when the gears are stopped.  
The lubricant should have the property of isolating moisture and water from 
lubricant
If the lubricant foams under agitation, it will not provide a good oil film. Antifoam 
property is a vital requirement.

Lubrication should be neutral and stable to prevent corrosion from rust that may 
mix into the oil.

(1)  Viscosity of Lubricant
The correct viscosity is the most important consideration in 
choosing a proper lubricant.  The viscosity grade of industrial 
lubricant is regulated in JIS K 2001.  Table 7.4 expresses ISO 
viscosity grade of industrial lubricants.

Besides ISO viscosity classifications, Table 7.5 contains 
AGMA viscosity grades and their equivalent ISO viscosity 
grades.

Table 7.4  ISO viscosity grade of industrial lubricant ( JIS K 2001 ) Table 7.5  AGMA viscosity grades

ISO

Viscosity grade

AGMA No.of gear oil

R & O type

ISO VG 1502 
ISO VG 1503
ISO VG 1505
ISO VG 1507
ISO VG 1510
ISO VG 1515
ISO VG 1522
ISO VG 1532
ISO VG 1546
ISO VG 1568
ISO VG 1100
ISO VG 1150
ISO VG 1220
ISO VG 1320
ISO VG 1460
ISO VG 1680
ISO VG 1000
ISO VG 1500

1    8 Acomp
2    8 Acomp
3    8 Acomp
4    8 Acomp
5    8 Acomp
6    8 Acomp
7    7 compA
8    8 compA
1    8 Acomp
9  8 Acomp

Kinematic viscosity 
center value

10-6m2/s(cSt)
(40°C)

EP type

1502.2
1503.2
1504.6
1506.8
1510.0
1515.0
1522.2
1532.2
1546.2
1568.2
1100.2
1150.2
1220.2
1320.2
1460.2
1680.2
1000.2
1500.2

2 Ep
2 EP
3 EP
4 EP
5 EP
6 EP
7 EP
8 EP
2 Ep
9 EP

Kinematic viscosity range
10-6m2/s(cSt)

(40°C)

ISO viscosity 
grades

More than  1.98   and less than   2.42 
More than  2.88  and less than   3.52 
More than  4.14  and less than   5.06 
More than  6.12  and less than   7.48 
More than  9.0    and less than   11.00
More than  13.5  and less than   16.5
More than  19.8  and less than   24.2
More than  28.8  and less than   35.2
More than  41.4  and less than   50.6
More than  61.2  and less than   74.8
More than  90.0  and less than   110
More than  135   and less than   165
More than  198   and less than   242
More than  288.  and less than   352
More than  414   and less than   506.
More than  612.  and less than   748
More than  900   and less than   1100.
More than  1350 and less than   1650

VG 4600
VG 6800
VG 1000
VG 1500
VG 2200
VG 3200
VG 4600
VG 6800
VG 1000
VG 1500
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(2)  Selection of Lubricant
It is practical to select a lubricant by following the catalog or technical manual of the manufacturer.  Table 7.6 is the application guide 
from AGMA 250.03 "Lubrication of Industrial Enclosed Gear Drives".

Table 7.7 is the application guide chart for worm gear pair from AGMA 250.03.

Table 7.6  Recommended lubricants by AGMA

          Gear type
AGMA No.

Ambient temperature °C
– 10 ~ 16

2 – 3
2 – 3
3 – 4

2 – 3
3 – 4
3 – 4

2 – 3
3 – 4
4 – 5
2 – 3
3 – 4
2 – 3
3 – 4
2 – 3

1

10 ~ 52

3 – 4
4 – 5
4 – 5

3 – 4
4 – 5
4 – 5

3 – 4
4 – 5
5 – 6
3 – 4
4 – 5
4 – 5
5 – 6
4 – 5

2

Size of gear equipment (mm)

Less than 200
200 ~500
More than 500

Center
distance

(Output side)

Double stage 
reduction

Single stage 
reduction

Triple stage 
reduction

Planetary gear system O.D. of gear 
casing

Cone distance

Less than 400
More than 400
Less than 300
More than 300

Straight and spiral bevel 
gearing

Gearmotor
High Speed Gear Equipment

Less than 200
200 ~500
More thn 500
Less than 200
200 ~500
More than 500

Parallel
shaft

system

Table 7.7  Recommended lubricants for worm gear pair by AGMA
Type

of
worm

Cylindrical
type

Enveloping
type

Center 
distance

mm
1       ≤ 150
150  ~ 300
300  ~  460
460  ~  600

  600  <150
150  ≤ 150
150 ~ 300
300 ~ 460
460  ~ 600

  600 <150

Rotating 
speed of worm

min-1

≤700
≤450
≤300
≤250
≤200
≤700
≤450
≤300
≤250
≤200

Rotating speed 
of Worm

min-1

700 <
450 <
300 <
250 <
200 <
700 <
450 <
300 <
250 <
200 <

Ambient temperature, ºC Ambient temperature, ºC

– 10 ~ 16

7 Comp

8 Comp

– 10  ~ 16

7 Comp

8 Comp

10 ~ 52

8 Comp

8 AComp

10 ~ 52

8 Comp

Table 7.8 expresses the reference value of viscosity of lubricant used in the equations for the strength of worm gears in JGMA 405-01.
Table 7.8  Reference values of viscosity                                            unit: cSt/37.8ºC

Operating temperature

Maximum running

10ºC ~ 10ºC

10ºC ~ 30ºC

30ºC ~ 55ºC

55ºC ~ 80ºC

80ºC ~ 100ºC

Starting temperature

–10ºC ~ 0ºC

More than 0ºC

More than 0ºC

More than 0ºC

More than 0ºC

More than 0ºC

Less than 2.5

110 ~ 130

110 ~ 150

200 ~ 245

350 ~ 510

510 ~ 780

900 ~ 1100

2.5 through 5

110 ~ 130

110 ~ 150

150 ~ 200

245 ~ 350

350 ~ 510

510 ~ 780

More than 5

110 ~ 130

110 ~ 150

150 ~ 200

200 ~ 245

245 ~ 350

350 ~ 510

Sliding speed      m/s

After making decision about which grade of viscosity to select, taking into consideration the usage (for spur gear, worm gear pair etc.) and 
usage conditions (dimensions of mechanical equipment, ambient temperature etc.), choose the appropriate lubricant.  Technical manual of 
the libricant manufacturer may be of great help.
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Table 8.1 presents the equations for tangential (circumferential) 
force Ft (kgf), axial (thrust) force  Fx(kgf), and radial force 
Fr   in relation to the transmission force Fn acting upon the 
central part of the tooh flank.
T and T1  shown therein represent input torque (kgf·m).

In designing a gear, it is important to analyze the magnitude 
and direction of the forces acting upon the gear teeth, shafts, 
bearings, etc.  In analyzing these forces, an idealized assumption 
is made that the tooth forces are acting upon the central part of 
the tooth flank.

8  GEAR  FORCES

Table 8.1  Forces acting upon a gear 

Types of gears

Spur gear

Straight bevel gear

Helical gear

Spiral bevel gear

Worm 

gear 

pair

Screw gear

 Σ = 90°
 β = 45°

Worm

(Driver)

Worm 
Wheel

(Driven)

Driver 

gear

Driven 

gear

Ft :Tangential force

Ft  =

Ft  =

dm is the central reference diameter
dm = d – b sinδ

Ft  =

Ft

Ft  =

Ft

Fx : Axial force

——————

Ft tanα  sinδ

           (tanα n sinδ – sinβm cosδ  )

           (tanαn sin δ + sinβm cos δ )

Ft

Ft

Ft

Ft

            (tanα n cosδ + sinβm sinδ  )

            (tanα n cosδ – sinβm sinδ  )

Ft

Ft

Ft tan β

Fr : Radial force

Ft tanα

Ft tanα  cosδ

When convex surface is working:

When concave surface is working:

Ft

8.1  Forces in a Spur Gear Mesh

The Spur Gear's transmission force Fn , which is normal to the 
tooth surface , as in Figure 8.1, can be resolved into a tangential 
component, Ft , and a radial component, Fr .  Refer to Equation 
(8.1).
    Ft = Fn cosα '
    Fr = Fn sinα '

There will be no axial force, Fx .

The direction of the forces acting on the gears are shown in  


 (8.1)


Table 7.8 expresses the reference value of viscosity of lubricant used in the equations for the strength of worm gears in JGMA 405-01.







d
2000T

dm

2000T

d1

2000T1

d1

2000T1

cosα n sin γ  + m  cos γ
cosα n cos γ  – m  sin γ

cosα n cos β  + m  sin β
cosα n sin β  – m  cos β

cosα n cos β  + m  sin β
cosα n sin β  – m  cos β

cosα n sin γ  + m  cos γ
cosα n cos γ  – m  sin γ

cos βm

Ft

cos βm

Ft

cos βm

Ft

cos βm

Ft

cos β
tanα n

cosα n sin γ  + m  cos γ
sinαn

cosα n cos β  + m  sin β
sinαn

Fig.8.1  Forces acting on a spur gear mesh Fig.8.2  Directions of forces acting on a spur gear mesh

Ft

Fn Fr

α'

Ft2 Ft1 Ft1 Ft2

Drive gear

Driven gear

Fr1 Fr1

Fr2 Fr2

Figure 8.2. The tangential component of the drive gear, Ft1 is 
equal to the driven gear's tangential component, Ft2, but the 
directions are opposite.  Similarly, the same is true of the radial 
components.
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8.2 Forces in a Helical Gear Mesh

The helical gear's transmission force, Fn, which is normal to the 
tooth surface, can be resolved into a tangential component, F1, 
and a radial component, Fr, as shown in Figure 8.3.

      F1 = Fn cosα n

      Fr  = Fn sinα n

The tangential component, F1, can be further resolved into 
circular subcomponent, Ft , and axial thrust subcomponent, Fx.

      Ft  = F1 cos β
      Fx  = F1 sin β
Substituting and manipulating the above equations result in:

      Fx  = Ft tan β

      Fr  = Ft

The directions of forces acting on a helical gear mesh are 
shown in Figure 8.4.
The axial thrust sub-component from drive gear, Fx1, equals the 
driven gear's, Fx2, but their directions are opposite.
Again, this case is the same as tangential components and radial 
components.


 (8.2)



                                      (8.3)




 (8.4)



8.3 Forces in a Straight  Bevel Gear Mesh

The forces acting on a straight bevel gear are shown in Figure 
8.5.  The force which is normal to the central part of the tooth 
face, Fn , can be split into tangential component, Ft , and 
radial component, F1, in the normal plane of the tooth.

      Ft  = Fn cosα n

      F1  = Fn sinα n

Again, the radial component, F1, can be divided into an axial 
force, Fx, and a radial force, Fr , perpendicular to the axis.
       Fx  = F1 sinδ
      Fr  = F1 cosδ
And the following can be derived:
      Fx  = Ft tanα n sinδ
      Fr  = Ft tanα n cosδ


 (8.5)



 (8.6)



 (8.7)


cos β
tanα n

Fig.8.3  Forces acting on a helical gear mesh

Fig.8.4  Directions of forces acting on a helical gear mesh

Fig.8.5  Forces acting on a straight bevel gear mesh
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Let a pair of straight bevel gears with a shaft angle Σ = 90°  , a 
pressure angle αn = 20°   and tangential force, Ft , to the central 
part of tooth face be 100.  Axial force, Fx , and radial force, Fr, 
will be as presented in Table 8.2.

Table 8.2                                 Values

8.4  Forces in A Spiral Bevel Gear Mesh

Spiral bevel gear teeth have convex and concave sides.  
Depending on which surface the force is acting on, the direction 
and magnitude changes. They differ depending upon which is 
the driver and which is the driven. 

(1)  Pinion

Forces on the 
gear tooth

Axial force
Radial force

Gear ratio   z2/z1

1.0

25.7
25.7

20.2
30.3

16.3
32.6

13.5
33.8

11.5
34.5

 8.8
35.3

  7.1
35.7

1.5 2.0 2.5 3.0 4.0 5.0

(2)  Gear

Forces on the 
gear tooth

Axial force
Radial force

Gear ratio  z2/z1

1.0

25.7
25.7

30.3
20.2

32.6
16.3

33.8
13.5

34.5
11.5

35.3
 8.8

35.7
  7.1

1.5 2.0 2.5 3.0 4.0 5.0

Figure 8.6 contains the directions of forces acting on a straight 
bevel gear mesh.  In the meshing of a pair of straight bevel gears 
with shaft angle Σ = 90°  , the axial force acting on drive gear Fx1 
equals the radial force acting on driven gear Fr2.  Similarly, the 
radial force acting on drive gear Fr1 equals the axial force acting 
on driven gear Fx2.  The tangential force Ft1 equals that of Ft2.

All the forces have relations as per Equations (8.8).
      Ft1 = Ft2

      Fr1 = Fx2

      Fx1 = Fr2



 (8.8)



Figure 8.7 presents the profile orientations of right-hand and 
left-hand spiral teeth.  If the profile of the driving gear is 
convex, then the profile of the driven gear must be concave. 
Table 8.3 presents the convex/concave relationships.

Table 8.3  Concave and convex sides of a spiral bevel gear
Right-hand gear as drive gear

Rotational direction 
of drive gear

Meshing tooth face

Right-hand drive gearLeft-hand driven gear

Clockwise Convex Concave

Counterclockwise Concave Convex

Left-hand gear as drive gear

Rotational direction 
of drive gear

Meshing tooth face

Left-hand drive gear Right-hand driven 
gear

Clockwise Concave Convex

Counterclockwise Convex Concave
Fig.8.6  Directions of forces acting on a straight bevel gear mesh

Fig.8.7  Convex surface and concave surface 
of a spiral bevel gear

Radial force Fr

Axial force Fx

Pinion as drive gear

Gear as driven gear

Ft2

Ft1

Fx2

Fr1

Fx1

Fr2

Fr1

Fx1

Ft2

Ft1

Fr2

Fx2

Concave surface

Convex surface
Gear tooth Gear tooth

Right-hand spiral Left-hand spiral
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(1)   Forces on Convex Side Profile          F1 = Fn cosα n

         F2 = Fn sinα n

And F1 can be separated into components Ft and Fs on the pitch 
surface:
         Ft = F1 cosβm

         Fs = F1 sinβm

So far, the equations are identical to the convex case.  However, 
differences exist in the signs for equation terms. On the 
axial surface, F2 and Fs can be resolved into axial and radial 
subcomponents.  Note the sign differences.
         Fx = F2 sinδ  + Fs cosδ
         Fr = F2 cosδ  – Fs sinδ

The above can be manipulated to yield:

         Fx =             ( tanα n sinδ  + sinβm cosδ )

         Fr =             ( tanα n cosδ  – sinβm sinδ )
 (8.16)

Let a pair of spiral bevel gears have a shaft angle Σ = 90° , 
a pressure angle αn = 20°  , and a spiral angle βm = 35°  .  If the 
tangential force, Ft to the central portion of the tooth face is 100, 
the axial force, Fx, and radial force, Fr, have the relationship 
shown in Table 8.4.

Table 8.4 Values of

The transmission force, Fn , can be resolved into components F1 
and F2. (See Figure 8.8).

         F1 = Fn cosα n

         F2 = Fn sinα n

Then F1 can be resolved into components Ft and Fs:

         Ft = F1 cosβm

         Fs = F1 sinβm

On the axial surface, F2 and Fs can be resolved into axial and 
radial subcomponents.

         Fx = F2 sinδ  – Fs cosδ
         Fr = F2 cosδ  + Fs sinδ
By substitution and manipulation, we obtain:

         Fx =              ( tanα n sinδ – sinβm cosδ )

         Fr =               ( tanα n cosδ + sinβm sinδ )
 (8.12)
(2)   Forces on a Concave Side Profile


 (8.9)



 (8.10)



 (8.11)




 



On the surface which is normal to the tooth profile at the central 
portion of the tooth, the transmission force Fn can be split into 
F1 and F2.  See Figure 8.9:


 (8.13)



 (8.14)



 (8.15)




 



(1)  Pinion

Meshing 
tooth face

Concave 
side of 
tooth

Convex 
side of 
tooth

Gear ratio    z2/z1

1.0

  80.9
−18.1

  82.9
  −1.9

82.5
  8.4

81.5
15.2

80.5
20.0

78.7
26.1

77.4
29.8

−18.1
  80.9

−33.6
  75.8

−42.8
  71.1

−48.5
  67.3

−52.4
  64.3

−57.2
  60.1

−59.9
  57.3

1.5 2.0 2.5 3.0 4.0 5.0

(2)  Gear

Meshing 
tooth face

Concave 
side of 
tooth

Convex 
side of 
tooth

Gear ratio    z2/z1

1.0

  80.9
−18.1

  75.8
−33.6

  71.1
−42.8

   67.3
−48.5

  64.3
−52.4

  60.1
−57.2

  57.3
−59.9

−18.1
  80.9

  −1.9
  82.9

  8.4
82.5

15.2
81.5

20.0
80.5

26.1
78.7

29.8
77.4

1.5 2.0 2.5 3.0 4.0 5.0

The value of axial force, Fx, of a spira bevel gear, from Table 8.4, 
could become negative.  At that point, there are forces tending to 
push the two gears together.  If there is any axial play in the 
bearing, it may lead to the undesirable condition of the mesh 
having no backlash.  Therefore, it is important to pay particular 
attention to axial plays. 

cos βm

Ft

cos βm

Ft

cos βm

Ft

cos βm

Ft

Radial force, Fr

Axial force, Fx

Fig.8.8  When meshing on the convex side of tooth face

Fig.8.9  When meshing on the concave side of tooth face

F1 Fn

Fr

αn

F2

F2

Fx

Fs

Fs

F1

Ft

βm

δ

F1
Fn

Fr

αn

F2

F2

Fx

Fs

Fs

F1Ft

βm

δ
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From Table 8.4(2), we understand that axial turning point of 
axial force, Fx, changes from positive to negative in the range of 
gear ratio from 1.5 to 2.0 when a gear carries force on the convex 
suide.  The precise turning point of axial force, Fx, is at the gear 
ratio z2/z1 =1.57357.

Figure 8.10 describes the forces for a pair of spiral bevel gears 
with shaft angle Σ = 90°  , pressure angle αn = 20°  , spiral angle 
βm = 35°   and the gear ratio z2/z1, ranging from 1 to 1.57357. 
Figure 8.11 expresses the forces of another pair of spiral bevel 
gears taken with the gear ratio z2/z1 equal to or larger than 
1.57357.

8.5 Forces in a Worm Gear Pair Mesh

(1)  Worm as the Driver

For the case of a worm as 
the driver, Figure 8.12, the 
transmission force, Fn,  which 
is normal to the tooth surface at 
the pitch circle can be resolved 
into components F1 and  Fr1.

     F1 = Fn cosα n

     Fr1 = Fn sinα n

                                              (8.17)

At the pitch surface of the worm, there is, in addition to the 
tangential component, F1, a friction sliding force on the tooth 
surface, Fnm.  These two forces can be resolved into the circular 
and axial directions as:

      Ft1 = F1 sinγ + Fnm  cosγ
      Fx1 = F1 cosγ – Fnm  sinγ

and by substitution, the result is:

      Ft1 = Fn (cosα n sinγ + m  cosγ ) 
      Fx1 = Fn (cosα n cosγ – m  sinγ ) 
      Fr1 = Fn sinα n 






 (8.18)





 (8.19)




Σ = 90° , αn = 20°, βm = 35°, u < 1.57357 

Σ = 90° , αn = 20°, βm = 35°, u ≥ 1.57357 

Fig.8.10  The direction of forces carried by spiral bevel gears (1)

Fig.8.11  The direction of forces carried by spiral bevelgears (2)
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Fig..12  Forces acting on the tooth
 surface of a worm
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Figure 8.13 presents the direction of forces in a worm gear 
pair mesh with a shaft angle Σ = 90° .  These forces relate as 
follows: 
                 Fx1 = Ft2

                 Ft1 = Fx2

                 Fr1 = Fr2

In a worm gear pair mesh with a shaft angle Σ = 90°    , the axial 
force acting on drive gear Fx1 equals the tangential force acting 
on driven gear Ft2.  Similarly, the tangential force acting on 
drive gear Ft1 equals the axial force acting on driven gear Fx2.  
The radial force Fr1 equals that of Fr2.
The equations concerning worm and worm wheel forces 
contain the coefficient m.  The coefficient of friction has a great 
effect on the transmission of a worm gear pair.  Equation (8-21) 
presents the efficiency when the worm is the driver.

         ηR =          =           tanγ

              =                                             tan γ



 (8.20)





 (8.21)



(2)   Worm Wheel as the Driver 

For the case of a worm wheel as the driver, the forces are as in 
Figure 8.14 and per Equations (8.22).
    Ft2 = Fn (cosα n cos γ + m  sin γ )
    Fx2 = Fn (cosα n sin γ – m  cos γ )
    Fr2 = Fn sinα n

When the worm and worm wheel are at 90°  shaft angle, 
Equations (8.20) apply.  Then, when the worm wheel is the 
driver, the transmission efficiency η I is expressed as per 
Equation (8.23).

          η I =          = 

              = 




 (8.22)







 (8.23)




T1i
T2

cosα n sin γ  + m  cos γ
cosα n cos γ  – m  sin γ

Ft1

Ft2

T2

T1 i

cosα n cos γ  + msin γ
cosα n sin γ – mcos γ

Ft2 tan γ
Ft1

tan γ
1

Figure 8.13  Direction of forces in a worm gear pair mesh

Fig.8.14  Forces in a worm gear pair mesh
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8.6  Forces in a Screw Gear Mesh

The forces in a screw gear mesh are similar to those in a worm 
gear pair mesh.  For screw gears that have a shaft angle Σ = 90° 
, merely replace the worm's lead angle γ, in Equation (8.22), 
with the screw gear's helix angle β1.

In the general case when the shaft angle is not 90° , as in Figure 
8.15, the driver screw gear has the same forces as for a worm 
mesh.  These are expressed in Equations (8.24).

    Ft1 = Fn (cos α n cos β 1 + msin β 1)
    Fx1 = Fn (cos α n sin β 1 – mcos β 1)
    Fr1 = Fn sin α n

Forces acting on the driven gear can be calculated per Equations 
(8.25).

    Ft2 = Fx1 sinΣ  + Ft1 cosΣ
    Fx2 = Ft1 sinΣ  – Fx1 cosΣ
    Fr2 = Fr1

If the Σ term in Equation (8.25) is 90°, it becomes identical to 
Equation (8.20). 
Figure 8.16 presents the direction of forces in a screw gear 
mesh when the shaft angle Σ = 90° , and β1 = β2 = 45° .




 (8.24)







 (8.25)




Fig.8.15  The forces in a screw gear mesh

Fig.8.16  Direction of forces in a screw gear mesh
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k Increase the number of teeth.

As the number of teeth increases and pitch diameter 
grows, again there is a longer line-of-action in the 
region between the outside radii.  For a fixed center 
distance, the transverse contact ratio will become bigger 
if the gear of smaller module with proportionately 
larger number of teeth, is used. (For instance, use SS1-
30 in place of SS2-15).
l Increase working depth.

Working depth h' of standard full depth tooth is twice as 
large as each module size. Therefore, increasing working 
depth requires a special tooth design, a "high-tooth".

1)  Transverse Contact Ratio of Parallel Axes Gear

Table 9.1 presents equations of transverse contact ratio on 
parallel axes gear.

To assure continuous smooth tooth action, as one pair of teeth 
ceases action a succeeding pair of teeth must already have come 
into engagement.  It is desirable to have as much overlap as is 
possible.  A measure of this overlap action is the contact ratio.

When considering all types of gears, contact ratio is composed 
of :

     Transverse contact ratio, εα 

     Overlap ratio, εβ  
     Total contact ratio, εγ

9.1  Transverse Contact Ratio, εα

Transverse contact ratio (plane of rotation perpendicular to 
axes), εα is found by dividing the length of path of contact 
by the base pitch, pb.  There are three factors that influence 
the transverse contact ratio, εα.  These are pressure angle, α ', 
number of teeth z1, z2, and working tooth depth, h'.
In order to increase εα there are three means:

j Decrease the pressure angle.
Decreasing the pressure angle makes a longer line-of-
action as it extends through the region between the two 
outside radii. Also, it is feasible to decrease the pressure 
angle by means of profile shifting.

9 CONTACT RATIO

Table 9.1  Equations of transverse contact ratio on parallel axes gear, εα

1

2

3

4

Type of gear mesh

       j
Spur gear

                                k 

Spur gear                 j 

 Rack                       k 

Spur gear                 j

Internal gear            k

                                j
Helical gear

                                k

Formula of transverse contact ratio,   εα

 

     An example of helical gear

mn = 3
a = 125
da1 = 48.153
εα = 1.2939

αn = 20°
α t = 22.79588°
da2 = 213.842

β  = 30°
α 't = 23.1126°
db1 = 38.322

z1 = 12
mt = 3.46410
db2 = 191.611

z2 = 60 x1 =  + 0.09809 x2 = 0

πm cos α

                 –               +                   –               –  a  sinα '
2

da1 2



√ 2

db1 2



 2

da2 2



√ 2

db2 2





πm cos α

                 –               –                   –              +  a  sinα '
2

da1 2



√ 2

db1 2



 2

da2 2



√ 2

db2 2





πmt cos α t

                 –               +                  –              –  a  sinα 't2
da1 2



√ 2

db1 2



 2

da2 2



√ 2

db2 2





πm cos α

                 –              +                       –          sinα
2

da1 2



√ 2

db1 2



 sin α

ha2 – x1m
2
d1

Fig.9.1  Transverse contact ratio εα

da1

α '

α '

d'1
db1
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(2)   Transverse Contact Ratio of Bevel Gears, εα

The transverse contact ratio of a bevel gear pair, εα can be 
derived from consideration of the equivalent spur gears, when 
viewed from the back cone. (See Figure 4.9 on page 404.)
Table  9.2 presents equations calculating the transverse contact 
ratio.
Table 9.2  Equations for transverse contact ratio for a bevel gear pair, εα

1

2

3

4

Item

Back cone distance

Base radius of an equivalent 
spur gear

Tip radius of an equivalent 
spur gear

Transverse contact ratio

Symbol

Rv

Rvb

Rva

εα

Equations  for Contact Ratio

Straight bevel gear
Rvcosα

Spiral bevel gear
Rvcosα t

Rv  + ha

Straight bevel gear

Spiral bevel gear

  An example of spiral bevel gear
m = 3 , α n = 20° ,  β  = 35° , z1 = 20 , z2 = 40 , α t = 23.95680°
d1 = 60 , d2 = 120 , Rv1=33.54102 , Rv2 = 134.16408
Rvb1 = 30.65152 , Rvb2 = 122.6061, ha1 =3.4275 , ha2 = 1.6725
Rva1 = 36.9685 , Rva2 = 135.83658
εα = 1.2825

(3)  Transverse Contact Ratio For Nonparallel and 
       Nonintersecting Axes Gear Pairs, εα

Table 9.3 presents equations for contact ratio, εα, of nonparallel 
and nonintersecting gear meshes.
The equations are approximations by considering the worm 
gear pair mesh in the plane perpendicular to worm wheel axis 
and likening it to spur gear and rack mesh.

Table 9.3  Equations for transverse contact ratio of nonparallel and nonintersecting meshes, εα

1

Type of gear mesh

Worm                            j

Worm wheel                  k

Equation of transverse contact ratio,   εα

   An example of worm gear pair mesh
mx = 3 , α n = 20° , z1 = 2 , z2 = 30
d1 = 44 , d2 = 90 , γ  = 7.76517°
α x = 20.17024° , ha1 = 3
dt = 96 ,  db2 = 84.48050
εα = 1.8066

2cosδ
d

πm cosα
   Rva1

2 –  Rvb1
2    +    Rva2

2
  –  Rvb2

2    – ( Rv1+Rv2 ) sinα√ √

πm cos α t

   Rva1
2  – Rvb1

2   +    Rva2
2 – Rvb2

2      – ( Rv1+Rv2 ) sinα t√ √

πmx cosαx

                         +                 –               –          sinα xsinα x

ha1
2– xt2 mx

2
dt 2



√ 2

db2 2



 2

d2
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9.2  Overlap Ratio, εβ

Helical gears and spiral bevel gears have an overlap of 
tooth action in the axial direction.  Overlap ratio is obtained 
by dividing gear width, b, by px , the axial pitch. (See the 
illustration in Figure 9.2.)  Equations for calculating overlap 
ratio are presented in Table 9.4.

Table 9.4  Equation for overlap ratio, εβ

No.

1

2

Type of Gear

Helical gear

Spiral bevel gear

Equation Example

b = 50 , β = 30°,  mn = 3
εβ =2.6525

From Table 4.21 (Page 409): R = 67.08204 , b = 20 , βm = 35°,  m = 3
εβ =1.7462

NOTE: The module m in spiral bevel gear equation is the transverse module.

πmn

b sinβ

R – 0.5b
R

πm
b tan β m

Fig.9.2  Overlap ratio, εβ

px

β

b

p n
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(6)   Use Small Gears
lAdopt smaller module gears and smaller tip diameter gears.

(7)   Use High-Rigidity Gears
lIncreasing face width can give a higher rigidity that will help 

in reducing noise.
lReinforce housing and shafts to increase rigidity.

(8)   Use High-Vibration-Damping Material
lPlastic gears will be quiet in light load, low speed operation.

Care should be taken, however, to the reduced ability to 
operate at elevated temperatures.
lCast iron gears have lower noise than steel gears.

(9)   Apply Suitable Lubrication
lLubricate gears sufficiently.
lHigh-viscosity lubricant will have the tendency to reduce the 

noise.

(10)   Lower Load and Speed
lLowering rotational speed and load as far as possible will 

reduce gear noise.

There are several causes of noise.  The noise and vibration in 
rotating gears, especially at high loads and high speeds, need to 
be addressed.  Following are ways to reduce the noise.  These 
points should be considered in the design stage of gear systems.

(1)   Use High-Precision Gears
lReduce the pitch error, tooth profile error, runout error and 

lead error.
lGrind teeth to improve the accuracy as well as the surface 

finish.

(2)   Use Better Surface Finish on Gears
lGrinding, lapping and honing the tooth surface, or running 

in gears in oil for a period of time can also improve the 
smoothness of tooth surface and reduce the noise.

(3)   Ensure a Correct Tooth Contact
lCrowning and end relief can prevent edge contact.
lProper tooth profile modification is also effective.
lEliminate impact on tooth surface.

(4)   Have A Proper Amount of Backlash
lA smaller backlash will help reduce pulsating transmission.
lA bigger backlash, in general, causes less problems.

(5)   Increase the Contact Ratio
lBigger contact ratio lowers the noise.  Decreasing pressure 

angle and/or increasing tooth depth can produce a larger 
contact ratio.
lEnlarging overlap ratio will reduce the noise.  Because of this 

relationship, a helical gear is quieter than the spur gear and a 
spiral bevel gear is quieter than the straight bevel gear.

10 GEAR NOISE
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Helix angle is what differs helical gear from spur gear.  And it is 
necessary that helix angle is measured accurately.
Gear measuring machine can serve for this purpose. When the 
machine is unavailable you can use a protractor to obtain a 
rough figure.
Lead  pz of a helical gear can be presented with the equation:

                  pz =

Given the lead pz, number of teeth z normal module mn, the 
helix angle β can be found with the equation:

                 β = sin-1

The number of teeth z and normal module mn can be obtained 
using the method explained in 11 above.  In order to obtain pz, 
determine da by measuring tip diameter.  Then prepare a piece 
of paper.  Put ink on the outside edge of a helical gear, roll it on 
the paper pressing it tightly.  With the protractor measure angle 
of the mark printed on the paper, β k.

Lead  pz  can be obtained with the following equation.

                   pz  =

j Count up how many teeth a sample spur gear has.     z =  
k Measure its tip diameter.                  da =
l Estimate a rough approxmation of its module assuming 

that it has unshifted standard full depth tooth, using the 
equation:

               m =                                             m 

m Measure the span measurement of k, span number of 
teeth.  Also, measure the same of  k –1.  Then calculate the 
difference.

Span number of teeth  k  =                 Span measurement Wk  =
                 "           k –1=           Wk  –1 =
           The difference =
n This difference represents pb = πm cos α .  

         Select  module m and pressure  angle α  from the table on  
the right.

                                                                                                           m =
                                                                α =
o Calculate the profile shift coefficient  x based on the above  

m and pressure angle α  and span measurement W.
                                                                 x =

50

Table : Base pitch pb

Illustrated below are procedural steps to determine specifications of a spur gear.

11 A METHOD FOR DETERMINING THE SPECIFICATIONS OF A SPUR GEAR

Steps

12 A METHOD FOR DETERMINING THE SPECIFICATIONS OF A HELICAL GEAR

Module

1.00

1.25

1.50

2.00

2.50

3.00

3.50

4.00

5.00

6.00

7.00

Module

08

09

10

11

12

14

16

18

20

22

25

Pressure angle Pressure angle

20º

02.952

03.690

04.428

05.904

07.380

08.856

10.332

11.808

14.760

17.712

20.664

20º

23.619

26.569

29.521

32.473

35.425

41.329

47.234

53.138

59.042

64.946

73.802

14.5º

03.042

03.802

04.562

06.083

07.604

09.125

10.645

12.166

15.208

18.249

21.291

14.5º

24.332

27.373

30.415

33.456

36.498

42.581

48.664

54.747

60.830

66.913

76.037

NOTE:  This table deals with pressure angle 20° and 14.5° only. There may 
be the case where the degree of pressure angle is different.

z + 2
da

tanβ k

πda

pz

πzmn 





sinβ
πzmn

Measuring helix angle on tooth tips

βk

.=  .


	1 GEAR TOOTH MODIFICATIONS
	2 GEAR TRAINS
	2.1 Planetary Gear System
	2.2 Hypocycloid Mechanism
	2.3 Constrained Gear System

	3 TOOTH THICKNESS
	3.1 Chordal Tooth Thickness Measurement
	3.2 Span Measurement of Teeth
	3.3 Measurement Over Rollers

	4 BACKLASH
	4.1 Backlash Relationships
	4.2 Tooth Thickness and Backlash
	4.3 Gear Train and Backlash
	4.4 Methods of Controlling Backlash

	5 GEAR ACCURACY
	5.1 Accuracy of Spur and Helical Gears
	5.2 Accuracy of Bevel Gears
	5.3 Running (Dynamic) Gear Testing

	6 FEATURES OF TOOTH CONTACT
	6.1 Tooth Contact of a Bevel Gear
	6.2 Tooth Contact of a Worm Gear Pair

	7 LUBRICATION OF GEARS
	7.1 Methods of Lubrication
	7.2 Gear Lubricants

	8 GEAR FORCES
	8.1 Forces in a Spur Gear Mesh
	8.2 Forces in a Helical Gear Mesh
	8.3 Forces in a Straight Bevel Gear Mesh
	8.4 Forces in A Spiral Bevel Gear Mesh
	8.5 Forces in a Worm Gear Pair Mesh
	8.6 Forces in a Screw Gear Mesh

	9 CONTACT RATIO
	9.1 Transverse Contact Ratio
	9.2 Overlap Ratio

	10 GEAR NOISE
	11 A METHOD FOR DETERMINING THE SPECIFICATIONS OF A SPUR GEAR



