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Capítulo 1 -  Introdução 
 
 Pode-se dizer que as máquinas de fluido são um dos pilares 

fundamentais da indústria e das centrais elétricas modernas. 
 
 Encontra-se máquinas deste tipo desde em aplicações de geração de 

energia até eletro-domésticos, passando por siderúrgicas, indústrias de papel 
e celulose, mineração, petro-química e outros inúmeros processos. 

 
 Quase sempre estas máquinas estão associadas a motores ou 

geradores elétricos de diversos tipos e características. 
 
 Devido a esta importância, sempre se busca uma melhor associação 

destes elementos, visando: 
 

 - Maior desempenho do conjunto; 
 - Menor consumo de energia ou maior geração de energia; 
 - Menores custos de operação e manutenção; 

 - e outros objetivos mais específicos. 



 

 

 

1.1) Classificação das máquinas de fluidos 

 
 As máquinas de fluido, podem ser classificadas em dois tipos básicos: 

máquinas de fluxo e de deslocamento positivo.  
 

 



 

 

 

Máquinas de fluxo: São assim designadas pois o fluido de trabalho passa de 

maneira contínua pelo elemento principal da máquina, o rotor. 
 

Máquina de deslocamento positivo: São assim chamados porque o fluido 
realiza trabalho (ou consome trabalho) somente em uma fase do 
deslocamento do elemento principal (pistão, palheta etc.). 

 
 Máquina Térmica: É a máquina que trabalha com fluido considerado 

compressível, ex., gás ou vapor d'água. 
 
 Máquina Hidráulica: É a máquina que trabalha com fluido considerado 

incompressível dentro da faixa normal de pressão, ex., água ou óleos. 
 

Máquina Motora: É assim designada a máquina que retira trabalho mecânico 
(torque x rotação) da energia contida no fluido. 

 
Máquina Geradora: É assim designada a máquina que fornece energia para o 
escoamento do fluido. 

 
 



 

 

 

 



 

 

 

 



 

 

 

 

1.2) Classificação das máquinas hidráulicas quanto ao escoamento 

 
 Máquinas de fluxo hidráulicas 

Tipo Tangenciais Radiais Diagonais Axiais 

Motora 

turbinas 

Pelton 
(ação) 

turbinas Mitchel-
Banki (ação) 

turbinas Francis 
lenta (reação) 

turbinas Francis 

rápida 
(reação) 

turbinas Hélice, 

Kaplan e Bulbo 
(reação) 

Geradora  
bombas e 

ventiladores radiais 
(reação) 

bombas e 

ventiladores 
diagonais 

(reação) 

bombas e 
ventiladores axiais 

(reação) 

Figura 1.1 - Tipos de máquinas hidráulicas 
 



 

 

 



 

 

 



 

 

 



 

 

 

 



 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 
 
 



 

 

 

 



 

 

 

 



 

 

 

Usina hidrelétrica de Itaipú 

 



 

 

 

 



 

 

 

 



 

 

 

 
 



 

 

 

 



 

 

 

 

Capítulo 2 -  Grandezas de funcionamento 
 

2.1) Introdução 

 

 É de fundamental importância para o dimensionamento e estudo  do 
comportamento das máquinas hidráulicas o conhecimento das grandezas  que 
influenciam no seu funcionamento. Estas máquinas tem seu funcionamento 

definido através de três grandezas básicas distintas, consideradas como 
características fundamentais das máquinas hidráulicas: 

 

 Q - Vazão    - [m3/s]  

representa o fluxo de material líquido ou gasoso através da máquina. 
 

 H - Altura de queda (turbinas)    - [mCA] 

 H - Altura de elevação (bombas)    - [mCA] 

 ptot - Diferença de pressão total (ventiladores) - [N/m2]  

representa a variação de energia específica do fluido através da máquina. 
 



 

 

 

 

 n  - Rotação da máquina  - [RPM] 

representa a característica cinemática da máquina. 

 
 As duas primeiras grandezas tem sua conceituação definida a partir dos  
princípios  da  mecânica  dos fluidos e a última é decorrente dos princípios da 

física (cinemática dos corpos rígidos) aplicada a máquinas hidráulicas. 
 

 Além das grandezas fundamentais são importantes as grandezas 
derivadas, como a potência hidráulica, potência mecânica (aqui denominada 
potência de eixo), torque, o rendimento total e outras como veremos neste 

capítulo. 
 

2.2) Vazão 

 

 A mecânica dos fluidos define vazão como o volume de fluido que passa 
através de uma seção qualquer na unidade de tempo, e vazão em massa a 
quantidade de massa (kg) que passa na seção na unidade de tempo. Esta é 

determinada com base no princípio da conservação da massa: 
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 Esta equação é simplificada se considerarmos uma velocidade média V 
uniforme e perpendicular a seção de área A, e escoamento incompressível 

(massa específica constante): 
 

  VAm   

 

 A vazão em volume é a vazão em massa dividido pela massa específica. 
 

  VA
m

Q 





 

 
 Esta equação é utilizada para se calcular a velocidade normal à seção 
de escoamento quando conhecemos a vazão (em volume) e a área, ou a 

vazão em função da velocidade média e da área perpendicular a esta 
velocidade. 

 



 

 

 

 

2.3) Variação de energia específica 

 

 2.3.1) Altura de Queda (turbinas) 

 

 A conceituação da altura de queda de um aproveitamento hidroelétrico 
(fig 2.1),  composto de uma turbina de reação e demais equipamentos 

complementares, é feita através do balanço de energia entre as seções de 
entrada e saída da máquina. 

 
 É importante notar 
que a seção de saída, ponto 

1, foi considerada depois do 
tubo de sucção, fazendo 

com que este seja 
considerado parte integrante 
da máquina, uma vez que 

este elemento participa da 
transformação de energia. 

 



 

 

 

 A altura de queda é definida como a diferença de alturas, entre as 

seções de entrada 2 da máquina e de saída 1, convenientemente escolhidas. 
Aplicando a equação de Bernoulli para ambas as seções 1 e 2, e adotando 

como referência para as alturas de posições o nível de jusante, então obtem-
se: 
 

Para a seção 2  : 2

2

22atm22 Zg2Va)pp(H   

 

Para a seção 1  : 1

2

111 Zg2VpH      

 

onde: 
 
H2 , H1 -  Altura (nível energético) na entrada e na saída da máquina . 

 
p2/ -  Altura de pressão obtida no manômetro, na seção 2 (Relativa). 

p1/ -  Altura de pressão na seção 1 (Absoluta). 

 
patm/  - Altura de pressão equivalente a pressão atmosférica (Absoluta). 

 



 

 

 

 

 
  Fig 2.1 -  Aproveitamento hidroelétrico com turbina de reação. 

 
 V2

2/2g -  Altura equivalente a energia cinética na seção 2. 

 V1
2/2g -  Altura  equivalente a energia cinética na seção 1. 



 

 

 

 a2 -  Correção da leitura do manômetro, relativa a altura da 

referência do instrumento ao centro da seção 2. O sinal da correção depende 
da posição do manômetro. 

 
 Z2 ,Z1 -  Altura de posição das seções 2 e 1 relativas ao nível de 

referência. 
 
 A diferença H2-H1 é a altura de queda H para turbinas de reação 

(considerando o tubo de sucção como parte da turbina): 
 

 )Zp(g2/)VV(Za)pp(HHH 11

2

1

2

222atm212   

 
 Como na seção 1 a pressão absoluta atuante é a pressão atmosférica 

mais a coluna de água (em termos absolutos) Z1 ao desprezarmos as perdas 
no escoamento da seção 1 até o nível de jusante - ponto 0, podemos então 
escrever de acordo com as convenções adotadas: 

 
  atm11 pZp  (Z1 < 0) 

 



 

 

 

Logo,  H  pode ser reescrito como sendo: 

 

   2

2

1

2

222 Zg2VVapH   

 
 Essa maneira usada para determinar H é  chamada de processo 
manométrico, o qual permite a obtenção da altura de queda de instalações em 

funcionamento. Conforme a instalação pode desprezar alguns termos desta 
equação. 

 
 De outra maneira, quando é necessário o conhecimento de H a partir da 

altura bruta, Hb, o processo de determinação de H é chamado de processo 
analítico. Na fig 2.1 representamos graficamente a altura de queda, H, bem 
como todas as parcelas. Podemos então escrever: 

 

 g2VhHbH 2

123   

onde: 
Hb - Altura bruta ou desnível entre montante e jusante. 

 h23 - Perda de carga total do nível de montante até a seção 2. 

 V1
2/2g -  Altura  equivalente a energia cinética na seção 1. 



 

 

 

 

 Da mesma maneira que obtivemos a altura de queda para máquina de 
reação, vamos determinar H para uma usina de alta queda equipada com 

turbina de ação (fig. 2.2). 
 
 Aplicando a equação de Bernoulli nas seções de entrada 2 e de saída 1, 

obtemos as alturas correspondentes: 
 

Para a seção 2  : 2

2

22atm22 Zg2VappH   

Para a seção 1  : 1

2

111 Zg2VpH   

 
 Neste caso a seção de saída 1 é considerada no ponto em que o jato 
(bipartido) - após transferir energia para o rotor - é desviado e por gravidade 

chega ao canal de fuga. 
 

 A diferença entre as energias nas seções 2 e 1 fornece a altura de 
queda: 

 

   )Zp(Zg2/)VV(appHHH 112

2

1

2

22atm212   



 

 

 

 
Fig 2.2 -  Aproveitamento hidroelétrico com turbina de ação. 

 
 Analisando a equação para H e a fig.2.2, podemos dizer que: 
  



 

 

 

  atm1 pp  (o jato está em contato direto com a atmosfera). 

 0g2V2

1   (altura de velocidade desprezível relativamente a altura de  

   pressão na entrada da turbina) 

 12 ZZ   (duas seções no mesmo plano). 

   
 Desta forma resulta a altura de queda: 

  g2/VapH 2

222   

 

 2.3.2)  Altura de elevação  (bombas) 

 

 Para estabelecer o conceito de altura de elevação, consideramos a 
instalação de bombeamento da fig. 2.3 . Nestas instalações a seção de saída 2 

está localizada no flange de saída e a seção de entrada 1 no flange de 
entrada. Os reservatórios de montante e jusante podem estar pressurizados, 

sob vácuo ou abertos a atmosfera. Atuam nas superfícies do líquido nestes 
reservatórios as pressões absolutas pM e pJ para os reservatórios de montante 
e jusante, respectivamente. 



 

 

 

  
   Fig 2.3 -  Instalação com bomba hidráulica. 
 

 Aplicando a equação de Bernoulli obtemos: 



 

 

 

 3

2

3J3 Zg2VpH   

 2

2

2222 Zg2VapH   

 1

2

1111 Zg2VapH   

 0

2

0M0 Zg2VpH   

 

 A diferença  H2 - H1  é a altura de elevação para a bomba da instalação: 

 

   )aa()ZZ(g2/)VV(ppHHH 1212

2

1

2

21212   

 
 Este também é chamado método manométrico, que permite a obtenção 

da altura de elevação de instalações em funcionamento. Também conforme a 
instalação pode-se desprezar alguns termos desta equação. 

 
 Pelo exposto, vimos que essas grandezas são determinadas através da 

medição na instalação em operação. Nos casos de especificação de bombas ou 
projeto de instalações a altura de elevação é obtida da altura estática ou bruta 
mais as perdas de carga nas tubulações de sucção e recalque. Este é o 

método analítico para determinação da altura de elevação: 



 

 

 

 

 

 prpsest hhHH   

 
 03est HHH   - Altura bruta de elevação 

 hps   - Perda de carga na sucção  
 hpr   - Perda de carga no recalque 

 
 A altura bruta de elevação será dependente da pressão existente nos 

reservatórios , pM e pJ . Se estes reservatório estiverem abertos a atmosfera (o 
que normalmente acontece) teremos pM=pJ=pa. Desprezando as velocidades 

V3 e V0 , teremos: 
 

 03est ZZH    logo:  prps03 hhZZH   

 
 

 
 



 

 

 

 2.3.3)    Diferença de pressão    (ventiladores) 

 

 O conceito de diferença de pressão é o equivalente a altura de elevação 
para ventiladores. Normalmente usa-se a equação de Bernoulli de outra forma.  
 

Considerando o esquema de instalação com ventiladores da fig.2.4, 
onde as câmaras podem representar salas, câmaras frigoríficas, ou a própria 

atmosfera, apresentando uma determinada pressão absoluta. Então, 
aplicamos a equação de Bernoulli para as várias seções: 
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Fig.2.4 - Instalação com  ventilador 

 



 

 

 

 

 
 A diferença de pressão total, ptot , do ventilador pode ser determinada 

pelo método manométrico, e corresponde a diferença 2H2 - 1H1 . Se 

desprezarmos a pressão devido as alturas Z, nas seções 2 e 1, simplificamos 

ptot  para: 

 

 
2

VV
)pp(p

2

11

2

22
12tot


  

 
 É importante observar que devido a compressibilidade dos fluidos com 

os quais os ventiladores trabalham, a massa específica pode variar de uma 
seção para outra. Os fatores que influenciam nesta variação são: a 

temperatura e a velocidade.  
 Com os devidos cuidados, pode-se considerar que o ar é incompressível 

para velocidades de no máximo 100 [m/s]. 
 



 

 

 

 

2.4) Rotação  

 
 Para máquinas motoras (turbinas), estas são correntemente acopladas 
a alternadores (geradores de CA) que devem trabalhar com rotações síncronas 

constantes. Essa rotação síncrona depende do número de pares de pólos do 
gerador e da frequência da rede elétrica a qual esta ligada a máquina. 

 

 
p

60.f
n   onde: 

 
 f=frequência da rede (Brasil - 60 Hz); 
 p=pares de pólos; 

 n=rotação síncrona. 
 

 Para pequenas máquinas motoras (turbinas instaladas em pequenas 
centrais hidrelétricas), trabalha-se normalmente com 1800 ou 1200 [RPM] 

utilizando alternadores de 2 ou 3 pares de pólos, que são mais baratos.  
 



 

 

 

 

 



 

 

 

Neste caso, para adequar a rotação da turbina ao gerador, utiliza-se 

sistemas de transmissão com correia ou, com maior eficiência, através de 
engrenagens. 

 

 



 

 

 

 Para máquinas geradoras (bombas e ventiladores) a rotação é fornecida 

pelo motor de acionamento, o qual se for elétrico de CA, opera com rotações 
praticamente constantes.  

 
A rotação síncrona do motor 

dependerá do número de pares de 

pólos (normalmente 3600 ou 1800 
[RPM]), dada pela mesma equação 

anterior mostrada para geradores. 
 

Com o objetivo de se ter uma 

rotação na máquina diferente da 
rotação do motor, utiliza-se 

transmissão por correias (arranjo 
comum em ventiladores), por 

engrenagens ou outro tipo de 
redutor ou amplificador de rotação. 



 

 

 

 



 

 

 

 

2.5) Potências e rendimento 

 
 A potência é efetivamente a grandeza mais importante em termos de 
custos envolvidos em uma instalação. Esta grandeza define a quantidade de 

energia por unidade de tempo gerada por máquinas motoras (turbinas) ou 
consumida por máquinas geradoras (bombas e ventiladores). 

 

 2.5.1) Potência hidráulica 

 
 Aplicando a lei da conservação da energia, definimos a potência 

hidráulica como sendo o produto do peso de fluido que passa através da 
máquina, por unidade de tempo, pela altura de queda ou elevação. Este 

conceito é utilizado para bombas e turbinas hidráulicas da seguinte forma: 
 

  Ph =  Q H =  g Q H  [N.m/s] ou [W] 

 



 

 

 

 Então, potência hidráulica é a potência (energia hidráulica por unidade 

de tempo) entregue a turbina, ou a energia hidráulica por unidade de tempo 
entregue ao fluxo pela bomba hidráulica. 

 
 Para ventiladores, a potência hidráulica é definida da mesma maneira, e 
é expressa como sendo o produto da vazão pela diferença de pressão total: 

 

Ph = Q pt 

 

 2.5.2) Potência de eixo e rendimento total 

 
 A potência de eixo, Pe , é definida como sendo a potência entregue pela 

turbina ao gerador ou a potência consumida pela bomba ou ventilador 
entregue pelo motor. A potência de eixo relaciona-se com a potência 

hidráulica através do rendimento total da instalação (menor que 1).  

Para instalações com máquinas geradoras (bombas e ventiladores):  
e

h
t

P

P
  

Para instalações com máquinas motoras (turbinas):   
h

e
t

P

P
  



 

 

 

 

2.6) Abertura do distribuidor (Sistema diretor) 

 

 As turbinas hidráulicas normalmente trabalham com reguladores de 
velocidade, cujo objetivo é manter a rotação constante. Estes reguladores 
atuam no chamado distribuidor, regulando a vazão que passa pelo rotor. 

 
Portanto, a abertura do 

distribuidor (ou posição do 
sistema diretor) é também uma 
grandeza de funcionamento.  

 
Normalmente tem como 

nomenclatura a letra grega .  

 

Outra grandeza de 
funcionamento é a posição das 

pás em turbinas Kaplan de pás 
móveis, denotada por .  

 



 

 

 

 
 



 

 

 

 



 

 

 

 

2.7) Curvas características de turbinas hidráulicas 

 

 2.7.1) Campo básico de funcionamento 

 
 Para uma determinada turbina pode-se obter em ensaio o chamado 

"diagrama de colina", fig.2.5 , onde mantendo a rotação constante varia-se a 
altura de queda e a abertura do distribuidor, medindo-se a vazão 

correspondente.  
 
 

 2.7.2) Curvas de operação ou de recepção 

 

 São curvas obtidas no ensaio de recepção (normalmente contratual) da 
máquina instalada. Estas curvas são obtida com H constante e nominal e n 

(rotação) constante nominal, fig.2.6, variando-se a abertura do distribuidor e 
medindo potência e vazão e calculando-se o rendimento total (neste caso 
adota-se o rendimento do gerador e o rendimento seria o rendimento total da 

instalação). 



 

 

 

 

 
Fig.2.5 - Campo básico de funcionamento-turbina 

 

 
 



 

 

 

 

 
Fig.2.6 - Curva do ensaio de recepção 



 

 

 

 

2.8) Curvas características para bombas e ventiladores 

   

 2.8.1) Campo básico de funcionamento 

 
 Para MHG, que normalmente não possuem sistema diretor (em 

construções especiais possuem aletas direcionais na entrada), a variação da 
vazão depende do sistema no qual a máquina está instalada, pois este sistema 

possui uma característica de instalação definida.  
 

Para estes tipos de máquinas é necessário também realizar a variação 

da rotação para se obter o campo básico de funcionamento, como na fig.2.7. 
 



 

 

 

         

 
Fig.2.7 - Campo básico de funcionamento - bomba 

 

 



 

 

 

 

 2.8.2) Curva de operação ou de recepção: 

 

 São curvas que se obtém com rotação constante, tem o aspecto 
semelhante a equivalente para turbinas. Podem ser obtidas tanto com ensaio 
da máquina instalada quanto pode ser obtido do campo básico de 

funcionamento. 



 

 

 

 

2.9) Exemplos de cálculos 

 

2.9.1) Turbina de reação 
 
Exemplo 2.1 - Calcule a altura de queda sobre a turbina e a potência de eixo 

(potência mecânica) do aproveitamento hidrelétrico esquematizado ao lado, 
sendo o rendimento total igual a 90%, conhecendo-se os seguintes dados: i) 

Q = 0,3 [m3/s] , ii) diâmetro na tubulação de entrada = 250 [mm] , iii) largura 
do tubo de sucção na saída = 650 [mm] , iv) altura do tubo de sucção na 
saída = 250 [mm].  



 

 

 

 

Solução: 
 
 p2/ = 80 [m] (pressão manométrica) 

 V2 = Q / A2 = 2

2D/Q4   = 4x0,3 / (0,252) = 6,1 [m/s] 

 V1 = Q / A1 = Q / LB = 0,3 / (0,65x0,25) = 1,85 [m/s] 
 Z2 = -2 [m]   e a2 = 0 

   2

2

1

2

222 Zg2VVapH   = = 80 + 0 + 1,72 - 2 

  

 H = 79,7 [m] 

  
 Pe = t.g.QH 

 Pe = 0,9 x 9.780 x 0,3 x 79,7 = 210.519 [W] 
 

 Pe = 210,5 [kW] 

 
 

 
 



 

 

 

2.9.2) Turbina de ação 

 
Exemplo 2.2 - Determinar a potência hidráulica e a potência de eixo em [CV] 

de uma turbina Pelton com as seguintes características: i) vazão: 80 [l/s] ii) 
pressão no manômetro da entrada: 750 [m], iii) diâmetro externo do injetor 
na seção de medida de pressão: 15 [cm], iv) diâmetro interno do injetor na 

seção de medida de pressão: 8 [cm], v) correção de instalação do 
manômetro: 0,25 [m] e vi) rendimento total: 88% 

 



 

 

 

 

Solução: 
 
p2/ = 750 [m] (pressão manométrica) 

V2 = Q / A2 = )DD(/Q4 2

int

2

ext   = 4x0,08 / 0,152 - 0,082) = 6,3 [m/s] 

a2 = 0,25 [m] 

g2/VapH 2

222    H = 750 + 0,25 + 2,04 = 752,3 [m] 

Ph = g.QH = 9.780 x 0,08 x 752,3 = 588.599 [W]  Ph = 588,6 [kW] 

 
Pe = t. Ph 

Pe = 0,88 . 588.599 = 517.967 [W]  

Pe = 517.967 [W] x 1 [CV]/735 [W]   Pe = 704,7 [CV] 



 

 

 

 

2.9.3) Bomba hidráulica 
 

Exemplo 2.3 - Em uma instalação de 
bombeamento, conforme esquema 
apresentado, são conhecidos os 

seguintes dados: i) vazão: 0,4 [m3/s], 
ii) diâmetro da tubulação de sucção: 

20 [in], iii) diâmetro da tubulação no 
recalque: 15 [in], iv) perda de carga 
na sucção: 1,8 [m], v) perda de carga 

no recalque: 10 [m], vi) rendimento 
total: 80 %. Pede-se determinar: a) a 

potência hidráulica fornecida pela 
bomba, b) a potência de eixo (mecânica) da bomba (em CV) e c) a pressão 

que indicará um manômetro instalado na tubulação de recalque, na posição 
indicada na figura. 
 

método analítico :  prpsest hhHH   

 



 

 

 

 H = 20 + 1,8 + 10 = 31,8 [m] 
 Ph = g.QH 

 Ph = 9.780x0,4x31,8 

 Ph = 124.401 [W] = 124 [kW] 

 
 Pe = Ph / t 

 Pe = 124.401 / 0,80 = 155.501 [W] 
 Pe = 155.501 [W] x 1 [CV] / 735 [W]  

 Pe = 213 [CV] 

 

método manométrico : 
 

   )aa()ZZ(g2/)VV(ppHHH 1212

2

1

2

21212   

 

V2 = Q/A2 = 2

2D/Q4   = 4x0,4 / [x15x0,0254)2] = 3,5 [m/s]  (saída) 

V1 = Q/A1 = 2

1D/Q4   = 4x0,4 / [x20x0,0254)2] = 2,0 [m/s]  (entrada) 

 
 Z2 = 5 [m]  e  Z1 = 2 [m]   

 a2 = 0  e  a1 = 0 



 

 

 

 
 H = 31,8 = (p2/ - p1/ + (3,52 - 2,02)/(2x9,8) + (5 - 2) + 0 

 H = 31,8 = (p2/ - p1/ + 0,42 + 3 

 
 (p2/ - p1/) = 28,4 [m] 

 

 H0 = H1 + hps = p1/ + g2/V 2

1  + Z1 + hps = 0 

 0 = p1/ + 2,02/(2x9,8) + 2 + 1,8 = p1/ + 4,0  

 p1/ = -4 [m] 

 
 p2/ = 28,4 + p1/ = 28,38 - 4 

 p2/ = 24,4 [m] 



 

 

 

2.9.4) Ventilador 

 
Exemplo 2.4 - Um ventilador trabalha com uma vazão de 500 [m3/h] de ar, 

desenvolvendo uma diferença de pressão total equivalente a 10 [mCA]. 
Considerando o rendimento total igual a 65% e que os dutos de entrada e 
saída possuem, respectivamente diâmetros iguais a 188 [mm] e 132 [mm], 

calcule a) diferença de pressão estática em [N/m2], b) a potência hidráulica 
desenvolvida e c) a potência mecânica de eixo em [CV]. 

 

 



 

 

 

 

Solução :  
 
 ptot/ = 10 [mCA] =>  ptot = .10 [mCA] = 9.780 x 10 

 ptot = 97.800 [N/m2] 

 

V2 = Q/A2 = 2

2D/Q4   = 4x(500/3.600) / [x0,1322] = 10,1 [m/s]  (saída) 

V1 = Q/A1 = 2

1D/Q4   = 4x(500/3.600) / [x0,1882] = 5,0 [m/s]  (entrada) 

 

 
2

VV
)pp(p

2

11

2

22
12tot


   então 206,46)pp(800.97 12   

 (p2-p1)=97.753 [N/m2] 

 

Ph = g.QH = Q.ptot = (500/3.600) x 97.800  Ph = 13.583 [W]  

 

Pe = Ph / t  Pe = 13.583 / 0,65 = 20.897 [W]  Pe = 28,5 [CV] 



 

 

 

 

Capítulo 3 -  Perdas, potências e rendimentos 

 

3.1) Perdas 

 

 
 TURBINAS HIDRÁULICAS: Energia hidráulica  Trabalho + Perdas 

 BOMBAS E VENTILADORES: Trabalho  Energia hidráulica + Perdas 

 
 As perdas em máquinas hidráulicas podem ser subdivididas nos 

seguintes tipos: 

 Perdas hidráulicas; 
 Perdas volumétricas; 

 Perdas mecânicas. 



 

 

 

 3.1.1) Perdas hidráulicas: 

 
 

  A) Atrito viscoso 

 
 São perdas devido ao atrito viscoso do fluido em escoamento no rotor, 

no distribuidor, na caixa espiral e no tubo de sucção. Denotadas por hh , 

ocasionam uma perda de pressão no escoamento.  

 
 Para turbinas a altura de queda Hpá , absorvida pela máquina e em 

parte transformada em energia mecânica, é:  Hpá = H - hh  

 
 Para bombas a altura de elevação Hpá , fornecida pela máquina e em 

parte transformada em potência hidráulica, é:  H = Hpá - hh 



 

 

 

 

  B) Atrito lateral: 

 Ocorre perda de potência devido ao atrito viscoso entre o rotor e a 

parcela de fluido que escoa entre o rotor e a carcaça. Denotada por Pa. 

 

 



 

 

 

 

  C) Perdas por refluxo: 

 

 Perdas que ocorrem devido a variação de seção dos canais entre as 
pás. Perdas por refluxo ocorrem notadamente em bombas devido ao 

escoamento desacelerado nos canais. Denotada por Pd. 

 



 

 

 

 

 3.1.2) Perdas volumétricas: 

 

 
Fig.3.1 - Perdas volumétricas - turbinas 

 

 São perdas por fuga que ocorrem nos labirintos, perdas de fluido na 
gaxeta, e em algumas construções perdas de fluido para compensação do 

empuxo axial. A vazão total de fuga é  Qf . 



 

 

 

 



 

 

 

A vazão que flui através do rotor é  

 Qr = Q - Qf , no caso de turbinas e,  

 Qr = Q + Qf , no caso de bombas e ventiladores. 

 

 
 



 

 

 

 3.1.3) Perdas mecânicas 

 
 As perdas citadas são chamadas perdas internas em seu conjunto 

(hidráulicas e volumétricas). Além destas ocorrem também perdas mecânicas 
devido ao atrito nos mancais e vedações. 
 

 



 

 

 

3.2) Potências 

 

3.2.1) Potência interna: 

 
 Para turbinas a potência interna obtida com a altura de queda H 
disponível será: 

 

 iahfi HQgP)hH)(QQ(gP     

 

  Pi < Ph Hi < H 

 
 Para bombas e ventiladores a potência interna fornecida ao fluido será: 

 

 idahfi HQgPP)hH)(QQ(gP   

 

  Pi > Ph Hi > H 



 

 

 

3.2.2) Potência total ou eficaz (Potência de eixo) 

 
 Ao considerar as perdas externas ou mecânicas, Pm , determina-se a 

potência no eixo: 
 

  Para  turbinas : mie PPP   

 

  Para  bombas : mie PPP   

 

3.2.3) Potência perdida 

 
 O somatório das perdas internas e externas são relacionadas pela 
potência perdida: 

 

  Para  turbinas : ehp PPP   

 

  Para  bombas : hep PPP   



 

 

 

3.3) Rendimentos 

 

3.3.1) Rendimento hidráulico:  Caracteriza as perdas de pressão. 

 

 Para turbinas:  
H

hH

H

H

H

H
htpá

h


  

 

 Para bombas: 
htpá

h
hH

H

H

H

H

H


  

 

3.3.2) Rendimento volumétrico:  Caracteriza as perdas volumétricas. 

 

Turbinas: 
Q

QQ f
V


 = Vazão que passa no rotor / Vazão que entra 

 

Bombas: 
f

V
QQ

Q


 = Vazão que entra / Vazão que passa no rotor 



 

 

 

 

3.3.3) Rendimento interno: 

 

 Caracteriza todas as perdas internas. 
 

Turbinas: 
h

i
i

P

P
  Bombas e ventiladores: 

i

h
i

P

P
  

 

 Se desprezarmos a perda por atrito lateral e as perdas por refluxo, 

obtemos para bombas e turbinas: i = h . V 

 

3.3.4) Rendimento mecânico: 

 

 Caracteriza somente perdas mecânicas. 
 

Turbinas: 
i

mi

i

e
m

P

PP

P

P 
   Bombas: 

mi

i

e

i
m

PP

P

P

P


  



 

 

 

3.3.5) Rendimento total: 

 
 Caracteriza todas as perdas da máquina. 

 

 Para turbinas: mi
e

h

e
t .

HQg

P

P

P



  

 

 Para bombas: mi

ee

h
t .

P

HQg

P

P



  

 

 Substituindo as expressões para os rendimentos obtem-se:  
 

  t = h . V . m 

 
 É usual adotarmos para dimensionamentos  V = 1, hipótese que 

conduz a expressão simplificada para o rendimento total: t = h . m 

 



 

 

 

 

 Os valores normais para o rendimento total de turbinas são: 
 

turbinas Dimensão t [%] h [%] V [%] m [%] 

Reação 

Pequenas 

Médias 

Grandes 

81 

87 

93 

90 

92 

96 

95 

97 

99 

95 

97 

98 

Ação 

Pequenas 

Médias 

Grandes 

80 

86 

92 

85 

88 

94 

 

94 

97 

98 

 
Tab. 3.1 - Rendimentos típicos para turbinas hidráulicas 



 

 

 

3.4) Esquema das perdas 

 
 A fig 3.2 mostra as perdas que ocorrem em turbinas (MHM) e em 

bombas e ventiladores (MHG). 
 

 
Fig. 3.2 - Esquema de perdas em turbinas hidráulicas (MHM)  

e em bombas e ventiladores (MHG) 



 

 

 

3.5) Exemplos de cálculos 

 
3.5.1) Turbinas de reação 

 
Exemplo 3.1 - As 6 turbinas tipo Francis da usina de Estreito - Rio Grande - 
SP/MG, apresentam as seguintes características: i) vazão: 320 [m3/s] , ii) 

Altura de queda: 60,8 [m], iii) Potência de eixo unitária máxima: 182 [MW]. 
Calcular as várias perdas e potências, adotando os rendimentos da tab. 3.1 

(turbina de reação de grandes dimensões) 
 
Ph = g.QH = 9.780 x 320 x 60,8 x 10-6 [MW] = 190,3 [MW]  

Pe = t.Ph = 0,93 x 190,3 = 177 [MW]       (ponto de máxima eficiência) 

Pi = i.Ph = h.v.Ph = 0,96 x 0,99 x 190,3 = 0,95 x 190,3 = 180,9 [MW] 

 
Pm = Pi - Pe  = 180,9 - 177 = 3,9 [MW]  
Pi = g.(Q-Qf)(H-hh)  (Pa = 0) 

 
h = (H-hh)/H   => hh =H(1-h)=60,8 x (1-0,96)=2,4 [m] 

v = (Q-Qf)/Q   => Qf =Q(1-v)=320x (1-0,99)=3,2 [m3/s] 

 



 

 

 

Pf = g.Qf.H = 9.780 x 3,2 x 60,8 [W]  Pf = 1,9 [MW]  

 
Phh = g.Q.hh = 9.780 x 320 x 2,4 [W]  Phh = 7,5 [MW] 

Pfh = g.Qf.hh = 9.780 x 3,2 x 2,4 [W] = 0,075 [MW]  (0,04% de Pi) 

 

PP = Ph - Pe = 190,3 - 177 = 13,3 [MW]  
 

 



 

 

 

3.5.2) Bomba hidráulica 

 
Exemplo 3.2 - Uma bomba hidráulica apresenta as seguintes características: 

i) vazão: 3 [m3/s] e ii) Altura de elevação: 30 [m]. Calcular as várias perdas e 
potências, adotando os rendimentos hidráulico, volumético e mecânico 
respectivamente iguais a 70, 95 e 97 %. 

 
Ph = g.QH= 9.780 x 3 x 30 [W]= 880,2 [kW]  

t = h.v.m = 0,7 x 0,95 x 0,97 = 64,5% 

i = h.v = 0,7 x 0,95 = 66,5% 

 
Pe = Ph / t = 880,2 / 0,645 = 1.364,6 [kW] 

Pi = Ph / i = 880,2 / 0,665 = 1.323,6 [kW] 

Pm = Pe - Pi = 1.364,6 - 1.323,6 = 41 [kW]  
Pi = g.(Q+Qf)(H+hh)  (Pa e Pd iguais a 0)  

 
h = H/(H+hh) => hh = H (1/h -1)  hh = 30 x (1/0,70 - 1) = 12,86 [m] 

v = Q/(Q+Qf) => Qf = Q (1/v -1) Qf = 3 x (1/0,95 - 1) = 0,158 [m3/s] 

 
Pf = g.Qf.H = 9.780 x 0,158 x 30 [W] = 46,4 [kW] 



 

 

 

 
Phh = g.Q.hh = 9.780 x 3 x 12,86 [W] = 377,3 [kW] 

Pfh = g.Qf.hh = 9.780 x 0,158 x 12,86 [W] = 19,9 [kW]  (1,5% de Pi) 

 
PP = Pe - Ph = 1.364,6 - 880,2 = 484,4 [kW] 

 

 



 

 

 

 

Capítulo 4 -  Representação e Triângulos de velocidades 

 

4.1) Composição 

 
 As turbinas bem como as bombas hidráulicas e ventiladores são 
compostos de duas partes básicas: uma fixa e outra móvel.  

 
 A parte fixa é composta por elementos tais como: espiral, pré-

distribuidor, sistema diretor de aletas ajustáveis e tubo de sucção no caso de 
turbinas de reação, e injetores no caso de turbinas de ação. No caso de 

bombas e ventiladores, a parte fixa é composta basicamente da voluta na 
saída e de pequeno tubo na entrada, para as máquinas mais simples. 
 

 Nestas partes fixas, devido ao seu formato - injetor ou difusor - poderá 
ocorrer a transformação de energia de pressão em energia de velocidade ou 

energia de velocidade em energia de pressão. 
 



 

 

 

 A parte móvel da máquina é formada apenas pelo rotor, o qual é 

composto de pás, cubo (e coroa dependendo do tipo). Este é o principal órgão 
da turbina, responsável pela transformação de energia hidráulica em energia 

mecânica ou o contrário no caso de bombas. 
 

 
Fig. 4.1 - Arranjo típico de turbina hidráulica tipo Francis



 

 

 

 
 



 

 

 

 



 

 

 

4.2) Representação 

 
 Considera-se, de maneira geral, que o escoamento em turbinas e 

bombas hidráulicas se processa em superfícies de revolução superpostas. A 
velocidade do fluido em cada ponto do escoamento possui então componentes 
tangencial ao eixo, componente radial e componente axial. 

 
Portanto, as pás (em simples 

ou em dupla curvatura) e 
outras partes do rotor, que são 

desenhadas conforme o 

escoamento desejado do fluido 
no rotor, serão perfeitamente 

definidas a partir da sua 
projeção nos dois planos 

mostrados: o plano meridional 
e o plano normal. 

 

 



 

 

 

 4.2.1) Plano meridional 

 
 O plano meridional é um plano paralelo ao eixo da máquina.  

 
A representação neste plano é 

feita pelo rebatimento dos 

pontos principais da pá sobre 
o plano, mantendo-se a 

mesma distância do ponto ao 
eixo no rebatimento. 

 

Assim, cada ponto do rotor 
fica representado no plano 

utilizando a circunferência que 
ele descreveria se dotado de 

rotação em torno do eixo. 
 

Fig.4.3 - Projeção meridional e normal de uma aresta 

 
 



 

 

 

 4.2.2) Plano normal 

 
É um plano perpendicular ao 

eixo da máquina, da mesma 
maneira, a representação é feita 

através do rebatimento dos 

pontos necessários da pá sobre 
o plano. 

 
Para as máquinas axiais, além 

das projeções meridional e 

normal, pode-se representar a 
má-quina segundo vários cortes 

cilíndricos desenvolvidos, em 
cada diâmetro em estudo. 

 
Fig.4.4 - Representação de 

turbina axial 

 



 

 

 

 



 

 

 

4.3) Notação 

 
 Com a finalidade de identificação dos pontos principais do rotor é usual 

adotar-se índices que indicam suas posições no rotor. Nesta indicação os 
índices aumentam no sentido do escoamento, para todas as máquinas 
hidráulicas, chamada convenção de Betz.  

 
Esta convenção adota os 

índices 4 e 5 para as 
arestas de entrada e 

saída do rotor, 

respectivamente, e os 
índices 3 e 6 para os 

pontos do escoamento 
imediatamente antes e 

depois do rotor, 
conforme a fig.4.5 , 

onde se mostra outros 

pontos da convenção. 
Fig.4.5 - Convenção de Betz 



 

 

 

4.4) Elementos cinemáticos (Componente meridional - Cm) 

 

 A componente meridional do escoamento, Cm, no sistema distribuidor e 
no rotor, é obtida através da projeção da velocidade absoluta no plano 

meridional.  
 Uma vez que a componente meridional tem a direção perpendicular à 

área em que o fluido escoa, utiliza-se o 
princípio de conservação da massa, cuja 

expressão na forma integral para regime 
permanente é 

0Ad.C
SC




 

para relacionar a componente Cm com a 
vazão em volume Q, considerando 

escoamento uniforme na superfície de 
controle e fluido incompressível. Assim: 

QACmAd.C 




 

 

 

 



 

 

 

 



 

 

 

 4.4.1) Sistema diretor (distribuidor) de máquinas hidráulicas radiais 

 
 Aplicando a equação da vazão em massa para a superfície de controle 

composta das superfícies 1 e 2 , e uma vez que não há fluxo pelas laterais, 
podemos obter uma relação entre Cm1 e Cm2 , respectivamente na entrada e 
na saída do sistema diretor. 

 

 
Fig.4.6 - Sistema diretor radial 

 



 

 

 

  0dACmdACm
12

   

Logo:   Cm2 A2 =  Cm1 A1 = Q (vazão em massa)  

 

Então:  Cm2 A2 = Cm1 A1 = Q 

 

ou  Cm2 D2b2 = Cm1 D1b1 = Q 

 
 Ao considerarmos b1=b2 teremos para MHM: 

   
1

2

2

1

D

D

Cm

Cm
  logo Cm2 > Cm1   e   p2 < p1   

 Do mesmo modo, ao considerarmos b8=b7 teremos para MHG: 

   
7

8

8

7

D

D

Cm

Cm
  logo Cm8 < Cm7   e   p8 > p7    

 
 Haverá uma aceleração do escoamento meridional na direção da 

entrada do rotor no caso de turbinas radiais (MHM) e uma desaceleração do 
escoamento meridional após a saída do rotor no caso de bombas e 
ventiladores radiais (MHG). 



 

 

 

 4.4.2)   Sistema diretor de máquinas hidráulicas axiais 

 
Da mesma maneira consideramos para máquinas axiais: 21 QQ   

Logo:  2211 ACmACm   

Sendo:   4/DiDeA 2

1

2

11    e   4/DiDeA 2

2

2

22   

 

 
Fig.4.7 - Sistema diretor axial 



 

 

 

 Para uma análise simplificada de máquinas estritamente axiais 

considera-se que a área na entrada é igual a área na saída do sistema 
distribuidor, pois  De1=De2=De  e  Di1=Di2=Di  , sendo De e Di , 

respectivamente, os diâmetros externos e internos, da coroa circular por onde 
passa a água na direção do rotor, então: 
 

  21 CmCm    para turbinas axiais 

 

  87 CmCm    para bombas e ventiladores axiais 

 

 Do mesmo modo que na entrada para turbinas radiais (ou saída de 
bombas radiais), a componente meridional para máquinas axiais tem sua 

direção perpendicular à área em que o fluido escoa. 
 
 

 
 

 
 



 

 

 

4.5) Triângulos de velocidade no rotor 

 

 4.5.1) Movimento absoluto e relativo 

 
 A trajetória de uma partícula ou sistema de partículas através de um 
volume de controle que abrange o rotor é percebida de forma diferente, 

dependendo da posição em que o observador se encontre.  
 

 Para um observador movendo-se com o rotor (sistema não inercial), a 
trajetória da partícula acompanha o perfil da pá, como se o rotor estivesse em 
repouso, resultando assim a trajetória relativa da partícula.  

 
 Para um observador fora do rotor (sistema inercial), a trajetória da 

partícula é a trajetória absoluta, resultante da composição de dois 
movimentos, o movimento relativo dos canais do rotor e outro de rotação do 

rotor. 
 
 

 



 

 

 

 A velocidade tangente à trajetória relativa é denominada velocidade 

relativa, e a velocidade tangente a trajetória absoluta é a velocidade absoluta. 
 

 
Fig.4.8 - Trajetórias em uma bomba centrífuga 

 



 

 

 

 4.5.2) Triângulos de velocidade 

 
 Da mecânica geral, retiramos a relação entre as velocidades absoluta C, 

a velocidade relativa W e a velocidade do sistema não inercial no ponto 
considerado, ou seja, a velocidade tangencial u do rotor. Para qualquer ponto 
do escoamento no rotor vale a equação vetorial: 

 

  uWC


  

 

Consideraremos inicialmente um número 
infinito de pás do rotor, infinitamente finas, 
assim as linhas de corrente do escoamento 

relativo serão coincidentes com as pás 
(condição ideal do escoamento no rotor). 

 

 Utilizando a simplificação de escoamento uniforme, o triângulo de 
velocidades determinado para um ponto será válido para todos os pontos 

localizados na mesma seção definida pelo mesmo diâmetro. Entre as seções 
de entrada e saída, o fluxo deverá produzir o mínimo de perdas com a adoção 
de perfis ou formatos de pás mais adequados. 



 

 

 

 Na entrada da pá, para entrada "sem choque", a velocidade relativa W4 
deverá ser tangente a pá, formando o ângulo 4 com a direção tangencial.  

 

 Na saída a velocidade relativa W5 é tangente a pá, formando o ângulo 
5 com a direção tangencial. Os ângulos 4 e 5 são chamados ângulos 

construtivos.  
 

 
Fig.4.9 - Representação das velocidades em rotor de bomba radial 

 
 É importante destacar que a velocidade relativa determina o ângulo de 
entrada no ponto de projeto, com escoamento "sem choques" na entrada. 



 

 

 

 



 

 

 

 4.5.2.1) Relações importantes 

 

  
Cu

Cm
tg    e 

Cuu

Cm
tg


  

 

C = Velocidade absoluta do escoamento no ponto; 
u = Velocidade tangencial do rotor no ponto; 
W = Velocidade relativa do escoamento no ponto; 

 
Cm = Componente meridional da velocidade absoluta 

 Projeção da velocidade absoluta C sobre o plano meridional  
  (normal às seções de entrada e saída do rotor)  
 

Cu = Componente tangencial da velocidade absoluta 
 Projeção da velocidade absoluta C sobre a direção tangencial 

 
 
 = Ângulo formado pela velocidade absoluta C e a velocidade tangencial u, 

 Ângulo do escoamento absoluto 

 



 

 

 

 = Ângulo formado pela velocidade relativa W e a velocidade tangencial u, 

 Ângulo do escoamento relativo 
 

 É congruente com o ângulo construtivo das pás na entrada no ponto de 

melhor eficiência para uma dada rotação 

 



 

 

 

4.5.2.2)  Relação entre vazão e a componente  

    meridional, Cm, em máquinas radiais 

 

 Para o rotor de uma turbina radial da fig.4.10, a vazão é estabelecida 
em função da área e da componente meridional, Cm, nas seções de entrada e 
de saída do rotor (número infinito de pás - escoamento perfeitamente guiado), 

através da equação: 
 

 5554445544 CmbDCmbDCmACmAQ   

 
 Utilizando a mesma equação pode-se determinar a componente Cm , 
altura do triângulo de velocidades, na entrada ou na saída do rotor, 

conhecendo-se a vazão em volume Q e as respectivas áreas. A mesma 
equação pode ser utilizada para rotores de bombas e ventiladores radiais , 

conforme fig. 4.11. 
 

 
 
 



 

 

 

4.5.2.3)  Relação entre rotação e a componente  

     tangencial, u, em máquinas radiais 

 

 As componentes tangenciais u4 e u5 são calculadas conhecendo-se a 
rotação da rotor através das equações (= rotação em [rd/s]) , no caso de 

máquinas radiais : 

 

 u4 = .r4 e u5 = .r5 

 
 

 Caso a rotação do rotor seja dada em RPM (rotações por minuto) deve-
se realizar a transformação de unidades 
 

  =  . n / 30  (n = rotação em [RPM])  

 

 u4 =  . D4 . n / 60  e u5 =  . D5 . n / 60 



 

 

 

 
Fig. 4.10 - Triângulos de velocidade - Turbina radial 

 



 

 

 

 
Fig. 4.11 - Triângulos de velocidade - MHG Radial 



 

 

 

4.5.2.4)  Relação entre vazão e a componente  

    meridional, Cm, em máquinas axiais 

 

 Para o rotor axiais, como da turbina da fig.4.12, a determinação da 
componente meridional em função da vazão é realizada considerando que a 
área da seção de entrada é igual a da seção de saída. (número infinito de pás 

- escoamento perfeitamente guiado), através da equação: 
 

     5

22

4

22

5544 CmDiDe
4

CmDiDe
4

CmACmAQ 





  

 
 Nestas condições, a componente meridional na seção de entrada é igual 
a componente meridional da seção de saída : Cm4 = Cm5 . A mesma equação 

pode ser utilizada para rotores de bombas e ventiladores axiais , conforme fig. 
4.13. 

 
 

 
 



 

 

 

4.5.2.5)  Relação entre rotação e a componente  

    tangencial, u, em máquinas axiais 

 

 Ao contrário das máquinas radiais que possuem apenas dois diâmetros 
que caracterizam as seções de entrada e saída, para definição da componente 
tangencial, u, nas máquinas axiais é possível utilizar diâmetros desde o 

diâmetro interno, Di, até o diâmetro externo, De (ver fig 4.12). 
 

 Utilizando o diâmetro médio Dm = (De+Di)/2, as componentes 
tangenciais u4 e u5 serão também calculadas conhecendo-se a rotação da 
rotor através das equações: 

 

 rm = Dm /2  e u4 = .rm e u5 = .rm    

 

 u4 = u5 = . Dm . n / 60 



 

 

 

 
Fig. 4.12 - Triângulos de velocidade - MHM Axial 

 



 

 

 

 
Fig. 4.13 - Triângulos de velocidade - MHG Axial 



 

 

 

4.5.2.6) Condições particulares na entrada de bombas e saída de turbinas 

 
 Na seção de saída de turbinas (e entrada de bombas) considera-se, 

para a condição de ponto de projeto de máximo rendimento, que o triângulo 
de velocidade é um triãngulo retângulo, de modo que Cu5 = 0, o ângulo 5 = 

900, e Cm5 = C5 (Cu4 = 0 , 4 = 900, e Cm4 = C4 para bombas e ventiladores). 

No caso de bombas o ângulo construtivo 4 deverá ser tal que: 

  
4

4
4

u

Cm
arctg  

para não ocorrer choques na entrada. 

 

4.5.2.7) Rotor radial de seção constante 

 
 Na máquina axial as componentes Cm são necessariamente iguais e as 

componentes tangenciais, u, serão iguais ao considerarmos o mesmo diâmetro 
médio, Dm. Para rotores radiais as componentes Cm serão iguais caso as 
seções ao longo das pás forem de seções constante, o que implica na 

equação:    54554454 CmCmbDbDAA   



 

 

 

 



 

 

 



 

 

 

 



 

 

 

 

4.6) Exemplos de cálculos 

 

 Distribuidor radial - Calcule as componentes Cm na entrada e na saída 
de um sistema distribuidor de turbina radial conhecendo-se: i) D1 = 4[m], ii) 
D2 = 3,6 [m] , iii) largura constante, b1 = b2 = 0,25 [m] e iv) vazão = 12,5 

[m3/s]. Solução : 
 
 A1 = .D1.b1 = 3,1415 . 4 . 0,25 = 3,1415 [m2] 

 A2 = .D2.b2 = 3,1415 . 3,6 . 0,25 = 2,827 [m2] 

 
 Cm1 = Q / A1 -> Cm1 = 12,5 / 3,14,15 = 3,98 [m/s]  
 Cm2 = Q / A2 -> Cm1 = 12,5 / 2,827 = 4,42 [m/s] 

 
 

 
 

 



 

 

 

 Distribuidor axial - Calcule as componentes Cm na entrada e na saída 

de um sistema distribuidor de turbina axial, bem como a componente 
tangencial e o módulo da velocidade do escoamento na saída, conhecendo-se: 

i) diâmetro externo = 500 [mm], ii) diâmetro interno = 250 [mm], iii) vazão = 
0,5 [m3/s], iv) ângulo entre a componente tangencial e a velocidade do 
escoamento na saída = 2 = 45º. 

 
A1 = A2 = A = .(De

2 - Di
2 ) / 4 = .(0,52 - 0,252 ) / 4  

A = 0,147 [m2] 
 

Cm1 = Cm2 = Q / A -> Cm1 = Cm2 = 0,5 / 0,147 = 
3,4 [m/s] 
 
tg 2 = Cm2 / Cu2   ->  Cu2 = Cm2 / tg 2  

Cu2 = 3,4 / tg 45o = 3,4  [m/s] 

 
sen 2 = Cm2 / C2   ->  C2 = Cm2 / sen 2  

C2 = 3,4 / sen 45o = 4,8  [m/s] 
 



 

 

 

 Turbina radial - Determine os elementos dos triângulos de velocidade, 

na entrada e na saída, de uma turbina radial com os seguintes dados: i) 
diâmetro de entrada D4 = 3,4 [m], ii) diâmetro de saída D5 = 1,2 [m], iii) 

largura na entrada b4 = 0,25 [m], iv) largura na saída b5 = 0,75 [m], v) vazão 
= 12,5 [m3/s], vi) rotação n = 150 [RPM], vii) ângulo construtivo na entrada 
4 = 85º.     Solução: 

  
- Cálculo das áreas: 
A4 = .D4.b4 = 3,1415 . 3,4 . 0,25 = 2,670 [m2] 

A5 = .D5.b5 = 3,1415 . 1,2 . 0,75 = 2,827 [m2] 

 
- Cálculo das componentes meridionais: 

Cm4 = Q / A4 > Cm4 = 12,5 / 2,670 = 4,68 [m/s]  
Cm5 = Q / A5 > Cm5 = 12,5 / 2,827 = 4,42 [m/s] 
 

- Cálculo das componentes tangenciais: 
u4 = .D4.n/60 = 3,1415 . 3,4 . 150 / 60  

u4 = 26,7 [m/s] 
u5 = .D5.n/60 = 3,1415 . 1,2 . 150 / 60  

u5 = 9,42 [m/s] 



 

 

 

- Triângulo de saída (retângulo C5=Cm5): 

 
 tg 5 = Cm5 / u5 > tg 5 = 4,42 / 9,42  

 tg 5 = 0,469 > 5 = 25,1º  

 W5
2 = u5

2 + C5
2 > W5 = 10,4 [m/s] 

 
- Triângulo de entrada : 
 
tg 4 = Cm4 / Wu4  > Wu4 = Cm4 / tg 4  

Wu4 = 4,68 / tg 85º > Wu4 = 0,41 [m/s] 

 
Cu4 = u4 - Wu4  > Cu4 = 26,7 - 0,41 

    > Cu4 = 26,29 [m/s] 
 
C4

2 = Cu4
2 + Cm4

2  > C4
2 = 26,292 + 4,682 

    > C4 = 26,7  [m/s] 
 
tg 4 = Cm4 / Cu4  > 4 = 10,1º 

sen 4 = Cm4 / W4  > W4 = 4,7  [m/s] 

 



 

 

 

 Turbina axial - Determine os elementos dos triângulos de velocidade, na 

entrada e na saída, de uma turbina axial com os seguintes dados: i) diâmetro 
externo De = 500 [mm], ii) diâmetro interno Di = 250 [mm], iii) vazão = 0,65 
[m3/s], iv) rotação n = 500 [RPM], v) ângulo construtivo na entrada 4 = 75º.  

 

 
 

- Cálculo das áreas: 
 A4 = A5 = A = .(De2 - Di2) / 4  

 A = 3,1415 . (0,52 - 0,252) / 4   A = 0,147 [m2] 
 
- Cálculo das componentes meridionais: 

 Cm4 = Cm5 = C5 = Q / A = 0,65 / 0,147 = 4,42 [m/s] 
 

- Cálculo das componentes tangenciais: 
 u4 = u5 = .Dm.n/60 = 3,1415 . 0,375 . 500 / 60 = 9,82 [m/s] 



 

 

 

- Triângulo de saída (retângulo C5=Cm5): 

 
 tg 5 = Cm5 / u5 > tg 5 = 4,42 / 9,82  

 tg 5 = 0,45  > 5 = 24,2º  

 W5
2 = u5

2 + C5
2 > W5 = 10,8 [m/s] 

 
- Triângulo de entrada : 
 
tg 4 = Cm4 / Wu4  > Wu4 = Cm4 / tg 4 

Wu4 = 4,42 / tg 75º > Wu4 = 1,18 [m/s] 

 
Cu4 = u4 - Wu4  > Cu4 = 9,82 - 1,18 

    > Cu4 = 8,64 [m/s] 
 
C4

2 = Cu4
2 + Cm4

2  > C4
2 = 8,642 + 4,422  

    > C4 = 9,7 [m/s] 
 
tg 4 = Cm4 / Cu4  > 4 = 27,1º  

sen 4 = Cm4 / W4  > W4 = 4,57  [m/s] 

 



 

 

 

 Bomba radial - Determine os elementos dos triângulos de velocidade, 

na entrada e na saída, de uma bomba radial com os seguintes dados: i) 
diâmetro de entrada D4 = 0,1 [m], ii) diâmetro de saída D5 = 0,2 [m], iii) 

largura na entrada b4 = 50 [mm], iv) largura na saída b5 = 25 [mm], v) vazão 
= 150 [l/s], vi) rotação n = 1.800 [RPM], vii) ângulo construtivo na saída 5 = 

70º.   Solução: 

 
- Cálculo das áreas: 
A4 = .D4.b4 = 3,1415 . 0,1 . 0,050 = 0,0157 [m2] 

A5 = .D5.b5 = 3,1415 . 0,2 . 0,025 = 0,0157 [m2] 

 
- Cálculo das componentes meridionais: 

A4 = A5 > Cm4 = Cm5 > Cm4 = Q / A4    
C4 = Cm4 = Cm5 = 0,15 / 0,0157 = 9,55 [m/s] 
 

- Cálculo das componentes tangenciais: 
u4 = .D4.n/60 = 3,1415 . 0,1 . 1.800 / 60 = 9,425 [m/s] 

u5 = .D5.n/60 = 3,1415 . 0,2 . 1.800 / 60 = 18,85 [m/s] 

 

 



 

 

 

- Triângulo de entrada (retângulo C4=Cm4): 

 
 tg 4 = Cm4 / u4 > tg 4 = 9,55 / 9,425  

 tg 4 = 1,01  > 4 = 45,4º  

 W4
2 = u4

2 + C4
2 > W4 = 13,42 [m/s] 

 
- Triângulo de saída : 
 
tg 5 = Cm5 / Wu5  > Wu5 = Cm5 / tg 5 

Wu5 = 9,55 / tg 70º > Wu5 = 3,476 [m/s] 

 
Cu5 = u5 - Wu5  > Cu5 = 18,85 - 3,476 

    > Cu5 = 15,374 [m/s] 
 
C5

2 = Cu5
2 + Cm5

2  > C5
2 = 15,3742 + 9,552 

    > C5 = 18,1  [m/s] 
 
tg 5 = Cm5 / Cu5  > 5 = 31,84º 

sen 5 = Cm5 / W5  > W5 = 10,16  [m/s] 

 



 

 

 

 Bomba axial - Determine os elementos dos triângulos de velocidade, na 

entrada e na saída, de uma bomba axial com os seguintes dados: i) diâmetro 
externo De = 400 [mm], ii) diâmetro interno Di = 200 [mm], iii) vazão = 0,68 
[m3/s], iv) rotação n = 800 [RPM], v) ângulo construtivo na saída 5 = 50º.  
 

 
- Cálculo das áreas: 
A4 = A5 = A = .(De2 - Di2) / 4  

A = 3,1415 . (0,42 - 0,22) / 4   A = 0,094 [m2] 
 

- Cálculo das componentes meridionais: 
Cm4 = Cm5 = C4 = Q / A  

Cm4 = Cm5 = C4 = 0,68 / 0,094 = 7,23 [m/s] 
 

- Cálculo das componentes tangenciais: 
u = u4 = u5 = .Dm.n/60 = 3,1415 . 0,3 . 800 / 60 = 12,57 [m/s] 



 

 

 

- Triângulo de entrada (retângulo C4=Cm4): 

 
 tg 4 = Cm4 / u4 > tg 4 = 7,23 / 12,57  

 tg 4 = 0,575 > 4 = 30º  

 W4
2 = u4

2 + C4
2 > W4 = 14,5 [m/s] 

 
- Triângulo de saída : 
 
tg 5 = Cm5 / Wu5  > Wu5 = Cm5 / tg 5 

Wu5 = 7,23 / tg 50º > Wu5 = 6,07 [m/s] 

 
Cu5 = u5 - Wu5  > Cu5 = 12,57 - 6,07 

    > Cu5 = 6,50 [m/s] 
 
C5

2 = Cu5
2 + Cm5

2  > C5
2 = 6,502 + 7,232 

    > C5 = 9,72   [m/s] 
 
tg 5 = Cm5 / Cu5  > 5 = 48,0º 

sen 5 = Cm5 / W5  > W5 = 9,43  [m/s] 

 



 

 

 

Triângulos de velocidade, na entrada e na saída, de uma turbina radial 

 

 
 
 
 

 



 

 

 

Desenho e cortes de uma bomba axial 

 

 



 

 

 

Triângulos de velocidade, na entrada e na saída, de uma bomba axial 

 

 
 
 



 

 

 

Triângulos de velocidade, na entrada e na saída, de uma bomba radial 

 



 

 

 

Capítulo 5 -  Equação fundamental 

 

  5.1) Equação Fundamental para máquinas hidráulicas 

 
 
 A equação fundamental para máquinas hidráulicas é obtida através da 

aplicação da lei da conservação da quantidade de movimento angular entre as 
superfícies de controle de entrada e de saída do rotor, tomadas sobre as 

superfícies de revolução geradas pelas arestas de sucção e de pressão. 
 

 
Considerando um fluido de viscosidade zero (fluido invíscido), 

incompressível e rotor de número infinito de pás de espessura infinitesimal, 

teremos um escoamento uniforme perfeitamente guiado pelas pás do rotor 
nas superfícies de entrada e de saída da máquina.  

 



 

 

 

 
Fig. 5.1 - Turbina e bomba hidráulica radial 

 

 Aplicando a lei da conservação da quantidade de movimento angular 
em regime permanente e escoamento uniforme para o caso de máquinas 

radiais (os mesmos resultados serão válidos para máquinas axiais), cujos 
triângulos de velocidade na saída e na entrada são mostrados na fig 5.1, 

obteremos a equação fundamental para turbinas e bombas hidráulicas. 



 

 

 

 
 



 

 

 

 Lei da conservação da quantidade de movimento angular: 

 

 



 













SC

VC
eixos

.Sist

Ad.CCr
t

dVCr
TdmgrFrT

dt

)Hm(d 





 

 

 Devido a simetria axial, tanto do campo de pressões em torno do rotor 

quanto da massa de fluido no rotor, os termos   dmgreFr s


 são iguais 

a zero.  
 

 Ao considerarmos escoamento em regime permanente, o termo 

  t/dVCr
VC

 


 da lei da conservação da quantidade de movimento 

angular, também iguala-se a zero. 

 
 Assim a equação a ser aplicada se resume a:  
 

   
SC

eixo Ad.CCrT


 

 



 

 

 

com a integral sendo avaliada nas seções de entrada e de saída do rotor e o 

termo eixoT


 igual ao torque externo aplicado no eixo do rotor. 

 

 
Vamos desenvolver a equação 

acima para qualquer condição 
de funcionamento, que inclui 

o ponto de projeto mostrado 
da fig. 5.1 , onde a 

componente tangencial na 

saída do rotor de turbinas e a 
componente tangencial na 

entrada de bombas é zero. 
 



 

 

 

 



 

 

 

5.1.1) Momento devido às pás, páM  (condição ideal de escoamento no rotor) 

 

 Para o caso de turbina radial, considerando a componente tangencial na 
saída do rotor, Cu5, na mesma direção da componente tangencial na entrada, 

Cu4 : 
  

     
5

55
4

44eixo Ad.CzCurAd.CzCurT


 

 

 O produto escalar Ad.C


 será negativo na entrada (seção 4) e positivo 

na saída (seção 5), e as integrais são avaliadas considerando escoamento 

uniforme: 
 

 QzCurQzCurT 5544eixo 


 

 

 Reagrupando os termos obtém-se: 
 

    55445544eixo CurCur)z(CurCurQT 


 

 



 

 

 

 O torque de eixo aplicado do meio externo no rotor representa um 

torque inverso ao sentido da rotação, z


 , e corresponde ao torque aplicado 

pelo gerador no eixo da turbina, o qual mantém o sistema em equilíbrio 

dinâmico rotativo.  
 
 Utilizando a nomenclatura usual para máquinas hidráulicas, explicitamos 

o momento (torque) sobre o rotor, considerando número infinito de pás de 
espessura infinitesimal, produzido pelo escoamento do fluido: 

 

  5544pá CurCurQM   

 

 Para o caso de bomba radial, considerando também a componente 
tangencial na saída do rotor, Cu5, na mesma direção da componente 
tangencial na entrada, Cu4 : 

  

     
5

55
4

44eixo Ad.CzCurAd.CzCurT


 

 

 Também no caso de bombas, o produto escalar Ad.C


 será negativo na 

entrada (seção 4) e positivo na saída (seção 5): 



 

 

 

 

 QzCurQzCurT 5544eixo 


 

 

 Agrupando (de modo diferente ao realizado para turbinas), obtém-se, 

para bombas: 
 

    44554455eixo CurCur)z(CurCurQT 


 

 
 O torque de eixo aplicado do meio externo no rotor representa um 
torque no mesmo sentido da rotação da bomba, z


 , e corresponde ao torque 

aplicado pelo motor elétrico, o qual mantém o sistema em equilíbrio dinâmico 
rotativo. Utilizando a nomenclatura usual para máquinas hidráulicas, 

explicitamos o momento (torque) do rotor, considerando número infinito de 
pás de espessura infinitesimal, para produzir o escoamento do fluido: 

 

  4455pá CurCurQM   

 
 



 

 

 

5.1.2) Equação fundamental - tH  (condição ideal de escoamento no rotor) 

 

 Nas turbinas hidráulicas, a potência mecânica gerada nas pás e 
transferida para o eixo será igual a potência hidráulica fornecida pelo fluido 

(condição ideal de número infinito de pás): 
 

   t-áp HQgM   ou  
Qg

M
H

-pá

t







  

 
sendo  a velocidade angular (rotação) em [rd/s]: 
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 Lembrando que r4=u4 e r5=u5, obtém-se a equação fundamental 

para turbinas hidráulicas radiais, que pode ser usada para turbinas axiais sem 
nenhuma modificação: 

 
 

  5544t CuuCuu
g

1
H    MHM  5544t CuuCuuY   

 

 Da mesma maneira, obtém-se a equação fundamental para bombas 
hidráulicas: 

 
 

  4455t CuuCuu
g

1
H    MHG  4455t CuuCuuY   

 
 A equação fundamental é também chamada equação de Euler para 
máquinas hidráulicas.   

 
 



 

 

 

5.1.3) Equação fundamental simplificada (ponto de projeto do rotor) 

 
Para turbinas hidráulicas, no ponto de projeto, considera-se que Cu5=0 

e 5=900 , como pode ser observado no triângulo de velocidades na seção de 

saída apresentado fig. 5.1. No caso de bombas hidráulicas e ventiladores esta 
é uma condição natural na seção de entrada onde Cu4=0 e 4=900. 

 
 Nestas condições, tem-se a equação fundamental simplificada para 

turbinas hidráulicas, bombas e ventiladores será: 
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 5.1.4) Equação de Bernoulli para escoamento relativo 

 
 Da equação fundamental pode-se obter a equação de Bernoulli para 

fluxo relativo, que é uma outra forma da equação fundamental. Sendo a 
energia absorvida por unidade de massa igual a diferença de energia na 
entrada e na saída no caso de turbinas hidráulicas, tem-se: 

 

 54t eegH   

 

 Desprezando a energia potencial, obtém-se: 
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 Modificando a equação, vem: 
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 De um triângulo de velocidade tem-se que: 
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 Com uma destas equações pode-se determinar a variação de pressão 

entre entrada e saída do rotor uma vez conhecidas as outras condições. 
 
 A outra forma mencionada da equação fundamental será então: 
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  5.2) Grau de Reação 

 
 Comparando as equações acima, define-se para turbinas hidráulicas, 

altura de pressão estática e altura de pressão dinâmica, respectivamente: 
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 O grau de reação da máquina é definido como sendo a relação entre a 
altura de pressão estática e a altura total teórica: 
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 Usando a equação fundamental simplificada temos: 
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 Se fixarmos a condição, Cm4=Cm5 , obtemos o grau de reação 
simplificado: 
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  5.3) Número finito de pás com espessura "s" constante  

 
 A espessura "s" das pás provoca um estrangulamento do fluxo na 

entrada do rotor e uma expansão na saída, alterando a componente Cm dos 
triângulos de velocidade na entrada e na saída. 
 

 A figura mostra uma MHG radial com espessura de pá constante "s".  
 

 
Fig. 5.2 - Pás com espessura constante (MHG) 



 

 

 

Calcularemos a seguir a variação da componente Cm em função da espessura 

na entrada e na saída da máquina. O comprimento entre dois pontos 
equivalentes de duas pás será, para a entrada e saída, respectivamente: 
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 5.3.1) Entrada (sucção da bomba) 

 

Sendo a vazão igual na seção 3 imediatamente antes da seção 4, temos: 

 4433 ACmACmQ   

 
A área A3 será maior que A4 por um fator de estrangulamento f3 (f3 < 1): 

 334 f.AA   

 
 O fator de estrangulamento dependerá do diâmetro D4 , da espessura 
S4 , do número de pás z, e do ângulo construtivo 4: 
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A variável St4 é espessura da pá na direção perpendicular ao escoamento: 
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Consequentemente,  343 fCmCm    (Cm4 > Cm3). 

 

 5.3.2) Saída (pressão da bomba) 

 
Sendo a vazão igual na seção 6 imediatamente após a seção 5, temos: 

 6655 ACmACmQ   

 
A área A6 será maior que A5 de um fator de estrangulamento f6 (f6 < 1): 

 665 f.AA   

 
 O fator de estrangulamento dependerá do diâmetro D5 , da espessura 
S5 , do número de pás z, e do ângulo construtivo 5 . 
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A variável St5 é espessura da 

pá na direção perpendicular 
ao escoamento: 
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Fig. 5.3 - Efeito na espessura sobre os 

triângulos de velocidade (MHG) 
Consequentemente,  
 

 656 fCmCm     (Cm5 > Cm6). 

 
 A figura mostra os triângulos de velocidade levando-se em conta o 

efeito da espessura das pás na entrada e na saída de uma MHG. 
 

 



 

 

 

  5.4) Escoamento real com número finito de pás 

 
 Ao considerarmos o escoamento real de máquinas hidráulicas com um 

número finito de pás, ocorrerão efeitos sobre o fluxo no rotor, além da 
aceleração devido a espessura das pás, que modificarão a altura de queda 
disponível para uma máquina motora ou a altura de pressão ou diferença de 

pressão fornecida por uma máquina geradora.  
 

 Foi visto que o escoamento relativo em uma máquina hidráulica motora 
(turbinas é acelerado) e que o escoamento relativo em uma máquina 
hidráulica geradora (bombas e ventiladores) é desacelerado.  

 
 Sabe-se também, pelos estudos de mecânica dos fluidos, que os 

escoamentos desacelerados podem apresentar descolamento da camada 
limite, devido ao fato que a geometria é geralmente um difusor (apresentam 

gradiente adverso de pressão).  
 
 Em contrapartida, os escoamentos acelerados geralmente não 

apresentam descolamento da camada limite, sendo sua geometria 
caracterizada por injetores. 



 

 

 

 4455tpá CuuCuuHgY        MHG 

 

 Para MHG (bombas e ventiladores), o trabalho específico fornecido ao 
fluido (ou altura de elevação no rotor vezes a aceleração da gravidade), 

considerando um número finito de pás será menor do que na condição de 
número infinito de pás pois o escoamento não será perfeitamente guiado na 
saída e a componente real Cu6 será menor do que a componente teórica Cu5: 

 
   pát4465tpá YgHCuuCuuHgY   MHG 

 

 5544tpá CuuCuuHgY        MHM 

 
 Para MHM , o trabalho específico produzido (ou a altura de queda no 

rotor vezes a aceleração da gravidade), considerando número finito de pás 
pode ser considerado igual ao trabalho específico para número infinito de pás, 
pois o escoamento acelerado em turbinas permite um direcionamento melhor 

do escoamento na saída: 
 

   pát6544tpá YgHCuuCuuHgY   MHM 



 

 

 

 Para MHG esta diferença pode ser avaliada por coeficientes empíricos 

que dependem da geometria do rotor, como veremos no cap. 13, para o caso 
de bombas hidráulicas. No caso de MHM, considera-se que somente através 

do uso de programas computacionais será possível calcular o escoamento mais 
próximo da realidade em uma turbina com número finitos de pás. 
 

 Na análise do escoamento no rotor não se considerou o efeito do atrito 
viscoso, utilizou-se somente o conceito de fluido ideal.  

 
 Um dos efeitos da viscosidade do fluido é a formação de espaços 
”mortos” na saída das pás do lado de baixa pressão da pá, principalmente 

quando a máquina trabalha fora do ponto nominal.  
 

 Este efeito altera os triângulos de velocidade na região após a saída do 
rotor. 

 
 
 



 

 

 

  5.5) Perdas por Choque 

 
 Até o presente momento na análise de máquinas hidráulicas, as 

grandezas e rendimentos são relativas ao ponto nominal, ou ponto de projeto, 
onde se consideram nulas as perdas por choque na entrada, que existem 
quando a máquina trabalha com grandezas diferentes das calculadas para o 

ponto de projeto. 
 

 
Fig. 5.5 - Grade de pás com e sem choque na entrada 

 



 

 

 

 Perdas por choque ocorrem no momento em que o escoamento na 
entrada possui uma direção diferente do ângulo construtivo  da pá.  

 
 Na figura 5.5 temos uma grade construída com ângulo 4 com pás de 

espessura fina para se desconsiderar o efeito de estrangulamento no fluxo. 

 
 No caso de entrada sem choque 4 = 3 e W4 = W3 . A perda por 

choque pode ser quantificada (na ausência de tratamentos mais complexos) 

pela equação: 
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onde Ws é a diferença vetorial das velocidades W4 e W3 . O choque pode ser 

de aceleração ou de retardamento do fluxo, diferença que é percebida nos 
triângulos de velocidades para bombas (ou ventiladores) e turbinas de reação 
quando se altera rotação ou vazão.  

 



 

 

 

  5.6) Aproximação para trabalho específico nas pás 

 
 Para a análise do escoamento em um rotor de MH real devemos 

considerar as alterações dos desvios devido ao número finito de pás. No caso 
de turbinas estas alterações serão consideradas desprezíveis no ponto de 
projeto. Isto torna as alturas real e para número infinito de pás praticamente 

iguais, porém menores que a altura de queda sobre a turbina: 
 

 HgCuuHgHg 44tt      MHM 

 
 Em rotores com pás distanciadas deve-se considerar no projeto um 
sobreângulo, que corrigirá a falta de direcionamento do escoamento pelas pás. 

Nos projetos preliminares pode-se desprezar o efeito da espessura das pás.  
 

 Nas bombas e ventiladores, o escoamento desacelerado e não guiado 
na saída do rotor diminui significativamente a altura teórica, provocando uma 

grande redução da altura de elevação fornecida pelos cálculos com número 
infinito de pás. Somado a este decréscimo de altura de elevação ainda existem 
as perdas de pressão no escoamento devido ao atrito viscoso: 



 

 

 

 

  tt HHH  

sendo: 

 55t65t CuuHgCuuHg     MHG 

 

 Para cálculos de bombas, axiais ou radiais, a obtenção de Ht é feita em 
função de um fator de correção “a”. 
 

 5.6.1) Fator de correção para bombas hidráulicas 

 

 É um método aproximado, proposto por C. Pfleiderer, que considera 
uma distribuição regular de pressão nas pás, e relaciona o trabalho específico 
(ou a altura de elevação) para número infinito de pás com o trabalho 

específico para número finito de pás através de um coeficiente de redução de 
potência: 

  )p1(YY pápá   ou  )p1(HgHg tt   

 

  aHH tt   

 



 

 

 

 

 5.6.2) Coeficiente de velocidade para ventiladores 

 

 É normalmente utilizado um método simples, proposto por Stodola, 
para determinação do coeficiente de velociade para ventiladores, coeficiente 
este que relaciona a diferença de pressão para um número finito de pás e a 

diferença de pressão calculada para um número infinito de pás: 
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  5.7) Exemplos de cálculos 

 5.7.1) Número infinito de pás 
Turbina radial: Utilizando os resultados dos triângulos de velocidade para 

turbina radial do item 4.6, calcule a altura de queda teórica para número 
infinito de pás, tH , a potência de eixo, Pe, a diferença de pressão entre 

entrada e saída da turbina e seu grau de reação, considerando o rendimento 
mecânico igual a 95% e o rendimento volumétrico igual a 100%. 

  5544t CuuCuugH   mas como 0Cu5   44t CuugH   

 tgH 26,7 x 26,3 > tH =71,6 [m] 

Ph =  g Q H   t = Pe / Ph   h = tH  / H 

t = Pe h /  g Q tH  m = Pe /  g Q tH  Pe = m  g Q tH  

Pe = 0,95 x 9.780 x 12,5 x 71,6 = 8.315.445 [W] Pe = 8,3 [MW] 
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 54 pp 499 [624,1+86,1] = 499 x 710,2   54 pp 354.390 [N/m2] 
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 Turbina axial: Utilizando os resultados dos triângulos de velocidade para 

turbina axial do item 4.6, calcule a altura de queda teórica para número 
infinito de pás, tH , a potência efetiva, Pe, considerando o rendimento 

mecânico de 95%, a diferença de pressão entre entrada e saída da turbina e 

seu grau de reação. 
 
 44t CuugH   (equação fundamental simplificada) 

 tgH 9,82 x 8,64    tH =8,65 [m] 

 

Pe = m  g Q tH   

Pe = 0,95 x 9.780 x 0,65 x 8,65 = 52.239 [W]  Pe = 52,3 [kW] 
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 Bomba radial: Utilizando os resultados dos triângulos de velocidade 

para a bomba radial do item 4.6, calcule a altura de elevação teórica para 
número infinito de pás, tH , a potência de eixo, Pe, a diferença de pressão 

entre entrada e saída da bomba e seu grau de reação, considerando o 

rendimento mecânico igual a 85%. 
 
  4455t CuuCuugH   mas como 0Cu4   55t CuugH   

 tgH 18,85 x 15,374 > tH =29,6 [m] 

Ph =  g Q H   t = Ph / Pe   h = H / tH  

t =   g Q tH h / Pe  m =  g Q tH / PePe =  g Q tH  / m  

 

Pe = 9.780 x 0,15 x 29,6 / 0,85 = 51.086 [W] Pe = 51,1 [kW] 
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 Bomba axial: Utilizando os resultados dos triângulos de velocidade para 

a bomba axial do item 4.6, calcule a altura de elevação teórica para número 
infinito de pás, tH , a potência de eixo, Pe, a diferença de pressão entre 

entrada e saída da bomba e seu grau de reação, considerando o rendimento 

mecânico de 85%. 
 
  4455t CuuCuugH   mas como 0Cu4   55t CuugH   

 tgH 12,57 x 6,50 > tH  = 8,43 [m] 

 

Pe =  g Q tH  / m  

Pe = 9.780 x 0,68 x 8,43 / 0,85 = 65.956 [W] Pe = 65,9 [kW] 
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 5.7.2) Número finito de pás 

 
Bomba radial: Utilizando os resultados dos triângulos de velocidade para a 

bomba radial do item 4.6, recalcule os triângulos de velociade considerando 
que o rotor possui 8 pás de espessura constante de 5 [mm].  
 

- Condição número infinito de pás: 
C4 = Cm3 = Cm4 = Cm5 = Cm6 =  

C4 = 0,15 / 0,0157 = 9,55 [m/s] 
 
- Condição número finito de pás: 

Cm3 = Cm6 = 9,55 [m/s] 
 

 
 

Fig. 5.6 - Triângulos na condição de número infinito de pás 
 
- Cálculo do fator de estrangulamento na entrada, f3 , utilizando o ângulo 

construtivo na entrada calculado para a condição de número infinito de pás: 
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- Cálculo do fator de estrangulamento na saída, f6 , utilizando o ângulo 
construtivo na saída fixado para a condição de número infinito de pás: 
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- Cálculo das velocidades meridionais internas do rotor com número finito de 
pás, na entrada e na saída, a partir das velocidades meridionais externas. 

 
 343 fCmCm       334 f/CmCm   

 

 656 fCmCm       665 f/CmCm   



 

 

 

 Cm4 = 9,55 / 0,82 = 11,62 [m/s] 

 
 Cm5 = 9,55 / 0,93 = 10,27 [m/s] 

 
 
 

 
Fig. 5.6 - Triângulos na 

condição de número  
finito de pás (correção da 
velocidade meridional) 

 
  

 
 

- Cálculo do ângulo construtivo corrigido na entrada: 
 

 
4

4
4

u

Cm
tg  =11,62 / 9,42  4 = 51o 3 = 45,4o  

 



 

 

 

 



 

 

 

Turbina axial: Calcule os ângulos 3 , 3 e 4 de uma turbina axial cuja vazão é 

670 [l/s], altura de queda 16 [m] com os seguintes dados: i) diâmetro 
externo: 0,56 [m], ii) diâmetro interno: 0,24 [m], iii) rotação = 600 [RPM], iv) 

espessura das pás na entrada: 7 [mm], v) rendimento hidráulico: 88% e vi) 
número de pás: 16. (Despreze a espessura das pás na saída) 
 

- Cálculo do diâmetro médio: 
 Dm = (Dext + Dint) / 2 = (0,56 + 0,24) / 2  

 Dm = 0,4 [m] 
 

- Cálculo das áreas: 

 A3 = A5 = A6 = .  2

int

2

ext DD   / 4 =  x (0,562 - 0,242) / 4 

 A = 0,201 [m2] 
 

- Cálculo das componentes meridionais: 
 Cm3 = Cm5 = Cm6 = C6 = Q / A = 0,67 / 0,201 = 3,33 [m/s] 

 
- Cálculo das componentes tangenciais: 
 u = .Dm.n/60 =  x 0,4 x 600 / 60 = 12,6 [m/s] 

 



 

 

 

- Cálculo de Cu3 (= Cu4) a partir de H e de Wu3 : 

 3t CuugH    H.HH htt   

  H..g t 12,6 x Cu3  138 = 12,6 x Cu3   Cu3 = 11,0 [m/s] 

 Wu3 = u - Cu3  Wu3 = 12,6 - 11  Wu3 = 1,6 [m/s]  
 

- Triângulo de entrada externo (ponto 3) : 

 tg 3 = Cm3 / Wu3    3 = tg-1 (3,33 / 1,6)  3 = 64,3o  

 tg 3 = Cm3 / Cu3   3 = tg-1 (3,33 / 11,0)  3 = 16,8º  

 
- Cálculo do fator de estrangulamento na entrada, f3 , utilizando o ângulo do 

escoamento na entrada: 
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- Triângulo de entrada interno (ponto 4) : 

 

343 fCmCm   334 f/CmCm   Cm4 = 3,33 / 0,9 Cm4 = 3,7 [m/s] 

 

 tg 4 = Cm4 / Wu3  4 = tg-1 (3,7 / 1,6)  4 = 66,6o  

 
 

 
 

 
 

 
 
 

 
Fig. 5.7 - Triângulos de turbina axial na condição de número finito de pás  

 
 

 



 

 

 

Ventilador radial: Determinar a rotação necessária, bem como o ângulo 
construtivo na entrada para que um ventilador radial possa fornecer p = 

5.000 [N/m2] com uma vazão igual a 3,27 [m3/s] com os seguintes dados: i) 
D5 = 300 [mm], ii) D4 = 220 [mm], iii) b4 = b5 = 250 [mm], iv) 5 = 1200, v) 

Z = 32 pás, vi) S = 3 [mm], vii) h = 60 % e viii)  = 0,8. (Use =1,2 

[kg/m3]) 
 
- Cálculo das áreas externas ao rotor: 
 A3 = .D4.b4 =  x 0,22 x 0,25 = 0,173 [m2] 

 A6 = .D5.b5 =  x 0,30 x 0,25 = 0,236 [m2] 

 
- Cálculo das componentes meridionais externas : 

 Cm3 = Q / A3 = 3,27 / 0,173 = 18,90 [m/s] 
 Cm6 = Q / A6 = 3,27 / 0,236 = 13,88 [m/s] 

 
- Cálculo do fator de estrangulamento, f6, utilizando o ângulo construtivo na 
saída : 
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- Cálculo da componente meridional interna na saída (ponto 5): 
 656 fCmCm    665 f/CmCm    

 Cm5 = 13,88 / 0,88  Cm5 = 15,77 [m/s] 

 
- Cálculo de Cu5 (= Cu6) dado o ângulo construtivo 5 = 120º : 

 tg 5 = Cm5 / Wu5  Wu5 = Cm5 / tg 5 Wu5 = 15,77/tg 120º  

 Wu5= -9,1 [m/s]  Cu5 = u5 - Wu5 Cu5 = u5 + 9,1  
 

- Cálculo de u5 : 
  tt p.p    thtot p.p   

  thtot p..p     tt Hgp  

  thtot H.g..p   55t CuugH   
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 0680.8u1,9u 5

2

5   u5 = 88,7 [m/s] Cu5 = 97,8 [m/s] 



 

 

 

- Cálculo da rotação: 

 u5 = u6 =  D5 n / 60  n = 60 x u5 / (D5)  n = 5.650 [RPM] 

 

- Cálculo da componente tangencial na entrada: 
 u3 = u4 = .D4.n/60 =  x 0,22 x 5.650 / 60 = 65,1 [m/s] 

 

- Cálculo do ângulo do escoamento na entrada: 
 tg 3 = Cm3 / u3  3 = tg-1(18,9/65,1)  3 = 16,2o  

 
- Cálculo do fator de estrangulamento, f3, utilizando o ângulo do escoamento 

na entrada: 

  ]mm[6,21
32

220x
t4 


  ]mm[75,10

2,16sen

3
St

o4   

   5,0
6,21

75,106,21
f3 


  

 
- Cálculo da componente meridional interna na entrada (ponto 4): 

 343 fCmCm   334 f/CmCm   Cm4 = 18,9 / 0,5 = 37,8 [m/s] 

 



 

 

 

- Cálculo do ângulo construtivo na entrada: 
 tg 4 = Cm4 / u3  4 = tg-1(37,8/65,1)  4 = 30,1o  

 

- Recálculo do ângulo construtivo na entrada: 
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Cm4 = 18,9 / 0,72 = 26,25 [m/s]  4 = tg-1(26,25/65,1) 4 = 22,0o  

 
- Recálculo do ângulo construtivo na entrada: 
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Cm4 = 18,9 / 0,63 = 30 [m/s]  4 = tg-1(30/65,1)  4 = 24,7o  

 
- Recálculo do ângulo construtivo na entrada: 
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Cm4 = 18,9 / 0,67 = 28,2 [m/s]  4 = tg-1(28,2/65,1)  4 = 23,4o  

 



 

 

 

Fig. 5.8 - Triângulos de ventilador radial     Fig. 5.9 - Corte do ventilador radial 

 
 

 
 

 
 

 
 
 

 



 

 

 

Ventilador radial: Para aumentar em 25% a diferença de pressão do 

ventilador, mantendo-se as outras características (n e Q) , qual deve ser o 
novo ângulo construtivo na saída?  
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 5xCu7,88

2,1x8,0x6,0

000.5x25,1
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 Cu5 = u5 - Wu5 Wu5 = u5 - Cu5 = 88,7 - 122,3 Wu5 = -33,6 [m/s]  
 
 tg 5 = Cm5 / Wu5  tg 5 = 15,77 / (-33,6) 5 = 154,8º   

 
- Recálculo do ângulo construtivo na saída: 
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Cm5 = 13,88 / 0,76 = 18,26 [m/s] 5 = tg-1(18,26/-33,6) 5 = 151,5o  

 

- Recálculo do ângulo construtivo na saída: 
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Capítulo 6 -  Análise da equação fundamental 

 

 



 

 

 

  6.1) Análise para turbina hidráulica de reação 

 

 6.1.1) Diagrama da função Ht- = f(Q,n) (entrada sem choque) 

 
 No estudo de máquinas hidráulicas é de grande importância o 
estabelecimento de relações entre as grandezas características de 

funcionamento: vazão, variação de energia específica, rotação, potência e 
rendimento.  

 
 Estas relações são obtidas através da equação fundamental das 

máquinas hidráulicas em conjunto com as relações entre velocidades dos 
triângulos de velocidade para escoamento através do rotor considerando 
número infinito de pás de espessura infinitesimal. 



 

 

 

 
 

Fig. 6.1 - Triângulos de Velocidade (entrada sem choque) 
 

 Considerando os triângulos de velocidade médios nas seções de entrada 
e saída podemos escrever: 
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 Da equação fundamental tem-se: 
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 Definindo: 
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 Manipulando a equação de gHt-  obtém-se: 
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 Esta equação representa a altura de queda teórica para um 
determinado rotor, com ângulos construtivos (4 e 5) e outras características 

geométricas definidas, função da vazão e da rotação, para entrada sem 
choque (pois 4 é constante). 

 
 Utilizando o valor de 60nDu 55   tem-se: 
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 Que pode ser escrita na forma:  nQbnaH 1

2

1t   

 



 

 

 

 

 
 Para cada n obtém-se uma reta, portanto, a relação acima é um feixe 

de retas.  
 

Ao fixarmos um valor de n 

obtemos uma reta que nos 
descreve a característica da 

máquina para  várias  aberturas (
4  cte. - entrada sem choque), 

como mostra a fig.6.2. 
 

 
 
Fig. 6.2 - Ht-=f(Q) sem choque 

 
 

 
 

 



 

 

 

 6.1.2) Diagrama da função Ht- = f(Q,n) (entrada com choque) 

 
 Ao equacionarmos novamente usaremos agora 444 tgCmCu   , 

desta maneira teremos a equação fundamental escrita da seguinte maneira: 
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Fig. 6.2 - Triângulos de Velocidade (entrada com choque) 
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 Usando os mesmos coeficientes m e k definidos anteriormente, tem-se: 
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 Utilizando o valor de 60nDu 55   tem-se: 
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 A equação acima representa também 
um feixe de retas Ht-=f(Q,n) , para vários 

4 constantes, o que define o 

comportamento teórico da máquina para 

uma dada abertura do distribuidor, com 
entrada incongruente com o rotor, e está 
representada na fig.6.3. 

 
 Que pode ser escrita na forma: 
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Fig. 6.3 - Ht- em função de Q 

 
 A intersecção entre as duas retas mostradas anteriormente nos 
fornecerá o ponto de melhor rendimento na rotação dada e no ângulo 4 

fixado na segunda reta. Caso se modifique a rotação (ou qualquer outro 

parâmetro) se modificará as retas e o ponto de melhor rendimento teórico. 
 



 

 

 

 De outra maneira, pode-se dizer que o ponto de interseção terá uma 
abertura do distribuidor (ângulo 4) que corresponderá ao ponto de melhor 

rendimento para uma dada rotação.  

 

 
Fig. 6.4 - Intersecção entre as retas 



 

 

 

  6.2) Análise para turbina hidráulica de ação 

 
 Neste tipo de máquina, o sistema de admissão (injetor) é independente 

do rotor, portanto não há uma dependência direta entre a vazão e a rotação, 
uma vez fixada a altura de queda e a posição da agulha do injetor. Deste 
modo tem-se retas horizontais para Q em função de n, conforme a fig.6.5. 

 

 
Fig. 6.5 - Q=f(n) para turbina de ação 



 

 

 

 Aplicando a equação fundamental para o rotor, e com as simplificações 

que podem ser observadas na fig.6.6, obtém-se a altura de queda teórica. 
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44 WuCu   

555 cos.WuCu   

 554t cos.WWugH   

 
 Aplicando-se 
Bernoulli entre as seções 

4 e 5 temos: 
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Fig. 6.6 - Triângulos de velocidade para turb. Pelton 

 
 Considerando hp (perdas no escoamento entre as seções 4 e 5) como 
função de W4: 
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o que resulta para a altura específica teórica no rotor:  

  5t cos.p11)uc(ugH   

 

 A potência de eixo teórica do rotor será: 

  5tte cos.p11)uc(QugHmP 
  

 
 A potência fornecida ao rotor ou potência hidráulica pode ser 

determinada conhecendo-se o coeficiente de perdas do injetor e a altura 
disponível correspondente a leitura do manômetro situado na entrada do 
injetor, Hd. 

 

 A velocidade na saída do injetor é dada por:  dH.g.2.kC   

 

sendo k o coeficiente que leva em conta as perdas por atrito, perdas por 
transformação de energia e outras perdas no injetor (k<1). 



 

 

 

 Logo pode-se escrever:  d

2
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inj H.k
g2

C
H   

onde Hinj é a altura de pressão correspondente a velocidade na saída do 

injetor. 
 

 Assim a potência hidráulica fornecida ao rotor será: 

 d
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 O rendimento do rotor pode ser então obtido: 
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 Esta expressão mostra que variando a rotação (e conseqüentemente u) 

temos o rendimento do rotor, desde que sejam conhecidas as perdas no 
mesmo (coeficiente p). 
 Para termos o rendimento hidráulico do conjunto (injetor mais rotor) 

basta multiplicar a equação para o rendimento do rotor por k2 : 
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 O rendimento hidráulico 
máximo do rotor ocorre para 

r/u=0 , logo para u=C/2, 

sendo: 
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 Na fig.6.7 mostra-se as 
parábolas Pe-t=f(u) e r=f(u). 

Tais funções foram obtidas 
considerando-se Hd, Q e 
conseqüentemente  (posição da 

agulha) e k constantes.   
Fig. 6.7 - Pe-t e  em função de u para turbina Pelton 



 

 

 

  6.3) Análise para bombas e ventiladores 

 
 Conhecido o aspecto apresentado pelas curvas características de um 

rotor de bomba ou ventilador, obtidas a partir de resultados experimentais, 
deve-se procurar uma explicação para aqueles resultados, analisando as 
curvas a partir da equação fundamental. 

 
 Considerando um 

rotor de bomba ou 
ventilador centrífugo com 
5 < 900 , cujo triângulo 

de velocidade na saída é 
mostrado na figura 6.8 . 

 
 A expressão 

genérica da equação 
fundamental simplificada é 

55 t u.CugH   

Fig. 6.8 - Triângulos de velocidades de rotor centrífugo 



 

 

 

 Do triângulo de saída vem: 

 
5

5

5

5
5555

A

Q
Cm  e  

tg

Cm
 Wu,  WuuCu 


  

 
 Resultando, portanto: 
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 Ressalta-se que esta expressão é 
válida para as seguintes condições: fluido 

ideal, número infinito de pás, pás de 
espessura infinitesimal, entrada a 90 (sem 

choques). 
 

 A expressão representa a equação de 
uma reta, diferente para cada valor de u5 , e 
é representada na fig.6.9, conforme o valor 
de 5 (cotg 900 = 0). 

Fig. 6.9 - Variação de Ht- = f(Q) 



 

 

 

 A equação fundamental, escrita desta maneira, expressa a dependência 
entre Q e Ht- . Considerando o número de pás finito, utiliza-se a altura de 

elevação teórica: 
  Ht- = a . Ht 

 

sendo "a" um coeficiente experimental já citado, sempre maior que 1. 
 
 Substituindo este valor na 

expressão anterior, tem-se: 
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 A figura mostra as duas retas 
Ht=f(Q) e Ht-=f(Q) para uma deter-

minada velocidade u5 e para 5 < 900. 

 
Fig. 6.10 - Variação de Ht e Ht- = f(Q)  para 5 < 900 



 

 

 

 Pode-se observar que os pontos A, B e B' possuem as seguintes 

coordenadas: 
 Ponto A: Ht=Ht-=0 ; Q =u5.A5.tg5 

 Ponto B: Ht- = gu2

5  ; Q = 0 

 Ponto B': Ht = g.au2

5  ; Q = 0  

 
 A altura de elevação será obtida a partir de Ht, se conhecermos as 
perdas por atrito, hp1 e as perdas por choque, hp2: 

 
 H = Ht - hp = Ht - (hp1 + hp2) 

 
 Quantitativamente é bastante complexo e pouco prático se obter uma 

equação geral para estas perdas, porém, sabemos que estas são relacionadas 
basicamente com a vazão para rotação constante. De modo geral pode-se 
expressar estas perdas usando: 

 

 2

 1 K.Qhp   e 2

 2 d.Q+c.Qbhp   

 

onde K, b, c e d são coeficientes obtidos experimentalmente. 



 

 

 

 Em um sistema de eixos coordenados, estas perdas são representadas 

como na figura 6.11, conjuntamente com a reta Ht = f(Q) e com a curva 
característica da máquina H = f(Q) para uma rotação fixa. 

 
 Vejamos a seguir como se determinará analiticamente a expressão da 
altura de elevação e a do rendimento hidráulico em função da vazão, para 

uma rotação fixa. 
 

 Sendo: 
 
  21tt hp+hpH=hpH=H   

 

    f.Q-e.tga.g.AQ.ua.guH 555

2

5t 

 

 2

1 K.Qhp   e

 2

2 d.Q+c.Q+bhp   

 

Fig. 6.11 - Curva H=f(Q) obtida de Ht e das perdas hp1 e hp2 

 



 

 

 

 Tem-se, então: 

 

 22 d.Q-c.Q-b-K.Q-f.Q-e=H  

ou 

 2C.QB.QA=H   

 
 Ao mesmo tempo, sendo t h HH , obtém-se o rendimento hidráulico: 

 

 
f.Q-e

C.QB.QA
=

2

h


  

 
 Estas são as expressões analíticas procuradas para H e h. 

 

 De fato, a obtenção dos coeficientes A, B, C, e e f, é extremamente 
complexo analiticamente e envolve muitas hipóteses simplificadoras, de tal 

modo que sua obtenção é realizada através de testes em bancadas para 
grupos de máquinas típicas (bombas e ventiladores de arranjos conhecidos e 
mais utilizados). 

 



 

 

 

 6.3.1) Curvas representativas das perdas internas 

 
 Complementando o exposto no item anterior, é interessante mostrar 

uma maneira simplificada de obtenção das curvas representativas das perdas 
que ocorrem em bomba e ventiladores. Tal procedimento permite ao projetista 
melhorar seus critérios de cálculo e apresentar produto com melhores 

características. 
 

 Em tempos gerais, o processo é o seguinte: 
 
 a) Realiza-se em um rotor de bomba, projetado e construído pelo 

fabricante, ensaios de laboratório, visando a obtenção das curvas 
características do rotor. 

 
 b) Da curva característica t = f(Q) determina-se o rendimento máximo 

e o valor correspondente do rendimento hidráulico, arbitrando-se (ou 
medindo-se) o rendimento mecânico e o rendimento volumétrico. 

 
 c) Sendo H = Ht.h , pode-se traçar a curva Ht = f(Q), uma vez que 

H=f(Q) também foi obtido experimentalmente. 



 

 

 

 d) Verifica-se a seguir se a curva traçada satisfaz a equação: 

 

    555

2

5t .tga.g.A/Q.uga./uH   ou f.Q-eHt   (rot. = cte.) 

 

 O projetista tem, então, condições de verificar se os critérios adotados 
para a determinação do fator "a" de Pfleiderer conduziram a um valor 
adequado deste fator, comparando Ht com tH  

 

 e) Determina-se hp = Ht - H 
 

 f) Traça-se a parábola representativa da função hp1=K.Q2, passando 
pela origem e pelo ponto onde tem-se h-máx . Neste ponto, hp2  0. 

Determinando-se K. 
 
 g) Traça-se a curva representativa da função hp2 = b+c.Q+d.Q2, 

sabendo que, para uma vazão qualquer Q , tem-se hp2 = hp - hp1 . 
Determina-se os coeficientes b, c e d. 

 
 



 

 

 

  6.4) Exemplos de cálculos 

 

 6.4.1) Turbinas de reação 

Turbina radial: Determine a equação Ht- = f(Q) para uma turbina radial com 

os seguintes dados: i) D4 = 0,48 [m], ii) b4 = 0,023 [m], iii) D5 = 0,32 [m], iv) 
b5 = 0,033 [m], v) 4 = 850, vi) 5 = 180 e vii) n= 1.160 [RPM]. 
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- Cálculo das áreas ao rotor: 
 A4 = .D4.b4 =  x 0,48 x 0,022 = 0,03317 [m2] 

 A5 = .D5.b5 =  x 0,32 x 0,033 = 0,03317 [m2] 

- Cálculo de m e k: 
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- Substituição de valores: 
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gHt- = 472,2 + 0,505x(3,08-0,131)xQx1.160  Ht- = 48,2 + 176,1 Q 



 

 

 

Turbina axial: Determine a equação Ht- = f(Q) para uma turbina axial com os 

seguintes dados: i) Dext = 3 [m], ii) Dint = 1 [m], iii) 4 = 58o, iv) 5 = 30o e v) 

n = 138,5 [RPM]. 
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- Cálculo do diâmetro médio: 
 Dm = (Dext + Dint) / 2 = (3 + 1) / 2 = 2 [m] 

 
- Cálculo das áreas: 

 A4 = A5 = .  2

int

2

ext DD   / 4 =  x (32 - 12) / 4 = 6,283 [m2] 

- Cálculo de m e k: 
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- Substituição de valores: 
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 gHt- = 0 + 0,0167x(1,732-0,625)xQx138,5  Ht- = 0,26 Q 



 

 

 

 
 



 

 

 

 6.4.2) Turbinas de ação 

 
Turbina Pelton: Calcule o rendimento máximo do rotor, a rotação, e a potência 

teórica máxima de uma turbina Pelton, cujo diâmetro é 1 [m] nas seguintes 
condições: i) Hd = 1.000 [mCA], ii) Q = 0,1 [m3/s], iii) Coeficiente de perda no 
injetor, k = 0,98, iv) Coeficiente de perdas nas pás p = 0,25 e 5 = 60. 

 
- Cálculo da velocidade na saída do injetor: 

 dH.g.2.kC   

 C = 0,98 x (2 x 9,8 x 1.000)1/2 = 137,2 [m/s] 
 

- Cálculo da velocidade tangencial (ou periférica) do rotor: 
 u = C/2 = 68,6 [m/s] 
 

- Cálculo da rotação 
 u = .D.n/60  n = 60.u/.D = 60x68,6/(x1) 

 n = 1.310 [RPM] 

 

 



 

 

 

- Cálculo do rendimento máximo 
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
    

 r-máx = [1+(1-0,25)1/2 cos6o]/2 = 0,93   r-máx = 93% 

 

- Cálculo da potência hidráulica: 

 d

2

injh H.Q.g.kH.Q.gP   

 Ph = 0,982 x 9.780 x 0,1 x 1.000 = 939.271 [W] = 939 [kW] 
 
- Cálculo da potência teórica máxima: 

 Pt = r-máx Ph = 0,93 x 939  Pt = 874 [kW] 

 

 
 
 

 
 

 
 



 

 

 

 6.4.3) Bomba hidráulica 

 
Bomba radial: Determine a equação Ht = f(Q) para uma bomba radial com os 
seguintes dados: i) D5 = 135 [mm], ii) b5 = 25 [m], iii) 5 = 600, iv) n= 3.500 

[RPM] e v) a=1,25 

Utilizando a expressão,  
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 A5 = .D5.b5 =  x 0,135 x 0,025 = 0,0106 [m2] e 

 
 u5 = .D5.n/60 =  x 0,135 x 3.500 / 60 = 24,74 [m/s] 

 

 Temos: 
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 Ht = 50 - 110 Q 

 



 

 

 

 

Capítulo 7 -  Semelhança e Coeficientes para MH 

 

  7.1) Semelhança 

 
 7.1.1) Condições ideais para semelhança de escoamentos 

 
 Dois escoamentos são considerados semelhantes quando existe entre 

estes uma semelhança geométrica  (proporcionalidade dimensional), e uma 
semelhança cinemática e dinâmica (proporcionalidade das linhas de corrente e 
proporcionalidade das pressões dinâmicas entre pontos correspondentes). 

Estas condições são requeridas quando se realizam ensaios em modelos, e 
procura-se transpor os resultados para os protótipos. 

 
 Na mecânica dos fluidos alguns parâmetros adimensionais são utilizados 

para se assegurar a semelhança dinâmica entre modelo e protótipo. São os 
números adimensionais que relacionam os tipos de forças preponderantes no 
tipo de escoamento em estudo. Por exemplo, o número de Reynolds, Re, 

relaciona forças de inércia e forças viscosas. 



 

 

 

 

 Dependendo do tipo de escoamento que se está analisando outros 
números adimensionais são importantes para se avaliar a semelhança 

dinâmica: o número de Mach, M, o número de Froude, F, e outros. 
 
 7.1.2) Condições particulares as máquinas hidráulicas 

 
 Em uma análise de semelhança de máquinas hidráulicas tem-se dois 

tipos de aplicações práticas.  
 
 A primeira situação seria a transposição das grandezas de 

funcionamento para uma máquina (protótipo) a partir de resultados 
experimentais obtidos em outra geometricamente semelhante (modelo). 

 
 A segunda situação é a aplicação de uma mesma máquina operando em 

condições de funcionamento diferentes, situação em que deseja-se conhecer 
as características operacionais nas condições alteradas a partir das 
características conhecidas. 

 



 

 

 

 

 
 

 
 Nas duas situações tem-se 
semelhança geométrica, porém 

devido a dimensões e velocidades 
diferentes na primeira situação e a 

velocidades diferentes na segunda, 
o número de Reynolds, que é o 
parâmetro adimensional para 

semelhança de máquinas hidráu-
licas, serão diferentes para as 

máquinas estabelecidas como 
modelo e protótipo. 

 
 
 

 
 



 

 

 

 

Bancada de testes de turbina axial  
 



 

 

 

 

  7.2) Leis de semelhança 

 

 Para estabelecer leis de semelhança entre grandezas de funcionamento 
de modelo e protótipo considera-se, além da semelhança geométrica, que 
existe proporcionalidade entre os triângulos de velocidade do modelo e do 

protótipo no ponto de funcionamento considerado. 
 

 A semelhança geométrica impõe que os ângulos construtivos sejam 
iguais: 
 

 
PM 44       e       

PM 55   

 
e que exista uma relação de escala entre quaisquer dimensões do protótipo e 

do modelo: 
 

 E
D

D

b

b

M

P

M

P    

 



 

 

 

 

 A semelhança cinemática impõe uma relação de proporcionalidade 
entre os triângulos de velocidade, que pode ser expressa na forma: 

 

 
Fig. 7.1 - Semelhança de triângulos entre modelo e protótipo 
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 Para se obter as leis de semelhança entre grandezas de máquinas 

semelhantes, utiliza-se a equação fundamental para cada uma das máquinas.  
 

 Em primeiro momento obteremos a relação entre altura e vazão para 
turbinas, sendo: 
 

 P5P5P4P4PhPPt CuuCuu.gHgH    

 
e usando a relação de proporcionalidade entre os triângulos tem-se: 

 

 

2

MM

PP
M5M5

2

MM

PP
M4M4PhP

Dn

Dn
Cuu

Dn

Dn
Cuu.gH 

















   

e 

2

MM

PP
MhMPhP

Dn

Dn
.gH.gH 








   

 

 Assim a relação procurada é: 
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 Utilizando a definição de escala E
D
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teremos a relação entre rotação e altura de queda:  
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 Para a relação entre vazão e rotação tomaremos a relação de 
proporcionalidade entre os triângulos escrita de outra forma: 
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 Das equações acima tiramos a relação entre altura  e vazão: 
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 Para obtermos uma relação entre potência de eixo, Pe , e a altura de 

queda, H, utilizaremos as duas equações da potência efetiva para o modelo e 
para o protótipo: 

 
 MtMMMe .Q.H.g.P    e PtPPPe .Q.H.g.P    

 

 A relação entre as duas equações nos fornecerá: 
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 Utilizando a equação da vazão e altura, acima obtida, temos: 
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 Considerando os rendimentos mecânico e volumétrico iguais para o 
modelo e para o protótipo, obtemos: 
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7.7) Exemplos de cálculos 
 

7.7.1) Leis de Semelhança - Transposição de resultados  
 
7.7.1.1) Rendimento constante - Determinar a altura de queda e a rotação do 

protótipo de uma turbina Francis de vazão 102 [m3/s] cujo modelo em escala 
1:8 foi ensaiado em laboratório e suas grandezas medidas foram: i) vazão: 

462 [l/s] , ii) Altura de queda: 4 [mCA] e iii) rotação: 520 [RPM]. Solução: 
 
Equações a serem utilizadas: 
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Logo, considerando o mesmo rendimento hidráulico para modelo e protótipo: 
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 HP=47,6 [mCA] e nP=224 [RPM] 



 

 

 

 

 7.2.1) Fórmulas para correção de rendimentos 
 

 Existem diversas propostas para correção de rendimentos entre 
protótipos e modelos, e serão apresentados somente duas correlações: 
 

 7.2.1.1) Fórmula de Cammerer: 
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 7.2.1.2) Fórmula de Moody: 
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7.7.1.2) Rendimento variável - Determinar a altura de queda e a rotação do 

protótipo da turbina Francis da questão anterior sendo que o rendimento 
hidráulico do modelo obtido em laboratório foi igual a 88%. Utilize a fórmula 

de Moody para avaliação da relações entre rendimentos do modelo e protótipo 
e as mesmas grandezas medidas para o modelo: i) vazão: 462 [l/s] , ii) Altura 
de queda: 4 [mCA] e iii) rotação: 520 [RPM]. Solução: 

 

Equações a serem utilizadas: 
MhM
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 Considerando o resultado do exercício anterior (mesmo rendimento 
hidráulico para modelo e protótipo) como primeira estimativa para 
rendimentos na fórmula de Moody: 
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



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
 

 

 048,01 Ph      %1,95951,0Ph    



 

 

 

 Refazendo o cálculo da altura de queda e rotação do protótipo, 

utilizando os rendimentos hidráulicos calculados, obtemos: 
 

 
88,0x4

951,0xH
8

462,0

102 P2  e 3P 8
520

n

462,0

102
  

 

 HP=44 [mCA] e nP=224 [RPM] 

 

 A altura de queda calculada alterou-se em relação ao valor 
anteriormente obtido e a rotação calculada permaneceu a mesma. Refazendo 

o cálculo do rendimento hidráulico e da altura de queda do protótipo, em 
última iteração, obtemos: 
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 %4,94944,0Ph    

 



 

 

 

  7.3) Grandezas de funcionamento alteradas 

 
 As leis de semelhança são aplicadas para uma mesma máquina, tanto 

motora quanto geradora, trabalhando em condições alteradas. Mudando-se os 
índices M e P para 1 e 2, e fazendo DM=DP , considerando os rendimentos 

hidráulicos iguais tem-se somente uma equação: 
1

2

1

2

1

2

H

H

Q

Q

n

n
  

 Esta equação pode ser utilizada para se determinar a nova vazão e a 

nova elevação de uma bomba quando se altera a rotação desta. É importante 
ressaltar que esta transposição é somente válida próxima do ponto nominal 

(ou ponto de projeto), uma vez que considerou-se rendimentos iguais para os 
pontos 1 e 2. 
 

7.7.1.3) Grandezas alteradas - Determinar a altura de elevação e vazão de 
uma bomba hidráulica cuja rotação foi alterada de 1.800 [RPM] para 1.600 

[RPM], sendo que as grandezas de funcionamento iniciais eram: i) vazão: 65 
[l/s] , ii) altura de elevação: 40 [mCA]. Solução: 

 
40

H

65

Q

800.1

600.1 22     --->  Q2 = 57,8 [l/s]  H2 = 31,6 [mCA] 



 

 

 

  7.4) Coeficientes para Máquinas Hidráulicas 

 
 São números que exprimem o tipo de MH, independente de sua 

dimensão, bem como suas características de operação. 
 

 
Fig. 7.2 - Relação entre rotação específica  

e o tipo de máquina 



 

 

 

 



 

 

 

 7.4.1) Coeficientes unitários 

 
 Utilizando as leis de semelhança, e considerando rendimentos iguais, e 

usando H=1 [m] e D=1 [m] obtem-se os coeficientes unitários da máquina. 
 
 - Rotação unitária 

É a rotação que teria a máquina para uma queda de H=1 [m] e D=1 [m] 

  
H

1

1

D

n

n11    logo:  
H

nD
n11   

 

 - Vazão unitária 
É a vazão que teria a máquina para uma queda de H=1 [m] e D=1 [m] 

  
H

1

D

1

Q

Q
2

11   logo:  
HD

Q
Q

211   

 

 - Potência unitária 
É a potência que teria a máquina para uma queda de H=1 [m] e D=1 [m] 

  
32

1 1
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1
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P

P
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3/221 1
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P
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 7.4.2) Rotação específica 
 

 Existem vários tipos de coeficientes chamados de rotação específica, e 
devido ao fato de que desde o século XIX existem máquinas hidráulicas, os 
pesquisadores e os fabricantes foram adotando estes coeficientes para definir 

os diversos tipos de máquinas hidráulicas. 
 

 7.4.2.1) Rotação específica - nS e nSt 
 
 O número nS de uma turbina é numericamente igual a rotação de uma 

turbina semelhante que com uma queda de H=1 [m] sua potência de eixo 

seria P=1 [HP]: 
H

1

D

D

n

n

S

S   

 

sendo DS o diâmetro da turbina com P=1 [HP]  
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Combinando as equações, temos:   3

2

S

2

HP
HH

n

n.P
1/1   

 

 Assim, a rotação específica nS será: 
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H

P.n

H.H

P.n
n 1/11/1

  com n em [RPM] , P1/1 em [HP] e H em [m] 

 

 A rotação específica nSt utiliza o valor da potência máxima em [CV] 
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  com n em [RPM] , P1/1 em [CV] e H em [m] 

 
 
 

 



 

 

 

 

 7.4.2.2) Rotação específica - nqt , nq e nqA 
 

 Estas fórmulas de rotação específica utilizam a vazão como parâmetro: 
 

  
4 3

qt

H

Q.n
n   com n em [RPM] , Q em [m3/s] e H em [m] 

 

  
4 3

q

)gH(

Q.n
n   com n em [RPS] , Q em [m3/s] e H em [m] 

 
  qqA n.1000n   com n em [RPS] , Q em [m3/s] e H em [m] 

 

 7.4.3) Outros coeficientes importantes: 
 
  - Coeficiente de vazão e coeficiente de pressão: 
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  7.5) Ensaios de modelos 

 
 As máquinas de fluxo em geral possuem leis de semelhança que 

possibilitam seu estudo e desenvolvimento em modelos reduzidos, como foi 
visto para turbinas hidráulicas.  
 

Estes testes são conduzidos há muitos anos nos bancos de ensaios de 
laboratórios de empresas e centros tecnológicos, que variam de dimensões, 

capacidade e limites. 
 
 Nas escolas de engenharia do Brasil temos dois laboratórios de porte 

suficientemente grande para realizar ensaios de modelo com confiabilidade 
nos resultados: o CTH da USP-São Paulo, e o LHEP da UNIFEI-Itajubá-MG. 

 
 Um exemplo de teste de turbinas hidráulicas é dado na tabela 7.1, onde 

dados de rotação, vazão, altura de queda (praticamente constante) e potência 
efetiva medidos são apresentados em função da abertura do distribuidor (). 

 
 



 

 

 

 
Fig. 7.3 - Vista lateral da Bancada de teste de turbinas - UNIFEI 

 
 
 

 
 



 

 

 

 n Q H Ph Pef Q11 n11 t 

- [RPM] [m3/s] [m] [C.V.] [C.V.] - - [%] 


1
 1435 0,0218 3,31 0,962 0,000 0,648 107,3 0,0 


1
 1230 0,0270 3,23 1,163 0,516 0,812 93,1 44,4 


1
 1085 0,0279 3,12 1,161 0,682 0,854 83,5 58,8 


1
 560 0,0311 2,97 1,231 0,626 0,976 44,2 50,8 


1
 0 0,0302 3,07 1,236 0,000 0,932 0,0 0,0 


2
 1433 0,0188 3,26 0,817 0,000 0,563 107,9 0,0 


2
 990 0,0270 3,26 1,174 0,760 0,808 74,6 64,8 


2
 525 0,0290 3,16 1,222 0,551 0,882 40,2 45,1 


2
 0 0,0274 3,22 1,176 0,000 0,825 0,0 0,0 


3
 1432 0,0157 3,30 0,691 0,000 0,467 107,2 0,0 


3
 1270 0,0196 3,27 0,854 0,355 0,586 95,5 41,6 


3
 655 0,0237 3,28 1,036 0,666 0,707 49,2 64,3 


3
 485 0,0237 3,27 1,033 0,441 0,708 36,5 42,7 


3
 0 0,0237 3,28 1,036 0,000 0,707 0,0 0,0 


4
 1380 0,0126 3,30 0,554 0,000 0,375 103,3 0,0 


4
 1049 0,0167 3,29 0,732 0,440 0,498 78,7 60,1 


4
 483 0,0185 3,32 0,819 0,338 0,549 36,0 41,3 


4
 0 0,0189 3,30 0,832 0,000 0,562 0,0 0,0 

Tabela 7.1 - Ensaio de Turbina Francis com queda constante (D=0,136 [m]) 



 

 

 

 Na figura 7.4 são apresentados os resultados na forma dimensional Q 

[m3/s] x n [RPM], considerando uma altura de queda constante. 
 

 
Fig. 7.4 - Diagrama para H constante 



 

 

 

 Na figura 7.5 são apresentados os resultados utilizando os coeficientes 

unitários Q11  x n11 : 
HD

Q
Q

211    e  
H

nD
n11   

 
Fig. 7.4 - Diagrama unitário Q11 = f (n11) 

 
 Para esta máquina, o ponto de máximo rendimento terá os coeficientes 
unitários iguais a Q11 = 0,76 e n11 = 70, respectivamente. 



 

 

 

Configuração básica de bancada de testes de turbinas 

 

 



 

 

 

Bancada de testes de turbinas 

 

 



 

 

 

Configuração básica de bancada de testes de bombas 

 

 



 

 

 

 

  7.6) Faixa de trabalho para maiores rendimentos 

 

 
 Nas aplicações práticas de máquinas hidráulicas deve-se observar que 
existe um histórico de maiores rendimentos que foram obtidos, relacionando 

rotação específica e altura de queda para turbinas, e rotação específica e 
altura de elevação para bombas hidráulicas. 

 
 
 A Fig. 7.6 apresenta a faixa de rotação específica onde se obtém os 

melhores rendimentos em função da altura de queda, e na Fig. 7.7 apresenta-
se o gráfico equivalente para bombas hidráulicas. 

 
 

 
 
 

 
 



 

 

 

 

 
 

Fig. 7.6 - Faixa de rotação específica em função da altura de queda para 
melhores rendimentos máximos em turbinas [2] 

 



 

 

 

 
 

Fig. 7.7 - Faixa de rotação específica em função da altura de queda para 
melhores rendimentos máximos em bombas 

 



 

 

 

  7.7) Exemplos de cálculos 

 
7.7.2) Coeficientes adimensionais - Ensaios de modelos  

 
 Um modelo de turbina hidráulica foi testada em laboratório (diâmetro 
do modelo = 0,46 [m] e altura de queda = 4 [m]) e os resultados foram 

plotados na forma de um gráfico 
n11 (RPM) x Q11 (lit/s).  

 
 Calcule, para uma turbina 
semelhante na condição de 

altura de queda de H = 30 [m] e 
vazão de Q = 2 [m3/s], qual 

deverá ser a rotação, o diâmetro 
e a potência de eixo, no ponto 

de melhor rendimento, da 
máquina no aproveitamento 
hidrelétrico. 

 
 



 

 

 

 Os resultados do teste apresentado na forma gráfica indica que os 

valores dos coeficientes unitários para o ponto de melhor rendimento são: 

  ]s/l[400
HD

Q
Q

211   e ]RPM[70
H

nD
n11   

 

 Assim, ao fixarmos a altura de queda e a vazão podemos determinar as 
grandezas diâmetro e rotação da máquina na usina: 
 

  
30D

000.2
400

2
  e 

30

nD
70   

  
30

5
D2    e 

D

3070
n   

  ]m[955,0D   e ]RPM[3,401n   

 
 Para calcular a potência efetiva da turbina é necessário estimar o 

rendimento desta, utilizando a fórmula de Moody, por exemplo. Neste 
exemplo, consideraremos que o rendimento indicado no gráfico é o 
rendimento hidráulico e que o rendimento volumétrico e o rendimento 

mecânico da turbina no aproveitamento serão igual a 98%. 
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1

915,01

Ph


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



    0579,01 Ph    

 %2,94Ph      98,0x98,0x942,0mVht   

 %5,90t   

  
 Então: 

 30x2x780.9x905,0gQHP te    ]kW[531Pe   

 

7.7.3) Faixa de trabalho para maiores rendimentos.  
 
7.7.3.1) Turbinas hidráulicas - Na especificação de turbinas hidráulicas pode-

se considerar, primeiramente, a escolha da rotação específica (Fig. 7.5) uma 
vez que a altura de queda dependerá do aproveitamento hidrelétrico. 

Determine a rotação em [RPM] de uma turbina para ser utilizada em um 
aproveitamento com 80 [m] de queda cuja vazão máxima por máquina será 

de 20 [m3/s]. Adote outros parâmetros necessários. 



 

 

 

 

 Pela figura 7.5, para uma queda de 80 [m], a rotação específica para 
maior rendimento é ns = 300. 

 Sendo 
4 5

HP

S

H

P.n
n

1/1
 , temos: 

4 5

HP

80

P.n
300

1/1
  ou

 776.71P.n
1/1HP   

 Mas 745/HgQP 1/1tHP 1/1
  , adotando rendimento total igual a 

85%, temos: 
 745/80x20x780.9x85,0P

1/1HP   ou ]HP[853.17P
1/1HP   

 

 Assim  776.71853.17.n   

 776.716,133xn    logo  n = 537 [RPM] 

 
 

 
 

 



 

 

 

Capítulo 8 -  Cavitação 

 

 



 

 

 

  8.1) Introdução 

 
 O estudo das condições de operação de turbinas mostrou que baixas 

pressões são criadas na saída do rotor, o que também ocorre na seção de 
entrada das bombas hidráulicas. 
 

 Assim, em determinadas condições operacionais de qualquer máquina 
hidráulica, se a pressão absoluta média no escoamento for igual ou um pouco 

maior que a pressão de vapor de água na temperatura do escoamento, 
surgirão núcleos ou bolhas de vapor de água no escoamento turbulento, pois 
a pressão absoluta em diversos pontos poderá ser igual ou menor que a 

pressão de vapor da água, ocasionando o fenômeno de cavitação.  
 

 Nos pontos do escoamento em que a pressão absoluta aumenta 
novamente, as bolhas implodirão violentamente e as partículas fluidas atingem 

as paredes fixas e/ou as pás, causando solicitações mecânicas elevadas no 
material e consequente erosão por cavitação.  
 



 

 

 

 A figura 8.1 ilustra os níveis de desenvolvimento do fenômeno de 

cavitação em perfis de pás, em condições de baixa pressão com escoamento 
com altos ângulos de incidência (entrada com choque). 

 

 
Fig. 8.1 - Cavitação em perfis de pás em vários níveis de desenvolvimento 



 

 

 

a) Cavitação inicial - Formação e implosão de núcleos: os núcleos aparecem 

isolados. 
b) Cavitação zonal - Caracteriza-se pelo aparecimento e implosão dos núcleos 

junto com vórtices pulsantes do fluxo. 
c) Cavitação separada - Existe uma cavidade separada do líquido. 
d) Supercavitação - O espaço da cavidade é desenvolvido de um modo que 

fecha os contornos de saída da pá. 

 



 

 

 



 

 

 

 

 Tem-se as seguintes consequências sobre a máquina hidráulica com o 
fenômeno da cavitação, tanto para bombas quanto para turbinas: 

 
  - Queda do rendimento e da potência útil; 
  - Ruídos e vibrações excessivas; 

  - Erosão rápida e custos excessivos de manutenção; 
  - Fatiga do material das pás em outros pontos. 

 

 



 

 

 
 



 

 

 
 



 

 

 
 



 

 

 

  8.2) Altura estática de sucção e coeficiente de cavitação 

 
 A definição de altura estática de sucção, hs, para uma determinada 

turbina instalada em um usina é ilustrada na figura 8.2, sendo este valor igual 
a diferença de nível entre o nível de jusante e o nível de referência na 
máquina, definido por norma (geralmente escolhe-se o nível do diâmetro de 

saída do rotor como referência). 
 

 
Fig. 8.2 - Definição de altura estática de sucção [2] 



 

 

 

 É importante observar que a altura estática de sucção pode variar 

devido as condições operacionais da usina (o que também ocorre para uma 
bomba hidráulica que segue a mesma definição) sendo que a altura estática é 

negativa quando a máquina está “afogada” (abaixo do nível de jusante) e 
positiva quando a máquina está “não afogada” (acima do nível de jusante). 
 

 Será a altura estática de sucção que definirá as condições para que uma 
máquina específica apresente ou não o fenômeno de cavitação.  

 
 Para se obter a equação que define a altura estática de sucção 
compara-se a pressão absoluta média no ponto crítico com a pressão de 

vaporização da água na temperatura dada, como mostrado a seguir. 
 

 Aplicando-se a equação de Bernoulli 
entre as seções 6 e 7a (seção de entrada e 

saída do tubo de sucção - ver Fig. 8.2), sendo, 
hsuc, a perda de carga neste tubo, tem-se: 
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 Observando que a cota da seção 6 é aproximadamente igual a altura 
estática de sucção (Z6 hs) e considerando desprezível a perda de carga entre 

a seção de saída do tubo de sucção (7a) e o nível de jusante: 
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temos que a pressão absoluta na seção de 
saída da turbina será igual a: 
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 A pressão mais baixa no rotor se dará em um ponto crítico entre as 
seções de entrada e a saída deste. Esta pressão pode ser correlacionada com 



 

 

 

a pressão na seção de saída da turbina através de um coeficiente de perda kc-6 

vezes a pressão dinâmica no ponto crítico:  
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 Da mesma maneira, a perda por atrito no tubo de sucção pode ser 
correlacionada com a pressão dinâmica na seção de saída do rotor: 
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 Assim, substituindo as duas expressões anteriores na equação para a 
pressão na seção de saída da turbina, obtém-se a pressão no ponto crítico: 
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 Pode-se mostrar [2] que a expressão nos parêntesis é proporcional a 

altura de queda sobre a turbina. Então, a mesma equação pode ser expressa 
na forma: 

 
 H.hhh limsbc   

 
 A constante de proporcionalidade lim é denominada coeficiente de 

cavitação, ou coeficiente de Thoma, e dependerá das condições de operação 
da máquina.  

 
 Na utilização prática do coeficiente de cavitação, lim, este é usado para 

se determinar a altura estática de sucção máxima que deve trabalhar a 
máquina para que não ocorra o fenômeno e suas consequências.  
 

 O critério será manter a pressão no ponto crítico sempre acima da 
pressão de vaporização da água. Desta maneira a equação anterior se torna 

uma inequação considerando o critério definido, onde hv é a pressão de 
vaporização da água na temperatura do escoamento: 

 
 vlimsbc hH.hhh   



 

 

 

 Consequentemente, a expressão acima se torna uma inequação que 

define o valor máximo para a altura estática de sucção para que não ocorra 
cavitação:  

 
 Hhhh limvbS    onde: 

 
hS = altura estática de sucção em [mCA] 

hb = altura barométrica em [mCA] 
hv = altura equivalente a pressão de vapor na temperatura do escoamento 

H = altura líquida de queda. 
 
 Para simplificar a expressão acima desprezamos hv por ser muito 

pequeno em relação a hb, e usaremos hb em função da altitude local em 
relação ao nível do mar (A em [m]) da instalação, a qual permite determinar a 

altura estática de sucção máxima que uma determinada máquina deve operar 
para que não ocorra cavitação: 

 

  H
900

A
34,10h limS   

 



 

 

 

  8.3) Ensaios de cavitação em turbinas  

 
 Para se estabelecer o coeficiente de cavitação, lim, de cada máquina, 

deve-se realizar ensaios de cavitação em modelos, cujos resultados podem ser 
utilizados para  protótipos. A figura 8.3 mostra uma instalação típica de teste 
de cavitação, onde a pressão na superfície no reservatório de saída é 

controlada por uma bomba de vácuo. 
 

 Neste tipo de instalação de teste de cavitação, a altura estática de 
sucção imposta sobre a turbina é dada pela expressão: hs = ha + hvac (ha é um 

valor negativo, conforme figura e hvac é sempre positivo). 
 
 Assim, ao aumentarmos o vácuo produzido pela bomba, hs aumenta 

(como se a turbina estivesse cada vez menos afogada), e conseqüentemente, 
o coeficiente de cavitação para cada altura de sucção, dado pela expressão 

abaixo, diminui. 
 

H

h
900

A34,10 S
  



 

 

 

 
 

Fig. 8.3 - Instalação típica para teste de cavitação [2] 



 

 

 

 Neste tipo de bancada, a altura de queda, H, sobre a turbina é 

praticamente constante e será dada pela bomba, através de ajustes na 
rotação desta. 

 
 O principal objetivo de um teste de cavitação será obter o coeficiente 
de cavitação crítico, que corresponde aquele condição de funcionamento onde 

a eficiência começa a declinar em função da diminuição do coeficiente de 
cavitação (correspondente a elevação da altura estática de sucção), como 

mostra a figura 8.4 (rendimento em função do coeficiente de cavitação). 
 

 
Fig. 8.4 - Ensaio de cavitação - Rendimento x Coef. de Thoma 

 



 

 

 

 

 O resultado típico de um teste de cavitação apresentado na figura 8.4 
mostra o rendimento aumentando ligeiramente (não ocorre para todas as 

turbinas) com o decréscimo do coeficiente de cavitação, para em seguida 
sofrer uma queda abrupta.  
 

 O ponto 2 representa o inicio da cavitação e o coeficiente de cavitação 
neste ponto é chamado coeficiente de cavitação inicial, i.  

 
 O ponto 3 representa o coeficiente de cavitação para uma queda de 
rendimento t de 2%, e este valor é chamado de coeficiente de cavitação 

crítico, c. O valor de lim é calculado a partir de c com 15 a 30% de 

segurança:  
 
 clim )3,1a15,1(   

 

 
 

 
 



 

 

 

 8.3.1) Coeficiente de cavitação em função da rotação específica nS 

 
 Pode-se mostrar ([1] [3]) que o coeficiente de cavitação, lim, 

representa um número adimensional e possui valores próximos para máquinas 
semelhantes.  
 

 A seguinte equação [2] 
simples pode ser utilizada para 

expressar o coeficiente de 
cavitação em função da rotação 

específica de uma turbina 
hidráulica: 
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  8.5) Exemplos de cálculos 

8.5.1) Cavitação em turbinas 
8.5.1.1) Altura estática de sucção: Calcule a altura estática mínima na sucção 

de uma turbina com coeficiente de cavitação limite igual a 0,2 , para esta 
máquina trabalhar em um local a 1.000 de altitude e com queda de 50 m. 
Solução: 

 H
900

A
34,10h limS    50x2,0

900

000.1
34,10hS   

 1022,9hS     78,0hS   (máquina afogada) 

 
8.5.1.2) Ocorrência de cavitação: Uma máquina foi instalada com altura 

estática na sucção igual a 2 [m] (não afogada). Se esta turbina possui 
coeficiente de cavitação limite igual a 0,1, e foi instalada em um local a 500 de 
altitude e com queda de 100 m, ela irá cavitar? 

 100x1,0
900

500
34,10hS     

 ]m[22,01078,9hS     

  Irá cavitar, pois hs = 2 [m] é maior que -0,22 [m] 
 



 

 

 

  8.4) Altura estática de sucção e NPSH em bombas hidráulicas 

 
 De maneira semelhante ao que ocorre em turbinas, a altura estática de 

sucção para bombas hidráulicas é o parâmetro operacional que caracteriza a 
ocorrência ou não do fenômeno de cavitação na máquina.  
 

 A equação utilizada para bombas, para cálculo da altura estática de 
sucção, leva em conta a perda de carga na tubulação de sucção, hp-s, uma vez 

que esta parte da instalação não faz parte 
da máquina propriamente dita.  
 

 Esta equação, que utiliza um 
coeficiente experimental NPSH (Net 

positive suction head), determinado para 
cada bomba hidráulica, ao invés do produto 
lim.H para turbinas, é: 

 

 NPSHhhhh spvbS    

 
Fig. 8.5 - Instalação de bombeamento quanto a altura estática de sucção 



 

 

 

 Considerando que o termo relativo a pressão barométrica será igual ao 
utilizado para turbinas (reservatório de sucção da bomba aberto a atmosfera) 
e que a pressão de vaporização é desprezível, a expressão para hs de 
bombas hidráulicas se torna: 

  NPSHh
900

A
34,10h spS    

 
 A figura 8.5 apresenta as condições de instalação de uma bomba 
hidráulica quanto a altura estática de sucção (bomba afogada hs < 0 - bomba 
não afogada hs > 0). 

 
 A figura 8.6 mostra um 
gráfico típico para uma bomba 
hidráulica, onde se mostra, em 
função da vazão: altura de 
elevação, H, potência de eixo, 

Pe, eficiência,  e o coeficiente 
NPSH. 
 

 
Fig. 8.6 - Curvas características de bomba (H, Pe ,  e NPSH x Q) 



 

 

 

  8.5) Exemplos de cálculos 

8.5.2) Cavitação em bombas 
8.5.2.1) Altura estática de sucção: Calcule a altura estática mínima na sucção 

de uma bomba com NPSH igual a 10, para esta máquina trabalhar em um 
local a 1.000 de altitude e com perda de carga de 0,5 m na sucção. 

 NPSHh
900

A
34,10h spS     105,0

900

000.1
34,10hS   

 105,022,9hS      28,1hS   (máquina afogada) 

 

8.5.2.2) Ocorrência de cavitação #1: Uma bomba hidráulica foi instalada com 
altura estática na sucção igual a 5 [m] (não afogada). Se esta bomba possui 

NPSH igual a 6, e foi instalada em um local a 500 de altitude e com perda de 
carga na sucção de 2 [m], esta bomba irá cavitar? 

 62
900

500
34,10hS     

 ]m[78,1878,9hS     

 Irá cavitar, pois hs = 5 [m] é maior que 1,78 [m] 
 



 

 

 

Ocorrência de cavitação #2:  Uma bomba 

modelo ANS 40-160 com rotor Ø 174 [mm] 
(ver curva no item 9.13.1 ao final do 
Capítulo 9), está instalada em uma indústria 

fornecendo uma vazão Q1 = 30 [m3/h] e 
uma altura de elevação H1 = 13,3 [mCA], 

com altura estática de sucção de hs = + 3,5 
(conforme esquema). Deseja-se modificar a 
tubulação de recalque desta bomba a fim de 

que ela passe a bombear água para um reservatório mais próximo que o anterior. 
Nesta nova situação teremos a vazão igual a Q2 = 35 [m3/h] e a altura de elevação 

será H2 = 12,4 [mCA]. Verifique para os dois casos se haverá ou não cavitação na 
bomba. Considere perda de carga =  hp-s = 0,01 Q2   (hp-s -[mCA] e Q-[l/s]). Solução : 
 

Caso 1 : Q = 30 [m3/h] , H = 13,3 [mCA] , hp-s = 0,69 [mCA] 
Caso 2 : Q = 35 [m3/h] , H = 12,4 [mCA] , hp-s = 0,945 [mCA] 
 

NPSHh3,9h sps    

(Critério para que não haja cavitação na forma de inequação) 

   
 

 

hs = 3,5 [mCA] 



 

 

 

Caso 1 :  hs   9,3 - 0,69 - 2,1 = 6,5   3,5 (instalacão)   6,5  Não cavita 

Caso 2 :  hs   9,3 - 0,945 - 3,2 = 5,1  3,5 (instalacão)   6,5  Não cavita 
 

 
 



 

 

 

Capítulo 9 -  Estudo de bombas e ventiladores 

 

  9.1)  Introdução 

 

 As bombas hidráulicas e os ventiladores são instalados para 
trabalharem em determinado ponto de funcionamento, ao qual deve 
corresponder, se possível, ao de máximo rendimento da bomba. O usuário 

pode também modificar o ponto de funcionamento, para satisfazer as 
conveniências de sua instalação, quando por exemplo, necessitar de mais 

vazão. 
 

 Desta maneira, é possível que todas as grandezas envolvidas no 
funcionamento da bomba venham a variar. Ao estudo desta variabilidade dá-
se a designação de estudo do desempenho das bombas sob variadas 

condições de funcionamento. 
 

 Para a realização destes estudos aliam-se os conhecimentos teóricos a 
resultados experimentais, obtidos em ensaios ou testes realizados nas próprias 
bombas, geralmente fornecidos pelos fabricantes de bombas. 



 

 

 

 

 Se uma bomba de grande porte foi construída e instalada, realizam-se 
ensaios de recepção, com a finalidade de verificar o cumprimento das 

condições firmadas em contrato, no que diz respeito às grandezas de 
funcionamento. 

 

  9.2)  Curvas características do rotor (CCR) 

 

 São as curvas que representam as grandezas de funcionamento de um 
rotor. Estas curvas variam conforme o tamanho, a rotação específica e outros 
parâmetros construtivos do rotor, espiral ou outros elementos da bomba ou 

ventilador.  
 

 Na figura 9.1 é apresentado estas características em função da rotação 
específica, ns , para bombas.  

 
 Para o traçado destas curvas, a rotação foi tomada fixa. Se o ensaio for 
repetido para outros valores da rotação, obtém-se a família de curvas da 

bomba. 
 



 

 

 

 
 

Fig. 9.1 - Curvas características do rotor de bomba (CCR) 



 

 

 

 A parte instável das curvas H = f(Q) e P = f(Q) em torno de 50% da 

vazão do ponto de projeto é típica para bombas axiais, como resultado da 
separação da camada limite e turbulência geradas pelo ângulo de incidência 

do fluido nesta faixa de vazão. 
 
 Examinando os gráficos, verifica-se que nas bombas radiais, a potência 

é mínima em shut-off (válvula de descarga fechada), ocorrendo o inverso com 
as bombas axiais. Isto impõe que a partida das bombas radiais se dê com a 

válvula de descarga fechada e a das bombas axiais com a válvula aberta. 
 
 Quando do encerramento de uma operação, basta desligar o motor das 

bombas axiais, devendo-se, entretanto, fechar a válvula de descarga 
previamente, em se tratando de bomba radial.  

 
 Se a bomba radial for de alta pressão, deve-se fechar parcialmente a 

válvula de descarga, desligar o motor e fechar rapidamente a válvula de 
descarga. Este procedimento evita a inversão de fluxo e atenua possíveis 
problemas decorrentes do golpe de aríete.  

 
 



 

 

 

 
 



 

 

 

 



 

 

 

 
 



 

 

 

 



 

 

 

 



 

 

 

  9.3)  Curva característica da instalação (CCI) 

 
 A figura 9.2 representa dois reservatórios que são ligados entre si por 

tubulações, e um líquido qualquer que deverá ser bombeado do reservatório 
de sucção para o reservatório de pressão, 
também chamado de reservatório de 

recalque. Para especificarmos a bomba 
hidráulica que bombeará o fluido 

devemos conhecer a curva característica 
da instalação. 

 
Fig. 9.2 - Reservatórios interligados 

 

 Uma curva de instalação típica está apresentada na figura 9.3 , que 
indica a carga  manométrica total, H, a ser fornecida ao fluido em função da 

vazão bombeada, sendo equivalente a somatória da altura estática, Hest , com 
a diferenças das pressões manométricas nos reservatórios pr e ps , e com a 
perda de carga relativa a vazão que passa pelas tubulações de sucção e 

recalque. Como a perda de carga será proporcional ao quadrado da vazão 



 

 

 

para uma determinada tubulação, a carga manométrica total será calculada 

por: 

 2sr
est Q.C

pp
HH 












  

 

onde a constante C depende da 
instalação, e é determinada a partir do 
comprimento equivalente e outros 

parâmetros. 
 
Fig. 9.3 - Curva característica de instalação 

 
 Portanto, a curva característica da instalação (CCI) será uma curva do 

tipo mostrada na figura 9.3, para uma determinada constante C. 
 

 A família de curvas da figura 9.3 representam curvas características da 
mesma instalação, quando alteramos a perda de carga que altera o coeficiente 

C. Portanto a curva com C1 representa maior perda de carga e a curva com C3 
com menor perda de carga, o que pode ser conseguido através da abertura de 
uma válvula. 



 

 

 

  9.4)  Ponto de funcionamento 

 
 Plotando no mesmo gráfico, a curva característica da instalação e a 

curva característica do rotor definido para trabalhar naquela instalação, 
obteremos o ponto de funcionamento do sistema, onde as características 
energéticas da instalação serão supridas pelas da bomba. 

 
A figura 9.4 

representa uma bomba 
pode operar em vários 
pontos de funcionamento 

desde que se altere as 
características da instalação 

(C1,C2,C3).  
 

 
 

Fig. 9.4 - Ponto de funcionamento 

 



 

 

 

 No ponto de funcionamento, a bomba fornecerá Qf, Hf e terá um 
rendimento f , que geralmente são diferentes dos valores nominais ótimos da 

máquina. Nesta situação o processo de bombeamento é estável e ocorre 

normalmente.  
 

 
 

 Veremos a seguir, que deve-se tomar alguns cuidados em alguns tipos 
de instalações e com alguns tipos de bombas que tendem a ter um serviço 

instável. 
 



 

 

 

  9.5)  Serviço estável 

 
 Ao considerarmos a operação de uma bomba em uma instalação de 

altura constante (reservatório de grande área, por exemplo) podemos verificar 
se a operação é estável ou não, no ponto de funcionamento F (ver figura 9.5). 

 

 Fazendo a vazão aumentar 
de Q temporariamente, a altura 

necessária a instalação irá 
aumentar, e a altura de elevação 

da bomba irá diminuir, resultando 
em uma diferença de altura H.  

 

 Esta diferença de altura, 
H, irá forçar a uma redução da 

vazão, fazendo que a condição do 
escoamento retorne ao ponto F.  

 
Fig. 9.5 - Serviço estável de bomba centrífuga 

 



 

 

 

 Ao fazermos a vazão diminuir de Q, a altura necessária a instalação irá 

diminuir, a altura de elevação da bomba irá aumentar, resultando em uma 
diferença de altura H favorável ao escoamento. Esta diferença de altura, H, 

irá forçar a um aumento da vazão, fazendo que a condição do escoamento 
retorne ao ponto F. 

 

  9.6)  Serviço instável 

 

 A instalação esquematizada na figura 9.6 representa uma bomba 
empregada na alimentação de um tanque. Considerando as perdas na 
tubulação desprezível (C  0) , a curva característica da instalação irá se 

deslocando para cima a medida que o nível no tanque for se elevando. 

 
 Inicialmente o tanque de pressão está com nível baixo e a bomba 
trabalha no ponto 1, e em seguida no ponto 2. Se a saída da água no tanque 

de pressão não for maior que a água bombeada e a bomba não for 
controlada, a bomba irá trabalhar no ponto 3 e em seguida no ponto 4.  

 
 Neste ponto a bomba não consegue vencer a pressão devido a coluna 

de água, e o fluxo se reverte em sentido contrário bruscamente, até que a 



 

 

 

coluna diminui e a bomba volta a trabalhar normalmente no ponto 3 ou 

próximo do ponto 4.  
 

 Este serviço é instável 
e causa grandes torques no 
eixo da bomba no instante 

em que o escoamento se 
reverte, ocasionando 

também sobrecarga no 
motor elétrico. 
 

 Uma solução é 
controlar automaticamente a 

bomba (fechando a válvula 
de saída ou desligando o 

motor elétrico) a partir do 
nível do tanque. 

 

Fig. 9.6 - Serviço instável de bomba centrífuga 
 



 

 

 

 Neste caso outros cuidados devem ser tomados, como por exemplo, o 

uso de válvulas de retenção para não permitir golpes de pressão da água 
(golpe de ariete) sobre a bomba no momento que o motor for desligado ou o 

fechamento lento da válvula de saída da bomba. 
 
 Outro tipo de serviço instável está associado ao uso de bombas axiais, 

devido a forma típica da curva característica do rotor para este tipo de bomba.  
 

 Considerando uma instalação com bomba axial (Figura 9.7), que 
funcione inicialmente no ponto P. Aumentando a vazão de Q , a altura de 

elevação da bomba, H, irá aumentar mais do que altura do sistema (CCI), 
resultando em uma diferença H que será favorável ao aumento de vazão. As 

condições do escoamento não retornaram ao ponto inicial P, e tenderão a 

estabilizar no ponto P2 , onde as curvas da instalação e do rotor se encontram.  
 

 Se, ao contrário, considerarmos em um primeiro momento, uma 
diminuição da vazão Q , a altura de elevação da bomba irá diminuir também, 

porém em valores maiores do que a diminuição da altura do sistema (CCI), 
resultando em uma diferença H que será favorável ainda mais a diminuição 

da vazão. A tendência será a estabilização da vazão no ponto P1 . 



 

 

 

 Este tipo de instalação com este tipo de bomba induz a uma 

instabilidade das condições do escoamento, fazendo que o ponto de 
funcionamento se desloque de P1 para P2 e vice-versa, diante de uma pequena 

perturbação na vazão, o que é 
natural em sistemas 
hidráulicos.  

 
 A solução é especificar 

uma bomba que tenha o ponto 
de funcionamento além do 
ponto P2 equivalente a CCR da 

figura 9.7, ou seja, especificar 
uma bomba que forneça mais 

altura de elevação do que a 
bomba mostrada na figura 9.7. 

 
Fig. 9.7 - Serviço instável de bomba axial 

 

 



 

 

 

  9.7)  Associação de bombas e de ventiladores 

 
 Pode-se obter uma faixa maior de variação de vazão e de altura de 

elevação, associando-se bombas em paralelo ou em série. A figura 9.8 mostra 
esta associações utilizando duas bombas. 
 

 Nas instalações 
industriais de 

bombeamento pode-se 
encontrar associações de 
mais de duas bombas.  

 
 As associações de 

bombas implicam em 
uma curva característica 

da associação, diferente 
da curva característica de 
uma bomba isolada. 

Fig. 9.8 - Associação de bombas 
 



 

 

 

 9.7.1) Associação de bombas em paralelo: 

 
 Na associação de bombas em paralelo, as vazões se somam para uma 

mesma altura de 
elevação.  
 

 Na figura 9.9 
se mostra a curva 

resultante (1+2) da 
associação de duas 
bombas iguais que 

possuem a mesma 
curva característica 

(1=2).  
Fig. 9.9 - Associação de bombas iguais em paralelo 

 
A curva da associação é obtida por pontos, por exemplo, o segmento 

AC=2xAB . O ponto F será então o ponto de funcionamento para uma 

instalação qualquer, sendo QF a vazão da associação de duas bombas iguais 



 

 

 

em paralelo, e Q1 a vazão bombeada pela bomba 1 igual a Q2 vazão 

bombeada pela bomba 2. 
 

Tanto a bomba 1 quanto a bomba 2 trabalham no ponto I da fig. 9.9 . 
Deste ponto I pode-se obter a potência, o rendimento total e outras grandezas 
da bombas 1 que serão equivalentes a bomba 2. 

 
 Em algumas situações pode-se associar bombas diferentes em paralelo. 

O princípio para se determinar a curva da 
associação é o mesmo, como mostra a 
figura 9.10.  

 
 Porém, na região da curva 

característica da bomba 1 onde a pressão 
da bomba 2 é maior que da bomba 1 , 

deve-se considerar como nula a vazão da 
bomba 1. 
 

Fig. 9.10 - Associação em paralelo de bombas diferentes 
 



 

 

 

 Deve-se evitar que o ponto de funcionamento fique sobre esta região, 

onde a pressão da bomba 2 é maior que a da bomba 1, pois como as duas 
estão em paralelo, haverá um fluxo da bomba 2 para a bomba 1, 

sobrecarregando a bomba 1. 
 
 9.7.2) Associação de bombas em série 

 
 Neste caso, a curva resultante da associação de duas bombas iguais 

(1=2) será obtida somando-se as alturas correspondentes para uma 
determinada vazão.  
 

 Graficamente (ver figura 9.11), a curva da associação (1+2) em série é 
obtida para vários pontos de modo que o comprimento do segmento AC 

(altura de elevação da associação) é igual a 2 vezes AB (altura de elevação de 
uma bomba).  

 
 Este tipo de associação não envolve problemas quando se associa 
bombas diferentes, sendo que deve-se ter cuidado com o ponto de 

funcionamento de cada uma das bombas isoladas. 
 



 

 

 

 Dessa maneira, não deve-se 

associar bombas muito diferentes. 
 

 Um cuidado especial deve ser 
tomado com relação a pressão na 
segunda ou terceira bomba em série, 

pois a pressão nos últimas bombas 
pode ser maior que a capacidade de 

resistência dos materiais da máquina. 
 

Fig. 9.11 - Associação em série de 

bombas iguais 
 

 Este tipo de associação é tipicamente interessante para atender 
demandas de alta pressão como pode ser observado na figura 9.11, onde uma 

máquina isolada (bomba 1 ou 2) não atenderia a curva característica da 
instalação. As bombas de múltiplos estágios são como bombas em série, 
porém montadas em um mesmo eixo, com a vantagem de que não necessitam 

de caixa espiral, para cada rotor, porém utilizam uma peça especial para guiar 
o escoamento de um estágio (rotor) para outro. 



 

 

 

  9.8)  Associação de instalações 

 
 O objetivo deste item é mostrar como podemos determinar curva 

característica de instalação quando temos, por exemplo, diversas ramificações 
e reservatórios para atender com o uso de uma determinada bomba ou 
associação. 

 
 9.8.1) Associação em série: 

 

 
Fig. 9.12 - Associação de instalações em série 



 

 

 

 9.8.2) Associação em paralelo: 

 

 
Fig. 9.13 - Associação de instalações em paralelo 



 

 

 

 

 
 9.8.3) Associações ramificadas: 

 

 
Fig. 9.14 - Associação de instalações em paralelo ramificadas 

 
 

 
 

 



 

 

 

 9.8.4) Associações complexas: 

 

 
Fig. 9.15 - Associação de instalações complexa 



 

 

 

9.12) Exemplos de cálculos 
9.12.1) Ponto de funcionamento: 
 
 Dispomos de 4 tipos de bombas em estoque, conforme curvas em anexo (ver 

item 9.13.1). Todas estão montadas com rotor de diâmetro máximo, podendo, se 
necessário, ser substituído. Precisa-se atender uma instalação definida pela curva 

característica dada pelos pontos na tabela abaixo: 
 

Q [m3/h] 0 10 20 30 40 

H [m] 10 12 16 22 30 

 
 Sabendo-se que a vazão necessária deve ser no mínimo 25 [m3/h], defina qual 
é a bomba mais econômica em termos de consumo de energia, especificando seu 

modelo, rotação, diâmetro. Indique também as características altura e vazão no 
ponto de funcionamento e o consumo em kWh para um mês (720 horas) de trabalho 

da bomba. Solução: 
 
1) Tipo ANS 40-125 : Não atende, pois CCR do rotor de maior diâmetro está abaixo 

da CCI. 
2) Tipo ANS 40-160 : Não atende, pois CCR do rotor de maior diâmetro apresentará 

ponto de funcionamento com vazão abaixo da vazão mínima especificada de 25 
[m3/h]. 



 

 

 

 

3) Tipo ANS 40-200 : Foram obtidos cinco pontos de funcionamento, porém somente 
o rotor de diâmetro 209 [mm] atende a vazão mínima de 25 [m3/h].  

[mm] Q[m3/h] H [mCA]  [%] Pe [CV]* Pe [kW]** Ec [kWh] C (Ec/Q) 

173 16,0 14,0 46,0 1,8 1,32 952 59,5 

182 18,0 15,0 49,0 2,0 1,50 1.080 60,0 

192 21,5 16,5 52,5 2,5 1,83 1.321 61,5 

202 23,5 18,0 55,0 2,8 2,09 1.504 64,0 

209 27,0 20,0 58,0 3,4 2,53 1.821 67,4 

 
4) Tipo ANS 40-250 : Foram obtidos seis pontos de funcionamento, sendo que os 

rotores de diâmetro maiores que 218 [mm] atendem a vazão mínima de 25 [m3/h]. 
[mm] Q[m3/h] H [mCA]  [%] Pe [CV]* Pe [kW]** Ec [kWh] C (Ec/Q) 

208 22,5 17,0 52,5 2,5 1,98 1.425 63,3 

218 25,0 18,5 52,8 3,0 2,38 1.713 68,5 

227 27,5 20,0 53,1 3,7 2,81 2.025 73,6 

238 30,0 22,0 53,4 4,5 3,36 2.417 80,6 

250 32,5 24,0 53,7 5,3 3,95 2.841 87,4 

260 36,0 27,0 54,0 6,3 4,89 3.520 97,8 

 

* Obtido do gráfico  ** Calculado a partir da potência hidráulica e do rendimento 
 



 

 

 

 Pode-se escolher o tipo ANS 40-250 com o rotor de diâmetro 218, pois na 

vazão mínima a ser atendida este possui a menor relação entre energia consumida e 
vazão bombeada (C) igual a 68,5 [kWh/m3/h]. 
 

 



 

 

 

 



 

 

 

9.12.2) Associação de bombas 

 
 Necessitamos bombear água em uma instalação onde a altura estática é Hest = 
15 [mCA] atendendo a uma vazão máxima possível e com o máximo rendimento 

possível. Para isto utilizaremos 2 bombas iguais associadas em paralelo. Especifique 
qual será o diâmetro da bomba a ser utilizada (dentro das opções mostradas no 

gráfico do item 9.13.2) para realizar este trabalho, e identifique o ponto de 
funcionamento (Valores de Q, H, P e ) para uma bomba isoladamente. Considere: 

 

 perda de carga na sucção    =  hp-s = 0,075 Q2   (hp-s -[mCA] e Q-[l/s]) 
 perda de carga no recalque =  hp-r = 0,11 Q2    (hp-r -[mCA] e Q-[l/s]) 

  
Solução: 

 
 Partindo da equação, H = Hest + hp-s + hp-r , somamos as equações para as 

perdas na sucção e no recalque, sendo que a altura estática é 15 [mCA], obtemos a 
curva da instalação , H = 15 + 0,185 Q2 . (Q é a vazão total, igual a duas vezes a 
vazão de uma bomba QB ) 

 
 Utilizando a equação da instalação (H = 15 + 0,185 Q2) podemos obter a 

curva equivalente da instalação para uma bomba isolada de uma associação com 
duas bombas iguais, substituindo Q na equação por 2 QB : H = 15 + 0,74 QB

2 . 



 

 

 

 Este procedimento é utilizado visando possibilitar a plotagem, no gráfico da 

curva H=f(Q) de uma bomba, da curva da instalação equivalente e assim obtermos o 
ponto de funcionamento para uma bomba. 
 

 Note-se que o gráfico H=f(Q) disponível da bomba apresenta a unidade da 
vazão em [m3/h] enquanto que a equação da instalação equivalente para uma bomba 

requer que a unidade de vazão seja em [l/s].  
 
 Usando QB [l/s] = QB [m3/h] x 1.000/3.600 , transformamos a equação da 

instalação equivalente com dado de vazão em [l/s] para [m3/h] : H = 15 + 0,74 QB
2 

(QB em [l/s]) => H = 15 + 0,057 QB
2 (QB em [m3/h]). 

 

 Para facilitar a plotagem da curva da instalação equivalente no gráfico da 
bomba montamos a seguinte tabela de pontos : 

 

Q [m3/h] H [m] 

0 15,0 

10 20,7 

15 27,8 

20 37,8 



 

 

 

 
 Observa-se do gráfico da bomba, onde se marcou a curva da instalação equi-
valente para uma bomba, que o ponto de funciona-mento, para qualquer diâmetro de 

rotor está posicionado em situação desfavorável, com rendimento abaixo, mas 
próximo, de 50% e com vazão abaixo de 20 [m3/h] por bomba. 
 

 Caso seja escolhido o rotor de diâmetro 145 [mm] as condições de 
funcionamento da instalação e de uma bomba serão, respectivamente : Q = 40 

[m3/h] e QB = 20 [m3/h], H = 37,8 [mCA], t = 48 % e Pe = 5,8 [CV]. 



 

 

 

  9.9)  Bombas para aplicações especiais 

 

 Diversos tipos de aplicações especiais exigem bombas de projeto 
apropriado. Dentre uma série de casos pode-se citar cinco tipos de aplicações 

que merecem destaque:  
 
a) bombeamento a partir de poços profundos,  

b) bombeamento de pastas e polpas  
 (líquido com grande quantidade de sólidos em suspensão),  

c) bombas em múltiplos estágios (rotores em série),  
d) bombas de rotores duplos e  
e) injetores. 

 
 9.9.1) Bombas para poços profundos 

 
 Estes tipos de bombas são projetadas para retirar água de poços em 

profun-didades geralmente acima de 20 [m]. Também chamadas de bombas 
submersíveis, são utilizadas em suprimento de água, redução do nível do 
lençol freático e drenagem de solo. Existem dois tipo mais comuns:  

 



 

 

 

a) bombas com eixo de transmissão e b) bombas com motor submerso.  

 
 

 



 

 

 

 9.9.2) Bombas para pastas e polpas 

 
 São bombas projetadas para transferir lamas, pastas e polpas, e outras 

misturas com grande quantidade de sólido em suspensão na água. São 
utilizadas na indústria de mineração, construção civil, indústria de papel e 
celulose e etc. 

 

 



 

 

 

 As principais características deste tipo de bomba são: a) rotores de 

canais largos para permitir a passagem de sólidos de maiores dimensões e de 
materiais amortecedores de impacto, b) carcaça com peças de desgastes para 

substituição rápida (partes que se deterioram devido a erosão por abrasão). 
 

 



 

 

 

 



 

 

 

 9.9.3) Bombas de múltiplos estágios 

 
 São aquelas bombas construídas para desenvolver grandes diferenças 

de pressão em que vários rotores são montados em série dentro de uma 
mesma carcaça, em um único eixo: típica bomba utilizada para alimentação de 
caldeiras.  

 
 O fluxo ao longo da 

sequência de rotores dentro 
da bomba configuração uma 
instalação de rotores em 

série, sendo que são 
utilizadas pás guias fixas 

entre um rotor e outro (entre 
estágios), para anular a 

componente tangencial na 
saída de cada estágio. 
 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 9.9.4) Bombas de rotor duplo 

 
 Neste caso as bombas são montadas em paralelo visando desenvolver 

grandes vazões utilizando uma mesma carcaça, também em um único eixo. A 
aplicação típica deste tipo de bomba se encontra nas instalação de 
abastecimento de água nos centros urbanos. 

 



 

 

 

 



 

 

 

 



 

 

 

 9.9.5) Bomba tipo injetor 

 
 A bomba tipo injetor funciona através do princípio de Venturi. Em um 

bocal convergente-divergente a bomba tipo injetor converte a pressão de um 
fluido ativo em velocidade na parte convergente, na qual se cria uma região 
de baixa pressão que succiona o fluido a ser bombeado. 

 
 Após a passagem 

na garganta conver-
gente, a mistura de 
fluidos se expande na 

parte divergente da 
bomba, a velocidade é 

reduzida e a pressão 
aumenta novamente. 

 
 
 

 
 



 

 

 

  9.10) Correção de grandezas devido a alteração de fluido 

 
 Em aplicações práticas é muito comum a necessidade de bombeamento 

de fluidos de viscosidade acima da viscosidade da água, que é o fluido usado 
para levantamento de curvas das bombas hidráulicas.  
 

 Com o aumento da viscosidade as perdas por atrito e por choques 
aumentarão significativamente, o que afetará o funcionamento da máquina, 

ou seja, suas grandezas serão alteradas, inclusive a potência de acionamento.  
 
 Geralmente, para as bombas de dimensões menores estes efeitos serão 

mais acentuados do que nas bombas maiores. 
 

 Existem várias maneiras de realizar a correção de grandezas de bombas 
devido a aplicação em fluidos de viscosidade diferente, neste curso será 

utilizado o método mais conhecido, o método apresentado no “Standards for 
Centrifugal Pumps” - Hydraulic Institute.  



 

 

 

 Resumidamente, trata-se de um gráfico aplicável somente a bombas 

centrífugas, destinadas ao bombeamento de óleo, com rotor aberto ou 
fechado, não podendo ser aplicado a fluidos não newtonianos, tais como 

pastas de papel, esgoto e outros. A figura 
9.16 apresenta este gráfico em unidades 
SI. 

 
 A utilização do gráfico visa obter 

coeficientes de correção para eficiência, 
vazão e altura de elevação. 
 

 Estes coeficientes de correção 
permitirão o traçado da curva característica 

de uma determinada bomba quando 
utilizada com um fluido mais viscoso, com 

base na curva de funcionamento obtida 
com água,  
 

Figura 9.16 - Gráfico para correção de 
viscosidade 



 

 

 

 Como exemplo, utilizamos a curva de funcionamento da bomba XXX, 

3500 [RPM] com rotor de 134 [mm], da figura 9.17. 
 

 
Figura 9.17 - Curva da bomba (testada com água) 

 



 

 

 

 Primeiramente determina-se os valores das grandezas características do 

ponto de rendimento máximo (para o diâmetro escolhido) e os respectivos 
valores das grandezas para 60%, 80% e 120% da vazão do ponto de maior 

rendimento.  
 
 Os valores obtidos da curva da bomba testada com água estão 

apresentados na Tabela 9.1 (valores aproximados). Caso não esteja disponível 
a curva de potência da bomba pode-se calcular os respectivos valores 

utilizando os valores de eficiência para cada ponto. 
 

 Q [m3/h] H [m]  % Pe [kW] 

0,6 Qmax- 19,2 34 60,5 2,94 

0,8 Qmax- 25,6 32 66,0 3,38 

1,0 Qmax- 32,0 30 67,0 3,90 

1,2 Qmax- 38,4 26 64,0 4,25 

Tabela 9.1 – Pontos da curva característica para água 
 



 

 

 

 Neste exemplo será construída as curvas Q, H,  e Pef para um fluido 

com viscosidade cinemática de 114 cSt (114 vezes a viscosidade da água a 20 
[°C]) e densidade 0,80.  

 
 Para determinar os fatores de correção deve-se seguir o procedimento 
gráfico: 

 
a) a partir do valor de Q para o melhor rendimento, sobe-se uma linha vertical 

até encontrar valor de H, altura de elevação para o melhor rendimento, 
 

b) a partir deste ponto, traça-se uma linha horizontal até encontrar com a 
linha respecitva a viscosidade do fluido que se deseja obter as curvas 
corrigidas e, 

 
c) a partir deste ponto sobe-se uma linha vertical até cruzar as curvas de C , 

CQ e as de CH , estes pontos definirão os fatores de correção de cada grandeza 
de funcionamento. 

 



 

 

 

 Observa-se que existe um 

único fator de correção para as 
vazões e para os rendimentos 

totais, e valores diferentes de 
fator de correção para cada 
altura de elevação correspon-

dente aos pontos de 60, 80, 100 
e 120% da vazão de ótimo 

rendimento. 
 
 A potência efetiva será 

corrigida através de: 
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ef
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Figura 9.18 - Exemplo de 
determinação de fatores  



 

 

 

 
 Os fatores de correção obtidos foram: CQ = 0,92 , C = 0,6 , CH0,6Q = 

0,94 , CH0,8Q = 0,92 , CH1,0Q= 0,90  e CH1,2Q = 0,86.  

 
 Os resultados após as correções são apresentados na Tabela 9.2 e na 
figura 9.19. 

 

 Qv [m3/h] Hv [m] v % Pe-v [kW] 

0,6 Qmax- 17,7 32,0 36,3 3,39 

0,8 Qmax- 23,6 29,4 39,6 3,81 

1,0 Qmax- 29,4 27,0 40,2 4,31 

1,2 Qmax- 35,3 22,4 38,4 4,48 

Tabela 9.2 – Curva característica para o fluido mais viscoso. 
 



 

 

 

 
 

Figura 9.19 – Curva característica da bomba com água e com fluido mais 
viscoso. 

 


