CATIA V5R16 Digital Mockup

CATIA V5 Digital Mockup (DMU)

Version 5 Release 16

DMU Fitting

DMU Kinematics

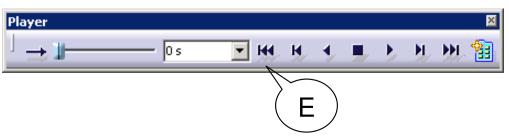
0

o

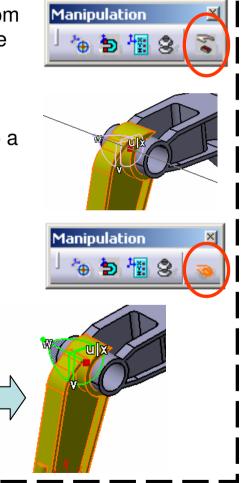
DMU Fitting

Simulate part motions for assembly and maintainability issues

St	art	File	<u>E</u> dit	⊻iew	Insert	Tools	<u>A</u> nalyze	<u>W</u> indow	Help
		structu				•			235.2
	Mech	ianical (Design						-
	Shap	е				•			
	Analy	/sis & S	imulatio	n		•			
	AE⊆ I	Plant				•			
	Mach					• I			
C	, <u>D</u> igita	al Mock	up			上 🎾 🗹	MU Navigato	r	
	Eguip	oment 8	k Syster	ns		🕨 🎢 Dļ	<u>M</u> U Space Ar	nalysis	
	Digita	al Proce	ess for N	1anufact	uring:	🕈 🌇 di	M <u>U</u> Kinematio	s	
			imulatio				— MU <u>F</u> itting		
	Ergor	nomics	Design	& Analys	is		MIL2D Viewe	r.	
-	••						10 20 116116		


- A. DMU Simulation: Key tools for DMU Fitting
- B. DMU Check: Measure Interference, distance, detect Clash while moving
- C. Manipulation: Manipulate model or Compass while creating a track
- **D. Recorder**: Record or modify the track
- E. Player: Play the track

Toolbars



General Process

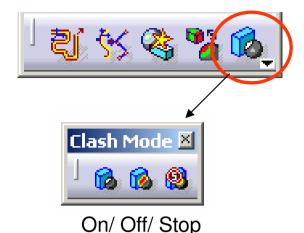
Open an Assembly Document Create a Track Move a Component Record the Track Repeat creating tracks for other components Create a Sequence of Tracks Create a Simulation Analyze the results and modify the design if necessary

Using DMU Manipulation Toolbar to change the position of the Compass:-

- 1) "Detach" the Compass from the selected Part (it will be gray)
- 2) "Snap" the Compass onto a new position
- 3) "Attach" the Compass again (it will be Green)

Detect Clashes automatically during the part movement:-

Three modes are available:


- (1) **On** (default mode), which deactivates clash detection
- (2) Off, which highlights in the geometry area products in collision while playing a simulation
- (3) **Stop**, which stops the simulation when the first clash is detected.

Measure distances AFTER a simulation:-

- Click "Distance" icon
- Select two components
- Click "Apply" to get the minimum distance

Measure distances DURING a simulation:-

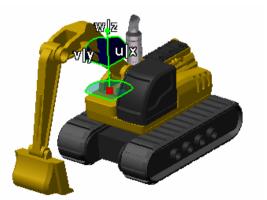
- After "Distance.1" is created, double-click "Sequence.1" on the tree
- Select the Tab Page "Edit Analysis"
- Put "Distance.1" on the list called "Analyses in Sequence"
- Set it Active

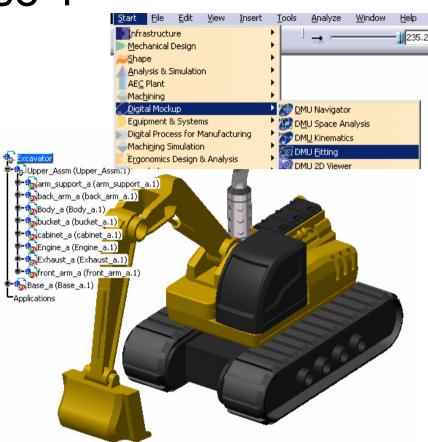
Name:	Distance.2
Туре:	Minimum Selection: 1 2 products
	Inside one selection Selection: 2 No selection
	Minimum distance: 1mm
Accuracy	: 5mm 📃 🔁 Maximum distance: 2mm
Results	
Distance	74.515mm
Delta	X 21.633mm Y Omm Z 71.305mm
Point 1	X -103.1mm Y 25.5mm Z 111.623mm
Point 2	X -124.734mm Y 25.5mm Z 40.318mm
Point 1 or	back_arm_a.1
Point 2 or	bucket_a.1
	OK Apply Cancel
dit Seque	nce <u>?</u>
Edit Act	ion Edit Analysis
	in session Analyses in Sequence

🕒 OK 🧧 🥥 Cancel

Set all active

(1) File Open:-


• File/Open/Excavator_a.CATProduct


(2) Change workbench to DMU Fitting:-

 If the current workbench is not "DMU Fitting", select "Start/Digital Mockup/ DMU fitting" on the top menu to change. (otherwise, it needn't change)

(3) Make the 1st Film:-

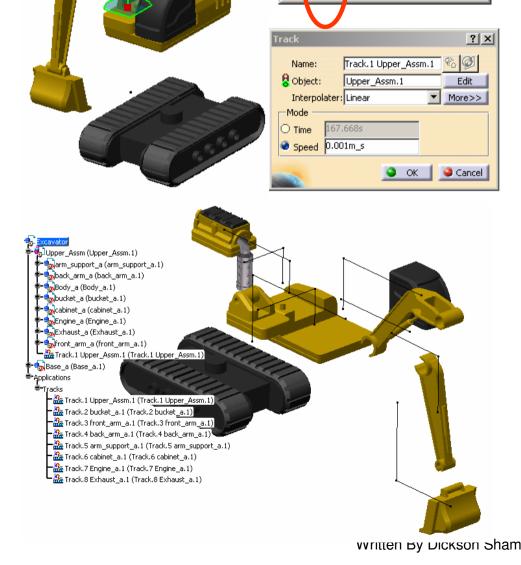
- Click "Track" icon
- Select Upper_Assm(Upper_Assm.1) on tree
- (The Compass will be snapped onto the assembly and it will turn GREEN)

💑 🎰 🏟 🙀 💑

 \times

Recorder

Exercise 1


A- 6

(3) Cont':-

- Drag the upper assembly out by Compass
- Then Click "Record(Insert)" icon to record the new position
- Drag the assembly to another position
- Click "Record(Insert)" icon again
- Click ok complete

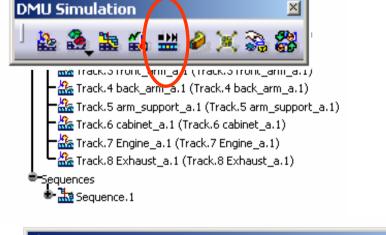
(4) Repeat Step 3 to make the remaining Films for the below components:-

- Bucket
- Front_Arm
- Back_Arm
- Arm_Support
- Cabinet
- Engine
- Exhaust

(5) Create a Play Sequence of the films:-

- Click "Edit Sequence" icon
- Select Track.1 under the list of "Action in session"
- Click 🔿
- Select Track.2, then

...Repeat the steps until all Tracks are inserted


		DMU Sim	ulatinn			×
it Sequence	_	l 🌇 🏖	a 🕹 🕻	6 🏥	ê 🗙	38
Edit Action Edit Analys	sis					
Action in session	Action in Seg	uence				
Track.1 Upper_Assm	Step	Action			Duration (s)	Delay (s)
Track.2 bucket_a.1 (Track.3 front_arm_a					1	
Track.3 fronc_arm_a	1	Track.1 Upper_Assm.1 (1	Track.1 Upper_Assm	.1)	171.013	0
Track.5 arm_support						
Track.6 cabinet_a.1	2	Track.2 bucket_a.1 (Trac	k.2 hucket a.1)		135.355	
Track.7 Engine_a.1(
4	3	Track.3 front_arm_a.1 (1	Frack.3 front_arm_a	.1)	107.038	0
		Move Up	1		Merge Up	
		Move Down			Merge Down	
•	Action durat	ion (s) 171.01		Reset duration	Action del	lay (s) 0
-Action add mode	1					-
Create last step and ac	4.4	○ Add in I	act chan			ate last step and ad
•			asciscep			ate last step and au
Highlight the simulated a	action(s)					
					(C)) OK 📔 🍛 Car

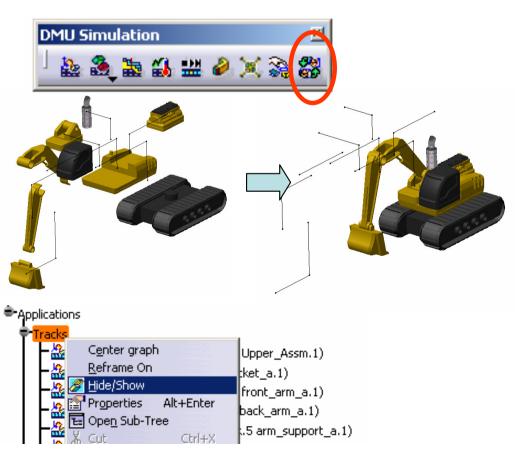
(6) Play the Sequence of films:-

- Click "Simulation Player" icon
- Select Sequence.1
- (The Player is activated on top of the screen)
- Click "Parameters" icon
- Enter <u>5s</u> as Sampling Step (Run the simulation faster)

A- 8

(6) Cont':-

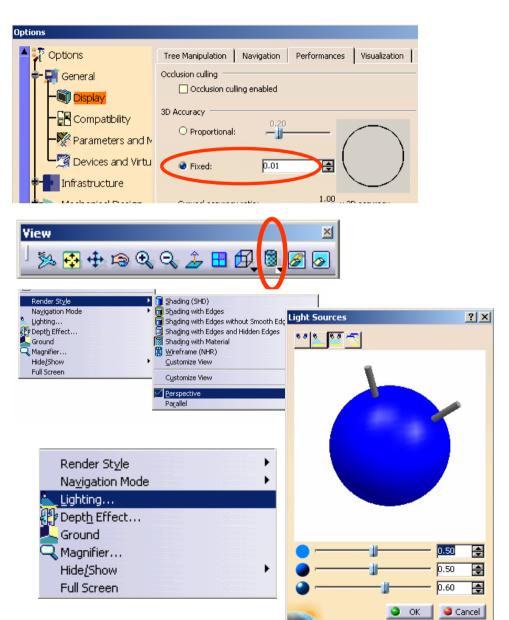
- Click "Change Loop Mode" icon to run the simulation continuously
- Click "Stop" icon to stop
- Click "Simulation Player" icon again to exit


(7) Reset the positions:-

- Click "Reset Position" icon
- (all components will be back to their original positions)

(8) Hide all Track Lines on screen:-

- Right-Click "Tracks" on the tree
- Select "Hide/Show"



(9) Refine Environment Settings (optional):-

- To improve the resolution, select "Tools/options.../General/Display/Performan ces/3D Accuracy/Fixed" on the top menu and change it to 0.01(smallest value)
- Change the shading mode to "Shading with Material"
- Select "View/Render Style/Perspective" on the menu
- Select "View/ Lighting..." and then select "Two Lights"

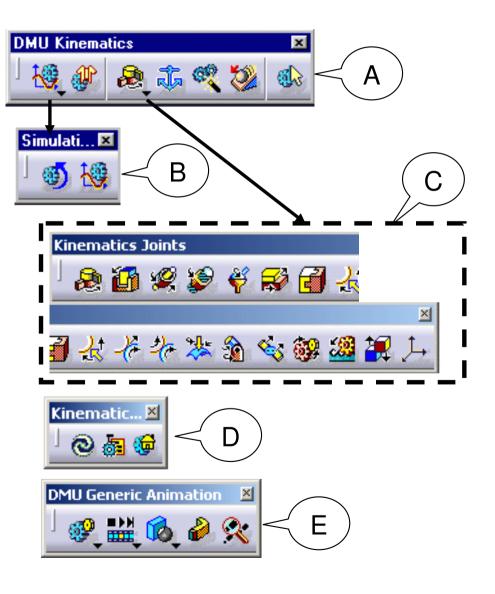
- To Hide Compass, Deselect "View/ Compass" on the top menu
- To Hide Tree, Deselect "View/ Specifications"
 on the top menu

(10) Export Simulation into AVI format

- Click "Tools/Simulation/Generate Video" on the top menu
- Select Sequence.1 on tree
- Select "VFW Codec" as default
- Click "Setup" button and select "Cinepak Codec by Radius" as Compressor
- Click "File name..." to define the destination of the exported file and the file name
- Click ok to complete

(Remark: During the conversion, we can manipulate the geometry by mouse)

	Start	Eile	<u>E</u> dit	⊻iew	Insert	<u>T</u> ools	<u>A</u> nalyze	<u>W</u> indow	H	elp
	dje »I	¢.		_	_	f _(≈) Eorm Imag			•	
								ers	•	
						<u>P</u> ubli: Simu	sh lation			⊆onvert Simulation Generate Replay
ideo Generati	on				-	Setup	?×			v G <u>e</u> nerate Video ¶ Replay ⊉ Player
C:\Documents	and Settir	ngs\st	aff\Desk	top\Dm	J-excava					Track file export Tr <u>a</u> ck file import
From: Sequence	∋.1									
				1	🎱 ок	1 🔍	ancel			

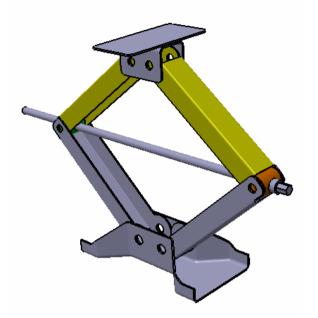


DMU Kinematics

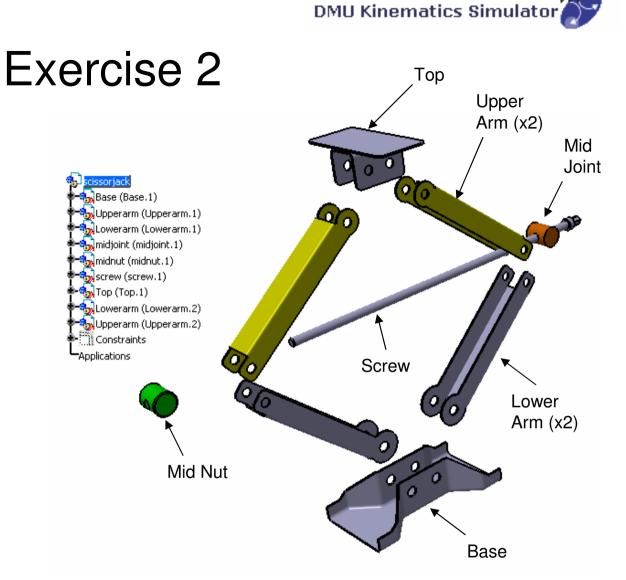
Simulate the mechanism of an assembly

🌹 <u>S</u> tart 🛛 <u>F</u> ile	<u>E</u> dit	⊻iew	Insert	<u>T</u> ools	<u>A</u> nalyze	<u>W</u> indow	Help
<u>Mechanic</u> <u>Shape</u> <u>Analysis</u> <u>AEC</u> Plan Mac <u>hinin</u>	al Design & Simulatio	n		 <			
Digital Pro Machining	ckup It & Syste Decess for I Simulations Cs Design	Manufac In	-		4U Navigato 4U Space Ar 4U Kinematio 4U Eitting 4U 2D Viewe	nalysis Is	

- A. DMU Kinematics: Key tools for DMU Kinematics
- B. Simulation: Make Simulation with commands
- C. Kinematics Joints: Create Joints between components
- **D. Kinematics Update**: Restore or Update positions of components
- E. DMU Generic Animation: Record or Export Simulation into other format



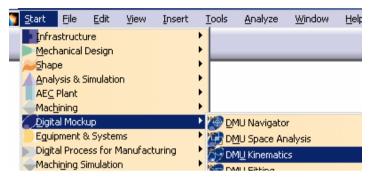
General Process

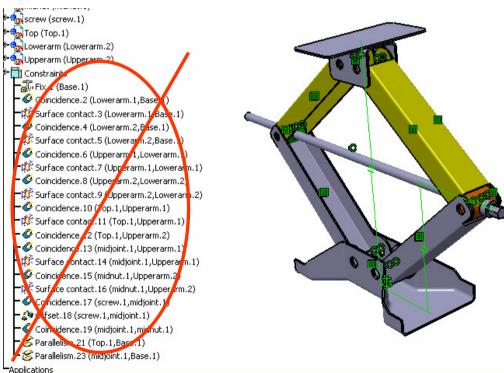

Open an Assembly Document Delete all Constraints & Create Joints manually -Or-Convert Constraints into Mechanism Browse the Mechanism with Commands Create a Simulation Analyze the results and modify the design if necessary

JOINT TYP	РЕ	DEGREES OF FREEDOM	COMMAND TYPE	DIRECT MANIPULATION		
Revolute 🗟		1 Rotation	Angle	YES / Left-mouse button		
Prismatic	6	1 Translation	Length	YES / Left-mouse	button	
			Length + Angle	Length: Left-mouse button	Angle: Left-Moust button +	
Cylindrical	S.	1 Rotation 1 Translation	AND/OR		Middle-Mou: button	
			Angle or Length	YES / Left-mouse button		
Spherical	¥	3 Rotations	_	NO		
Planar	※	2 Translations 1 Rotation	_	NO		
Rigid	3	_	_	NO		
Roll Curve	<u>*</u> @	1 Rotation 1Translation	Length	NO		
Slide Curve	-jê	2 Rotations 1 Translation	_	NO		
Point Curve	⋌	3 Rotations 1 Translation	Length	NO		
Point Surface	*	2 Translations 3 Rotations	_	NO		
U Joint	<u></u>	1 Rotation	_	NO		
Gear joint	69	1 Rotation	Angle1 or Angle2 (exclusive)	YES / Left-mouse	button	
Rack Joint	<u>.</u>	1 Rotation or 1 Translation	Length1 or Angle2 (exclusive)	YES / Left-mouse	button	
Cable Joint	2	1 Translation	Length1 or Length2	YES / Left-mouse	button	
Screw Joint	٩	1 Rotation or 1 Translation	Angle or Length (exclusive)	YES / Left-mouse	button	
CV Joint	%	_	_	NO		

Scissor Jack

- Create Kinematic Joints
- Simulate the mechanism with command
- Study the mechanism behavior (Displacement and Speed)
- (1) File/Open/ Scissorjack_a.CATProduct

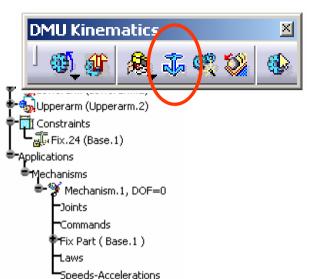


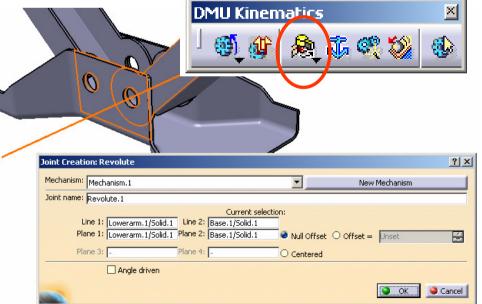

(2) Change workbench to DMU kinematics:-

If the current workbench is not "DMU kinematics", select "Start/Digital Mockup/
 DMU kinematics" on the top menu to change. (otherwise, it needn't change)

(3) Delete all Constraints:-

- Right-Click on "**Constraints**" on the product tree and then select "Delete"
- (We are going to create kinematic joints manually. Once a joint is created between two parts, the corresponding constraints will be made automatically between them. To prevent redundancy, we need to delete all the constraints, which were made on the "Assembly Design" workbench, before creating joints.)

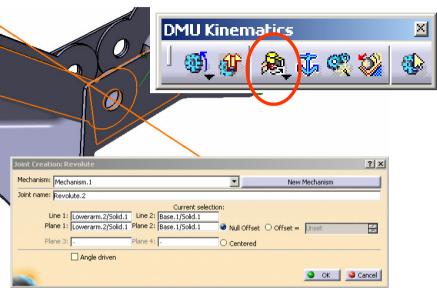



(4) Fix "Base" in place:-

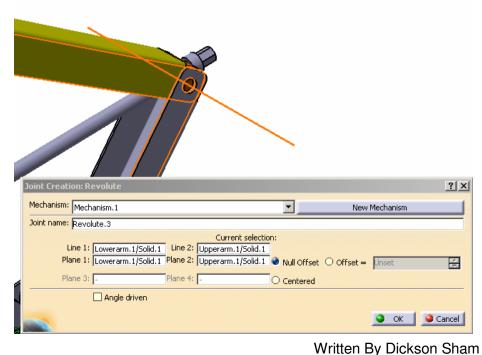
- Select "Fixed Part" icon
- Click "New Mechanism" icon on the pop-up window
- Click ok to accept the default name
- Select "**Base**" (by clicking "Base" on tree or clicking on the geometry directly)
- (A Fix Constraint is created automatically, and at the same time, a fixed part is defined in Mechanism.1)

(5) Create a Revolute joint between <u>Right</u> Lower Arm and Base:-

- Select "Revolute Joint" icon
- Click Axis of LowerArm and then Axis of Base (Put the mouse cursor onto the cylindrical surface to get its axis)
- Click Face of LowerArm and then Face of Base
- Click ok to complete



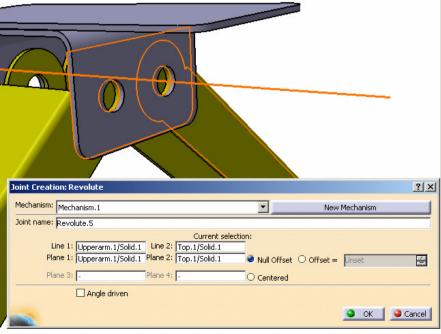
A- 16


(6) Create a Revolute joint between <u>Left</u> Lower Arm and Base:-

- Select "Revolute Joint" icon
- Click Axis of LowerArm and then Axis of Base
- Click Face of LowerArm and then Face of Base
- Click ok to complete

(7) Create a Revolute joint between <u>Right</u> Lower Arm and <u>Right</u> Upper Arm:-

- Select "Revolute Joint" icon
- Click Axis of LowerArm and then Axis of UpperArm
- Click Face of LowerArm and then Face of UpperArm
- Click ok to complete

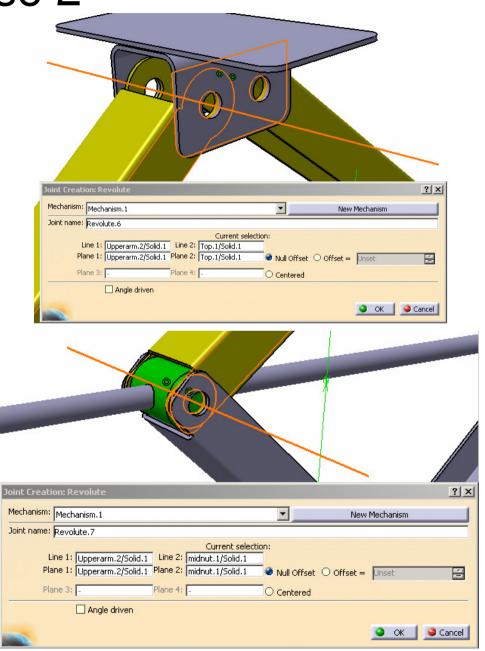

(8) Create a Revolute joint between <u>Left</u> Lower Arm and <u>Left</u> Upper Arm:-

- Select "Revolute Joint" icon
- Click Axis of LowerArm and then Axis of UpperArm
- Click Face of LowerArm and then Face of UpperArm
- Click ok to complete

(9) Create a Revolute joint between <u>Right</u> Upper Arm and Top:-

- Select "Revolute Joint" icon
- Click Axis of UpperArm and then Axis of Top
- Click Face of UpperArm and then Face of Top
- Click ok to complete

Joint Creation: Revolute			?×
Mechanism: Mechanism.1	_	New Mechanism	
Joint name: Revolute.4			
Current : Line 1: Lowerarm.2/Solid.1 Line 2: Upperarm.2/Solid.1 Plane 2: Upperarm.2/Solid.1 Plane 2: Upperarm.2/Solid.1 Plane 3: Plane 3: Plane 4: -	selection: 50lid.1 Null Offset	O Offset = Unset	
Angle driven			
		OK	Cancel

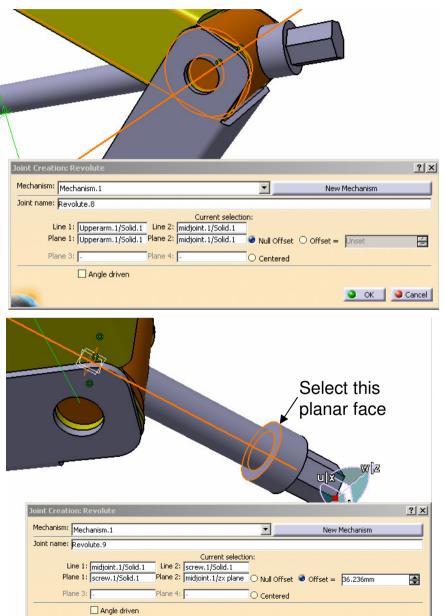


(10) Create a Revolute joint between <u>Left</u> Upper Arm and Top:-

- Select "Revolute Joint" icon
- Click Axis of UpperArm and then Axis of Top
- Click Face of UpperArm and then Face of Top
- Click ok to complete

(11) Create a Revolute joint between <u>Left</u> Upper Arm and Mid-Nut:-

- Select "Revolute Joint" icon
- Click Axis of UpperArm and then Axis of MidNut
- Click Face of UpperArm and then Face of MidNut
- Click ok to complete



(12) Create a Revolute joint between <u>Right</u> Upper Arm and Mid-Joint:-

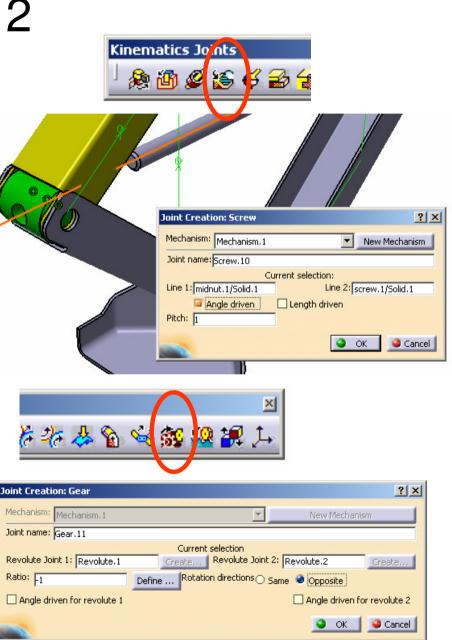
- Select "Revolute Joint" icon
- Click Axis of UpperArm and then Axis of Midjoint
- Click Face of UpperArm and then Face of MidJoint
- Click ok to complete

(13) Create a Revolute joint between Mid-Joint and Screw:-

- **Drag** the Screw out of the hole **by Compass**
- Show xy-plane, yz-plane & zx plane of Mid-Joint
- Select "Revolute Joint" icon
- Click Axis of Mid-Joint and then Axis of Screw
- Click zx Plane of Mid-Joint and then Face of Screw
- Enter <u>10mm</u> as Offset
- Click ok to complete
- Hide xy-plane, yz-plane & zx plane
 A- 19

Version 1b- Mar07

OK Gancel

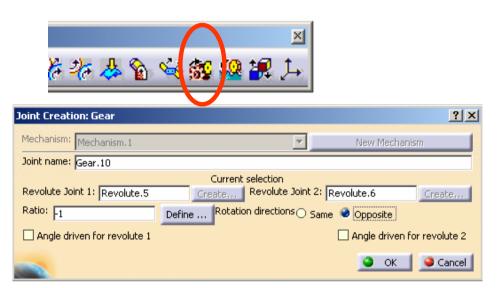


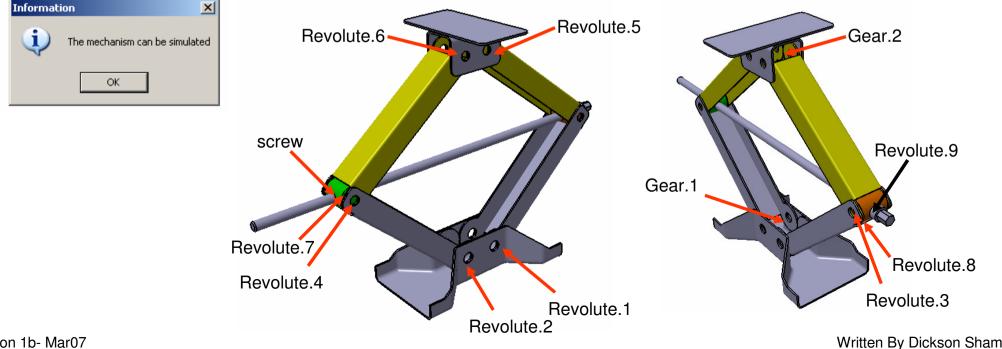
(14) Create a Screw joint between Mid-Nut and Screw:-

- **Drag** the Screw out of the hole **by Compass** again so that we can see the screw hole
- Select "Screw Joint" icon
- Click Axis of MidNut and then Axis of Screw
- Select "angle driven" option
- Enter <u>1</u> as **Pitch**
- Click ok to complete

(15) Create a Gear joint between Right Lower Arm and Left Lower Arm:-

- Select "Gear Joint" icon
- Select Revolute.1 and then Revolute.2
- Select **Opposite** as **Rotation Directions**
- Click ok to complete



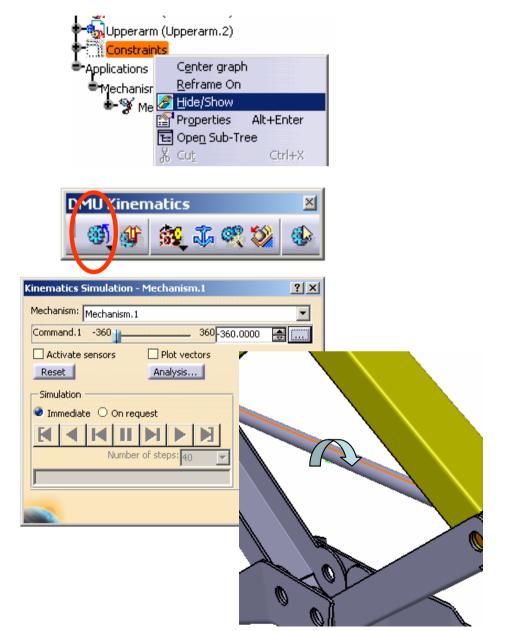


(16) Create a Gear joint between Right Upper Arm and Left Upper Arm:-

- Select "Gear Joint" icon
- Select Revolute.5 and then Revolute.6
- Select Opposite as Rotation Directions
- Click ok to complete

(Finally, a window pops up, saying that the mechanism can be simulated)

Version 1b- Mar07

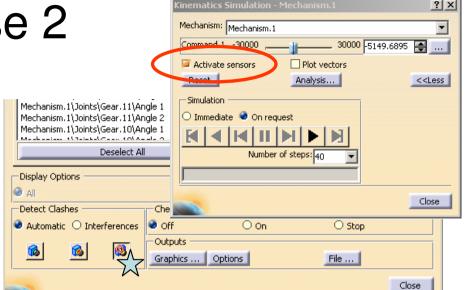

A- 22

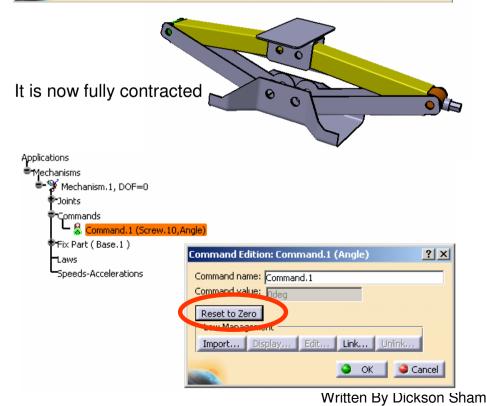
(17) Hide all Constraints:-

• Right-Click on "Constraints" on the product tree and then select "Hide/Show"

(18) Simulate the Mechanism:-

- Select "Simulation with Commands" icon
- Click "..." button next to Command.1
- Enter -30000 as Lowest Value
- Enter 30000 as Highest Value
- Click ok to confirm
- Select "Immediate" Simulation
- Put the mouse cursor onto the screw (doublearrow appears)
- Press and Hold the Right Button to rotate the screw (The whole mechanism moves)

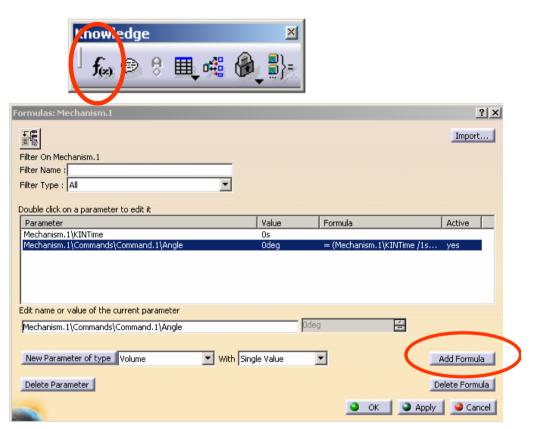

A-23


(19) Get the Smallest Height of Scissor Jack:-

- Select "Activate Sensors" option (another menu pops-up)
- Select the third button "Stop when Clash"
- Select "On Request" Simulation
- Select 40 as Number of steps
- Adjust Command.1 to -30000 (lowest value)
- Click "Play" icon
- (The mechanism moves until the clash occurs; When Command.1 is ~21000, it stops)
- Select "Close" on both menus

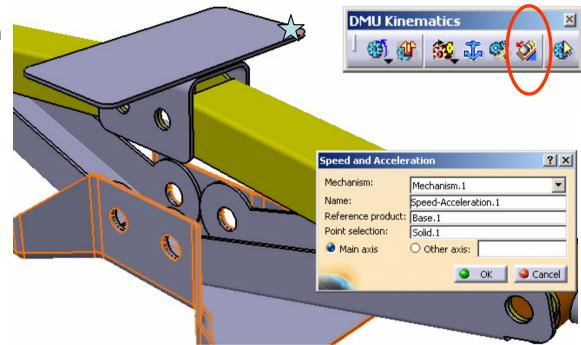
(20) Reset Command.1 to Zero:-

- Double-Click Command.1 on tree
- Click "Reset to Zero" button
- Click ok to complete
- (Now when Command.1=0 deg, the scissor jack is the shortest)



(21) Define the relation between Command.1 and Time:-

- Click "Formula" icon
- Click Mechanism.1 on tree
- (Two related parameters are sorted out: "Mechanism.1\KINTime" & "Mechanism.1\Commands\Command.1\Angle")
- Select
 "Mechanism.1\Commands\Command.1\Angle"
- Click "Add Formula" button
- Enter (Mechanism.1\KINTime /1s)*360*2deg
- Click ok
- Click ok again
- (The formula is now stored under Mechanism.1)



Applications Mechanisms Mechanism.1, DOF=0 Joints Commands Fix Part (Base.1) Laws Speeds-Accelerations

(22) Define a Sensor:-

- Click "Speed and Acceleration" icon
- Select Base as Reference Product
- Select any endpoint 🕅 of the Top face as Point Selection
- Select "Main axis"
- (Remark: "Main Axis" is the axis system of the Product, which is also the axis system of Base (1st component))
- Click ok to complete

(23) Run the Simulation with Formula:-

• Click "Simulation with Laws" icon

Exe

(23) Con't:-

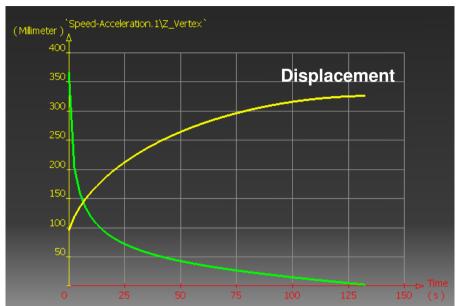
- Select "Activate Sensors"
- Select "Speed-Acceleration.1\z_vertex" and "Speed-Acceleration.1\z_LinearSpeed"
- Click "Stop when Clash" button ☆ ٠
- Click "..." button \blacklozenge •
- Enter 200s as Maximum time bound
- Click ok
- Click > button .

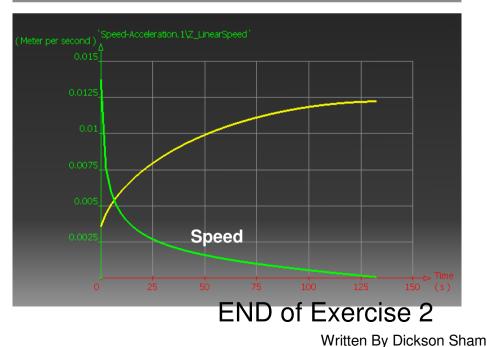
(The mechanism moves, but stops at ~130s when clash is detected)

ercise 2	Kinematics Simulation - Mechanism.1 Mechanism : Mechanism.1 Start 0 10 0.000 Image: Start 0 Number of steps: 40 Analysis Plot vectors
Sensors Selection Instantaneous Values History Sensor Mechanism.1\Joints\Gear.10\Angle 1 Mechanism.1\Joints\Gear.10\Angle 2 `Speed-Acceleration.1\X_Vertex' `Speed-Acceleration.1\Z_Vertex' `Speed-Acceleration.1\Z_Vertex' `Speed-Acceleration.1\Z_Vertex' `Speed-Acceleration.1\Z_LinearSpeed' `Speed-Acceleration.1\Z_LinearSpeed' `Speed-Acceleration.1\Z_LinearSpeed' `Speed-Acceleration.1\Z_LinearSpeed' `Speed-Acceleration.1\Z_LinearSpeed' `Speed-Acceleration.1\X_LinearAcceleration` `Speed-Acceleration.1\X_LinearAcceleration`	Unit Observed Degree No Degree No Millimeter No Millimeter Yes Meter per second No Meter per second No
Deselect All Display Options All Detect Clashes Automatic O Interferences Outputs Graphics Graphics	Options File Close

Simulation Duration	×
Maximum time bound: 200 s	
	🕒 ОК

A- 27


(24) Study Results:-


- Click "Graphics..." button
- We get two curves on the graph: Yellow – Displacement of the Top Face; Green – Speed of the Top Face
- Smallest Height = 95mm
- Largest Height = 326mm
- Range = (326-95) = 231mm
- Total Time (from Full contraction to Full Extension) = 133sec (assuming the angular speed of the screw is 2 rev/sec)

(25) Restore original positions:-

• Click "**Reset Positions**" button

