
5.1 – Multi degree of freedom system 

Given a two degree of freedom system,  



Doing the free body diagram  

5.1 – Multi degree of freedom system 

and applying the Newton’s second law 
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The system equations can be rewritten as 

5.1 – Multi degree of freedom system 

Or in matriz form 



5.1 – Multi degree of freedom system: An Application 

The two degree of freedom model can represent a simple model of the 
suspension car, the rotor and isotropic support and the isolation system, 
among others. 



Figura 4  

5.1 – Multi degree of freedom system: An Application 

The free body diagram is 
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5.1 – Multi degree of freedom system: An Application 

and applying the Newton’s second law 
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5.1 – Multi degree of freedom system: An Application 

and in matrix form 
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5.1 – Influence Coefficient Method 

Stiffness: The reaction force introducing by the elastic properties is, as saw, 
given by   
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5.1 – Influence Coefficient Method 

If we supposed that the “s” coordinates is 1 and another ones, with j≠s, are 
0, the resultant force to produce such situation it will, numerically, equals 
to the column of stiffness matrix    

This procedure allows us to find the K matrix. 

The same concept can be applied to the damping and inertial matrix. In 
theses cases we use the velocity and acceleration coordinates, instead the 
displacement coordinates.  

0,1  sjs qandq



5.1 – Influence Coefficient Method: Example 1 

Use this method for the example above, considering 
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5.1 – Influence Coefficient Method: Example 1 

The resultant force is given by 

Then we find the first column of the stiffness matrix 



5.1 – Influence Coefficient Method: Example 1 
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5.1 – Influence Coefficient Method: Example 1 

The resultant force is given by 
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5.1 – Influence Coefficient Method: Example 1 

In a similar way, doing 
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5.1 – Influence Coefficient Method: Example 1 
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Lastly, for the inertial matrix 
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5.1 – Influence Coefficient Method: Example 1 

Then, the first column of the inertial matrix 



   

5.1 – Influence Coefficient Method: Example 1 
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5.1 – Influence Coefficient Method: Example 1 
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5.1 – Influence Coefficient Method: Example 1 

Then, the equation of motion is, in matrix simplified notation 
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where 



5.1 – Influence Coefficient Method: Example 2 

The second example represents a water tank in the cities, the middle of the 
part of the Stockbridge, among others real systems. 



5.1 – Influence Coefficient Method: Example 2 

It is known, for elasticity theory, that the external excitation applied in the 
free end of a beam elements produce the follow deformation: 
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5.1 – Influence Coefficient Method: Example 2 
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5.1 – Influence Coefficient Method: Example 2 
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5.1 – Influence Coefficient Method: Example 2 

;01) 21  qandqa 

For the inertial matrix 
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5.1 – Influence Coefficient Method: Example 2 
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5.1 – Influence Coefficient Method: Example 2 

Then, the equation of motion is 

or 

      )()()()( tftqKtqCtqM  



For mechanical systems, the calculation of the stiffness matrix, 
through the influence coefficients of stiffness, requires the resolution 
of an equation system. 
This leads, in general, to an excessive computational cost. 
For another hands, K can be calculated by the inverse of the flexible 
matrix. 
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5.1 – Influence Coefficient Method of Flexibility 



Considering the case below 

5.1 – Influence Coefficient Method of Flexibility 



As known 

5.1 – Influence Coefficient Method of Flexibility 
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5.1 – Influence Coefficient Method of Flexibility 
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5.1 – Influence Coefficient Method of Flexibility 

The first column of the flexibility matrix will be 
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5.1 – Influence Coefficient Method of Flexibility 
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5.1 – Influence Coefficient Method of Flexibility 
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5.1 – Influence Coefficient Method of Flexibility 

And the matrix K and M are 
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6 - Mathematical Model of Non Rotating Systems 

The equation of motion of the multi-degree systems is given by 

       tftqKtqCtqM  

 tq generalized coordinates, nx1 

 tf generalized forces, nx1 

M generalized mass matrix, nxn 

K generalized stiffness matrix, nxn 

C generalized damping matrix, nxn 
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Mathematical Model of Non Rotating Systems 

In the frequency domain 

      FQKCiM2

   
1ˆˆ1

ˆˆ
xnnnxnx

PQ 

Using the below transformation matrix, and taking only a few 
eigenvectors who are into the frequency range of interest  

and pre-multiplying by  
T

xn 1ˆ̂
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Considering a orthogonal properties of 
the eigenvectors and the 
orthonormalized characteristic, it is 
possible to obtain 

IMT   KT
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Mathematical Model of Non Rotating Systems 
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The equation of motion in the modal sub-space is given by  

           FNPiI T
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Mathematical Model of Non Rotating Systems 

 In the modal sub-space of the 
primary system the equations of 
motion are uncoupled. 

     Each line can be considered as one 
degree of freedom system 

So, it is possible to obtain the response  P̂  Q

    Then, the solution in the configuration 
space, q(t), is: 

      


FDQ Tˆˆˆ
1

      


FDP Tˆˆˆ
1
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(ESPÍNDOLA e SILVA,1992) 

Equivalent Generalized Parameters 
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How to model the dynamic absorbers, such that, when attached to the 
structure to be controlled, the model of the compound system will be 
simple and inexpensive of the computational point of view 
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Equivalent Generalized Parameters 

27/11/2013 41 

Type of Model 

Viscous Model 

Viscoelastic  

Hydraulic 

Electromechani
cal 

Different types of model to different applications 



The primary system "feels" the absorber as being a equivalent mass meq(Ω) 
attached to the generalized coordinate qj(t) and a equivalent viscous damper 
with constant ceq(Ω), connected to the ground. 
Therefore, the dynamics of the resultant system (primary + absorbers) can be 
formulated in terms of the generalized coordinates of the primary system, 
where Q(Ω) is representative, despite the new system now having added 
degrees of freedom. This is the main advantage of the generalized equivalent 
quantities concept. 

Equivalent Generalized Parameters 

Primary System Primary System 
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 In the stationary system, the equation of 
motion for the compound system is 
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The Mathematical Model of Compound System  
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Pre-multipliyng the equation of motion by 
the transpose eigenvectors, 
considering the orthonormalized 
characteristic, it is possible to obtain 

  A

T MIM
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Then, the solution in the modal sub-space 
for the primary system 
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The Mathematical Model of Compound System  
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Then, the solution in the configuration 
space, q(t), is: 

      


FDQ T1

     TDH 
1

The FRF of the compound 
systems is: 

      


FDP T1~

The Mathematical Model of Compound System  
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7 - Nonlinear Optimization Techniques 
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The optimization problem is defined by: 



Graphically: 
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Nonlinear Optimization Techniques 



    x,Pmax=xf
cost




ˆ
21

The objective function is defined by 

After optimization procedure, the DVA’s 
natural frequencies n are known. 
Then, it is possible to do a physical 
realization. 

where 
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Nonlinear Optimization Techniques 
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Frequency Response Function (FRF) 

Frequency   [Hz] 

measured 

computed 

PISA/CNPq group 

A thin steel plate – doctoral work 
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Stockbridge vs DVA 
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A power transmission line 

27/11/2013 51 



A power transmission line 

 Dynamic viscoelastic absorber  
 
 total additional mass ( 2,5% a 10%); 
 efficiently in a large frequency band; 
 allows more axial force on the transmission line; 
 then minor curve of the line; 
 Low towers. 
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Set-up for the Tool Holder with Dynamic Absorber 

to eliminate Instability-Chatter in Turning Processes  

Surface profile of the work piece machined  

Instability-Chatter in Turning Processes 
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Surface profile of the workpiece machined  

Instability-Chatter in Turning Processes 
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2PASSO-SEM.MPG
2PASSO-COM.MPG


The Numerical example and experimental setup 
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 effB n2A typical Fiber Bragg Grating (FBG) has a 
central wavelength reflected spectrum 

given by  
 

  xxeBB p   1

Disregarding the variation of temperature 
∆T, which occurred in the present 

work, the change in Bragg wavelength 
due to application of a longitudinal 

strain is 



The Numerical example and experimental setup 
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The Numerical example and experimental setup 
 

27/11/2013 57 

-0,01 0,00 0,01 0,02 0,03 0,04 0,05 0,06

-14

-12

-10

-8

-6

-4

-2

0

V
o
lta

g
e
m

 (
vo

lts
)

Tempo (s)

 C6 para C1 

 C2 para C1

Para o

controlador

do PZT

+

-

C

56 k

LM324

+

-
LM324

1 k

1 k

56 k

do gerador de

sinais


c

G()

1

100 nF

Electronic filter to reduce 
unwanted vibrations 



The Numerical example and experimental setup 
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Modal Analysis of the 
dynamic system 

Finite Element Model 



The Numerical example and experimental setup 
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Level of axial vibration = 16 mm/s  

Finite Elements  

FEM of Hydroelectric Group 
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Panoramic View of the Six-Legged Crosspiece  

Showing an Dynamic Absorber Installed.  

After DVA, the level of axial vibration  

= 2.5 mm/s  

An Absorber in its Mounting Recess  

FEM of Hydroelectric Group 
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8 - Rotating Systems 

The rotor rig used in this work 

9 – The steel shaft  

2, 4 e 5 – The steel disks  

7 - The alloy disk 

3 e 8 – The ball bearings 

6 - The floating ball bearing 

Dynamic absorber  
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• Rotor Equations 

        F=QK+G+Ci+M
rpm

2
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In term of the state variables 

ψAλ=ψB TT

Aθλ=Bθ

In the frequency domain 

Considering the associated eigenvalue problem 

Solving the whole system for all 
speed range, it is possible to obtain 
the Campbell diagram.  

 
rpmGCC 1
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• Rotor Equations 

 
rpmGCC 1
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• Rotating System with Dynamic Absorbers 
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NΨΘBΨ+Λ+ΘAΨ+Ii=P TTT 1~~

Then, the response q(t) can be obtained with a inverse Fourier 
transformation of the response in the space state using de 
transformation matrix = right eigenvector. 

It is possible to find the response in the modal space state  

    P=Y

The Response of the Compound System 

Using the eigenvector of the matrix transformation 

27/11/2013 67 



    x,Pmax=xf
cost




ˆ
21

 The objective function is defined by 

 After optimization procedure, the DVA’s 
natural frequencies n are known. 
Then, it is possible to do a physical 
realization. 

 where 
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Optimal Design of the Dynamic Absorbers 
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• Numerical Simulation 
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• Numerical Simulation 

 After optimization procedure, the DVA’s 
natural frequencies n are known. 
Then, it is possible to do a physical 
realization. 
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Numerical Solution 

Then the first 16 eigenvalues have been used. The barrier frequencies were  
33 and 100 Hz and the DVA's initial natural frequency was adopted to be 59 Hz. 

The optimal natural 
frequency of the four 
absorbers is  
Ωa = 60.2 Hz. 
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The rotor rig 
9 – The steel shaft  

2, 4 e 5 – The steel disks  

7 - The alloy disk 

3 e 8 – The ball bearings 

6 - The floating ball bearing 

Dynamic absorber  

Experimental Setup 
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• Frequency Response Function 

with 4 dynamic absorbers with 2 dynamic absorbers 

mea = measured  curves (mea)  
wi    = with absorbers  
wo   = without absorbers 

num = numerical  curves  
exp  = experimental curves 
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Experimental Setup 

2 - The dynamic orbit measuring has 

been done using a 90 (degrees) 

proximeters set  

1 - Kind of excursion limiters  

2 - Proximiter set 

3 - Dynamic Viscoelastic Absorbers 
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Reference 

Without Absorbers 



Experimental Setup 

2 - The dynamic orbit measuring has 

been done using a 90 (degrees) 

proximeters set  

1 - Kind of excursion limiters  

2 - Proximiter set 

3 - Dynamic Viscoelastic Absorbers 
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2 Absorbers 

With 4 Absorbers 



the excursion limiters  

Experimental Setup 
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Experimental Setup 
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Rotors with Flexible Bearings 

The instability problems, when working at high rotations, can be solved by including 
damping in the bearings. 

Viscoelastic Material 
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Rotors with Flexible Bearings 

27/11/2013 79 

Ωrpm=cte 



Rotors with Flexible Bearings 

The instability problems, when working at high rotations, can be solved by including 
damping in the bearings. 

with flexible bearings rigid ball bearings 
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Works in Progress – Laboratory of Sound and Vibration 
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Rotors with Flexible Bearings 

The instability problems, when working at high rotations, can be solved by including 
damping in the bearings. 

Viscoelastic Material 
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Rotors with Flexible Bearings 

The instability problems, when working at high rotations, can be solved by including 
damping in the bearings. 
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Rotors with Flexible Bearings 
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The Numerical example and experimental setup of Constrained Layers and 
Sandwich beams 
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The Numerical example and experimental setup of Constrained Layers 
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The Numerical example and experimental setup of Constrained Layers 
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The Numerical example and experimental setup of Constrained Layers 
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Helmholtz ressonators 
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Experimental Results 
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Optimal design of the viscoelastic neutralizer applied a 
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