References

Banerjee PK, and Butterfield R: Boundary Element Methods in Engineering Science, McGraw Hill (UK),
London, 1981.

Boresi AP, and Chang KP: Elasticity in Engineering Mechanics, Wiley, New York, 2000.

Fung YC, and Tong P: Classical and Computational Solid Mechanics, World Scientific. Singapore,
2001.

Langhaar HL: Energy Methods in Applied Mechanics, Wiley, New York, 1962.

Mura T, and Koya T: Variational Methods in Mechanics, Oxford Univ. Press, New York, 1992.

Reddy IN: An Introduction to the Finite Element Method, McGraw-Hill, New York, 2006.

Reddy IN: Energy and Variational Methods in Applied Mechanics, Wiley, New York, 1984.

Reismann H, and Pawlik PS: Elasticity Theory and Applications, Wiley, New York, 1980.

Sokolnikoff IS: Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.

Washizu K: Variational Methods in Elasticity and Plasticity, Pergamon Press, New York, 1968,

Exercises

6-1. The uniaxial deformation case as shown in Figure 6-1 was used to determine the strain
energy under uniform stress with zero body force. Determine this strain energy for
the case in which the stress varies continuously as a function of x and also include the
effect of a body force F,. Neglecting higher-order terms, show that the result is the same
as previously given by (6.1.4).

6-2. Since the strain energy has physical meaning that is independent of the choice of
coordinate axes, it must be invariant to all coordinate transformations. Because U is a
quadratic form in the strains or stresses, it cannot depend on the third invariants i, orli;,
and so it must depend only on the first two invariants of the strain or stress tensors. Show
that the strain energy can be written in the following forms

U= GA + ,u)]f —2ull,
= % (17 =201 + v)h)

6-3. Starting with the general expression (6.1.7), explicitly develop forms (6.1.9) and (6.1.10)
for the strain energy density.
6-4. Differentiate the general three-dimensional strain energy form (6.1.9) to show that

_ dU(e)

O =
4 Oe,;,-

6-5. Using equations (6.1.12), develop the symmetry relations (6.1.13), and use these to prove
the symmetry in the elasticity tensor Cy; = Cuij.

6-6. Verify the decomposition of the strain energy into volumetric and deviatoric parts as
given by equations (6.1.16) and (6.1.17).

6-7. Starting with relations (6.1.16) and (6.1.17), show that the volumetric and distortional
strain energies can be expressed in terms of the invariants of the stress matrix as
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6-8.

6-9.

6-10.

6-11.

6-12.

1-2v

Wi ]2
= 6E !

1
Uj=——(P+2
d 4”(l+ 12)

Results from Exercise 6-6 may be helpful.

Show that the distortional strain energy given by (6.1.17) is related to the octahedral
shear stress (3.5.4), by the relation

314v , 3 5
U. :ETTGC::@%H

Results from Exercise 3-5 may be helpful.

A two-dimensional state of plane stress in the x,y-plane is defined by the stress matrix

Or Ty O
0j= [Ty oy, 0
0 0 0

Determine the strain energy density for this case in terms of these nonzero stress
components.

The stress field for a beam of length 2/ and depth 2¢ under end bending moments M (see
Figure 8-2) is given by
M

Ux:_fcj YiOy =0: =Ty =Ty = To, = 0

Determine the strain energy density and show that the total strain encrgy in the beam is
given by

where [ is the section moment of inertia. Assume unit thickness in the z-direction.
The stress field for the torsion of a rod of circular cross-section is given by
Oy =0y = 0: = Ty = 0, T = —pay, 1, = pox

where o is a constant and the z-axis coincides with the axis of the rod. Evaluate the strain
energy density for this case, and determine the total strain energy in a rod with section
radius R and length L.

Using the reciprocal theorem, choose the first state as uE” =Ax;, F El) =0, Tz-( b= 3kAn;,
and take the second state as u;, F;, T;toshow thatthe change in volume of the body is given by

AV:J e;dV :L{J. F,-x,-dV+J T,-xgdS}
v 3k (v s

where A is an arbitrary constant and & is the bulk modulus.
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6-13. Rework Example 6-2 using the trigonometric Ritz approximation w; = sin ii‘ Develop
a two-term approximate solution, and compare it with the displacement solution
developed in the text. Also compare each of these approximations with the exact

solution (6.7.9) at midspan x = [/2.

6-14. Using the bending formulae (6.6.9), compare the maximum bending stresses from the
cases presented in Example 6-2 and Exercise 6-13. Numerically compare these results
with the exact solution; see (6.7.9) at midspan x = / 2
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