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Vetores e tensores

1.1. Notação indicial

A notação indicial é uma simplificação da notação de uma somatória. Antes de
explicar a notação indicial, convém definir monômio, coeficiente e ı́ndice. Monômio
é o termo de uma somatória, sendo que cada monômio é o produto de um ou mais
coeficientes. Cada coeficiente pode possuir nenhum, um ou mais ı́ndices. Será
convencionado aqui que os ı́ndices se posicionam à direita e embaixo do coeficiente.
Os ı́ndices podem ser os números 1, 2 ou 3 e, quando representados por letras,
expressam implicitamente um desses três números. Por exemplo, seja a somatória
de 3 monômios ai bi ( coeficiente ai multiplicado pelo coeficiente bi) com o ı́ndice
i variando de 1 a 3:

3∑
i=1

ai bi = a1 b1 + a2 b2 + a3 b3 (1.1)

Em notação indicial esta somatória se escreve simplesmente:

ai bi = a1 b1 + a2 b2 + a3 b3, i = 1, 2, 3 (1.2)

Na notação indicial subentende-se que o(s) ı́ndice(s) varia(m) de 1 a 3, ou seja,
pode-se simplesmente omitir i = 1, 2, 3 no final da expressão:

ai bi = a1 b1 + a2 b2 + a3 b3 (1.3)

Esta última expressão é que melhor exprime a notação indicial, pois é a forma mais
simplificada de representar a somatória entre as três possibilidades acima.

Veja-se um outro exemplo:
3∑

j=1

Tij bj = Ti1 b1 + Ti2 b2 + Ti3 b3 (1.4)

Agora existem dois ı́ndices, i e j, ambos variando de 1 a 3. O primeiro será chamado
ı́ndice livre e o segundo ı́ndice mudo. O ı́ndice mudo (neste exemplo j) é o que
perfaz a somatória e sempre se repete uma única vez no monômio. O ı́ndice livre
(neste exemplo, i) nunca se repete no monômio. Na notação indicial, o(s) ı́ndice(s)
não repetido(s) é(são) denominado(s) ı́ndice(s) livre(s) e o(s) repetido(s) uma única
vez é(são) denominados ı́ndice(s) mudo(s). No exemplo anterior, o resultado da
somatória poderia ser denotado, seguindo a notação indicial, como:

ai = Tij bj (1.5)

O coeficiente ai é o resultado da somatória Tij bj para i igual a 1, 2 ou 3. Nesta
última expressão o ı́ndice livre i aparece nos dois membros, significando que há 3
equações e cada uma delas tem uma somatória em j:

a1 = T11 b1 + T12 b2 + T13 b3

a2 = T21 b1 + T22 b2 + T23 b3

a3 = T31 b1 + T32 b2 + T33 b3

1
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Um monômio pode ter mais de um ı́ndice livre e mais de um ı́ndice mudo.
Por exemplo, na expressão a seguir há nenhum ı́ndice livre e dois ı́ndices mudos,
significando que há duas somatórias, uma no ı́ndice mudo i e outra no j:

Tij Sij =

3∑
i=1

3∑
j=1

Tij Sij

= T11 S11 + T12 S12 + T13 S13 + T21 S21 + T22 S22 + T23 S23 + T31 S31 + T33 S32 + T32 S33

(1.6)

Observe-se que não existe nenhum ı́ndice livre na notação indicial acima. Por-
tanto, não pode ser atribúıdo nenhum ı́ndice ao resultado desta somatória, como
no exemplo anterior.

1.1.1. Propriedades da adição de monômios.
1.1.1.1. Associativa.

(ai + bi) + ci = ai + (bi + ci)

1.1.1.2. Comutativa. ai + bi = bi + ai

1.1.2. Propriedades da multiplicação de monômios.
1.1.2.1. Comutativa. ai bj = bj ai

1.1.2.2. Associativa. (ai bj) ck = ai(bj ck)

1.1.2.3. Distributiva.
ai(bj + cj) = ai bj + ai cj

1.2. Representação de vetores numa base ortonormal definida positiva

Uma base ortonormal de vetores {~ei} = {~e1,~e2,~e3} é aquela em que os três
vetores são ortogonais entre si e têm módulo unitário. A base ainda é dita definida
positiva se são verificadas as seguintes relações entre os elementos da base:

~e1 × ~e2 = ~e3

~e2 × ~e3 = ~e1

~e3 × ~e1 = ~e2

Figura 1.1. Base ortonormal de vetores definida positiva.

De aqui em diante esta base de vetores será denotada simplesmente por {~ei}.
Um vetor ~v pode ser representado numa base {~ei} por meio das suas compo-

nentes nas direções dos três elementos dessa base. As componentes de ~v na base
são as suas projeções nas três direções:

v1 = ~v · ~e1 = ‖~v‖ cos(~v,~e1) (1.7)

v2 = ~v · ~e2 = ‖~v‖ cos(~v,~e2) (1.8)

v3 = ~v · ~e3 = ‖~v‖ cos(~v,~e3) (1.9)



1.2. REPRESENTAÇÃO DE VETORES NUMA BASE ORTONORMAL DEFINIDA POSITIVA 3

onde ‖~v‖ denota o módulo de ~v, (~v,~ei) e cos(~v,~ei) são o ângulo diretor e o cosseno
diretor, respectivamente, entre ~v e o elemento ~ei da base.

Figura 1.2. Componentes do vetor ~v na base {~ei}.

Em notação indicial, um vetor pode ser representado na base {~ei} como:

~v = vi ~ei = v1 ~e1 + v2 ~e2 + v3 ~e3

Um vetor costuma ser escrito matricialmente por meio de uma matriz coluna
3× 3 cujos coeficientes são as componentes do vetor na base {~ei}:

{v} =

v1

v2

v3


1.2.1. Módulo de um vetor. O módulo de um vetor ~v é por definição o seu

comprimento. Na representação na base {~ei} o módulo se escreve:

‖~v‖2 = v2
1 + v2

2 + v2
3

ou em notação indicial:

‖~v‖2 = vi vi

1.2.2. Multiplicação de um escalar por um vetor. Sejam α um escalar
e ~v um vetor. Define-se o produto de α com ~v o vetor que tem a mesma direção de
~v e módulo igual a |α| ‖~v‖. Sua representação na base {~ei} é:

α~v = α vi ~ei = α v1 ~e1 + α v2 ~e2 + α v3 ~e3

1.2.3. Adição de vetores. Sejam ~v e ~u dois vetores quaisquer. A soma de
ambos é o vetor de componentes vi + ui na base {~ei}:

~v + ~u = vi ~ei + ui ~ei = (vi + ui)~ei

1.2.3.1. Propriedades da adição.
1.2.3.1.1. Associativa.

(~u + ~v) + ~w = ~u + (~v + ~w)

1.2.3.1.2. Comutativa. ~u + ~v = ~v + ~u

1.2.4. O vetor oposto. O oposto de um vetor ~v, denotado por −~v, é o vetor
de sentido contrário ao de ~v. Sua representação na base {~ei} é:

−~v = −vi ~ei

1.2.5. O delta de Kronecker δ. O delta de Kronecker (δij) é o coeficiente
de dois ı́ndices definido como:

δij =

{
0, i 6= j
1, i = j

Matricialmente ele se identifica com a matriz identidade:
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[δ] =

1 0 0
0 1 0
0 0 1


Seguem algumas regras associadas ao delta de Kronecker :

δii = 3

ai δij = aj

bij δij = bii = bjj

bik δkj = bij

bki δkj = bji

Observe nas expressões bik δkj e bki δkj que o δ de Kronecker “desaparece” perma-
necendo o coeficiente b com o ı́ndice mudo k substitúıdo pelo ı́ndice livre do delta
de Kronecker. Esta regra vale para quantos ı́ndices houver no coeficiente. Assim,
por exemplo:

cijml δmk = cijkl

cijlm δmk = cijlk

1.2.6. Produto escalar entre vetores. O produto escalar entre dois vetores
quaisquer, ~u e ~v, é por definição o escalar (o número):

~u · ~v = ‖~u‖‖~v‖ cos(~u, ~v)

A partir da definição de produto escalar, os elementos de uma base {~ei} verifi-
cam a seguinte identidade:

~ei · ~ej = δij

1.2.6.1. Propriedades do produto escalar.
1.2.6.1.1. Comutativa. ~u · ~v = ~v · ~u
1.2.6.1.2. Distributiva. ~u · (~v + ~w) = ~u · ~v + ~u · ~w
1.2.6.1.3. Multiplicação por um escalar. A multiplicação de um produto escalar

por um escalar verifica as seguintes identidades:

α~u · ~v = (α~u) · ~v = ~u · (α~v)

onde α é um escalar.
1.2.6.2. Componentes de um vetor na base {~ei}. As componentes de um vetor

~v na base {~ei} são as suas projeções em cada um dos elementos que a compõem:

vi = ~v · ~ei

Portanto, a componente vi do vetor ~v obtém-se pelo produto escalar entre ~v e o
elemento ~ei da base.

1.2.6.3. Representação do produto escalar na base {~ei}. Na representação da
base {~ei}, o produto escalar entre dois vetores ~u e ~v se escreve:

~u · ~v = (ui ~ei) · (vj ~ej) = ui vj ~ei · ~ej = ui vj δij = ui vi = u1 v1 + u2 v2 + u3 v3

ou seja, o produto escalar é soma do produto das componentes dos vetores na base.
1.2.6.3.1. Módulo de um vetor. O módulo de um vetor ~v é:

‖~v‖2 = ~v · ~v = vi vi = v2
1 + v2

2 + v2
3

1.2.7. O śımbolo de permutação ε. O śımbolo de permutação ε é empre-
gado, por exemplo, na representação do produto externo entre dois vetores por meio
da notação indicial. Ele é definido da seguinte forma:



1.2. REPRESENTAÇÃO DE VETORES NUMA BASE ORTONORMAL DEFINIDA POSITIVA 5

ε123 = ε231 = ε312 = 1

ε321 = ε213 = ε132 = −1

ε111 = ε112 = ε113 = ε121 = ε122 = · · · = ε322 = ε323 = ε332 = ε333 = 0

Como é dif́ıcil memorizar todas as possibilidades, a dica é:

(1) para ı́ndices repetidos o śımbolo de permutação é nulo;
(2) para ı́ndices não repetidos e na sequência anti-horária (· · · , 1, 2, 3, 1, 2, 3, · · · )

o śımbolo de permutação é igual a 1 (Fig. 1.3 à esquerda);
(3) para ı́ndices não repetidos e na sequência horária (· · · , 3, 2, 1, 3, 2, 1, · · · )

o śımbolo de permutação é igual a -1 (Fig. 1.3 à direita).

ou ainda:

εijk =

 +1, se i, j, k é uma permutação par de 1, 2, 3
−1, se i, j, k é uma permutação ı́mpar de 1, 2, 3
0 do contrário

Figura 1.3. Sequência anti-horária (esquerda) e horária (direita)
dos ı́ndices do śımbolo de permutação.

A seguinte propriedade é importante para operações com o ı́ndice de permuta-
ção:

εijk = εjki = εkij = −εkji = −εjik = −εikj
Para memorizar estas relações, a dica é:

(1) se os śımbolos de permutação comparados têm sequências de ı́ndices horá-
ria e horária ou anti-horária e anti-horária, então eles são iguais (Fig. 1.4
à esquerda);

(2) se os śımbolos de permutação comparados têm sequências de ı́ndices horá-
ria e anti-horária ou anti-horária e horária, então eles são opostos (Fig. 1.4
à direita).

Figura 1.4. Sequência anti-horária (esquerda) e horária (direita)
dos ı́ndices do śımbolo de permutação.

Seguem algumas identidades úteis entre o śımbolo de permutação e o delta de
Kronecker:
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εijm εklm = δik δjl − δil δjk
εimn εjmn = 2 δij

1.2.8. Produto externo entre vetores. Uma vez apresentado o śımbolo de
permutação, chegou o momento de aplicá-lo na obtenção do produto externo entre
dois vetores. Antes, porém, convém recordar que o produto externo entre dois veto-
res, ~v e ~u, é um vetor perpendicular a ambos vetores, de módulo ‖~v‖‖~u‖ sen (~v, ~u)
e sentido dado pela regra da mão direita ou do saca-rolha.

Um resultado útil é aquele que decorre da aplicação do produto externo aos
elementos de uma base ortonormal definida positiva {~ei}:

~e1 × ~e2 = ~e3

~e2 × ~e3 = ~e1

~e3 × ~e1 = ~e2

ou simplesmente, como pode ser verificado:

~ei × ~ej = εijk ~ek

1.2.8.1. Propriedades do produto externo.
1.2.8.1.1. Propriedade associativa. O produto externo é associativo, ou seja:

(~u× ~v)× ~w = ~u× (~v × ~w)

1.2.8.1.2. Propriedade distributiva. O produto externo é distributivo, ou seja:

~u× (~v + ~w) = ~u× ~v + ~u× ~w

1.2.8.1.3. Multiplicação por um escalar. A multiplicação de um produto externo
por um escalar verifica as seguintes identidades:

α~u× ~v = (α~u)× ~v = ~u× (α~v)

onde α é um escalar.
1.2.8.2. Componentes do produto externo numa base. As componentes do pro-

duto externo entre dois vetores quaisquer ~u e ~v na base {~ei} é deduzida a seguir:

~w = ~u× ~v = (ui ~ei)× (vj ~ej) = ui vj ~ei × ~ej = εijk ui vj ~ek

ou seja:

wi = εijk uj vk

1.3. Tensores

No estudo da mecânica dos sólidos é preciso trabalhar com tensões e deforma-
ções. Uma ferramenta matemática que facilita a análise de tensões e deformações
no sólido são os tensores. A seguir serão definidos os tensores, as suas componentes
na base {~ei} e algumas propriedades.

1.3.1. Definição de tensor. Tensor é um operador linear, T, que relaciona
um vetor qualquer ~v a um único vetor ~u = T ~v. Decorre de sua linearidade que:

T(α~v) = αT~v

T(~v + ~u) = T~v + T~u

T(α~v + β~u) = αT~v + βT~u
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Figura 1.5. Ilustração da definição de tensor.

1.3.2. Componentes de um tensor. Considere um tensor T e a base {~ei}.
Ao aplicar T a cada um dos elementos de {~ei}, obtêm-se três vetores, genericamente

expressos por ~ti = T~ei. Cada um destes três vetores tem componentes em {~ei}
dadas genericamente por:

~t1 = T~e1 = T11 ~e1 + T21 ~e2 + T31 ~e3 = Tj1 ~ej

~t2 = T~e2 = T12 ~e1 + T22 ~e2 + T32 ~e3 = Tj2 ~ej

~t3 = T~e3 = T13 ~e1 + T23 ~e2 + T33 ~e3 = Tj3 ~ej

ou simplesmente:

~ti = T~ei = T1i ~e1 + T2i ~e2 + T3i ~e3 = Tji ~ej

Os coeficientes T11, T12, T13, T21, · · · , T32, T33 representam univocamente o tensor T
e são as componentes dele na base {~ei}. Portanto, são 9 o número de componentes
de um tensor.

Figura 1.6. Vetores associados a cada vetor da base {~ei} (es-

querda) e componentes do vetor T~ei = ~ti (direita).

A componente Tij do tensor T é obtida por ~ei ·T~ej, cuja prova é feita a seguir.

~ei ·T~ej = ~ei · Tkj ~ek = Tkj ~ei · ~ek = Tkj δik = Tij

Um tensor pode ser representado por meio de uma matriz 3×3 cujos coeficientes
são as componentes do tensor na base {~ei}:

[T ] =

T11 T12 T13

T21 T22 T23

T31 T32 T33


Observe que os coeficientes da primeira coluna são as componentes do vetor T~e1,
os dasegunda as componentes de T~e2 e os da terceira as componentes de T~e3.

1.3.3. Componentes do vetor T ~v na base {~ei}. Como definido, um tensor
associa o vetor T ~v ao vetor ~v. Convém agora examinar as componentes de T ~v na
base {~ei} supondo conhecidas as componentes de T e ~v nessa mesma base.

T ~v = T(vj ~ej) = vj T~ej = vj Tij ~ei = Tij vj ~ei



8 1. VETORES E TENSORES

De onde se conclui que as componentes do vetor T ~v são iguais a Tij vj .
Matricialmente as componentes do vetor T ~v na base {~ei} são dadas pelo pro-

duto matricial [T] {v}:

{T ~v} =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 v1

v2

v3


1.3.4. Soma de tensores. O resultado da soma de dois tensores, T e S, é

por definição o tensor W = T + S que verifica W~v = (T + S)~v = T~v + S~v, para
qualquer vetor ~v. Suas componentes na base {~ei} são Wij = Tij + Sij , como se
monstra a seguir.

Wij = ~ei ·W~ej = ~ei · (T + S)~ej = ~ei · (T~ej + S~ej) = ~ei ·T~ej + ~ei · S~ej = Tij + Sij

Matricialmente a soma de dois tensores, T e S, é dada pela soma das matrizes
de tensores, ou seja, [T] + [S].

1.3.4.1. Propriedades da soma.
1.3.4.1.1. Propriedade comutativa. A soma entre tensores é comutativa:

T + S = S + T

1.3.4.1.2. Propriedade associativa. A soma entre tensores é associativa:

(R + S) + T = R + (S + T)

1.3.5. Produto de tensores. O resultado do produto de dois tensores, T e
S, é por definição o tensor W = TS que verifica W~v = (TS)~v = T(S~v), para
qualquer vetor ~v. Suas componentes na base {~ei} são Wij = (TS)ij = Tik Skj ,
como se monstra a seguir.

~ei ·W~ej = ~ei ·TS~ej = ~ei ·T(S~ej) = ~ei ·T(Skj ~ek) = Skj ~ei ·T~ek = Skj Tik = Tik Skj

Matricialmente o produto de dois tensores é dado pelo produto matricial [T] [S].
1.3.5.1. Propriedades do produto.
1.3.5.1.1. Propriedade associativa. O produto de tensores é associativo:

(RS)T = R(ST)

1.3.5.1.2. Propriedade distributiva. O produto de tensores é distributivo:

R(S + T) = RS + RT

O produto de tensores não é comutativo, ou seja, em geral :

TS 6= ST

1.3.6. O tensor identidade. O tensor identidade é aquele que para todo e
qualquer vetor ~v o próprio vetor ~v, ou seja, I ~v = ~v. Suas componentes na base {~ei}
são facilmente obtidas tendo em conta que as colunas da matriz de componentes são
as componentes do vetor I~ei = ~ei. Portanto, a matriz de componentes do tensor
identidade na base {~ei} é a matriz identidade:

[I] =

1 0 0
0 1 0
0 0 1


Uma propriedade facilmente demonstrável é:

T I = I T = T

para qualquer tensor T.

1.3.7. O tensor inverso. O tensor inverso de um tensor T, T−1, é por de-
finição aquele que verifica T T−1 = T−1 T = I, ou, matricialmente, [T] [T−1] =
[T−1] [T] = [I].
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Observe que se ~u = T ~v, então T−1 ~u = T−1 T ~v = I ~v = ~v, ou seja, o tensor
T−1 leva o vetor T ~v ao próprio vetor ~v.

As componentes do tensor T−1 na base {~ei} são os coeficientes da matriz
inversa de T, isto é, [T−1] = [T]−1.

1.3.8. O tensor transposto. O tensor transposto de um tensor T qualquer
é TT que, por definição, verifica ~u ·T ~v = ~v ·TT ~u, para quaisquer vetores ~u e ~v.

Se as componentes de T na base {~ei} são Tij , então as de TT são Tji, como
se demonstra a seguir. Como visto, as componentes de TT na base {~ei} são dadas
pelo produto escalar ~ei · TT ~ej, que pela definição de tensor transposto é igual a
~ej ·T~ei = Tji.

Matricialmente, a matriz do tensor transposto é a matriz transposta do tensor,
ou seja:

[TT] = [T]T =

T11 T21 T31

T12 T22 T32

T13 T23 T33


1.3.9. Os tensores simétrico e antissimétrico. Todo e qualquer tensor T

pode ser decomposto num tensor simétrico, S =
1

2
(T + TT), e num antissimétrico,

A =
1

2
(T−TT), e esta decomposição é única:

T =
1

2
(T + TT) +

1

2
(T−TT) = S + A

Suas componentes são:

Sij =
1

2
(Tij + Tji)

Aij =
1

2
(Tij − Tji)

Portanto, num tensor simétrico tem-se Sij = Sji e num antissimétrico Aij = −Aji

e, consequentemente, A11 = A22 = A33 = 0.
A matriz do tensor simétrico de T é, portanto:

[S] =
1

2
([T] + [T]T )

=



T11
1

2
(T12 + T21)

1

2
(T13 + T31)

1

2
(T21 + T12) T22

1

2
(T23 + T32)

1

2
(T31 + T13)

1

2
(T32 + T23) T33


e a do tensor antissimétrico:

[A] =
1

2
([T]− [T]T )

=



0
1

2
(T12 − T21)

1

2
(T13 − T31)

1

2
(T21 − T12) 0

1

2
(T23 − T32)

1

2
(T31 − T13)

1

2
(T32 − T23) 0


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1.3.10. O vetor dual de um tensor antissimétrico. O vetor dual, ~a, de
um tensor antissimétrico A é aquele que verifica A ~v = ~a × ~v para todo vetor ~v.
Suas componentes podem ser obtidas a partir da própria definição:

~ej ·A~ek = ~ej · (~a× ~ek) = ~ej · (al ~el × ~ek) = al ~ej · (~el × ~ek)

= εlkm al ~ej · ~em = εlkm al δjm = εlkj al = −εjkl al
Multiplicando a equação acima por εjki obtém-se:

εjkiAjk = −εjki εjkl al = −εikj εlkj al = −2 δil al = −2ai

Permutando nesta última equação os ı́ndices do śımbolo de permutação obtém-se,
finalmente:

ai = −1

2
εijkAjk

ou seja, as componentes do vetor dual do tensor antissimétrico A na base {~ei}.
Pode-se observar a partir da definição do vetor dual que o tensor antissimétrico

A leva qualquer vetor ~v a um outro vetor, A ~v, ortogonal a seu vetor dual ~a.

Figura 1.7. Vetor dual ~a do tensor antissimétrico A. Plano α
ortogonal ao vetor dual. Para qualquer vetor ~v, A ~v é paralelo ao
plano α.

1.3.11. O produto diádico de dois vetores. O produto diádico de dois

vetores, ~a e ~b, é um tensor ab que verifica para qualquer ~v a identidade ab ~v =

~a (~b · ~v). Pela definição o tensor ab associa a qualquer vetor um outro vetor na
direção do vetor ~a. Suas componentes são abij = ai bj , como se deduz a seguir:

abij = ~ei · ab~ej = ~ei · ~a (~b · ~ej) = ~ei · ak ~ek bj = ak bj ~ei · ~ek = ak bj δkj = ai bj

Matricialmente:

[ab] =

a1

a2

a3

 {
b1 b2 b3

}
Um caso importante é o do produto diádico entre os elementos da base {~ei}:

[e1e1] =

1 0 0
0 0 0
0 0 0

 , [e1e2] =

0 1 0
0 0 0
0 0 0

 , · · · [e3e3] =

0 0 0
0 0 0
0 0 1


Este resultado permite uma maneira alternativa de representar o tensor T como
Tij eiej.
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1.3.12. O traço de um tensor. O traço de um tensor produto diádico ab é

por definição o produto escalar dos vetores ~a e ~b, ou seja, trab = ~a ·~b. Como qual-
quer tensor pode ser representado em termos dos produtos diádicos dos elementos
da base {~ei}, o traço de um tensor T qualquer é trT = Tii, como se deduz a seguir:

tr T = tr (Tij eiej) = Tij tr eiej = Tij ~ei · ~ej = Tij δij = Tii

O traço, portanto, é a soma dos elementos da diagonal principal da matriz do tensor.

1.3.13. O tensor ortogonal Q. Um tensor ortogonal Q é aquele que por
definição mantém invariantes o comprimento e o ângulo entre dois vetores quaisquer,
ou seja, dados dois vetores quaisquer, ~v e ~u, o tensor Q faz com que:

~v · ~u = Q ~v ·Q ~u

Na equação acima, pode-se escrever que:

Q~ej ·Q~ei = ~ei ·QT Q~ej = ~ei · ~ej = δij

De onde se pode concluir que

QT Q = Q QT = I

Na rotação de um corpo ŕıgido, o comprimento e o ângulo entre dois segmen-
tos materiais quaisquer permanecem sempre o mesmo, são invariantes, de onde se
conclui que o tensor que realiza a rotação é um caso particular de tensor ortogo-
nal. Num corpo ŕıgido em rotação em torno de um eixo, todo segmento material
paralelo a esse eixo mantém-se paralelo ao eixo de rotação. Assim, todo tensor de
rotação R tem uma direção para a qual qualquer vetor orientado segundo ela não
sofre alteração de direção e módulo com a rotação. Seja ~e um vetor na direção do
eixo de rotação. Logo:

R~e = ~e

RT ~e = ~e

Subtraindo acima a segunda equação da primeira obtém-se (R−RT)~e = ~0. Como
R −RT é antissimétrico, tem-se para qualquer ~v que (R −RT) ~v = ~a × ~v, onde

~a é o vetor dual de R −RT. Portanto, ~a × ~e = ~0, ou seja, o vetor na direção do
eixo de rotação do tensor de rotação R é o vetor dual do seu tensor antissimétrico
R−RT.

1.3.14. Transformação de coordenadas entre dois sistemas cartesia-
nos ortogonais. Considere dois sistemas de coordenadas cartesianas ortogonais
{~ei} e {~e′i}. As duas bases se relacionam por meio de um tensor de rotação Q, pois
elas preservam comprimentos e ângulos, de modo que ~e′i = Q~ei = Qji ~ej.

O significado geométrico das componentes do tensor Q, Qij , fica evidente a
partir do seguinte desenvolvimento: Qij = ~ei ·Q~ej = ~ei · ~e′j = cos(~ei,~e

′
j). Portanto,

o coeficiente Qij é o cosseno diretor entre o elementos ~ei e ~e′j. Além disso, Q QT =

QT Q = I, por se tratar de um tensor de rotação.
Os coeficientes do tensor Q na base {~ei} formam a matriz de transformação

[Q] da base {~ei} para a {~e′i}, nessa ordem:

[Q] =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


Convém observar que a transformação inversa, da base {~e′i} para a {~ei}, é dada
pela transposta de [Q], [Q]T , pois:

QT ~e′i = QT Q~ei = I~ei = ~ei
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Exemplo 1.1. Obtenha a matriz de transformação entre as bases {~ei} e {~e′i}, que
é obtida






























