CAPITULO 1

Vetores e tensores

1.1. Notacao indicial

A notacao indicial é uma simplificacao da notagao de uma somatéria. Antes de
explicar a notagao indicial, convém definir mondémio, coeficiente e indice. Mondomio
é o termo de uma somatéria, sendo que cada monémio é o produto de um ou mais
coeficientes. Cada coeficiente pode possuir nenhum, um ou mais indices. Serd
convencionado aqui que os indices se posicionam a direita e embaixo do coeficiente.
Os #indices podem ser os numeros 1, 2 ou 3 e, quando representados por letras,
expressam implicitamente um desses trés numeros. Por exemplo, seja a somatoria
de 3 mondémios a; b; ( coeficiente a; multiplicado pelo coeficiente b;) com o indice
1 variando de 1 a 3:

3
Zai b = a1 by +asby + a3 bs (11)
i=1

Em notagao indicial esta somatéria se escreve simplesmente:

a;bj=ai1by +asby+asbs, 1 =1,2,3 (12)

Na notagao indicial subentende-se que o(s) indice(s) varia(m) de 1 a 3, ou seja,
pode-se simplesmente omitir ¢ = 1,2, 3 no final da expressao:

a;b; = a1 b1 +az by + asbs (13)
Esta ultima expressao é que melhor exprime a notacgao indicial, pois é a forma mais
simplificada de representar a somatdria entre as trés possibilidades acima.
Veja-se um outro exemplo:
3

ZTij bj = T;1 b1 + Ti2 by + T33 b3 (1.4)

j=1
Agora existem dois indices, i e j, ambos variando de 1 a 3. O primeiro serd chamado
indice livre e o segundo indice mudo. O indice mudo (neste exemplo j) é o que
perfaz a somatéria e sempre se repete uma unica vez no monémio. O indice livre
(neste exemplo, i) nunca se repete no mondémio. Na notacio indicial, o(s) {ndice(s)
ndo repetido(s) é(sao) denominado(s) indice(s) livre(s) e o(s) repetido(s) uma inica
vez é(sa0) denominados indice(s) mudo(s). No exemplo anterior, o resultado da
somatdria poderia ser denotado, seguindo a notacao indicial, como:

a; = Tij bj (15)
O coeficiente a; é o resultado da somatéria T;; b; para ¢ igual a 1, 2 ou 3. Nesta

dltima expressao o indice livre ¢ aparece nos dois membros, significando que hé 3
equagoes e cada uma delas tem uma somatéria em j:

a1 =Ti1 by + Ti2ba + T13 b3
ag = Ty by + Toa by + T3 b3
az = T31 b1 + T3 bo + T33 b3
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Um monémio pode ter mais de um indice livre e mais de um indice mudo.
Por exemplo, na expressao a seguir ha nenhum indice livre e dois indices mudos,
significando que hé duas somatérias, uma no indice mudo ¢ e outra no j:

3 3
Tij Sij = Z ZTij Sij
i=1 j=1
=T11 811 + T2 S12 + T13 S13 + To1 S21 + T2z Saz + Ta3 Sas + T31 S31 + T3 Sa2 + T32 S33

(1.6)

Observe-se que nao existe nenhum indice livre na notacao indicial acima. Por-

tanto, nao pode ser atribuido nenhum indice ao resultado desta somatéria, como

no exemplo anterior.

1.1.1. Propriedades da adicao de mondémios.
1.1.1.1. Associativa. (@i + b)) + ¢ = ai + (b + ;)

1.1.1.2. Comutativa. a; +b; = b; + a;
1.1.2. Propriedades da multiplicagao de monémios.

1.1.2.1. Comutativa. B
a; bj = bj a;

1.1.2.2. Associativa. (a; b;) cx = ai(bj cx)

1.1.2.3. Distributiva. ai(bj i cj) = aib; +aic;

1.2. Representagao de vetores numa base ortonormal definida positiva

Uma base ortonormal de vetores {€;} = {€1,€2,€3} é aquela em que os trés
vetores sao ortogonais entre si e tém médulo unitdrio. A base ainda é dita definida
positiva se sao verificadas as seguintes relagoes entre os elementos da base:

—
e1
FiGURA 1.1. Base ortonormal de vetores definida positiva.

De aqui em diante esta base de vetores serd denotada simplesmente por {€;}.

Um vetor v pode ser representado numa base {&;} por meio das suas compo-
nentes nas dire¢oes dos trés elementos dessa base. As componentes de V na base
S0 as suas projegoes nas trés diregoes:

vy = V- 81 = ||V| cos(V, €1)
vy =V - 3 = ||V]| cos(V, €2)
vz =V - &3 = V|| cos(V, €3)
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onde ||V|| denota o médulo de v, (¥, ;) e cos(V, €;) s@o o angulo diretor e o cosseno
diretor, respectivamente, entre v e o elemento €; da base.

F1auraA 1.2. Componentes do vetor V na base {€;}.

Em notagao indicial, um vetor pode ser representado na base {€;} como:
G:Uiéi :Ulél +0262 +Ugé3
Um vetor costuma ser escrito matricialmente por meio de uma matriz coluna
3 x 3 cujos coeficientes sdo as componentes do vetor na base {€;}:

U1

{v} = Qv

U3
1.2.1. Mdédulo de um vetor. O médulo de um vetor v é por defini¢do o seu
comprimento. Na representagao na base {€;} o médulo se escreve:
=112 2 2 2
VI = vi +v3 + 03
ou em notagao indicial:
=12
V1" = v vi

1.2.2. Multiplicagcao de um escalar por um vetor. Sejam « um escalar
e V um vetor. Define-se o produto de o com V o vetor que tem a mesma direcdo de
Vv e médulo igual a |a ||V]|. Sua representagao na base {€;} é:

avV =av;6 = av] €1 + avy €y + avsz€s

1.2.3. Adicao de vetores. Sejam V e U dois vetores quaisquer. A soma de
ambos é o vetor de componentes v; + u; na base {&;}:
\7—|—ﬁ:vié’i—|—uié’i = (U¢+Ui)éi
1.2.3.1. Propriedades da adi¢ao.

1.2.3.1.1. Associativa. (f+¥)+ W = G+ (F+ W)

1.2.3.1.2. Comutativa. d1v=vii
1.2.4. O vetor oposto. O oposto de um vetor v, denotado por —v, é o vetor
de sentido contrério ao de V. Sua representacdo na base {&;} é:
—\7 = —V; 6i
1.2.5. O delta de Kronecker J. O delta de Kronecker (0;;) é o coeficiente
de dois indices definido como:
0, i#7]
i) — { #J

1, i=j

Matricialmente ele se identifica com a matriz identidade:
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1 0 0
[)=10 1 0
0 0 1
Seguem algumas regras associadas ao delta de Kronecker:
0ii =3
a; 61‘]’ = aj
bij dij = bii = by
bik Okj = bij
bri Ok = bji

Observe nas expressoes by, dp; € by; dr; que o d de Kronecker “desaparece” perma-
necendo o coeficiente b com o indice mudo k substituido pelo indice livre do delta
de Kronecker. Esta regra vale para quantos indices houver no coeficiente. Assim,
por exemplo:

Cijml 6’mk = Cijkl

Cijim Omk = Cijlk

1.2.6. Produto escalar entre vetores. O produto escalar entre dois vetores
quaisquer, U e V, é por defini¢do o escalar (o ntdmero):

- ¥ = ][] cos(d, %)
A partir da definigdo de produto escalar, os elementos de uma base {&;} verifi-
cam a seguinte identidade:
€ - € = ;5
1.2.6.1. Propriedades do produto escalar.
1.2.6.1.1. Comutativa.

—

a-v=v-u

1.2.6.1.2. Distributiva. G- (F4W) —d-v+i-w

1.2.6.1.3. Multiplicagao por um escalar. A multiplicagao de um produto escalar

por um escalar verifica as seguintes identidades:
ald-v=(ad)-v=1u-(aV)

onde « é um escalar.

1.2.6.2. Componentes de um vetor na base {€;}. As componentes de um vetor
V na base {€;} sdo as suas projecoes em cada um dos elementos que a compoem:

v; = \_; . 6;

Portanto, a componente v; do vetor v obtém-se pelo produto escalar entre vV e o
elemento €; da base.

1.2.6.3. Representagdo do produto escalar na base {€;}. Na representacio da
base {€;}, o produto escalar entre dois vetores U e V se escreve:

u-v= (uiei) . (vjej) = U; Vj € - €j :uivjéij = U; V; = U1 V1 + U2 V2 + U3 V3

ou seja, o produto escalar é soma do produto das componentes dos vetores na base.

1.2.6.3.1. Médulo de um vetor. O médulo de um vetor v é:

|V[I? =¥V =v;v; = v} +v3 + 03

1.2.7. O simbolo de permutagao ¢. O simbolo de permutagao ¢ é empre-
gado, por exemplo, na representacao do produto externo entre dois vetores por meio
da notacao indicial. Ele é definido da seguinte forma:
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€123 = €231 = €312 = 1
€321 = €213 = €132 = —1
€111 = €112 = €113 = €121 = €122 = -+ = €322 = €323 = €332 = €333 = 0
Como ¢ dificil memorizar todas as possibilidades, a dica é:
(1) para indices repetidos o simbolo de permutagao é nulo;
(2) para indices nao repetidos e na sequéncia anti-horéria (--- ,1,2,3,1,2,3,---)
o sfmbolo de permutacao é igual a 1 (Fig. 1.3 & esquerda);
(3) para indices nao repetidos e na sequéncia hordria (---,3,2,1,3,2,1,--)
o simbolo de permutacao é igual a -1 (Fig. 1.3 & direita).
ou ainda:
+1, se 7, j, k é uma permutacao par de 1,2,3
Eijk = —1, se 1, 4, k é uma permutacao impar de 1,2, 3
0 do contrario

oY

FIGURA 1.3. Sequéncia anti-horaria (esquerda) e horaria (direita)
dos indices do simbolo de permutacao.

A seguinte propriedade é importante para operacoes com o indice de permuta-
cao:

€ijk = €jki = €kij = —E€kji = —Ejik = —Eikj
Para memorizar estas relagoes, a dica é:

(1) se os simbolos de permutagéo comparados tém sequéncias de indices hora-
ria e hordria ou anti-hordria e anti-hordria, entao eles sao iguais (Fig. 1.4
a esquerda);

(2) se os simbolos de permutacao comparados tém sequéncias de indices hora-
ria e anti-horéria ou anti-horaria e horéria, entao eles sdo opostos (Fig. 1.4
a direita).

FIGURA 1.4. Sequéncia anti-horaria (esquerda) e horaria (direita)
dos indices do simbolo de permutacao.

Seguem algumas identidades uteis entre o simbolo de permutacao e o delta de
Kronecker:



6 1. VETORES E TENSORES

Eijm Ekim = Oik 051 — i1 Ok

Eimn Ejmn = 2 67,'j

1.2.8. Produto externo entre vetores. Uma vez apresentado o simbolo de
permutagao, chegou o momento de aplicéd-lo na obtencao do produto externo entre
dois vetores. Antes, porém, convém recordar que o produto externo entre dois veto-
res, V e U, é um vetor perpendicular a ambos vetores, de médulo ||V||||d]| sen (V, @)
e sentido dado pela regra da mao direita ou do saca-rolha.

Um resultado 1til é aquele que decorre da aplicagao do produto externo aos
elementos de uma base ortonormal definida positiva {€;}:

61 X 62 = 63
62 X 63 =ex

é3><61=92

ou simplesmente, como pode ser verificado:

€; X €5 = &k €k

1.2.8.1. Propriedades do produto externo.
1.2.8.1.1. Propriedade associativa. O produto externo é associativo, ou seja:

(AxV)xw=1ux(VxWw)

1.2.8.1.2. Propriedade distributiva. O produto externo é distributivo, ou seja:

UX (V+W)=uUxvV4+uxw
1.2.8.1.3. Multiplicagao por um escalar. A multiplicacao de um produto externo
por um escalar verifica as seguintes identidades:
aui X V= (al)xvV=1ux(aV)
onde o é um escalar.

1.2.8.2. Componentes do produto externo numa base. As componentes do pro-
duto externo entre dois vetores quaisquer U e V na base {€;} é deduzida a seguir:

WZﬁXGZ(Uiéi) X (Ujé'j):uivjéi xé’jzaijkuivjék
ou seja:

Wy = E4jk Uj Vg

1.3. Tensores

No estudo da mecénica dos solidos é preciso trabalhar com tensoes e deforma-
coes. Uma ferramenta matematica que facilita a analise de tensoes e deformagoes
no solido séo os tensores. A seguir serdo definidos os tensores, as suas componentes
na base {6;} e algumas propriedades.

1.3.1. Definigao de tensor. Tensor é um operador linear, T, que relaciona
um vetor qualquer v a um unico vetor i = T V. Decorre de sua linearidade que:

T(aV) = aTV
T(V+d) =Tv+Tid
T(av + pu) = oTV + fTu
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v/ T
/:>/G;Ti7

Figura 1.5. Tlustragao da definicao de tensor.

1.3.2. Componentes de um tensor. Considere um tensor T e a base {€;}.
Ao aplicar T a cada um dos elementos de {&;}, obtém-se trés vetores, genericamente
expressos por t; = T€;. Cada um destes trés vetores tem componentes em {€;}
dadas genericamente por:
t; =Té& =116 + T € + T3 €3 = Tj1 €j

—

to =T €y =T1261 + Thy €3 + T52 63 = T2 €
ty = T €3 = T13€1 + Tp3 €2 + T33 €3 = T)j3 €;
ou simplesmente:
t; = T & = T1; €1 + Tp; 62 + 13, €3 = T); €j
Os coeficientes 111, T2, T13, 101, - -+, T32, T33 representam univocamente o tensor T

e sdo as componentes dele na base {€;}. Portanto, sdo 9 o nimero de componentes
de um tensor.

-

t;

FIGURA 1.6. Vetores associados a cada vetor da base {€;} (es-
querda) e componentes do vetor T &; = t; (direita).

A componente T;; do tensor T é obtida por €; - T €;, cuja prova é feita a seguir.

ej - Tej = €; ~Tkjek = Tkjei c ek = Tkjéik = Tij
Um tensor pode ser representado por meio de uma matriz 3 x 3 cujos coeficientes
sdo as componentes do tensor na base {€;}:

T T2 Tis
[T]= |T21 Toa Tos
T31 T3z 133

Observe que os coeficientes da primeira coluna sdo as componentes do vetor T €7,
os dasegunda as componentes de T €3 e os da terceira as componentes de T €3.

1.3.3. Componentes do vetor T v na base {€;}. Como definido, um tensor
associa o vetor T v ao vetor V. Convém agora examinar as componentes de T V na
base {€;} supondo conhecidas as componentes de T e V nessa mesma base.

Tv = T(vjej) =y Tej :vaijei :Tijvjei
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De onde se conclui que as componentes do vetor T v sao iguais a T;; v;.
Matricialmente as componentes do vetor T v na base {€;} sao dadas pelo pro-
duto matricial [T]{v}:
Ty T2 Tis U1
{TV} = |To1 T Taz| 02
T31 T3 T33| |vs

1.3.4. Soma de tensores. O resultado da soma de dois tensores, T e S, é
por definigdo o tensor W = T + S que verifica WV = (T + S)V = TV + SV, para
qualquer vetor V. Suas componentes na base {€;} sdo W;; = T;; + S;;, como se
monstra a seguir.

Wij :éi~Wéj :él(T+S)6J :él(TéJ -‘rSé'J) :éi T6J+éISéJ :Tij—FSij

Matricialmente a soma de dois tensores, T e S, é dada pela soma das matrizes
de tensores, ou seja, [T] + [S].

1.3.4.1. Propriedades da soma.

1.3.4.1.1. Propriedade comutativa. A soma entre tensores é comutativa:

T+S=S+T
1.3.4.1.2. Propriedade associativa. A soma entre tensores é associativa:
R+S)+T=R+(S+T)

1.3.5. Produto de tensores. O resultado do produto de dois tensores, T e
S, é por defini¢do o tensor W = TS que verifica WV = (TS)V = T(SV), para
qualquer vetor V. Suas componentes na base {€;} sao W;; = (TS)ij = Tik Skj,
como se monstra a seguir.
éi . Wé_l = éi . TSéJ = éi . T(SéJ) = éi . T(Skj ék) = Skj éi . Ték = Skj ,Tik = Tik Skj

Matricialmente o produto de dois tensores é dado pelo produto matricial [T] [S].

1.3.5.1. Propriedades do produto.
1.3.5.1.1. Propriedade associativa. O produto de tensores é associativo:

(RS)T = R(ST)
1.3.5.1.2. Propriedade distributiva. O produto de tensores é distributivo:
R(S+T)=RS+RT
O produto de tensores nao é comutativo, ou seja, em geral:

TS +# ST

1.3.6. O tensor identidade. O tensor identidade é aquele que para todo e
qualquer vetor V o préprio vetor V, ou seja, IV = V. Suas componentes na base {€;}
sao facilmente obtidas tendo em conta que as colunas da matriz de componentes sao
as componentes do vetor I&; = &;. Portanto, a matriz de componentes do tensor
identidade na base {€;} é a matriz identidade:

1 00

=10 1 0

0 0 1
Uma propriedade facilmente demonstravel é:
TI=IT=T

para qualquer tensor T.

1.3.7. O tensor inverso. O tensor inverso de um tensor T, T, é por de-
finicio aquele que verifica TT-! = T~ T = I, ou, matricialmente, [T][T™'] =
[T~ [T] = [1].
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Observe que se i = TV, entdo T 'ii = T-1 TV = IV = V¥, ou seja, o tensor
T~ leva o vetor TV ao préprio vetor V.

As componentes do tensor T~ na base {€;} sdo os coeficientes da matriz
inversa de T, isto é, [T™!] = [T]~".

1.3.8. O tensor transposto. O tensor transposto de um tensor T qualquer
é TT que, por definicdo, verifica - TV = v - TT i, para quaisquer vetores G e V.

Se as componentes de T na base {&;} sdo T;;, entao as de TT séo T};, como
se demonstra a seguir. Como visto, as componentes de TT na base {&;} sdo dadas
pelo produto escalar & - TT €;, que pela definicio de tensor transposto é igual a
& -Té& =Tj.

Matricialmente, a matriz do tensor transposto é a matriz transposta do tensor,
ou seja:

T To1 T
TT =[T)" = |Th2 Too Tse
Tz Ths 1T33

1.3.9. Os tensores simétrico e antissimétrico. Todo e qualquer tensor T

1
pode ser decomposto num tensor simétrico, S = §(T +TT), e num antissimétrico,
1
A= §(T —T7T), e esta decomposigio é nica:

T=%(T+TT)+%(T—TT)=S+A

Suas componentes sao:

1
Sij = 5(Tij + Tji)
1
Ay = 5 (Ti; = Tji)
Portanto, num tensor simétrico tem-se S;; = Sj; e num antissimétrico A;; = —A;;

e, consequentemente, Aj; = Agg = Azz = 0.
A matriz do tensor simétrico de T é, portanto:

1
[5] = 5[]+ [T]")
1 1
T §(T12 +T51) §(T13 + T51)
§(T21 + Th2) 1o §(T23 + T39)
1 1
§(T31 + T'3) §(T32 + Th3) T33
e a do tensor antissimétrico:
1
[A] =5 (T - [T]")
1 1
0 §(T12 —T51) §(T13 —T31)
_ 1
T | 2 (To — Tho) 0 §(T23 — T39)
1 1
§(T31 —Th3) §(T32 — Ts3) 0
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1.3.10. O vetor dual de um tensor antissimétrico. O vetor dual, a, de
um tensor antissimétrico A é aquele que verifica AV = a X V para todo vetor V.
Suas componentes podem ser obtidas a partir da prépria definigao:

€ - A6k =6;-(dx&Ek)=¢6; (a6 x€k)=a;€j- (€ X k)
= E€lkm A1 €j * €m = Elkm AL Ojm = Eikj Al = —EjkL A
Multiplicando a equagao acima por €;x; obtém-se:
EjkiAjk = —€jki Ejk1 A = —Eikj Eukj @ = —205 ap = —2a;
Permutando nesta ultima equacgao os indices do simbolo de permutacao obtém-se,
finalmente:
a;i = —5€ijrAjk
ou seja, as componentes do vetor dual do tensor antissimétrico A na base {&;}.

Pode-se observar a partir da definigao do vetor dual que o tensor antissimétrico

A leva qualquer vetor v a um outro vetor, A v, ortogonal a seu vetor dual a.

FIGURA 1.7. Vetor dual a do tensor antissimétrico A. Plano «
ortogonal ao vetor dual. Para qualquer vetor v, A v é paralelo ao
plano a.

1.3.11. O produto diddico de dois vetores. O produto diddico de dois
vetores, & e b, é um tensor ab que verifica para qualquer ¥ a identidade ab v =
5(6 - V). Pela definigdo o tensor ab associa a qualquer vetor um outro vetor na
diregdo do vetor &. Suas componentes sao ab;; = a; b;, como se deduz a seguir:

abij = éi-abéj = élﬁ(géJ) Zéi-akékbj = akbjéi-ék = akbjékj = aibj
Matricialmente:

a
[ab] = ¢ az p {b1 by b3}
as

Um caso importante ¢ o do produto diddico entre os elementos da base {€;}:

1 00 010 0 0 0
[6161] =0 0 O s [6162] =10 0 O PR [6363] =0 0 O
0 0 0 0 0 0 0 0 1

Este resultado permite uma maneira alternativa de representar o tensor T como
Tij €;ej.
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1.3.12. O trago de um tensor. O trago de um tensor produto diddico ab é
por definigdo o produto escalar dos vetores a e b, ou seja, trab = a-b. Como qual-
quer tensor pode ser representado em termos dos produtos diddicos dos elementos
da base {€;}, o trago de um tensor T qualquer é tr T = Tj;, como se deduz a seguir:

tr T = tr (Tij eiej) = Tij tr eje; = Tij ;- éj = Tij (51']' =T

O trago, portanto, é a soma dos elementos da diagonal principal da matriz do tensor.

1.3.13. O tensor ortogonal Q. Um tensor ortogonal Q é aquele que por
definicdo mantém invariantes o comprimento e o angulo entre dois vetores quaisquer,
ou seja, dados dois vetores quaisquer, V e U, o tensor Q faz com que:

v-ui=Qv-Qu
Na equagao acima, pode-se escrever que:
Q&- Q& =6 -QTQé =6 -6 =10

De onde se pode concluir que

Q'Q=QQ" =1

Na rotacao de um corpo rigido, o comprimento e o angulo entre dois segmen-
tos materiais quaisquer permanecem sempre o mesmo, sao invariantes, de onde se
conclui que o tensor que realiza a rotacao é um caso particular de tensor ortogo-
nal. Num corpo rigido em rotagdo em torno de um eixo, todo segmento material
paralelo a esse eixo mantém-se paralelo ao eixo de rotacdo. Assim, todo tensor de
rotacao R tem uma direcao para a qual qualquer vetor orientado segundo ela nao
sofre alteragdo de diregdo e médulo com a rotagdo. Seja € um vetor na direcao do
eixo de rotacao. Logo:

Reé=¢€
T

R

=€

e}

Subtraindo acima a segunda equacio da primeira obtém-se (R —RT)& = 0. Como
R — RT ¢ antissimétrico, tem-se para qualquer v que (R — RT)V = & x ¥, onde
& é o vetor dual de R — RT. Portanto, & x € = 0, ou seja, o vetor na dire¢io do

eixo de rotacao do tensor de rotacao R é o vetor dual do seu tensor antissimétrico
R-RT.

1.3.14. Transformagao de coordenadas entre dois sistemas cartesia-
nos ortogonais. Considere dois sistemas de coordenadas cartesianas ortogonais
{€;} e {€l}. As duas bases se relacionam por meio de um tensor de rotagao Q, pois
elas preservam comprimentos e angulos, de modo que €, = Q €; = Qj; €j.

O significado geométrico das componentes do tensor Q, @Q;;, fica evidente a
partir do seguinte desenvolvimento: @Q;; = €;- Q€; = € - é’J’- = cos(€;, é'Jf). Portanto,
o coeficiente Q;; é o cosseno diretor entre o elementos €; e é'J'-. Além disso, Q QT =
QT Q =1, por se tratar de um tensor de rotacio.

Os coeficientes do tensor Q na base {€;} formam a matriz de transformacdo
[Q] da base {€;} para a {€}}, nessa ordem:

Qu Q12 Qi3
Q= [Q21 Q22 Q23
Q31 Q32 @33

Convém observar que a transformacéo inversa, da base {€;} para a {€;}, é dada
pela transposta de [Q], [Q]T, pois:

T = T A = - -
Q & =Q Q& =1& =6
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Exemplo 1.1. Obtenha a matriz de transformacéo entre as bases {€;} e {&}}, que
¢ obtida
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