UFPR 100 Anos 1912 - 2012

UNIVERSIDADE FEDERAL DO PARANÁ

CURSO DE ENGENHARIA MECÂNICA

TMEC-001 Cálculo Numérico

Professor Luciano Kiyoshi Araki

(sala 7-30/Lena-2, lucianoaraki@gmail.com, fone: 3361-3126)

Internet: http://ftp.demec.ufpr.br/disciplinas/TMEC001/Prof.Luciano_Araki

LISTA DE EXERCÍCIOS 01 - Dicas e respostas de alguns exercícios

1. Obtenha o polinômio de Taylor de grau três (três primeiros termos não nulos) $P_3(x)$, em torno de $x_0 = 0$, para as seguintes funções. Avalie, então, as funções, f(x), e os respectivos polinômios de Taylor, $P_3(x)$, para x = 0.1 e x = 1:

(a)
$$f(x) = \sin(x) \cos(x)$$

$$P_3(x) = x - \frac{4x^3}{3!}$$

(b)
$$f(x) = xe^{x}$$

$$P_3(x) = x + x^2 + \frac{x^3}{2}$$

(c)
$$f(x) = \tan(x)$$

$$P_3(x) = x + \frac{2x^3}{3!}$$

Avaliação de f(x = 0,1):

Valor exato: $f(0,1) = \tan(0,1) = 0,100347$

Valor aproximado: $P_3(0,1) = 0.1 + \frac{2(0,1)^3}{3!} = 0.100333$

Avaliação de f(x = 1):

Valor exato: $f(1) = \tan(1) = 1,557408$

Valor aproximado: $P_3(1) = 1 + \frac{2(1)^3}{3!} = 1,666667$

- 2. Use o Teorema de Taylor com n=2 (dois termos) para provar que a desigualdade $1+x< e^x$ é válida para todos os números reais, exceto x=0
- Considere a seguinte função:

$$f(x) = \begin{cases} 5x^2 + x - 10, & \text{se } x \le 2\\ x^3 + 2x^2 + cx, & \text{se } x > 2 \end{cases}$$

(a) Determine o valor de c de modo que a função seja contínua em todo o domínio real.

$$C = -2$$

(b) Calcule a derivada da função f(x), empregando a definição de derivada, para todo o domínio real. Considere o valor de c calculado no item (a). A função f'(x) resultante é contínua?

A função resultante não é contínua.

4. Encontre maneiras de evitar a perda de algarismos significativos nos cálculos a seguir:

(a)
$$\sqrt{x^2+1}-1$$

Faça operações multiplicando e dividindo pelo conjugado.

(b) $\log(x) - \log(y)$

Regras de operações com logaritmos

(c) sinh(x) - tanh(x)

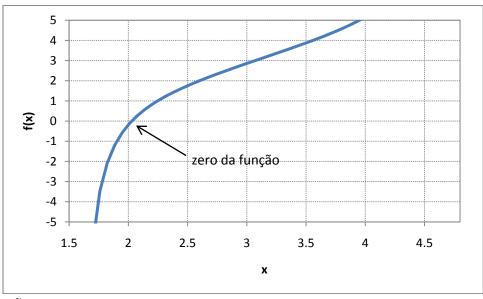
Usar definição de sinh(x) e de tanh(x) com exponenciais.

- 5. Conceitue:
- (a) Overflow
- (b) Underflow
- (c) Perda de algarismos significativos
- (d) Acurácia
- (e) Precisão
- 6. Descreva os passos que constituem o método da bisseção. Para que situações o método da bisseção pode ser empregado?
- 7. Apresente as semelhanças e diferenças entre os métodos da bisseção e da falsa posição.
- 8. Como funciona o método de ponto fixo simples?
- 9. Quais as semelhanças e diferenças entre os métodos de Newton e da secante?
- 10. Encontre as raízes (zeros) das seguintes funções, nos intervalos dados, através dos métodos gráfico, da bisseção, da falsa posição, de Newton e da secante. Com base no resultado gráfico, determine intervalos para a possível solução, no caso do método da bisseção ou estimativa(s) inicial(is) para os

métodos de Newton e da secante. Note que, para alguns casos, as funções tendem ao infinito para algum dos limites dos intervalos fornecidos. Realize 3 iterações para cada método.

a)
$$f(x) = x + \tan(x)$$
, $\left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$

Graficamente:



Método da bisseção:

Admitindo-se os seguintes valores iniciais para o intervalo: $a_0 = 1.9$ e $b_0 = 2.1$, tem-se f(1.9) = -1.027098 e f(2.1) = 0.390153. Como a função é contínua no intervalo e existe uma mudança de sinais, pode-se empregar tal intervalo como intervalo inicial para o método da bisseção. A equação iterativa na qual se baseia o método da bisseção é

$$c_i = a_{i-1} + \frac{b_{i-1} - a_{i-1}}{2}$$

Ao se empregar o algoritmo relativo ao método da bisseção, tem-se os seguintes resultados, apresentados na tabela a seguir:

	T	<u>'</u>
Iteração	Solução	Erro relativo
iteração	numérica	LITOTCIALIVO
1	2,000000000000	
2	2,050000000000	0,024390243902
3	2,025000000000	0,012345679012
4	2,037500000000	0,006134969325
5	2,031250000000	0,003076923077
6	2,028125000000	0,001540832049
7	2,029687500000	0,000769822941
8	2,028906250000	0,000385059684
9	2,028515625000	0,000192566917
10	2,028710937500	0,000096274189

Método da falsa posição

Para o método da falsa posição, foi empregado o mesmo intervalo inicial utilizado para o método da bisseção.

Iteração	Solução	Erro relativo
	numérica	
1	2,044942220557	
2	2,032510860429	0,006116257665
3	2,029632218209	0,001418307314

4	2,028961772946	0,000330437602
5	2,028805414618	0,000077069159

Método de Newton

Como estimativa inicial, empregou-se $x_0 = 2$.

empregou se m		
Iteração	Solução numérica	Erro relativo
0	2,000000000000	
1	2,027314579151	0,013473281074
2	2,028754298129	0,000709656649
3	2,028757838089	0,000001744891

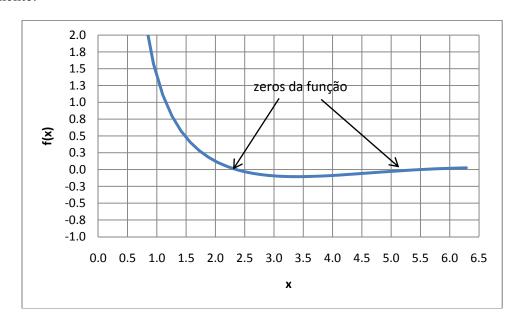
Método da secante

Como estimativas iniciais, empregou-se $x_0 = 1.9$ e $x_1 = 2.1$.

is, empregou se s	$v_0 = v_1 = v_1 = v_1$	
l+orooão	Solução	Erro relativo
Iteração	numérica	ETTOTEIALIVO
0	1,900000000000	
1	2,100000000000	
2	2,044942220557	0,026923880239
3	2,026885056630	0,008908824834
4	2,028808913758	0,000948269261
5	2,028758000585	0,000025095735

b)
$$f(x) = \frac{\text{sen}(x) + \cos(x)}{x^2}$$
, (0; 2π)

Graficamente:



Método da bisseção (primeira raiz):

Empregando-se o intervalo inicial $a_0 = 2.0$ e $b_0 = 2.5$, tem-se os seguintes resultados:

Iteração	Solução numérica	Erro relativo
1	2,2500000000000	
2	2,375000000000	0,052631578947
3	2,312500000000	0,027027027027

4	2,343750000000	0,013333333333
5	2,359375000000	0,006622516556
6	2,351562500000	0,003322259136
7	2,355468750000	0,001658374793
8	2,357421875000	0,000828500414
9	2,356445312500	0,000414421881
10	2,355957031250	0,000207253886
11	2,356201171875	0,000103616206
12	2,356079101563	0,000051810787

Método da bisseção (segunda raiz)

Empregando-se o intervalo inicial $a_0 = 5.0$ e $b_0 = 5.5$, tem-se os seguintes resultados:

	0 , ,	U
Iteração	Solução	Erro relativo
iteração	numérica	LITOTEIativo
1	5,250000000000	
2	5,375000000000	0,023255813953
3	5,437500000000	0,011494252874
4	5,468750000000	0,005714285714
5	5,484375000000	0,002849002849
6	5,492187500000	0,001422475107
7	5,496093750000	0,000710732054
8	5,498046875000	0,000355239787
9	5,497070312500	0,000177651448
10	5,497558593750	0,000088817835

Método da falsa posição (primeira raiz):

Utilizando-se o mesmo intervalo inicial do método da bisseção (primeira raiz), obtém-se:

Iteração	Solução numérica	Erro relativo
1	2,395875740468	
2	2,366797719428	0,012285807444
3	2,359002986809	0,003304248728
4	2,356936641411	0,000876708080
5	2,356390483687	0,000231777258
6	2,356246241315	0,000061217020

Método da falsa posição (segunda raiz):

Utilizando-se o mesmo intervalo inicial do método da bisseção (segunda raiz), obtém-se:

Itoração	Solução	Erro rolativo
Iteração	numérica	Erro relativo
1	5,498092256899	
2	5,497829169647	0,000047852933

Método de Newton (primeira raiz):

Como estimativa inicial, empregou-se $x_0 = 2,2$.

Iteração	Solução numérica	Erro relativo
0	2,200000000000	
1	2,383788600367	0,077099370447
2	2,356812186664	0,011446144863

3	2,356194813728	0,000262021176
4	2,356194490192	0,000000137313

Método de Newton (segunda raiz):

Como estimativa inicial, empregou-se $x_0 = 5.3$.

	•	
Iteração	Solução	Erro relativo
iteração	numérica	ETTO TETALIVO
0	5,300000000000	
1	5,516803097670	0,039298683283
2	5,497915077865	0,003435487733
3	5,497787149735	0,000023269022

Método da secante (primeira raiz):

Como estimativas iniciais, empregou-se $x_0 = 2.0$ e $x_1 = 2.5$.

s, empregea se m) 2)00101 2)01	
Iteração	Solução	Erro relativo
iteração	numérica	LITOTEIativo
0	2,000000000000	
1	2,500000000000	
2	2,395875740468	0,043459791246
3	2,350952677315	0,019108450623
4	2,356373560246	0,002300519333
5	2,356195285300	0,000075662211

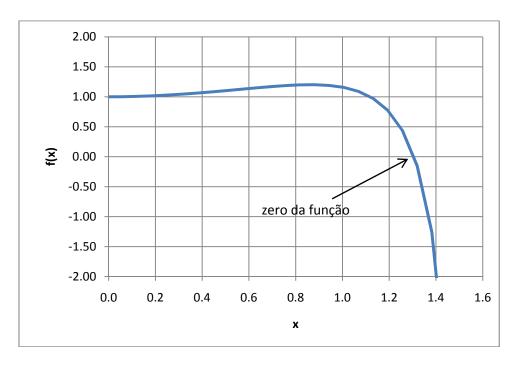
Método da secante (segunda raiz):

Como estimativas iniciais, empregou-se $x_0 = 5.0$ e $x_1 = 5.5$.

110, 01	ipregea se m	$\frac{1}{2}$	0,0.	
	Iteração	Soluç		Erro relativo
	rteração	numér	ica	LITOTCIACIVO
	0	5,0000000	000000	
	1	5,5000000	000000	
	2	5,4980922	256899	0,000346982737
	3	5,4977868	397827	0,000055542181

c)
$$f(x) = e^x - \tan(x), \ (0; \frac{\pi}{2})$$

Graficamente:



Método da bisseção:

Empregando-se o intervalo inicial $a_0 = 1,2$ e $b_0 = 1,4$, tem-se os seguintes resultados:

Solução	Erro relativo
numérica	LITOTEIALIVO
1,300000000000	
1,350000000000	0,037037037037
1,325000000000	0,018867924528
1,312500000000	0,009523809524
1,306250000000	0,004784688995
1,309375000000	0,002386634845
1,307812500000	0,001194743130
1,307031250000	0,000597728631
1,306640625000	0,000298953662
1,306445312500	0,000149499178
1,306347656250	0,000074755177
	numérica 1,300000000000 1,35000000000 1,32500000000 1,31250000000 1,306250000000 1,30937500000 1,30781250000 1,307031250000 1,306640625000 1,306445312500

Método da falsa posição:

Utilizando-se o mesmo intervalo inicial do método da bisseção, obtém-se:

Iteração	Solução numérica	Erro relativo
1	1,260061878315	
2	1,286804335451	0,020782069503
3	1,298203562403	0,008780770044
4	1,302967140161	0,003655946195
5	1,304940856252	0,001512494671
6	1,305755713242	0,000624050105
7	1,306091630980	0,000257193087
8	1,306230025199	0,000105949348
9	1,306287027588	0,000043636955

Método de Newton:

Como estimativa inicial, empregou-se $x_0 = 1,3$.

Iteração	Solução	Erro relativo
----------	---------	---------------

	numérica	
0	1,300000000000	
1	1,306520010459	0,004990364025
2	1,306327118168	0,000147660022
3	1,306326940423	0,000000136064

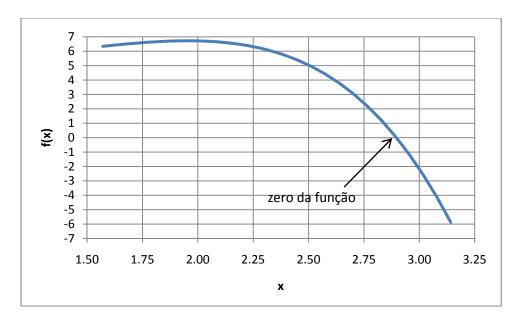
Método da secante:

Como estimativas iniciais, empregou-se $x_0 = 1.2$ e $x_1 = 1.4$.

is, empreged se m) 1,2 0 1/1 1,1.	
Iteração	Solução	Erro relativo
iteração	numérica	EITOTEIativo
0	1,200000000000	
1	1,400000000000	
2	1,260061878315	0,111056547375
3	1,286804335451	0,020782069503
4	1,310902309318	0,018382738131
5	1,305895486079	0,003834015273
6	1,306317558067	0,000323100601
7	1,306326959739	0,000007197029

d)
$$f(x) = e^x \text{sen}(x) - x^2 + 4; \left(\frac{\pi}{2}; \pi\right)$$

e) Graficamente:



Método da bisseção:

Empregando-se o intervalo inicial $a_0 = 2,75e$ $b_0 = 3,00$, tem-se os seguintes resultados:

Iteração	Solução numérica	Erro relativo
1	2,875000000000	
2	2,937500000000	0,021276595745
3	2,906250000000	0,010752688172
4	2,890625000000	0,005405405405
5	2,898437500000	0,002695417790
6	2,894531250000	0,001349527665
7	2,896484375000	0,000674308833

8	2,897460937500	0,000337040782
9	2,896972656250	0,000168548795
10	2,896728515625	0,000084281500

Método da falsa posição:

Utilizando-se o mesmo intervalo inicial do método da bisseção, obtém-se:

iter varo imerar do metodo da orsseção, octem se.		
Iteração	Solução numérica	Erro relativo
	Humenca	
1	2,881618804637	
2	2,895298902858	0,004724934689
3	2,896612919264	0,000453638937
4	2,896738116666	0,000043220131

Método de Newton:

Como estimativa inicial, empregou-se $x_0 = 2.75$.

######################################	, - :	
Iteração	Solução	Erro relativo
itteração	numérica	LITOTCIACIVO
0	2,750000000000	
1	2,922120673144	0,058902657486
2	2,897363057736	0,008544878538
3	2,896751656151	0,000211064550
4	2,896751290088	0,000000126370

Método da secante:

Como estimativas iniciais, empregou-se $x_0 = 2,75$ e $x_1 = 3,00$.

<u> </u>					
Iteração	Solução	Erro relativo			
	numérica				
0	2,750000000000				
1	3,000000000000				
2	2,881618804637	0,041081490436			
3	2,895298902858	0,004724934689			
4	2,896773012444	0,000508879909			
5	2,896751259182	0,000007509538			

- 11. Considere as seguintes funções. Ao se empregar o método da bisseção, para qual das raízes (zeros) o método conduzirá?
- a) $f(x) = (x-4)^4(x-3)(x+2)$, para [0, 5]. Raiz encontrada: 3
- b) $f(x) = (x-1)^3(x-2)(x-3)$, para [0; 5]. Raiz encontrada: 3
- c) $f(x) = (x-1)^3(x-2)(x-3)$, para [0; 3,2]. Raiz encontrada: 1
- 12. Empregue os métodos da bisseção, falsa posição, Newton e secante para encontrar a raiz real da seguinte função: $f(x) = x^3 5x^2 + 4x 20$. Para os métodos da bisseção e da falsa posição, empregue [3,6] como intervalo inicial. Para o método de Newton, utilize como estimativa inicial $x_0 = 3$ e, para o método da secante, as estimativas iniciais $x_0 = 3$ e $x_1 = 6$. Para a função fornecida, a raiz exata

procurada é $x_r = 5$. De posse desse fato e de que, para um determinado método, sua ordem de convergência pode ser estimada através da expressão

$$p \approx \frac{\log \left| \frac{e_{k+1}}{e_k} \right|}{\log \left| \frac{e_k}{e_{k-1}} \right|}$$

onde o erro na k-ésima iteração (e_k) é dado por:

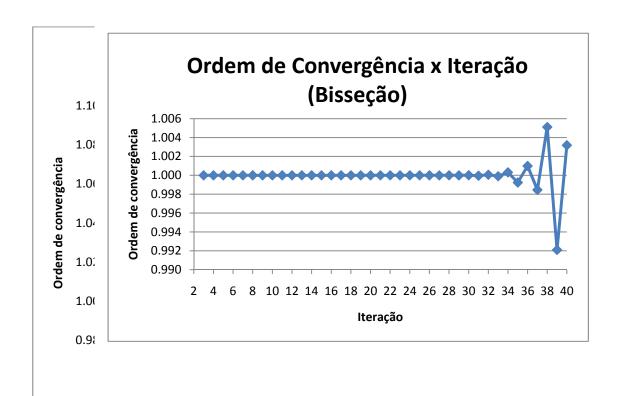
$$e_k = x_k - x_r$$

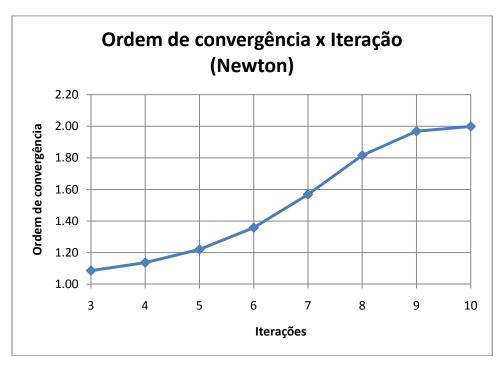
estime, também, as ordens de convergência para os métodos empregados. Sugestão: para a estimativa das ordens de convergência, implemente códigos computacionais, empregando precisão dupla (ou superior).

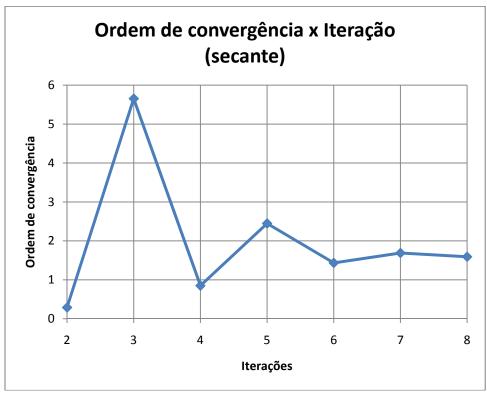
Estipulando-se uma tolerância de 10^{-12} , obtém-se os seguintes resultados para a raiz:

Método	Solução	Iterações	Erro relativo	Erro verdeiro absoluto
Bisseção	5,0000000000009100	40	$5,46 \times 10^{-13}$	$9,10 \times 10^{-13}$
Falsa Posição	4,999999999982700	22	$9,09 \times 10^{-13}$	$1,73 \times 10^{-12}$
Newton-Raphson	5,0000000000000000	12	0	0
Secante	5,0000000000000000	10	0	0

(Para alcançar tais tolerâncias, empregou-se códigos computacionais implementados em linguagem Fortran 95, com variáveis de precisão dupla). Com base nos resultados obtidos, para cada um dos métodos implementados, obteve-se o seguinte comportamento para as ordens de convergência x iteração (para os métodos de Newton e da secante, não são apresentados os resultados para as últimas iterações uma vez que tais valores são idênticos à solução exata e, com isso, o argumento do logaritmo empregado para estimar a ordem de convergência é nulo, invalidando a utilização da equação):







No caso dos métodos da bisseção e da falsa posição, após um certo número de iterações, observam-se oscilações com relação à ordem de convergência em torno do valor teórico (unitário). Isto se deve, essencialmente, a erros de arredondamento, que se tornam importantes quando os valores do erro e da tolerância se aproximam do erro de máquina (como é o caso, para a tolerância adotada).

- 13. Como funciona o Método de Eliminação Gaussiana para um sistema de equações lineares?
- 14. Como funciona o Método da Decomposição/Fatoração LU para um sistema de equações lineares?

- 15. Como funciona os Métodos de Jacobi e de Gauss-Seidel para um sistema de equações lineares? Quais suas semelhanças e diferenças?
- 16. Solucione os sistemas a seguir empregando-se a Eliminação de Gauss.

a)
$$\begin{cases} 2x + 3y + 4z = 20 \\ x + y + z = 6 \\ 4x - y - 2z = -4 \end{cases}$$

$$x = 1$$
, $y = 2$, $z = 3$

b)
$$\begin{cases} 2x + y + z = 3 \\ -x - y - z = -1 \\ 6x - 2y + 4z = 14 \end{cases}$$

$$x = 2$$
, $y = -1$, $z = 0$

17. Encontre a inversa das seguintes matrizes, através da decomposição LU:

a)
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 1 & 1 \\ 4 & -1 & -2 \end{bmatrix}$$

$$inv(A) = \begin{bmatrix} -0.25 & -0.5 & 0.25 \\ -1.5 & 5 & -0.5 \\ 1.25 & -3.5 & 0.25 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 4 & 8 & 3 \\ 1 & 1 & 1 \\ 2 & -1 & -1 \end{bmatrix}$$

$$inv(B) = \begin{bmatrix} 0 & 0,333333 & 0,333333 \\ 0,2 & -0,666667 & -0,066667 \\ -0,2 & 1,333333 & -0,266667 \end{bmatrix}$$

18. Resolva o seguinte sistema linear:

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

Por fatoração LU: $d_1 = 2$, $d_2 = -5$, $d_3 = 3$; $x_1 = -1.5$, $x_2 = 3$, $x_3 = 1$

19. Empregue os métodos de Jacobi e de Gauss-Seidel para resolver o sistema linear abaixo, com tolerância de 10^{-3} na norma infinito. Empregue como estimativa inicial $x^{(0)} = 0$.

$$\begin{cases} 4x_1 + x_2 - x_3 = 5 \\ -x_1 + 3x_2 + x_3 = -4 \\ 2x_1 + 2x_2 + 5x_3 = 1 \end{cases}$$

JACOBI

Após 11 iterações: norma atingida 6,31x10⁻⁴

Solução: $x_1 = 1,447636$; $x_2 = -0,8357783$; $x_3 = -0,04483104$

GAUSS-SEIDEL

Após 5 iterações: norma atingida 5,51x10⁻⁴

Solução: $x_1 = 1,447826$; $x_2 = -0,8359971$; $x_3 = -0,04473174$

20. Empregue os métodos de Jacobi e de Gauss-Seidel para resolver o sistema linear abaixo, com tolerância de 10^{-3} na norma infinito. Empregue como estimativa inicial $x^{(0)} = 0$.

$$\begin{cases}
-2x_1 + x_2 + \frac{1}{2}x_3 = 4 \\
x_1 - 2x_2 - \frac{1}{2}x_3 = -4 \\
x_2 + 2x_3 = 0
\end{cases}$$

JACOBI

Após 23 iterações: norma atingida 7,81x10⁻⁴

Solução: $x_1 = -1,454691$; $x_2 = 1,454691$; $x_3 = -0,7271660$

GAUSS-SEIDEL

Após 7 iterações: norma atingida 7,36x10⁻⁴

Solução: $x_1 = 1,455053$; $x_2 = -1,454122$; $x_3 = -0,7270611$