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Abstract

The purpose of this work is to reduce the CPU time necessary to solve three two-dimensional linear diffusive problems governed by Laplace and Poisson equations, discretized with anisotropic grids. The Finite Difference Method is used to discretizate the differential equations with central differencing scheme. The systems of equations are solved with the lexicographic and red-black Gauss-Seidel methods associated to the geometric multigrid with correction scheme and V-cycle. The anisotropic grids considered have aspect ratios varying from 1/1,024 up to 16,384. Four algorithms are compared: full coarsening, semicoarsening, full coarsening followed by semicoarsening and partial semicoarsening. Three new restriction schemes for anisotropic grids are proposed: geometric half weighting, geometric full weighting and partial weighting. Comparisons are made among these three new schemes and some restriction schemes presented in literature: injection, half weighting and full weighting. The prolongation process used is the bilinear interpolation. It is also investigated the effects on the CPU time caused by: the number of inner iterations of the smoother, the number of grids and the number of grid elements. It was verified that the partial semicoarsening algorithm is the fastest. This work also provides the optimum values of the multigrid components for this algorithm.
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1. Introduction

The multigrid method [1] belongs to the group of iterative solvers and is one of the most efficient and widespread methods to solve large systems of linear equations [2]. It consists on the transference of information among a refined grid, in which the numerical solution is desired, and coarse grids, in which numerical smoothers (or solvers) are more efficient, by means of restriction and prolongation operators. Several components can be modified in the multigrid method, such as the smoother (solver), the sequence in which each grid is employed (defined as multigrid cycle: V-cycle, W-cycle, F-cycle, among other ones) and the restriction and the prolongation operators. The kind of information that is transferred among the grids defines the multigrid scheme, which can be the CS one (Correction Scheme, in which only the residual is transferred to the coarser grids) or the FAS (Full Approximation Scheme, in which both the residual and the solution are transferred to the coarser grids) [3].
Over the years, multigrid has become closely intertwined with Computational Fluid Dynamics (CFD), and has become an ingredient in major CFD codes. However, the full theoretical multigrid efficiency has not yet been achieved for realistic engineering applications in CFD [4]. It is observed, for example, in grids with cells presenting high-aspect ratios, which is known as anisotropy. Another reason is the fact that the governing equations may show elliptic or parabolic behavior in one part of the domain and hyperbolic behavior in another part. According to the methodology commonly used for the study of theoretical multigrid efficiency, the observed difficulties should be isolated, analyzed and solved systematically using a carefully constructed series of model problems [4].
The focus of this article is the optimization of the geometric multigrid method in anisotropic grids. This anisotropy can be related to: (1) different quantities of nodes in each direction (Nx and Ny); (2) different distance between two neighbor nodes in each direction, being 
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For Q = 1, there is no anisotropy and the problem is called isotropic.
Several strategies have been used recently trying to improve the multigrid performance for anisotropic problems. Liu [5] proposed new transfer operators based on the finite difference approximations, which are employed in the prolongation of the residual error from the coarser to the finer grids. The prolongation operators for anisotropies were also studied by Gee et al. [6], in order to obtain an efficient methodology that can be applied to the algebraic multigrid method (AMG), conforming the operator a desired sparcity pattern, which provides an effective method. Bin Zubair et al. [7] presented techniques to create general adaptations for high-dimensional problems as well as proposed grid-coarsening strategies to handle anisotropies induced by geometric factors; such strategies involves doubling and quadrupling coarsening and second and forth-order finite difference operators.
Some other works focus the use of semicoarsening (SC) algorithms for anisotropic grids. Larsson et al. [8] used a SC algorithm - in the case, a conditional SC algorithm - for heat transfer and flow problems. Mulder [9] employed multiple SC for convection problems, while Naik and Van Rosendale [10] created a variant of the Mulder's algorithm, which could be applied to both elliptic and hyperbolic problems. Hyperbolic problems with SC algorithms were also studied by Radespiel and Swanson [11] for the hypersonic viscous flow over an aerofoil. Zhang [12] proposed a partial semicoarsening (PSC) algorithm, comparing the results with the full coarsening (FC) in grids whose aspect ratios were 1/2, 1/4, 1/8 and 1/16 for a two-dimensional Poisson-type equation. The FC and the PSC algorithms were also employed by Ge [13], who also used a forth-order compact difference discretization scheme for anisotropic grids to solve a three-dimensional Poisson-type equation in a cubic domain, with point and plane Gauss-Seidel smoothers.

Wang and Zhang [14] combined the multigrid method with Richardson extrapolations to solve isotropic and anisotropic 2D Poisson-type equations in rectangular grids, in order to increase a forth-order discretization method to a sixth-order one. The line-Gauss-Seidel smoother was used in the anisotropic case and it was concluded that this technique provides accurate solutions with good computational performance. Another approach was taken by Fischer and Huckle [15,16], who proposed new algorithms for the two-level Toeplitz matrices, which can be used even when the anisotropy is not only along a coordinate axis, but also along other directions.
According to Larsson et al. [8], for simple anisotropic problems, pointwise smoothers, like the point Gauss-Seidel, reduce efficiently the error in all the coordinated directions, which can not happen for anisotropic problems. In this case, a pointwise smoother is efficient in just some directions, or even in only one direction. Thus, there are essentially two possibilities to ensure the convergence of the multigrid method for anisotropic problems: (1) to adapt the smoother, so that it operates efficiently in all the directions; or (2) to adapt the restriction and prolongation operators. In studies involving the PSC algorithm [12,13], the four-coloring and red-black Gauss Seidel were more robust for moderate anisotropies, while the plane Gauss-Seidel relaxation showed to be the most efficient for strong anisotropies. These results encourage the performance analysis of the point lexicographic Gauss-Seidel (GS-LEX) and the red-black one (GS-RB), combined to the proposal of new restriction operators.
Motivated by all the previous works, this study is made in order to provide an optimized geometric multigrid method for anisotropic grids. Such optimization involves the study of the multigrid components, like: the number of inner iterations of the solver (
[image: image9.wmf]n

); the number of grid levels (L); the number of elements (E = 4,096; 65,536; 262,144 and 1,048,576); the aspect ratio – Q for the range from 1/1,024 up to 16,384; the solver – lexicographic and red-black Gauss-Seidel; the restriction operators – injection (INJ), half-weighting (HW), full-weighting (FW), geometric half-weighting (GHW), geometric full-weighting (GFW) and partial weighting (PW), the last three ones proposed in this work; and the coarsening algorithms – the full coarsening (FC), the semicoarsening (SC), the full coarsening followed by semicoarsening (FC-SC) and the partial semicoarsening (PSC).

The main intentions of this work are: (1) testing strong anisotropies (
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), for values not previously presented in literature and using four different coarsening algorithms; (2) proposing a suitable restriction operator for anisotropic grids; and (3) optimizing the multigrid components for the best algorithm found in the first objective.
2. Mathematical and numerical models

2.1 Mathematical models and discretization

Three two-dimensional heat transfer problems, with Dirichlet boundary conditions, are studied in this work, being governed by the following differential equation in the Cartesian coordinate system [17]:
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where x and y are the coordinate directions, T is the temperature, and S is a source term, which can be null (providing the Laplace equation) or either a constant or a function of x and/or y (providing a Poisson type equation). While the Laplace equation is employed twice, for two different sets of boundary conditions, listed in Table 1, the Poisson type equation has as source term 
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. In order to distinguish the two sets of boundary conditions employed for the Laplace equation, the labels Laplace 1 and Laplace 2 are used in this work, according to the boundary conditions listed in Table 1.
[Table 1]

The Finite Difference Method [18] is employed in the discretization of Eq. (2), with the use of the second order central differencing scheme (CDS). The unitary square domain is divided into Nx nodes in the x-direction and Ny nodes in the y-direction, using uniform grids in each direction, totalizing N nodes (
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). Analogously to the concept of nodal element in one-dimensional grids, in which the element is delimited by two neighbor nodes, separated by a distance 
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, in this work a two-dimensional element is delimited by four neighbor nodes, which are located in the vertices of a rectangle, whose sides measures hx and hy in the x and y directions, respectively. The number of elements, in this work, is denoted by E. For each single node, a linear equation arises from the discretization process and, for the whole domain, a system of linear equations of the type
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must be solved. By the discretization procedures applied, the coefficients matrix A in Eq. (3) is pentadiagonal, symmetric and positive definite; T is the solution temperature vector and b is the independent vector.

2.2. Multigrid method: interpolation operators and other details
The system of linear equations, Eq. (3), is solved using the geometric multigrid method, as described by Wesseling [19], with the correction scheme (CS). According to Fletcher [20], when compared to CS, the full approximation scheme (FAS) demands 5 to 10% more computational effort in each multigrid cycle, once FAS needs to restrict both the residual and the numerical solution in the coarser grids. Among the several multigrid cycling schemes available in literature, the V-cycle was the chosen one by its simplicity for programming implementation and by its smaller computational work involved: W-cycles, for example, are roughly 50% more expansive than V-cycles [21].
While bilinear interpolation operator [22] was chosen for the prolongation in all the studied cases, six different operators are compared for the restriction: injection (INJ) [1,19,21]; half-weighting (HW) and full-weighting (FW) [23]; geometric half-weighting (GHW), geometric full-weighting (GFW) and partial weighting (PW). These last three operators (GHW, GFW and PW, in this order) are proposed in this work and present as stencils, for the coarsening in the x-direction:
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in which Q is evaluated according to Eq. (1). In Eq. (4), 
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 is the restriction operator with H and h representing the coarse and the fine grids, respectively. It must be noted that, for the PW operator (last stencil), the weighting factors exist only in the direction in which the coarsening is done. The ratio between grid spacings is chosen equal to two (
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), once this is nearly a universal practice [1].
Two error smoothers or solver algorithms are employed in this work, based on the Gauss-Seidel type iteration [22,23]: the point lexicographic Gauss-Seidel (GS-LEX) and the red-black Gauss-Seidel (GS-RB). The number of smoothing steps (or inner iterations) in each grid level is symbolized by (, and present, in this work, the same value for the pre- and the post-smoothing steps (
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In all the numerical simulations, the number of grid levels (L) was taken in a such way that 
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, where Lmax is the maximum number of different grids which can be employed in the multigrid cycle, for a given grid spacings ratio. For example, if the E = 512x512 elements grid is employed, with a ratio r = 2, all the auxiliary grids are 256x256, 128x128, 64x64, 32x32, 16x16, 8x8, 4x4 and 2x2, which corresponds to the coarsest grid, with only one inner node, totalizing 9 grids (the basis and 8 auxiliary grids, that is, Lmax = 9).
Each V-cycle is repeated until the achievement of a given stop criterion, which, in this work, is based on the non-dimensional l2-norm of the residual – the reference is the l2-norm of the initial guess – as found in Trottenberg et al. [22] and Zhang [12]. The null-value was taken as the initial guess for the whole domain, except by the boundaries. The admitted tolerance (() was equal to 10-10 for all the analyzed cases in this work.
The numerical codes were generated using the Fortran 2003 Language, with the Intel 9.1 Visual Fortran Compiler and double precision floating-point arithmetic. All the numerical results were obtained in a computer with an Intel Core2Duo 2.66 GHz processor, 8 GB RAM and Windows XP 64 bits OS.
The main intention of this work is the minimization of the CPU time (tcpu) needed to solve the two-dimensional heat transfer problems listed in Table 1. CPU time, in this work, is concerned about the time intervals spent with the grids generation (the basis and the auxiliary grids), the appliance of the initial guess, the coefficients evaluation and the solution of the system of linear equations represented by the Eq. (3), until the achievement of the admitted tolerance. In order to evaluate the tcpu, the subroutine CPU_TIME of the Intel 9.1 Visual Fortran is employed.
2.3 Coarsening algorithms
Four different coarsening algorithms are employed in this work for the geometric anisotropic problems:
a) Full coarsening (FC): presented by Brandt [3]. The coarsening process is taken in both directions simultaneously. An example of such procedure is shown for two grids at Fig. 1a.
b) Semicoarsening (SC): presented by Mulder [9]. The coarsening process is taken in only one direction – the one which presents more elements. This algorithm is employed until the achievement of an isotropic grid. Such a procedure is employed in anisotropic problems in which the strong coupling direction is previously known. At Fig. 1b this algorithm is schematically shown for two grids in the x direction.

c) Full coarsening followed by semicoarsening (FC-SC): presented by Pinto and Marchi [24]. In this case, firstly the FC algorithm is employed, as many times as possible; after that, the SC algorithm is used, until the achievement of the coarsest grid. Fig. 1c shows this procedure schematically for three grids in the x direction.
d) Partial semicoarseninig (PSC): presented by Zhang [12]. In this case, the SC algorithm is employed until the achievement of an isotropic grid. Subsequently, the FC algorithm is used. Such procedure is illustrated in Fig. 1d for three grids in the x direction. This algorithm will be called in this work as PSC 1.
[Figure 1]
3. Numerical results

With the purpose of analyzing the influence of different multigrid components on the tcpu in anisotropic heat diffusion problems, about 2,800 numerical simulations were done. The methodology employed consists on, for a given component of interest, keeping the other ones with a fixed value and, by comparison, choose the set of components which has shown the best performance. The numerical simulations belong to four categories: number of smoothing steps (inner iterations), restriction operators, number of grids and comparison among coarsening algorithms. An analysis of each one of these categories is done in the following subsections.
In this work, two variations of the PSC coarsening algorithm are considered, namely: PSC 1 and PSC 2. It must be noticed that the PSC 2 is obtained by the optimization of the multigrid components of the PSC 1. This optimization process is detailed in the next pages. Table 2 presents the overall results for the multigrid components.
[Table 2]

3.1 Number of inner iterations (() and coarsening algorithms
The main purpose of this subsection is the establishment of the optimum number of smoothing steps (or inner iterations), (optimum, which provides the minimum tcpu for a given set of components for anisotropic grids. In order to reduce the number of numerical simulations and all the dependent variables for the tcpu minimization, the number of levels is fixed equal to Lmax, while the chosen restriction operator is the injection one and the error smoother (solver) is the lexicographic Gauss-Seidel (GS-LEX). Each one of the four coarsening algorithms (FC, SC, FC-SC and PSC 1) is employed for different aspect ratios (Q), being Q given by Eq. (1). The primary analyses are obtained for the Laplace 2 problem, for Q = 1/64, 1/16, 1/4, 1, 4, 16 and 64 and grids with E = 65,536 and 262,144 elements. The number of elements (E) is taken as the primary component in comparisons involving different aspect ratios, once it can be fixed as constant, differently from the number of nodes (N). For all the cases, when Q = 1, only the FC algorithm is employed, once the grid is already isotropic. In order to extend the results for the other two problems (Laplace 1 and Poisson), supplementary simulations are done for grids with E = 262,144 elements and aspect ratios of Q = 1/16, 1 and 16.
Except by the PSC 1 algorithm, the (optimum for all the algorithms is strongly influenced by the values of E and Q, assuming values in the range of 10 to 250. According to the numerical results, there is not a standard behavior which allows the determination of the (optimum for the FC, SC and FC-SC algorithms. Otherwise, the PSC 1 presents relatively small values for the (optimum in all the situations, associated to the smallest tcpu, when compared to the other algorithms. The value of the (optimum for the PSC 1 algorithm, nevertheless, is influenced by the preferential direction of the oscillatory modes of the error, as can be seen in Fig. 2. Both the Laplace 1 and the Poisson problems present oscillatory profiles which are symmetric and, because of this, the value of (optimum is the same for Q = 1/64 (Fig. 2a) and Q = 64 (Fig. 2b), assuming the value of (optimum = 4 for both aspect ratios and both problems. For the Laplace 2 problem, as the oscillatory behavior is not the same for both directions, the values of (optimum are different for Q = 1/64 and Q = 64, being equal to 2 and 4, respectively. The fact that, for the Poisson problem and Q = 1/64, the value of (optimum is also equal to 2 might be related to random fluctuations in the numerical simulations, the order of the nodes visited by the GS-LEX algorithm or even to the imprecision of the function employed in the tcpu determination.
[Figure 2]


The similar behavior, which can be observed for all the curves presented in Fig. 2, is expected. It can be explained by the fact that, for both Laplace problems, the only difference is observed for the boundary conditions and, their evaluation does not influence on the CPU time. For the Poisson problem, the difference is observed for the source term and the boundary conditions; because of this, its CPU time is proportional to the Laplace problems ones. Although it is not presented in this work, such behavior is observed for all the values of Q.

Briggs et al. [1] and Trottenberg et al. [22] made detailed analyses of ( only for isotropic grids. Reminding that 
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 are the number of pre- and post-smoothing, respectively, Briggs et al. [1] analyzed the Poisson 2D equation, verifying numerically that the recommended values are 
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 obtained in the isotropic grids studies for anisotropic ones, without any special Fourier analysis for this grid condition. This kind of analysis was made by Zhang [12], who studied the Poisson 2D equation discretized with anisotropic grids and employed 
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. These values are corroborated numerically in current work by the analysis of different quantities for (, according to the results presented in the next subsection.
3.2 Restriction operators

Once the tcpu obtained for the PSC 1 algorithm is the smallest one, for all the aspect ratios and for both grid sizes (E = 65,536 and 262,144 elements), some other simulations are conducted based on such algorithm. These analyses involve modifications in the choice of the error smoother (solver) and in the restriction operator, providing a modified PSC 1 algorithm, which is denoted in this work as PSC 2. Two smoothers (GS-LEX and GS-RB) and six restriction operators (INJ, HW, FW, GHW, GFW and PW) are tested, so as to find the value of (optimum which provides the smallest CPU time (tcpu).
Since the PSC 1 algorithm is composed basically by two steps, the first based on the semicoarsening (SC) algorithm until the achievement of an isotropic grid, followed by the full coarsening (FC) algorithm, until the coarsest grid, the adopted procedure for the numerical simulations is made in two moves. In the first one, the components related to the FC algorithm are kept fixed (INJ as restriction operator and GS-LEX as solver) and both the restriction operator (INJ, HW, FW, GHW, GFW and PW) and the solver are analyzed for the SC algorithm. In the second move, the components related to the SC algorithm are now fixed, chosen accordingly to the results obtained in the first move, while the restriction operator (INJ, HW and FW) and the solver for the FC algorithm are analyzed. For these analyses, the number of inner iterations (() is kept constant and equal to the values obtained in the section 3.1 as optimum components. Once the components for both the FC and the SC algorithms are chosen, then a study to determine the (optimum for the set of selected components is executed.
From the first set of numerical simulations, it is observed that the PW operator is the best one, for both the GS-LEX and the GS-RB solvers, although the GS-RB presents always a better performance than the GS-LEX. From the second set of simulations, the best results are obtained with the FW operator, associated to the GS-RB solver. These results are valid for anisotropic grids (Q ( 1), once for the limit case of isotropic grids (Q = 1), the best results are observed for the FC algorithm, associated to the GS-RB solver; the influence of the restriction operator, in this case, is non-significant. In contrast, the use of the full weighting restriction (FW) and GS-RB solver for isotropic grids is a common practice, as can be seen in the works of Briggs et al. [1], Lai et al. [25], Lent and Vandewalle [26] and Weib et al. [27]. These authors, however, do not provide the motives of these choices and/or any reference to anisotropic grids.

[Figure 3]

As previously presented, the PSC 2 algorithm is obtained by the optimization of the multigrid components of the PSC 1 one, originating the Table 2. This optimization is made with a separate study of the components of the multigrid method in the two moves (SC and FC), which provide the following multigrid components: GS-RB solver, PW operator of the SC process and FW for the FC one. Therefore, the next step to the achievement of the minimum tcpu is the determination of the new values for the (optimum. It is needed once the other multigrid components were changed in comparison to the previous subsection. As can be seen in Fig. 3, ( = 1 provides the smallest tcpu, for both types of anisotropy: 
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 (Fig. 3a) and Q > 1 (Fig. 3b), which also demonstrate the better stability of the PSC 2 algorithm in comparison to the PSC 1. Although these results are related to the Laplace 2 problem, similar behavior is observed for the other problems. In the limit case of Q = 1 (isotropic grid), (optimum = 2, for all the three analyzed problems. It must be noticed that it is not found in literature analyses of the number of inner iterations for each different block of the partial semicoarsening (PSC) algorithm, i.e., studies with 
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3.3 Number of grids (L)
In the last subsections, the number of grids used for the multigrid was kept invariable and equal to Lmax. Once other components that influence in the tcpu performance were previously studied, in this subsection the effect of L on the tcpu performance is evaluated. For such study, all the coarsening algorithms are considered, with the (optimum values obtained in 3.1 and 3.2 subsections. The basis problem for all the analyses is the Laplace 2, since it presents a different oscillatory behavior in each coordinate direction.
Figure 4 summarizes the numerical results obtained for the effect of L on tcpu, assuming the PSC 1 algorithm and E = 262,144 elements. Similar behavior is seen for the other coarsening algorithms, including the PSC 2 one. It is easily observed that the minimum tcpu is achieved when the maximum number of grids is used, not depending on the aspect ratio (Q), whose definition was presented by Eq. (1). In Fig. 4, it also must be noted that the value of Lmax varies according to the Q: for the isotropic grid, in which E = 262,144 = 512x512 elements, the value of Lmax is 9, as presented in subsection 2.2. For anisotropic grids, using the PSC algorithm, Lmax is the number of grids employed in the semicoarsening direction, until the achievement of an isotropic grid, summed with the maximum number of grids which can be employed in the multigrid cycle. For example, for Q = 16 and E = 262,144 = 128x2,048 elements with ratio r = 2, all the auxiliary grids are: 128x1,024, 128x512, 128x256, 128x128, 64x64, 32x32, 16x16, 8x8, 4x4 and 2x2, which correspond to the coarsest grid, with only one inner node, totalizing 11 grids (the basis and 10 auxiliary grids, that is, Lmax = 11).
[Figure 4]

The results of the current work are in agreement with the ones presented by Tannehill et al. [18]. They investigated the existence of the optimal components for the multigrid method in a two-dimensional Laplace problem, using an isotropic 128x128 elements grid, the FC algorithm and from 2 up to 7 grids. According to their numerical results, for the work units, it was observed that using four or five grids gave nearly the same performance as using seven grids (which corresponds to Lmax). Another study involving the existence of the optimal components for the multigrid method was made by Rabi and De Lemos [28]. They studied a two-dimensional steady-state conductive-convective problem, using modest anisotropies (Q = 3/2) for a rectangular domain and the FC algorithm. Numerical results suggested the existence of an optimum value for the number of grids L and their recommendation is the use of at least 4 grid levels for the V-cycle. According the numerical results of the current work, the recommended value of L is always the Lmax, which agrees to both works. It must be noticed, however, that both previous works [18,28] do not provide a general recommendation about the value of L for the best multigrid performance; in the current work, also, strong anisotropies were studied, differently from the previous cited ones.
3.4 Comparison of coarsening algorithms
The four basic coarsening algorithms (FC, SC, FC-SC and PSC 1) listed in subsection 2.3 are compared in Fig. 5, along with the PSC 2, for aspect ratios varying from Q = 1/64 up to 64 and the Laplace 2 problem. This study is based on the results presented by Wesseling and Oosterlee [29], in which it was observed that the performance of the multigrid method is deteriorated by anisotropic grids, with poor performance or even divergence of the numerical solution [8]. As can be seen, for all the anisotropic grids, the performance of the PSC 2 is the best one, followed by the PSC 1. For both algorithms, the aspect ratio Q seems to have only little influence on the tcpu, at least for modest anisotropies (moderate values of Q), as can be seen at Fig. 5: nearly constant values of the tcpu for such algorithms. This behavior, however, is not observed for the other algorithms: both the FC and the FC-SC show increasing tcpu values when the grid becomes more anisotropic – for values of Q ( 0 or Q ( (. On the other hand, the SC presents decreasing tcpu values for other anisotropic grids; the performance of such algorithm, however, is always lower than the PSC 1 and the PSC 2, at least for the studied grids. This general behavior is also seen for the Laplace 1 and the Poisson problems.

These results confirm and extend a previous study presented by Zhang [12], in which he observed that the PSC 1 algorithm was faster than the FC one for a two-dimensional Poisson-type equation, with aspect ratios lower than the unity (Q = 1/2, 1/4, 1/8 and 1/16) and problems with at the most 1,048,576 elements. The current work also extends the Zhang's results for problems involving up to 67,108,864 elements and other anisotropic grids (
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). The difference of the performances among the algorithms PSC 1, PSC 2 and FC is more impressive in more anisotropic grids: the tcpu ratio between the FC and the PSC 1 can be of only 2 (for Q = 4) up to 2,786 (for Q = 1/64). Such behavior shows and confirms the superiority of the PSC algorithms (i.e., PSC 1 [12] and PSC 2) for anisotropic grids.
[Figure 5]

3.5 Analysis the multigrid components of PSC 1 and PSC 2
The PSC 1 and PSC 2 algorithms are compared for different numbers of elements, as seen at Fig. 6. The performance of the PSC 2 is always better than the one of the PSC 1 algorithm, taking only 1/2 tcpu (or even less) of the equivalent simulation using the PSC 1. In the case of the Poisson problem, for example, with Q = 16, the PSC 2 need about 1/3 tcpu of the PSC 1. This behavior is observed for all the problems and all the aspect ratios considered. 
[Figure 6]
Figure 7 also presents a comparison between the performances of the PSC 1 and the PSC 2 algorithms for the Laplace 2 problem, with 262,144 elements and different Q values (from Q = 1/1,024 up to Q = 16,384). In this figure, for Q = 1 (isotropic grid), the PSC algorithms are not employed; in this case, the FC algorithm is used for comparison. The notations FC 1 and FC 2 represent the FC algorithm with the PSC 1 and PSC 2 multigrid components, respectively. Differently as seen in Fig. 5, for which only small or even moderate values of Q (modest anisotropies) were employed, in Fig. 7, strongly anisotropic grids are used. In this case, the tcpu cannot be considered independent of the values of Q: for Q > 1, the tcpu tends to decrease for more anisotropic grids, while for Q < 1, the tcpu presents an opposite tendency. Such behavior can be attributed to the preferential directions of the oscillatory modes of error: in Laplace 2 problem, the preferential direction is related to the y-axis. When anisotropic grids are used, with Q > 1, the refinement of the grid coincides with the y-axis: the use of greater values of Q emphasizes this tendency. Otherwise, for Q < 1, the refinement of grid is made in the x-axis, opposite to the direction of the oscillatory error modes; in this case, the refinement of the grid (with lower values of Q) tends to worsen this effect. The use of more refined grids in the preferential direction of the oscillatory error modes tends to speed up the algorithms: in both cases, the better performance in Fig. 7 is observed for increasing values of Q.
Another interesting remark is related to the performance of the PSC 2 against the PSC 1 algorithm for Q > 1: the implemented modifications present more significant results for more anisotropic grids. For the Laplace 2 problem, while for Q = 4 the tcpu evaluated to the PSC 2 corresponds to 52% of the tcpu of the PSC 1 algorithm, for Q = 16,384 the tcpu of the PSC 2 is only 30% of the tcpu of the PSC 1 algorithm.
[Figure 7]
The results obtained in the current work could also be used, for example, for other algorithms, such as the one proposed by Wang and Zhang [14]. In this case, it is expected to obtain a better CPU time performance for that algorithm.

4. Conclusion

The geometric multigrid components for CS and anisotropic grids were studied in the current work. For the numerical analyses, three two-dimensional heat diffusion problems governed by Laplace and Poisson equations, with Dirichlet boundary conditions, were employed, discretized with the Finite Difference Method and second order CDS approximations.
In order to optimize the performance of the geometric multigrid method in heat diffusion problems, some components were studied in four algorithms: full coarsening (FC), semicoarsening (SC), full coarsening followed by semicoarsening (FC-SC) and partial semicoarsening (PSC 1). The optimization of the multigrid components of the PSC 1 generated an algorithm called PSC 2 in the current work. The studied multigrid components are: the number of inner iterations (
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); the number of grids (L); six restriction operators – injection (INJ), half-weighting (HW), full-weighting (FW), geometric half-weighting (GHW), geometric full-weighting (GFW) and partial weighting (PW); the number of elements of grids (E) and the grid aspect ratios (Q). 
Based on numerical results, these are the most interesting remarks:
1) The variation of the grid aspect ratio (Q) results in large variation of 
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 to the FC, SC and FC-SC algorithms. In PSC 1 algorithm, 
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 remains constant for all the aspect ratios. In the PSC 2 algorithm, the components which presents the smaller CPU time are: 
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 (anisotropic grids), which corroborates numerically the results presented by Zhang [12]. For 
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 presents the smaller CPU time.
2) The maximum L results in the smallest CPU time for all the analyzed coarsening algorithms, all aspect ratio (Q), all number of elements of grids, and all problems.

3) For anisotropic grids, red-black Gauss-Seidel solver results in smaller CPU time compared to the lexicographic Gauss-Seidel, corroborating the results of Zhang [12] and Ge [13].

4) Three new restriction operators, the geometric half-weighting (GHW), the geometric full-weighting (GFW) and the partial weighting (PW) were proposed for anisotropic grids. Among all the studied operators for anisotropic grids, the PW presented the best performance. For isotropic grids, the choice of the restriction operator does not affect significantly the CPU time.
5) For the same components (
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, Q, L and E), the comparison among four coarsening algorithms confirms the results of Zhang [12], in which the performance of the PSC 1 algorithm was the best one for anisotropic grids. The current work, however, also extends his results, once some even more anisotropic grids (
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) were considered, with aspect ratios varying from Q = 1/1,024 up to Q = 16,384.
6) Based on the PSC 1 algorithm, some studies were made in order to reduce the tcpu associated to such algorithm. The new multigrid components of this algorithm, called in this work PSC 2, is more stable and presents better performance than the other algorithms, something that is more appreciable for stronger anisotropic grids (with the range from Q = 1/1,024 up to Q = 16,384). It is in average, 2.3 times faster when compared to PSC 1.
7) The qualitative behavior of the studied multigrid components remains the same to Laplace 1, Laplace 2 and Poisson problems. 

There are also evidences which suggest that the results obtained in the current work can be extended to other partial differential equations, such the 3D Poisson equation, and 2D and 3D convection-diffusion equations. These results can also be used for example in Wang and Zhang [14] algorithm to improve the accuracy order and CPU time.
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FIGURE CAPTIONS
Figure 1. Examples of the application of the coarsening algorithms: a) FC, b) SC, c) FC-SC and d) PSC. The numbers represent the number of elements in each grid in x and y directions.
Figure 2. CPU time versus ν for E = 262,144 and PSC 1: (a) Q = 1/64 and (b) Q = 64.

Figure 3. CPU time versus 
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 for E = 262,144 and PSC 2: (a) Q = 1/64 and (b) Q = 64.

Figure 4. CPU time versus number of grids (L) for E = 262,144, PSC 2 algorithm and Laplace 2 problem.

Figure 5. CPU time versus aspect ratio (Q) for five coarsening algorithms, E = 262,144 and Laplace 2 problem.

Figure 6. CPU time versus number of elements (E) for Laplace 2 problem: (a) Q = 1/64 and (b) Q = 64. 

Figure 7. CPU time versus aspect ratio (Q) for Laplace 2 problem. 
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