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Abstract: The foredrag coefficient due to the supersonic and hypersonic flow of air over cones was cal-
culated numerically using a finite volume approach based on the compressible Fuler and Navier-Stokes
equation with constant thermophysical properties. Simulations were carried on for a cone of 10° semi-
angle under the free-stream Mach numbers Mo, = 2, 3, 4, 5, 6 and 8 in the case of Fuler model and
for a cone of fineness ratio 3 under the free-stream Mach numbers 2.73, 3.50, 4.00, 5.05 and 6.28 in the
case of Navier-Stokes model (the Reynolds number, based on the cone length, are within 4.5 x 10° and
2.85 x 10%). The numerical error was estimated to be lower than 0.08% of the numerical solution for
both models. Comparison of the solution of the Navier-Stokes model with the experimental data of Eggers
et al.[3], showed a disagreement up to 0.88% for 2.73 < My, < 6.28 and of 15% for My = 6.28. The
validation uncertainty was estimated to be, at most, 7.2%.

Keywords: CFD, Verification, Validation, Cone, Supersonic, Hypersonic

1 Introduction

In Computational Fluid Dynamics (CFD), a software may be considered a more reliable tool for
flow prediction after their results have been verified and validated. According to Roache[9], verification
estimates the error caused by solving approximately a mathematical model, while validation estimates the
error caused by the modeling itself. Taking into account the importance of error estimation in scientific
computing, this work deals with verification and validation of the foredrag coefficient calculated by the
Mach2D code, a software that is under development by the CFD group at Federal University of Parana
and solves the compressible Euler and Navier-Stokes equations based on a finite volume approach.

The foredrag coefficient considered here is due to the axisymmetric air flow over cones calculated
for some values of the Mach number in the supersonic and hypersonic regimes. More precisely, the
simulations are separated in two sets. In the first one, the foredrag coefficient is calculated based on the
Euler equations for a cone of 10° semi-angle and under the free-stream Mach numbers 2, 3, 4, 5, 6 and
8. In the second set, the foredrag coefficient is calculated based on the laminar Navier-Stokes equations
for a cone of fineness ratio f = 3 (length/base diameter) and under the free-stream Mach numbers 2.73,
3.50, 4.00, 5.05 and 6.28. These cone geometries and Mach numbers were chosen because of available
data (numerical and experimental) of other authors that are used in the comparisons.

The verification and validation procedures are applied for the foredrag of the Navier-Stokes model,
while the foredrag of the Euler model is only verified. The applied procedures are based on the recom-
mendations of ASME V&V 20-2009 norm[1].

This work has two purposes First it aims to evaluate the results produced by the Mach2D code using
verification and validation tools and, second, to register the obtained results in tables, so that other CFD
software developers may compare their results with the results presented here. Based on the authors



experience, it is very difficult to find tabulated CFD results for comparisons in the open literature, even
for simple geometries as the conical one.

In the next sections, the method of foredrag calculation, the verification and validation procedures
and the main results are presented.

2 Methodology

2.1 Flow simulation

The flow is modeled by the time dependent compressible Navier-Stokes equation for axisymmetric
flows[2]. The thermophysical properties, i.e., viscosity, thermal conductivity and specific heats, are con-
sidered constant and equal to their free-stream values. For each gas specie, the thermophysical properties
are calculated according to the interpolation formulas of McBride et al.[7] as a function of the free-stream
temperature T, and for a gas mixture according to Refs. [2] and [13]. In this study, the air is a mixture
of Ar, Os and Ns in the molar fractions of 1%, 21% and 78%, respectively. The Euler model is obtained
neglecting all terms depending on the viscosity and thermal conductivity. The ideal gas state equation
is used for the coupling among pressure p, density p and temperature 7. The domain of calculation,
Fig 1(a), is simplified due to the axial symmetry Over the north boundary N (a quarter of ellipse), the
flow is non-perturbed and equal to the free-stream, where the Mach number M., Reynolds Res (based
on the cone length [,) and temperature T, are prescribed. On the west boundary W, the symmetry
conditions are applied. Over the south boundary S, the normal pressure and temperature gradient is
zero, while the non-slip condition is applied to the velocity field in the case o Navier-Stokes model and
the non-permeability condition is applied to the Euler model. Finally, the outflow is considered locally
parabolic over the east boundary E.

In order to simplify the numerical solution, the governing equations are transformed[5] from the
cylindrical coordinate system (z,y) to a curvilinear coordinate system (£,7), in such a way that the
physical domain is mapped into a rectangular domain (computational domain). The physical domain is
algebraically discretized with nodes concentrated near the cone surface and the cone tip (Fig. 1(b)). The z
coordinate of the south and north boundaries (7 lines) is discretized according to a power law distribution
with exponent o. The lines connecting the north and south boundaries (¢ lines) are discretized in such a
way that the partition widths form a geometric progression. The width of the partition close to the cone
surface is a multiple ¢ of the estimated boundary layer width &, which is given by
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where 100, poo and us are, respectively, the free-stream viscosity, density and speed. The transformed
Navier-Stokes equations are then integrated on each volume of the uniformly discretized computational
domain using a co-located grid arrangement. The variables over the volumes faces are interpolated from
the center of each volume in the computational domain using a first order accurate scheme (upstream
differencing scheme) for the advective terms and a second order accurate scheme (central differencing
scheme) for the diffusive terms[16]. After that, four systems of coupled linearized equations are obtained
representing the mass, momentum (x and y components) and energy conservation. The discretized mass
equation is transformed in an equation for the pressure correction based on the SIMPLEC algorithm[15].
The pressure correction equation takes into account the influence of the compressibility as well as the
pressure-velocity coupling in the same way as did Ferziger and Peric[4]. Each of the linear systems is
solved with the Modified Strongly Implicit method (MSI)[14]. The set of coupled linear systems are solved
iteratively following a false transient until the stationary solution is obtained.




Figure 1: Schematic illustration of the (a) domain of calculation and (b) its discretization.

2.2 Verification

In CFD, there are basically four sources of numerical errors[6]: (i) coding mistakes, (ii) round-off
errors (iii) iteration errors and (iv) truncation errors. The combination of each of these errors gives the
overall numerical error.

The coding mistakes errors are difficult to identify and are caused by programming errors or mistakes
in the software usage. In order to avoid them, some strategies were applied. First, the Mach2D code was
completely rewritten from an older version. The code development was tracked by the Subversion version
control system[8]. During this task and after typing each subroutine, the numerical solution was compared
to the numerical solution of the original code. Second, the code was compiled with two compilers (GNU
Fortran Compiler-v.4.8.2 and Intel Fortran Compiler-v.13.1.1) using their debug directives. And third,
memory check was performed with the Valgrind tool[11]. Based on this procedure, one hopes that the
Mach2D code, more precisely Mach2D-5.8.2.2-r528, is free from coding mistakes.

Round-off errors are caused by the limited representation of real numbers. Its influence on the solution
may be estimated, for instance, comparing the solution obtained with double precision floating point
representation (16 significant figures) with the solution obtained with quadruple precision floating point
representation (32 significant figures). In this comparison, it is assumed that the round-off error in the
quadruple precision solution is vanishingly small compared to the double precision one. The change in
the precision of the representation is easily made with the GNU Fortran Compiler through the directive
-freal-8-real-16, which converts double precision variables to quadruple precision ones.

Iteration error is, by definition, the difference between the numerical solution at some iteration and
the exact numerical solution of the discretized model. In this work, the iterations are performed until the
machine error is reached, so that the iteration errors may be considered negligibly small.

Finally, the truncation error results from the approximations related to the discretization of the
mathematical model. This is typically the greatest source of the numerical error. When the numerical
error is dominated by the truncation error, the former is called discretization error[6].

In this study, the discretization error was calculated with the convergent estimator[6]. In order to
perform this calculation, consider that three numerical solutions, ¢1, ¢2 and ¢3 were obtained in grids
with uniform partitions hy, he and hs, respectively, and that the grid refinement ratio r is a constant,
i.e.,
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According to the convergent estimator, the exact solution ® of the mathematical model is given by the
convergent estimation of the analytical solution ¢¢ and its estimated error Ug as

r

® = ¢¢ + Ug, (3)



where
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In Egs. (4) and (5), ¢g; is the Richardson extrapolation of the numerical solutions based on the asymptotic
order of accuracy py, or based on the observed order of accuracy py. The asymptotic order of accuracy py,
is the dominant order of accuracy obtained from the truncation error for a sufficiently refined grid (first
order accurate in this study, i.e., pr, = 1) and the observed order py is calculated from
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The Richardson extrapolation for an arbitrary order of accuracy pa, and based on the finest grid hq, is
given by

bri(pa) = ¢1 + ¢;A _¢i (7)

Theoretically, the exact solution ® of the mathematical model is bounded by the convergent estimation
and its error estimative. However, the application of this estimator requires that the observed order py
is within the convergent range, i.e., that py decreases or increases monotonically toward py, as the grid is
refined.

2.3 Validation

According to the ASME V&V 20-2009 norm[1], the error in a simulation result ¢™™ due to modeling
assumptions and approximations 6™ is expected to be within the interval

E . Uval S 6model S E+ U'vanl7 (8)
where E and U™ are the validation metrics. E is given by
El — ¢num _ ¢exp (9)

and U™ depends on how the experimental result ¢ was obtained. For the case in which ¢ is directly
measured, U reads

Uval — \/(Unum)2 + (Uinput)2 + (UeXP)Q’ (10)

where U™ is the estimate of the numerical error, whose method of calculation was presented in the
previous section, U™P"* is the estimate of the uncertainty in the numerical solution caused by the variability
of the input parameters and U*® is the estimate of the uncertainty in the experimental measurement.
Considering the existence of n input parameters X; (1 < i < n), U™ is calculated as

T iy )

where Uy, is the standard uncertainty in X;.

In this work, ¢=® represents the foredrag coefficient Cp; from the experiment of Eggers et al.[3]. The
foredrag coefficient was not directly measured, but obtained from a data reduction involving some data
that are input parameters for the mathematical model. Because of that, Eq. (10) is not the appropriate
expression to U™, The appropriate expression, however, involves experimental data that are not available
So, Eq. (10) will be used at least as an approximation to U"*.




3 Results and Discussion

3.1 Euler model

This section deals with the verification of the pressure foredrag C%; of the Euler model, which was
carried on for six values of the Mach number: 2, 3, 4, 5, 6 and 8. The input parameters used in the
simulations are shown in Tab. 1. For each Mach number, simulations were performed on five grids
ms, Mg, M3, Mo and my with, respectively, 60, 120, 240, 480 and 960 volumes in each coordinate direction.
The coarser grids were obtained from the finest one by removing every other grid line.

Table 1: Input data for the Euler model.

Quantity Symbol  Value
Free stream pressure Poo 300 Pa
Free stream temperature Two 300 K
Length of the elliptical = semi-axis la 3.1m
Length of the elliptical y semi-axis (M = 2) Iy 2.5 m
Length of the elliptical y semi-axis (M > 2) Iy 1.5 m
Base radius T 0.5 m

Cone semi-angle 0 10°

Exponent for boundary nodes distribution « 2
Multiple of the estimated boundary layer width Chl 0.05

In order to investigate the effect of the round-off error, C%; was calculated using double and quadruple
precision. This test was limited to a specific simulation (mesh of 960 x 960 volumes and My, = 2) due
to the computational expense of the quadruple precision simulation. Figure 2 shows the behavior of the
relative round-off error of C5; as a function of the number of iterations. As can be seen, this error reach
an expressive value (more than 10~®) during the false transient, but becomes lower than 10~* for the
converged solution.

Figure 2 also shows the behavior of the residuals of the linear systems and the residual of the mass
conservation equation as a function of the number of iterations for the same particular simulation. The
residual of the linear systems reaches the machine zero at about 9000 iterations, but the iteration procedure
is kept until about 17000 iterations in order to ensure that the iteration errors are vanishingly small. This
behavior was observed in all the simulations.

Based on these results, the authors believe that both the iterative error and the round-off error are
negligibly small compared to the truncation error, which allows one to proceed with the calculation of
the numerical error following the methodology described in Sec. 2.2.

Looking for the estimation of the discretization error, the observed order of accuracy py was obtained
with the five grids above mentioned. The results are shown in Tab. 2 for the six Mach numbers under
consideration One can see that the observed order approximates the asymptotic order as the grid is
refined, that is, py — pr = 1. This fact has two positive aspects: (i) the convergent estimator can be
applied and (ii) according to Roy[10], the convergence of the observed order py to the asymptotic one py,
should be verified when the code is free from coding mistake errors.

The foredrag coefficient estimated with the convergent estimator is presented in the first row of
Tab. 3. The values in the parenthesis represent the estimated error. For instance, 0.10447(3) means
0.104 47 4+ 0.000 03. The estimated numerical error do not exceed 0.06% of the estimated solution for the
whole interval of Mach numbers considered.

Table 3 also shows the solutions obtained with different grid clustering. As mentioned earlier, «
controls the clustering near the tip, while ¢y controls the clustering near the body surface. In order to
investigate the grid clustering influence on the final solution, it was considered a grid with less concen-
tration of points near the tip (v = 1.5) and a grid with more concentration (o = 2.5). The same was



Figure 2: Residual of the linear systems, residual of the mass conservation equation and round-off relative

error of C%;. Euler model. Mesh: 960 x 960. M., = 2.
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Table 2: Observed order of accuracy py for the pressure foredrag C5; calculated for several Mach numbers.

Euler model.

Y29
Meshes My =2 3 4 5 6 8
(ms, myg, ms) 0.46 0.64 0.65 0.70 0.76 0.85

0.67
0.75

(ma, m3,my)
(m17 ma, m3)

0.72 0.75 0.81
0.76 0.82 0.88 0.92 0.96

0.86 0.92

done to the concentration near the body surface (¢; = 0.1 and ¢;; = 0.025). As can be seen, within the
estimated numerical error, the solution does not depend on « and ¢, i.e., it is grid independent.

Table 3: Pressure foredrag Ch; and its estimated numerical error for several grid clustering and Mach

numbers. Euler model.

Cts
o Cpl My =2 3 4 5 6 8
2 0.05 | 0.10447(3) 0.08747(5) 0.07936(4) 0.07468(3) 0.07171(2) 0.068249(8)
1.5 0.05 | 0.10447(3) 0.08747(5) 0.07936(4) 0.07468(2) 0.07171(1) 0.068252(7)
2.5 0.05 | 0.10447(3) 0.08747(5) 0.07936(5) 0.07468(3) 0.07170(2) 0.068247(9)
2 0.1 0.10447(2) 0.08747(5) 0.07936(4) 0.07468(2) 0.07170(2) 0.068248(7)
2 0.025 | 0.10447(3) 0.08747(5) 0.07936(5) 0.07468(3) 0.07171(2) 0.068251(10)

Finally, the pressure foredrag coefficient based on the Euler equations is presented in Tab. 4 together
with the solution of the Taylor-Maccoll equation from Sims[12]. The disagreement between Euler solutions
and Taylor-Maccoll solution is less than 0.01% for M, = 2 and increases with the Mach number, reaching



0.33% for My, = 8. The main purpose of this comparison is not quantify the disagreement between the
two models, but to show that the obtained solution is in agreement with the solution obtained by another
method.

Table 4: Pressure foredrag Ch; according to Taylor-Maccoll[12] model (TM) and Euler model.
Cts

Model | My, =2 3 4 5 6 8

TM[12] | 0.10445829 0.087475175 0.079393438 0.074756914 0.071828508 0.068471989
Euler | 0.10447(3) 0.08747(5) 0.07936(4) 0.07468(3) 0.07171(2) 0.068 249(8)

3.2 Navier-Stokes model
3.2.1 Verification

This section deals with the verification of the foredrag coefficient Cp, of the Navier-Stokes model.
Differently from the Euler model, C; has two components, the foredrag due to the pressure distribution
over the cone surface C8; and the foredrag due to the viscous stress Ch;, i.e.,

CDf = Cgf + Cgf‘ (12)

The input data for the simulations are shown on Tables 5 and 6. Based on these data, simulations
were carried on using grids of 60, 120, 240, 480 and 960 volumes in each coordinate direction (grids
ms, myg, m3, mg and mq, respectively), where the coarser grids were obtained from the finest one by
removing every other grid line.

Table 5: Input data for the Navier-Stokes model.

Quantity Symbol Value
Free stream temperature Teo 300 K
Length of the elliptical x semi-axis lq 0.08382 m
Length of the elliptical y semi-axis Iy 0.0508 m
Base radius T 0.0127 m
Fineness ratio (length/base diameter) f 3
Exponent for boundary nodes distribution « 2
Multiple of the estimated boundary layer width Cpl 0.04

Table 6: Free stream Mach numbers and the corresponding Reynolds numbers for the Navier-Stokes
model.

M, 2.73 3.50 4.00 5.05 6.28
Res 2.10 x 105 2.85x 10% 2.16 x 105 1.05 x 105 4.50 x 10°

As in the verification of the Euler model, the round-off error here was evaluated for a particular
simulation (grid 960 x 960 and M., = 2.73), while the number of iterations were made high enough to
reduce the iteration error to the the machine error. It was found that the behavior of the round-off error
is similar to that observed in the Fuler model. Considering that the round-off and the iteration errors are
much smaller than the truncation error, it remains to estimate the discretization error.

The observed order of accuracy calculated for C5; and C%;, based on data of the Tables 5 and 6, is
shown on Tab. 7. As can be seen, py converges to p;, = 1 as the grid is refined.



Table 7: Observed order of accuracy of CE; and C%; for the Navier-Stokes model.

pu (CF) pu (Chs)
Meshes \ My | 273 350 4.00 5.05 6.28 | 273 3.50 4.00 5.05 6.28
(mg,m4,m5) 044 051 056 066 074|157 170 181 2.15 2.33
(mz,mg,m4) 0.62 064 0.68 0.76 083 | 1.27 1.33 1.38 154 1.84
(ml,mg,mg) 0.70 0.72 0.77 0.85 089 | 1.13 1.18 1.22 1.30 1.35

Since the solution is in the convergent range, the convergent estimator was applied. Table 8 shows
the extrapolated solution and its estimated error. The estimated error of Cp; is the sum of the estimated
error in CB; and C%; and does not exceed 0.08% of the extrapolated solution. This table also shows the
effect of the grid clustering on C%;, C%; and Cyp; by changing the clustering parameters o and c;. Within
the estimated numerical error, the numerical solution is grid independent.

Table 8: Effect of the grid clustering over C%;, Ck; and Cp; for some Mach numbers. Navier-Stokes model.

a ey | M =273 350 4.00 5.05 6.28
Ch:
2 0.04 | 0.08347(5)  0.07602(6) 0.07290(6) 0.06867(4)  0.06605(3)
2 0.08 | 0.08347(4)  0.07602(6) 0.07290(5) 0.06867(4)  0.06605(3)
2 0.02]0.08347(6)  0.07602(7) 0.07290(6) 0.06867(4)  0.06604(2)
1.5 0.04 | 0.08347(5)  0.07602(6)  0.07290(5) 0.06867(3)  0.06605(2)
2.5 0.04 | 0.08347(5)  0.07602(6) 0.07290(6)  0.06867(4)  0.06605(3)
Ch:
2 0.04 | 0.005227(2) 0.004283(2) 0.004798(2) 0.006604(3)  0.009793(4)
2 0.08 | 0.005228(12) 0.004284(9) 0.004798(9) 0.006601(48) 0.009 788(65)
2 0.02]0.005227(1) 0.004283(1) 0.004797(1) 0.006604(1)  0.009791(1)
1.5 0.04 | 0.005227(2)  0.004283(2) 0.004797(2) 0.006604(3)  0.009793(4)
2.5 0.04 | 0.005227(2)  0.004283(2) 0.004798(2) 0.006604(3)  0.009 793(4)
C’Df
2 0.04 | 0.08870(5)  0.08030(6) 0.07770(6) 0.07528(4)  0.07584(3)
2 0.08]0.08870(5)  0.08030(6) 0.07770(6) 0.07527(8)  0.07584(10)
2 0.02]0.08870(6)  0.08030(7) 0.07770(6) 0.07528(4)  0.07583(2)
1.5 0.04 | 0.08870(5)  0.08030(6) 0.07770(6) 0.07528(4)  0.07584(3)
2.5 0.04 | 0.08870(5)  0.08030(7) 0.07770(6) 0.07528(4)  0.07584(3)

3.2.2 Validation

The validation of the foredrag coefficient was performed comparing the results obtained from the
Navier-Stokes model and the experimental data of Eggers et al.[3]. The experiment was conducted in the
Ames 10-14 inch supersonic wind tunnel. The cone models had base diameter of 1 in and length of 3 in.
The foredrag force was obtained subtracting the base force from the total drag force, which was measured
with a strain-gage balance. The forces on the base of the models were determined from measured base
pressures and from free-stream static pressures.

According to Eggers et al., the accuracy of the foredrag coefficients was affected by uncertainties in
the measurements of the following quantities: stagnation pressures, free-stream static pressures, base
pressures, and the forces on the models as measured by the strain-gage balance. The authors state that
the combined effects of all the sources of error result in probable uncertainties in measured foredrag
coefficients that varies from £0.001 at the low Mach numbers (2.73) to £0.005 at a higher Mach numbers



(6.28). Since this experiment was not designed to be a validation experiment, some informations are not
available. As an example, the uncertainty over the stagnation pressure pg, free-stream static pressure po
and dynamic pressure g, are, respectively, 0.5%, 1.5% and 1.5%, but the values of the quantities were
not given. On the other hand, the free-stream Mach e Reynolds number were given (see Tab. 6), but their
uncertainties were not. Additionally, neither the free-stream temperature nor the base pressure (and their
uncertainties) were given.

Table 9 presents the experimental foredrag coefficient Cp*® of Eggers et al. and its expected experi-
mental uncertainty U®*®. Since the data were obtained from a plot, Cp™® is the average value of several
readings. The uncertainty due to the data reading U™*® was calculated as one standard deviation from
the mean value and is also shown in Tab. 9. It should be pointed out that all the values of M., read from
the plot are in agreement with their nominal values given by Eggers et al., except 6.28 that was read as
6.13(2).

In this work, the reading uncertainty is added to the experimental one. This additional error, that is,
the reading uncertainty, is a problem often found when comparing numerical to experimental data.

Table 9: Experimental foredrag coefficient Cp™® of Eggers et al.[3], its experimental uncertainty U*® and
reading uncertainty U<,

My | 2.73 3.50 4.00 5.05 6.28

Cpe™® | 0.0884 0.0807 0.0784 0.0757 0.0892

U=* | 0.0010 0.0020 0.0030 0.0040 0.0050

Ured | 0.0014 0.0014 0.0014 0.0014 0.0014

Once the estimated numerical error and the expected experimental uncertainty are known, it remains
to calculate the input uncertainty in order to estimate the validation metrics. The main input parameters
of the Mach2D are the fineness ratio f, the free-stream temperature T, the free-stream Mach number
M, and the free-stream Reynolds number Reo,. Among these parameters, only the uncertainty of f
is supposed to be negligible Neither the uncertainty of T,, nor its value are known. So, in order to
evaluate the influence of T, on the foredrag coefficient, M., and Rey, were fixed and three values of
Too were assumed: 200 K, 250 K and 300 K. Table 10 shows the extrapolated foredrag coefficient and
its error estimate calculated with the convergent estimator as a function of T,. As one can see, within
the estimated numerical error, T, does not affect the pressure foredrag C5; and the total foredrag Cp
coefficients, but slightly affects the viscous foredrag coefficient C£; by an amount up to 0.2%. Taking
into account this result, T, was fixed in 300 K and the effect of its uncertainty over Cp; was considered
negligible

The uncertainty of M., and Rey, are estimated using the following idea. Using the ideal gas state
equation, it is possible to express the Mach number and the Reynolds number as functions of the free-
stream static pressure po, and dynamic pressure g.. Since there is an uncertainty of 1.5% over ps, and
(oo, it is assumed that the same uncertainty affects M., and Rey.

The effect of the uncertainty of M., and Rey, over Cpy, i.e. U™ was calculated based on Eq. (11).
The derivatives were numerically approximated with a central differencing scheme and were calculated
using two values for AM,, and ARey, in order to ensure that the result does not depend on the step size
of the finite difference The numerical solution Cp"™™, its error estimation U™™ and the effect of the input
uncertainty over the numerical foredrag coefficient U™"* are presented on Tab. 11.

Finally, Tab. 12 shows the validation metrics E and U"* of Cp;. As one can see, there is a good
agreement between the expected numerical and experimental data for M., < 6.28. Taking Cp;™" as
reference, the relative difference between Cp""™ and Cp”*" is less than 0.88%. However, the uncertainty
of this relative difference may be as large as 7.1%. The main source of this uncertainty are U*® and U™,
For M., = 6.28 there is a clear disagreement between the model and the experiment. The reason for this
disagreement was not investigated, but it may be caused by the turbulence that was not considered in



Table 10: Effect of the free-stream temperature over Ch;, Ch; and Cp; for some Mach numbers. Navier-
Stokes model.

My =273 350 4.00 5.05 6.28
T (K) cr;
300 | 0.08347(5) 0.07602(6) 0.07290(6) 0.06867(4)  0.06605(3)
250 | 0.08347(5)  0.07602(6)  0.07291(6)  0.06868(4)  0.06605(3)
200 | 0.08347(5) 0.07602(6)  0.07291(6) 0.06868(4)  0.06605(3)
CE:
300 [ 0.005227(2) 0.004283(2) 0.004798(2) 0.006604(3) 0.009793(4)
250 | 0.005223(2) 0.004279(2) 0.004793(2) 0.006597(3) 0.009781(4)
200 | 0.005221(2) 0.004277(2) 0.004790(2) 0.006593(3) 0.009 774(4)
Chy
300 [0.08870(5) 0.08030(6) 0.07770(6) 0.07528(4)  0.07584(3)
250 | 0.08870(5)  0.08030(6)  0.07770(6) 0.07527(4)  0.07583(3)
200 | 0.08869(5) 0.08030(6) 0.07770(6) 0.07527(4)  0.07583(3)

num

Table 11: Numerical foredrag coefficient Cp™™, its estimated numerical error U™ and input uncertainty
U™rvt for some Mach numbers. Navier-Stokes model.
My | 2.73 3.50 4.00 5.05 6.28
Cp™™ | 0.08870 0.08030 0.07770 0.07528 0.07584
U™ | 0.00005 0.00006 0.00006 0.00004 0.00003
Uret 1 0.00052  0.00040 0.00035 0.00028 0.00023

the model, for instance, or even by an error in the plot of the experimental data (as mentioned earlier, it
was found My, = 6.13 instead of 6.28 during data reading).

Table 12: Validation metrics for the foredrag coefficient. Comparison of the Navier-Stokes model with
experimental data of Eggers et al.[3].

M 2.73 3.50 4.00 5.05 6.28
E 0.0003 -0.0004 -0.0007 -0.0004 -0.0134
U 0.0025 0.0035 0.0044 0.0054 0.0064

E/Cx™® | 0.32% -0.53% -0.88% -0.53%  -15%
U™ /Cr™ | 2.8% 4.3% 5.6% 7.1% 7.2%

4 Conclusion

The verification of the foredrag coefficient for both the Euler model and Navier-Stokes model showed
that the numerical error was dominated by the truncation error, i.e., the iteration error and the round-
off error were negligibly small. For all the Mach numbers considered, the observed order of accuracy,
calculated using five grids, converged to the asymptotic one, allowing one to apply the convergent estimator
for evaluation of the discretization error. The estimated discretization error does not exceed 0.06% of the
extrapolated solution for the Euler model and 0.08% for the Navier-Stokes model. The validation metrics
of the foredrag coefficient for the Navier-Stokes model showed a disagreement of up to 0.88% between the
numerical and experimental results for 2.73 < My, < 6.28 and 15% for M., = 6.28. The reason for the
last disagreement was not investigated. The estimated validation uncertainty was, at most, 7.2% for the
all Mach numbers considered. The main source of this uncertainty was the uncertainty of the experimental



data and due to the reading of the experimental data from a figure. Although this uncertainty is high
in the author’s opinion, no better option was found for comparing simulation to experimental data. One
hopes that the results present here may help other CFD developers.
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