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Resumo: Neste trabalho analisa-se 0 emprego de sete tipos de normas vetoriais (baseadas nas
normas Iy, I, e 1)) sobre o erro de discretizagdo em Dinamica dos Fluidos Computacional (CFD).
Constatou-se que, apesar dessas normas serem equivalentes, a ordem de acuracia resultante pode ser
distinta. As deducGes analiticas foram corroboradas pelos resultados numéricos. Os modelos
matematicos considerados foram: equacdo de adveccdo-difusdo 1D, equacdo de Poisson 2D e
equacdes de Burgers 2D. Os métodos numéricos empregados foram: Diferencas Finitas (MDF) e
Volumes Finitos (MVF), com aproximacdes de diversas ordens (P). Verificou-se que o emprego das
normas investigadas pode manter, degenerar ou aumentar P. As normas que mantém o valor de P
sdo: a média da norma l;, a norma |, da média dos quadrados dos erros nodais e a norma I.,..

Palavras-chave: erro de discretizacdo, norma vetorial, ordem de acuracia, equacao de Burgers, equacao
de adveccao-difusao.

1 Introducéo

Na literatura vigente é comum a utilizacdo de normas vetoriais em procedimentos de verificacdo
numérica onde se estima, basicamente, o erro numérico (E) envolvido e sua ordem de acuracia (P) [7].
A determinacédo de P é importante, sobretudo, nos seguintes aspectos: 1) utilizacdo de estimadores de E,
como GCI (Grid Convergence Index) [6] e Richardson [3]; 2) para confirmacéo de P tedrica do modelo
numérico utilizado; e 3) para a estimativa de P quando o resultado tedrico é desconhecido. Ao se
investigar P, para um namero fixo de varidveis e intervalo de discretizagdo, a escolha da norma a ser
empregada pode acarretar diferentes resultados, e isso pode levar a interpretacfes equivocadas.

O objetivo deste trabalho €, entdo, avaliar o uso de sete tipos de normas na verificacdo de solucgdes
numéricas em CFD. Mais especificamente, pretende-se mostrar que, no presente contexto (espagos
vetoriais reais de dimensdo finita), as normas vetoriais podem revelar diferentes P, e identificar quais
sdo as que mantém P tedrica do modelo numérico adotado. Para tanto, sdo abordados alguns aspectos
tedricos sobre E e normas vetoriais, e sdo apresentados resultados de experimentos numéricos
considerando-se o emprego de malhas uniformes em dominios uni e bidimensionais (1D e 2D). Como
trabalho futuro, pretende-se abordar também outros tipos de malhas.

2 Verificagdo numérica em CFD

O erro numérico (E) pode ser definido como a diferenca entre a solucdo analitica (®) de uma
variavel de interesse e a sua solugdo numérica (¢), entretanto ao se considerar o emprego de um

método de discretizacdo em um dominio de calculo Q, o erro de discretizacdo pode ser considerado a
principal fonte de E [7], e com essa perspectiva, segue a sua representacao [3, 6]



E=0-¢=k,h™ +khP +k,hP +khP+.., Q)

em que os coeficientes k;, j =0, 1, 2, 3, ... sdo nimeros reais obtidos em funcdo da variavel dependente
(do problema) e de suas derivadas, mas independem de h (espagamento entre os pontos nodais da malha
oM.

Por definicdo, as ordens verdadeiras, p,, sdo os expoentes de h na Eq. (1) e, sdo nimeros reais
que seguem a relacdo: 1< p, < p, <P, < P;.... O menor expoente, p,, € denominado ordem

assintética e, muitas vezes, € tratada na literatura por ordem do erro ou ordem de acuracia e denotada
por P [7]. Quando h — 0, a primeira parcela da Eq. (1) é a principal componente de E, isto é, domina o

seu valor total [3]; admite-se entédo, E de ordem P = p,, para h — 0 (refinamento de Q"), isto &,
E=®-¢ = k,h™ =ch”, )

P pode ser calculada através das ordens efetiva (P-) e/ou aparente (R, ). Para isso, consideram-se
as solucbes numéricas @, ¢, € ¢ Obtidas nas malhas fina (Q™), grossa (Q"), e supergrossa
(Q"<), respectivamente, geradas com razdo de refino constante r= hg /he =hgs /hg [3]; E(ge) €
E(¢s) correspondem aos respectivos E de ¢ € ¢ ;

p. _ l09[E(¢6)/E(4e)].

E

p _ 100[(d —¢sc) /(¢ _d6)]
log(r) ’ v log(r) '

3)

Em cada ponto i de Q", tem-se um E associado (E;), entretanto, busca-se normalmente
quantificar E e P inerente a todos os pontos nodais de Q". Nesse caso, E é denominado erro de
discretizagdo global (E;) [7].

Para Q" 1D com N pontos nodais, E, pode ser expresso por

N
Eg=A c;h” (4)
em que o operador A envolve todos os valores locais (nodais) (Eq. (2)) E; =c¢,h”,i=1,..,N.
Para Q" 2D, séo considerados: os eixos cartesianos x e y; h, = h,=h; P,=P,=P;asEqgs. (2) e

(4), e o texto [4], de maneira que se obtém
N
E=c,h*+c,h" =¢c,h"+¢,h" =(c, +¢,)h" =d, ,h" =dh” = E, =Ad, h", (5)
emqgue N=n,xn, =nxn= n? pontos nodais de Q" (2D).

Usualmente A corresponde a uma norma vetorial. Considera-se entdo, E, com as normas
dadas na Tabela 1.

Norma g, [El, L, g, [E/NL IEL gL

N N N
Expressio D IEil €], /N > E? Ell, /N » EiZ/N max |E| ||, /N
i=1 i=1 i=1

Tabela 1: Definicdo das normas para E € R"




3 Problemas-modelo

Nos problemas considerados adotou-se Q=[0,1] (1D) no caso 1, e Q2 =[0,1]x[0,1] (2D) nos
casos 2 e 3 (Tabela 2).

Caso Equaces Solugdo analitica
1) dr  d’T e™x -1
Adveccio Pea=w? T(0)=0; TM)=1. T(x) = L
difusdo
( 0T T g- {T(O- y)=TLy)=0, T(xy)=(x* =x*)(y* - y?),
2) PV IR

0 T(x,0)=T(x,1)=0. S propost 5].

oy (x0)=T(x) proposto em [5]
(3) £+6(uv) __ 1 @Jr@ u(x, y) =8(x* —2x% + x?)(4y® - 2y),
Burgers ox oy ox Relox? oy? ) v(X,y) =-8(4x* —6x% +2x) (y* - y?),

+
ox oy oy Relox? oy?

u(x,0)=u(0,y)=u(d y) =v(x,0)=v(0,y)=0
V(L y) =v(x1) =0,u(x,1) =16 (x* — 2x° + x?).

a(uv)+av_2_ op 1 [52\, 52\,}_8_ p e S propostos em [8].

Tabela 2: Definicdo dos Problemas-modelo

As solugdes numéricas foram obtidas: no caso 1 com MVF e P =1, 2 e 3 [1]; no caso 2 com MDF
e P=2 [5]; enocaso 3com MVFe P=2 [2].

4 Resultados e Conclusao

Em todos os esquemas numéricos adotados observou-se que, para o0 ponto nodal situado no centro
de Q, P =R, =P, h—0; ou seja, ha confirmagdo de P tedrica de E local. Sobre E,, com base nas

Egs. (4) e (5), e na Tabela 1, sdo considerados 0s préximos itens.

i) [E], e [E],:
para Q=[0,1], ||E[,=ch”* = ||E||1 =chP?/N=chP*h=ch”, emque c é determinado com base

— N
no conceito de limite superior (maior valor de aderéncia), isto é, ¢ = lim sup%ﬂ ¢, | <o (1D);
i=1

N — o 1=
epara Q=[0,1]x[0,1], [E|,=dh"? = ||E||1 =dh"?/N= dh"2?h?=dh", onde

a=limsup%_§| d. | <oo (2D).

N—>w i=1

i) |E[, e [E].:

para Q=[0,1], |E|. =c*h"=|E|, =|E| /N =c*h"h=c*h"*, com c*= NIim (1r11_t=;1>N<|ci < oo
(1D); B

epara Q =[0,1]x[0,1], |[E|=d*h"=|E|_ =|E| /N =d*h"h’>=d*h"*? em que

d*= lim (max |d, )< o (2D).

N—oow I<i<



if) [[E/N,. [E[, e [E],:
para Q= [0,1], [E/N|, =VEh", |E|,=vER"Y2, = |E|,= VER*V'2, emque

c= “mSUpN ZC <o (1D);

N — -1

epara Q.=[0.1x[0.]. [E/N|, =V/d ", [E], =+d h*, [E], = ¥d h**, com
d—IlmsupNZd <o (2D).

N —w -1

Os resultados numéricos obtidos corroboram essas deducdes analiticas, e indicam que ||E||1 IE| e
|E/N],, mantém P tedrica do modelo numérico adotado. Como ilustracao, na Tabela 3, consideram-se
||E||1 (mantém P) e |[E|, (degenera P) sobre os casos 2 e 3; e na Figura 1, consideram-se |E/N||,

(mantém P) e ||E||w (eleva P) sobre o caso 1 comP =1, 2 e 3.

Ordem de ||E||1 Ordem de [E],
h
Q Caso 2 Caso 3 Caso 2 Caso 3
nxn Pe R Pe R Pe R Pe R
4 x4 -- -- -- -- -- -- -- --
8x8 1,8535 -- 2,7044 -- 0,9305 -- 1,7146 --

16 x 16 19653 11,8129 1,6771 3,0051 1,0000 0,9860 0,7516  2,4906
32 x 32 1,9914 19564 1,6527 11,6883 11,0001 1,0000 0,7091 0,8159
64 x 64 1,9978 11,9893 11,8462 15706 1,0000 1,0002 0,8498 0,5121
128 x 128 1,9994 19973 11,9285 11,8157 11,0000 1,0000 0,9264 0,7596
256 x 256 1,9998 11,9993 11,9655 1,9156 1,0000 1,0000 0,9639 0,8860
512 x 512 1,9999 11,9998 11,9830 11,9595 1,0000 1,0000 0,9821 0,9449
1024 x 1024  1,9999 1,9999 19916 11,9801 1,0000 1,0000 0,9911 0,9730
2048 x 2048 19999 19999 19958 19902 1,0000 1,0000 0,9955 0,9866

Tabela 3: Ordens préaticas para a resolucdo numérica dos casos 2 e 3 (Tabela 2), com P = 2
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Figura 1: Ordens préticas de (a) |[E/NJ, e (b) ||E||w na resolucdo numérica do caso 1
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