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Resumo: Neste trabalho analisa-se o emprego de sete tipos de normas vetoriais (baseadas nas 
normas l1, l2 e l∞) sobre o erro de discretização em Dinâmica dos Fluidos Computacional (CFD). 
Constatou-se que, apesar dessas normas serem equivalentes, a ordem de acurácia resultante pode ser 
distinta. As deduções analíticas foram corroboradas pelos resultados numéricos. Os modelos 
matemáticos considerados foram: equação de advecção-difusão 1D, equação de Poisson 2D e 
equações de Burgers 2D. Os métodos numéricos empregados foram: Diferenças Finitas (MDF) e 
Volumes Finitos (MVF), com aproximações de diversas ordens (P). Verificou-se que o emprego das 
normas investigadas pode manter, degenerar ou aumentar P. As normas que mantém o valor de P 
são: a média da norma l1, a norma l2 da média dos quadrados dos erros nodais e a norma l∞. 
 
Palavras-chave: erro de discretização, norma vetorial, ordem de acurácia, equação de Burgers, equação 
de advecção-difusão. 
 
1 Introdução 
 

Na literatura vigente é comum a utilização de normas vetoriais em procedimentos de verificação 
numérica onde se estima, basicamente, o erro numérico (E) envolvido e sua ordem de acurácia (P) [7]. 
A determinação de P é importante, sobretudo, nos seguintes aspectos: 1) utilização de estimadores de E, 
como GCI (Grid Convergence Index) [6] e Richardson [3]; 2) para confirmação de P teórica do modelo 
numérico utilizado; e 3) para a estimativa de P quando o resultado teórico é desconhecido. Ao se 
investigar P, para um número fixo de variáveis e intervalo de discretização, a escolha da norma a ser 
empregada pode acarretar diferentes resultados, e isso pode levar a interpretações equivocadas.  

O objetivo deste trabalho é, então, avaliar o uso de sete tipos de normas na verificação de soluções 
numéricas em CFD. Mais especificamente, pretende-se mostrar que, no presente contexto (espaços 
vetoriais reais de dimensão finita), as normas vetoriais podem revelar diferentes P, e identificar quais 
são as que mantêm P teórica do modelo numérico adotado. Para tanto, são abordados alguns aspectos 
teóricos sobre E e normas vetoriais, e são apresentados resultados de experimentos numéricos 
considerando-se o emprego de malhas uniformes em domínios uni e bidimensionais (1D e 2D). Como 
trabalho futuro, pretende-se abordar também outros tipos de malhas. 

 
2 Verificação numérica em CFD 
 

O erro numérico (E) pode ser definido como a diferença entre a solução analítica )(  de uma 
variável de interesse e a sua solução numérica )( , entretanto ao se considerar o emprego de um 
método de discretização em um domínio de cálculo  , o erro de discretização pode ser considerado a 
principal fonte de E [7], e com essa perspectiva, segue a sua representação [3, 6] 
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em que os coeficientes jk , j = 0, 1, 2, 3, ... são números reais obtidos em função da variável dependente 
(do problema) e de suas derivadas, mas independem de h (espaçamento entre os pontos nodais da malha 

h ).  
Por definição, as ordens verdadeiras, ,Vp  são os expoentes de h na Eq. (1) e, são números reais 

que seguem a relação: ...1 3210 pppp  . O menor expoente, 0p , é denominado ordem 
assintótica e, muitas vezes, é tratada na literatura por ordem do erro ou ordem de acurácia e denotada 
por P [7]. Quando 0h , a primeira parcela da Eq. (1) é a principal componente de E, isto é, domina o 
seu valor total [3]; admite-se então, E de ordem 0pP  , para 0h (refinamento de h ), isto é, 

 
Pp hchkE  0

0 .                                                                                                      (2) 
 

P pode ser calculada através das ordens efetiva )( EP  e/ou aparente )( UP . Para isso, consideram-se 
as soluções numéricas F , G , e SG  obtidas nas malhas fina )( Fh , grossa ),( Gh  e supergrossa 

),( SGh  respectivamente, geradas com razão de refino constante GSGFG hhhhr //   [3]; )( FE   e 
)( GE   correspondem aos respectivos E de F  e G ; 
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Em cada ponto i de h , tem-se um E associado )( iE , entretanto, busca-se normalmente 

quantificar E e P inerente a todos os pontos nodais de .h  Nesse caso, E é denominado erro de 
discretização global )( gE  [7]. 

Para h  1D com N pontos nodais, gE  pode ser expresso por 
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em que o operador   envolve todos os valores locais (nodais) (Eq. (2)) ....,,1, NihcE P

ii    

Para h  2D, são considerados: os eixos cartesianos x e y; hhh yx  ; PPP yx  ; as Eqs. (2) e 
(4), e o texto [4], de maneira que se obtém 
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em que 2nnnnnN yx   pontos nodais de h  (2D). 
  Usualmente   corresponde a uma norma vetorial. Considera-se então, gE  com as normas 
dadas na Tabela 1. 
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Tabela 1: Definição das normas para NRE   



3 Problemas-modelo 
 

Nos problemas considerados adotou-se ]1,0[  (1D) no caso 1, e ]1,0[]1,0[   (2D) nos 
casos 2 e 3 (Tabela 2). 
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Tabela 2: Definição dos Problemas-modelo 
 
As soluções numéricas foram obtidas: no caso 1 com MVF e P 1, 2 e 3 [1]; no caso 2 com MDF 

e 2P  [5]; e no caso 3 com MVF e 2P  [2]. 
 

4 Resultados e Conclusão 
 
Em todos os esquemas numéricos adotados observou-se que, para o ponto nodal situado no centro 

de  , PPP UE  , ;0h  ou seja, há confirmação de P  teórica de E local. Sobre gE , com base nas 
Eqs. (4) e (5), e na Tabela 1, são considerados os próximos itens. 
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Os resultados numéricos obtidos corroboram essas deduções analíticas, e indicam que 1

__

E , 


E  e 

,/ 2NE  mantém P teórica do modelo numérico adotado. Como ilustração, na Tabela 3, consideram-se 

1

__

E  (mantém P) e 2E  (degenera P) sobre os casos 2 e 3; e na Figura 1, consideram-se 2/ NE  

(mantém P) e 


__

E  (eleva P) sobre o caso 1 com P = 1, 2 e 3. 
 

Ordem de 1
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E                    Ordem de 2E  

  Caso 2 Caso 3          Caso 2  Caso 3 

 
h  

n  n  
EP  UP  EP  UP  EP  UP  EP  UP  

4 × 4 
8 × 8 

16 × 16 
32 × 32 
64 × 64 

128 × 128 
256 × 256 
512 × 512 

1024 × 1024 
2048 × 2048 

-- 
1,8535 
1,9653 
1,9914 
1,9978 
1,9994 
1,9998 
1,9999 
1,9999 
1,9999 

-- 
-- 

1,8129 
1,9564 
1,9893 
1,9973 
1,9993 
1,9998 
1,9999 
1,9999 

-- 
2,7044 
1,6771 
1,6527 
1,8462 
1,9285 
1,9655 
1,9830 
1,9916 
1,9958 

-- 
-- 

3,0051 
1,6883 
1,5706 
1,8157 
1,9156 
1,9595 
1,9801 
1,9902 

-- 
0,9305 
1,0000 
1,0001 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 

-- 
-- 

0,9860 
1,0000 
1,0002 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 

-- 
1,7146 
0,7516 
0,7091 
0,8498 
0,9264 
0,9639 
0,9821 
0,9911 
0,9955 

-- 
-- 

2,4906 
0,8159 
0,5121 
0,7596 
0,8860 
0,9449 
0,9730 
0,9866 

Tabela 3: Ordens práticas para a resolução numérica dos casos 2 e 3 (Tabela 2), com P = 2  
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Figura 1: Ordens práticas de (a) 2/ NE  e (b) 
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E  na resolução numérica do caso 1 
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