

ABAQUS/Explicit: Advanced Topics	A3.12
Steps Required in Writing a VUMAT	
– Coding the VUMAT.	
Follow FORTRAN 77 or C conventions.Make sure that the code can be	Edit Material X Name: kinplas Material Options
vectorized.Make sure that all variables are	User Material Depvar
defined and initialized properly.	General Mechanical Inermal Other Delete
 Use ABAQUS utility routines as required. 	Der var
 Assign enough storage space for state variables with the *DEPVAR option. 	stati variables:
	Derpy Depyar Regularization User Material User Defined Field User Qutput Variables
Copyright 2005 ABAQUS, Inc.	

ABAQUS/Explicit: Advanced Topics	A3.18
VUMAT Interface – The VUMAT subroutine header is shown below:	
<pre>subroutine vumat(c Read only (unmodifiable) variables-</pre>	
Copyright 2005 ABAQUS, Inc.	QUS

ABAQUS/Explicit: Advanced Topics	A3.20
VUMAT Interface	-3
VUMAT variables	
 The following quantities are available in vumat, but they cannot be redefined: 	
 Stress, stretch, and SDVs at the start of the increment 	
 Relative rotation vector and deformation gradient at the start and of an increment and strain increment 	end
 Total and incremental values of time, temperature, and user-defin field variables at the start and end of an increment 	ned
 Material constants, density, material point position, and a characteristic element length 	
 Internal and dissipated energies at the beginning of the increment 	ıt
 Number of material points to be processed in a call to the routine (NBLOCK) 	
 A flag indicating whether the routine is being called during an annealing process 	
Copyright 2005 ABAQUS, Inc.	QUS

ABAQUS/Explicit: Advanced Topics	A3.28
VUMAT Interface – VUMATs and hyperelasticity	
• Hyperelastic constitutive equations relate the Cauchy stress σ to deformation gradient F through the left Cauchy-Green deformatio tensor B .	
 Using <i>F</i> for hyperelastic constitutive models in a vumat presents s difficulties, however, because 	some
 ABAQUS/Explicit uses a corotational system which automatic accounts for rigid body rotations. 	cally
 The deformation gradient that is passed into the vumat is refeted to a fixed basis associated with the original configuration. 	erred
• It also incorporates the rotations—recall the deformation gradient can be written as $F = RU$, where R is the rotati tensor and U is the stretch tensor.	
Copyright 2005 ABAQUS, Inc.	
Copyright 2005 ABAQUS, Inc.	103

ABAQUS/Explicit: Advanced Topics

- Thus, to avoid including the effects of the rotations twice, hyperelastic constitutive models implemented in a **VUMAT** should be formulated in terms of the stretch tensor *U*.
 - This allows you to obtain the corotational Cauchy stress directly.

A3.29

HABAQUS

- For example, for neo-Hookean hyperelasticity:

$$\boldsymbol{\sigma} = \frac{2}{J} C_{10} \left(\overline{\boldsymbol{B}} - \frac{1}{3} \operatorname{tr}(\overline{\boldsymbol{B}}) \boldsymbol{I} \right) + \frac{2}{D_1} (J - 1) \boldsymbol{I}, \quad \overline{\boldsymbol{B}} = \boldsymbol{B} / J^{2/3}$$

- Substituting F = RU into the above expressions yields:

$$\boldsymbol{\sigma} = \boldsymbol{R} \left\{ \frac{2}{J} C_{10} \left(\overline{\boldsymbol{U}}^2 - \frac{1}{3} \operatorname{tr}(\overline{\boldsymbol{U}}^2) \boldsymbol{I} \right) + \frac{2}{D_1} (J-1) \boldsymbol{I} \right\} \boldsymbol{R}^T, \text{ where } \overline{\boldsymbol{U}} = \boldsymbol{U} / J^{1/3}.$$

 The corotational stress is the quantity contained within the curly brackets:

$$\boldsymbol{\sigma}^{\text{corot}} = \frac{2}{J} C_{10} \left(\overline{\boldsymbol{U}}^2 - \frac{1}{3} \operatorname{tr}(\overline{\boldsymbol{U}}^2) \boldsymbol{I} \right) + \frac{2}{D_1} (J-1) \boldsymbol{I}.$$

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics	A3.36
Example: VUMAT for Kinematic Hardening Plasticity	
c If stepTime equals to zero, assume the material pure elastic and use c initial elastic modulus	
c	
if(stepTime .eq. zero) then	
c	
do i = 1, nblock	
c	
C Trial Stress	
<pre>trace = strainInc (i, 1) + strainInc (i, 2) + strainInc (i, 3) stressNew(i, 1)=stressOld(i, 1) + alamda*trace</pre>	
1 + twomu*strainInc(i, 1)	
stressNew(i, 2)=stressOld(i, 2) + alamda*trace	
1 + twomu*strainInc(i, 2)	
<pre>stressNew(i, 3)=stressOld(i, 3) + alamda*trace</pre>	
1 + twomu*strainInc(i,3)	
<pre>stressNew(i, 4)=stressOld(i, 4)</pre>	
1 + twomu*strainInc(i, 4)	
end do	
c	
else	
Copyright 2005 ABAQUS, Inc.	JS

ABAQUS/Explicit: Advanced Topics	A3.38
Example: VUMAT for Kinematic Hardening Plasticity	ĝ.
c	
c Check for yield by determining the factor for plasticity, zero for	
c elastic, one for yield	
c radius = con1 * yield	
facyld = zero	
if(dsmag - radius .ge. zero) facyld = one	
c	
c Add a protective addition factor to prevent a divide by zero when I	DSMAG
c is zero. If DSMAG is zero, we will not have exceeded the yield stre	ess
c and FACYLD will be zero.	
c	
dsmag = dsmag + (one - facyld) c	
c Calculated increment in gamma (this explicitly includes the time a	step)
c	
diff = dsmag - radius	
dgamma = facyld * term * diff	
Copyright 2005 ABAQUS, Inc.	US

ABAQUS/Explicit: Advanced Topics	A3.40
Example: VUMAT for Kinematic Hardening Plasticity	ŝ
c Update stress	
<pre>c factor = twomu * dgamma stressNew(i, 1) = sig1 - factor * ds1 stressNew(i, 2) = sig2 - factor * ds2 stressNew(i, 3) = sig3 - factor * ds3 stressNew(i, 4) = sig4 - factor * s4 c c c Update the specific internal energy - c stressPower = half * (1 (stressOld(i, 1)+stressNew(i, 1))*strainInc(i, 1) 2 + (stressOld(i, 2)+stressNew(i, 2))*strainInc(i, 2) 3 + (stressOld(i, 3)+stressNew(i, 3))*strainInc(i, 3) 4 + two*(stressOld(i, 4)+stressNew(i, 4))*strainInc(i, 4)) enerInternNew(i) = enerInternOld(i) 1 + stressPower/density(i)</pre>	
Copyright 2005 ABAQUS, Inc.	US

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

A3.43